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Abstract

The acceleration set theory developed in the companion report is applied to two important
problems which arise in the design of manipulator systems for performance: manipulator type
selection and actuator size determination. A systematic procedure is given for the comparison of
the performance, based on acceleration, of a set of alternative manipulator types. This procedure is
then used to compare the performance of three well-known manipulator designs which have been
proposed for high performance. Simple algorithms, based on the acceleration set theory, are given
for the determination of the minimum actuator sizes to obtain a specified isotropic acceleration.
The ease of implementation of these algorithms is demonstrated by actual examples. The
experimental determination of acceleration sets is also addressed and simple experimental results
are presented and compared with those predicted by the theory.



1 Introduction*

In this paper, we apply the acceleration set theory developed in (Desa and Kim, 1989) to the following
two important problems which arise in the design of manipulator systems:

1. The selection of manipulator type from a given set of feasible alternatives.
2. The determination of the actuator sizes for a given manipulator type.

One approach to solving the above two problems is to define suitable performance measures. These
performance measures could then be used as a basis for comparing different manipulator types in order
to select the “best™ one. Furthermore, if the performance measures could be explicitly related to the input
design variables of the problem, for example actuator size, then we could use these measures to obtain
values (“'sizes™) of the design variables to meet a desired level of performance.

In this paper, we show how acceleration properties of the acceleration sets, when interpreted as
performance measures can be used to provide solutions to the “ manipulator type selection™ problem and
the “ actuator sizing” problem state above. ‘ )

Several performance measures for manipulators have been proposed in earlier studies (Asada, 1983;
Yoshikawa, 1985; Khatib and Burdick, 1987; Graettinger and Krogh; 1988) and it is useful to briefly
discuss these performance measures within the present context. (Asada, 1983) has defined a General Inertia
Ellipsoid (GIE) to characterize manipulator dynamics: this measure does not have a clear physical meaning
and is mostly useful in those cases where the nonlinearities in the joint velocities are zero. (Yoshikawa,
1985) defines a dynamic manipulability index which is essentially based on the linear mapping between the
actuator torques and end-effector acceleration and therefore does not take into account the nonlinearities in,
joint velocities. (Khatib and Burdick, 1987) define a performance measure whose physical meaning is not
clear and which, in addition, accounts for the nonlinearities in a2 somewhat ad-hoc fashion by evaluating
the measure at one “high™ and one “low™ joint velocity vector. These drawbacks have been pointed out in
(Graettinger and Krogh, 1988) who propose an acceleration radius, which in the terminology of (Khatib
and Burdick, 1987) or (Desa and Kim, 1989) is the isotropic acceleration over an operating region and can
be thought of as a “global isotropic acceleration™. Since the isotropic acceleration does not always exist

and is zero at a singular point, global isotropic acceleration (acceleration radius) will in general be zero

* Equation (1.x) refers to equation (1.x) in Part I (i.e. (Desa and Kim, 1989)). Every equation in the current paper
(i.c. Panll) starts with "2.", for example (2.46).



unless the operating region is small enough, in which case it approaches the local isotropic acceleration,
one of the measures proposed in the current paper. Furthermore, designing for global isotropic acceleration
(acceleration radius) when possible will result in actuators which are grossly oversized.

In section 3, we propose a group of performance measures of increasing complexity, based on the
theory developed in the companion paper, (Desa and Kim, 1989), which are attractive for the following

reasons:
1. They have simple physical meanings.

2. They can be directly related to the manipulator parameters and input variable rates (actuator torques,
joint variables) and therefore can be used for design and redesign.

3. The most “ complex” performance measure, the local isotropic acceleration takes nonlinearities into
account in an “exact” manner.

A direct conseguence of (2) and (3) is that a typical design problem like the determination of actuator
sizes 10 guarantee a specified isotropic acceleration can be solved in a relatively straightforward manner
and without resort to complex nonlincar optimization as in (Gracttinger and Krogh, 1988).

The paper is organized as follows: In section 2, we present a heuristic justification for using accelera-
tion {and acceleration properties) as a measure of dynamic performance for manipulators. Several useful
scoeleration-based performance measures are then defined in section 3. These performance measures are
then wsed 1o solve the “manipulator type selection” problem in section 4 and to solve the “actuator sizing”
problem in section S.

The experimental determination of acceleration sets is described in section 6. The simple experimental
MM&%WM»WMWWn:&WW

2 Dynamic performance

Dysamic sysiems are designed 10 perform a variety of tasks. Each task generally has an inherent measure
ﬁmmw&m”wﬁ}m&rmuﬁmmNﬁmm measure. For example, if the dynamic
sysiem is » manipulator and the task is for a reference point P to move from one point to another, then

(38 ]




the manipulator: if one “improves” the acceleration capability of a manipulator, then the time required to
form the task is reduced Therefore, the “acceleration capability” of a manipulator is a useful dynamic

system performance measure.
we use two properties of the acceleration sets (or acceleration capability) as dynamic

sysiem performance measures: the maximum acceleration and the isotropic acceleration. Furthermore,
we are gencrally interested in these performance measures under three operating conditions, start-up, in-
motion, and local, which are defined below. Figure 1 depicts the view of tasks and performance measures
for manipulators presented in this chapter.

Comments:

1. The reason for defining three types of operating conditions is that the start-up condition is easier to
design for than the in-motion condition which in turn is easier to design for than the local operating
condition. Therefore, the start-up condition can be used to obtain very quick approximate results
which can then be refined for other operating conditions (see section 6).

2. The isotropic acceleration is a measure of the ability of the manipulator to accelerate in all directions
and can be thought of as a measure of the manuverability of the manipulator (Graettinger and Krogh,
1988) or its ability to avoid obstacles.

3 Performance measures

31 Start-up acceleration capability

leration capability of a manipulator, corresponding to a given configuration
q in the workspace, is the set of all available acceleration vectors of a reference point P when the
manipulsor is at rest and input torques 7, and T are applied at the (driven) joints.

mwm&mummmmm acceleration capability as defined above is simply
e scceleration set S, which is given by equations (1.34).




3.2 In-motion acceleration capability

Definition 1: The in-motion acceleration capability of a manipulator is the set of all available acceleration
vectors of a reference point P when the point P is moving with a velocity X? at a given position x?

in the workspace.
When the point P is at a position x? with a velocity X7,

1. the corresponding configuration q of the manipulator can be obtained from x? by solving the inverse

kinematic problem (Desa and Roth, 1985), and

2. the corresponding joint variable rate vector ¢ can (except for a certain finite number of singular

positions) be obtained from equation (1.22) as

q=J1. @.1)
We can therefore restate Definition 1 in the following equivalent form:

Definition 2: The in-motion acceleration capability of a manipulator is the set of all available acceleration
vectors of a reference point P when the manipulator is in the dynamic state u = (q, q) and the

actuator torques 7 and ™ are applied at the driven joints.

From the above definition, it is clear that the in-motion acceleration capability of the manipulator as

defined above is simply the state acceleration set Sy, which is given by equations (1.39).

3.3 Definition of performance measures

In ordcr‘ to be able to design a manipulator to have desirable acceleration capability, we need to be
able to extract suitable performance measures. Six such measures are defined below: the first two
characterize the acceleration capability at start-up, the next two characterize the acceleration capability
when the manipulator is in motion, and the last two characterize the (local) acceleration capability at any
configuration in the workspace. It should come as no surprise that the performance measures as defined
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1. Maximum start-up acceleration, Gme: w
Definition: The maximum start-up acceleration Gmax s i the maximum available acceleration of a ref-
erence point P when the manipulator is at rest and (input) torques 7; and 72 are applied at the
joints.
From the above definition, it is clear that the maximum start-up acceleration is given by
Bpax s = Gmax(S:) = max[a(S-)}, 22)
where 6. (S- ) is given by equation (1.69).

2. Isotropic start-up acceleration, giso.m

nition: The isotropic stant-up acceleration @,  is the maximum available acceleration in all direc-
tions of a reference point P when the manipulator is at rest in a configuration q and (input) torques
7y and 73 are applied at the joints.

From the above definition, it is clear that the isotropic start-up acceleration is given by
Guom = Giso(Ss), 23)
where 4,,,(S,) is given by equation (1.70).

3. Maximum “in-motion™ acceleration, Gmyy im

eleration of a manipulator is the maximum available accel-
eration when the reference point P moves with a velocity 3™ at a position x” in the workspace,
An equivalent definition for 8pe m is the following:
Definition 2: The maximum “in-motion™ acceleration of a manipulator is the maximum available accel-

eration of a reference point P when the manipulator is in a dynamic state u and actuator torgues 7y
and v are applicd at the joints.




From the above definition, it is clear that the maximum “in-motion” acceleration is given by

Gmax,im = @max(Su) = max[a(Su)], @4

where amax(Su) is given by equation (1.130).

4. Isotropic “in-motion”acceleration, gis im

Definition 1: The isotropic “in-motion” acceleration of a manipulator is the maximum available accel-
eration in all directions when the reference point P moves with a velocity x* at a position x” and

torques are applied at the driven joints.

An equivalent definition for ais im is the following:

Definition 2: The isotropic “in-motion” acceleration of a manipulator is the maximum available accel-
eration of a reference point P in all directions when the manipulator is in a dynamic state u and

torques 71 and 72 are applied at the driven joints.
From the definition above, it is clear that the isotropic in-motion acceleration is given by
Giso,im = Qiso(Su), 2.5)
where ais,(Su) is given by equation (1.133).
5. Maximum local acceleration, @max jocal

Definition: The maximum local acceleration @max, 1ocal 0f.2 manipulator is the maximum available accel-

eration of the reference point P at a configuration q of the manipulator.

The maximum local acceleration @max jocal is bounded by the upper bound (@max jocal)ub given by (1.151)
and the lower bound (Gmax jocal)i» given by (1.130) with the vector k evaluated at the joint variable vector
q which maximizes /(§1, ¢2) in equation (1.89).

6. Isotropic local acceleration, @jso jocal




Definition: The isotropic local acceleration @isojocat Of 2 manipulator is the maximum available acceler-
ation of the reference point P in all directions when the manipulator is at the (local) configuration
q in the workspace.

pic local acceleration @i jocal is given by equation (1.152).

34 lmo‘mmﬂﬁm measures

The six acceleration measures can be used for the following purposes:

lator types in order to select a manipulator type with the “best” accel-
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4 Selection of manipulator type

After defining the manipulator type selection problem, we present a procedure for its solution (section 4.2).
This procedure is applied in section 4.3 to three popular manipulator types which have been proposed for
“high performance”.

4.1 Definition of the problem

General problem statement
Given a set of alternate manipulator types, select the manipulator type which yields the best perfor-

mance.

In section 5.1 and 5.2, we established the use of acceleration and acceleration properties as measures
of performance. We can therefore restate the above general problem statement in a more precise manner

for our purposes as follows:

Specific problem statement _

Given a set of alternative manipulator types, select the manipulator type which yields the largest
isotropic acceleration under various operating conditions (start-up, in-motion and local).
4.2 Procedure for type selection

1. Determine the geometric and inertia parameters for each manipulator type.

2. Determine the ranges for the inputs, 4 and 7, of each manipulator type.

3. Determine the acceleration sets S, Sq and Su for each manipulator type. (We did this in section 4
of Part I (Desa and Kim, 1989) for the planar two degree-of-freedom manipulator of Figure 4.)

4. Extract the isotropic acceleration for the sets S, Sq and Sy (using the theory developed in section
5 in Part I (Desa and Kim, 1989)).
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Figure 2: Manipulator type 2 (from Asada and Youcef-Toumi, 1985)

5. Obtain the isotropic acceleration for each manipulator type under various operating conditions
ion and local) using (1.70), (1.133) and (1.152). )

ipulator type is the one which has the largest isotropic acceleration under the various

m“%ﬁMwmnmmzmmym Toumi, 1
ﬁmmmmmwmmumwl manipulator t
mmu%ﬁwhumwmm in order to improve |
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Figure 3: Manipulator type 3 (from Newman, 1987)

manipulator type 1; note that this manipulator type has a “closed kinematic chain”. Later manipulator type
3 was proposed in order to improve the performance of manipulator type 2. The parameters and variables
for manipulator types 1, 2 and 3 are given, respectively, in Figure 4, Figure 5 and Figure 6. (Note that
the joint variable g, for manipulator type 1 is different from the joint variable g2 for manipulator type 2).

The dynamic equations for each manipulator type are given in Appendix A and were used to determine
and extract the properties ofth:accclcmjonsctsS,,Sq and Sy using the theory developed in (Desa and
Kim, 1989). The maximum and isotropic acceleration under the three operating conditions are thén
determined.

The numerical values of the link parameters for each manipulator type are given in Table 1. Two
identical actuators, with maximum torques 71, and 73, of 30 Nm were used. The input torque set is given
by

T={r] | |<30.0Nm, i=1,2} 2.6)
and the set of joint variable rates given by
F={4|| &|< 50rad/s, i=1,2}. @mn

11
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Figure 6: Parameters and variables for manipulator type 3
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Manipulator 1:
link 1: L, =0303 a =0.196 m =2259 I =0.129
link 2: ,=0303 a=0088 m=1126 I=0.103 |

—Manipulator 2: o - D - ]
link 1: I, =0303 a =0088 m;=1126 I =0.103
link 2: b=0303 a=0088 my=1126 I =0.103
link 3: =0303 a =008 ms;=1126 I;=0.103
link 4: I3=0303 a3=0088 mq=1126 I=0.103

| Is =0.303

| tink 1: I} =0303 a; =008 m;=1126 I;=0.103
link 2: L=0303 a=0088 m=1126 I =0.103

Table 1: Initial design parameters of manipulator types 1, 2 and 3

14




Operating | Configuration Isotropic acceleration, @, m/s*

condition | q = (41, §2) | manipulator type 1 manipulator type 2 mampulator type 3

Start-up (0°, 45°) 24.4 215 21.1
(0°, 90°) 26.9 27.8 285
In-motion (0°, 45°) 20.8 5.14 8.83

1 =51fs, 2o =-51/5)

Local ©°, 45° 5.74 5.14 8.83

Table 2: Isotropic acceleration of the initial design of three manipulator types

Each link of all the three manipulator types was chosen to be the same. The weight of the second actuator
12 (mounted on the second link) causes the values of a; and m; for link 1 of manipulator type 1 to be
different from the corresponding values of link 1 for the other manipulator types.

The results obtained for isotropic acceleration for the initial design are given, respectively, in Table
2. (Note that the start-up accelerations were computed for two different configurations).

Let us now examine the possibility of performance improvement by increasing the actuator size of the
two actuators. Increasing the size of actuator 2 (72) for manipulator type 1 will have an adverse effect on
its performance because the additional weight of the second actuator will be an additional inertial “load™
on the first actuator. So, it is not advisable to increase the
mcpmmmmplenxsmcmeofmmlwh&dmmmﬂwmcmdmmd increasing

-

manipulator type 1 is not a good candidat
readily increased for manipulator types 2 and 3 since both actuators (for each of these types) are mounted
at the base. We will therefore consider the effects of doubling the size of both actuators of manipulato:
types 2 and 3. The results obtained f i i
and 3 are given in Table 3.

From the results of Table 2 and Table 3, we can draw the following condition.

15
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Operating | Configuration Isotropic acceleration, 4, m/s?
condition | q = (41, &) | manipulator type 2 manipulator type 3
Statup | (0°, 45°) 43.0 )
©, 90°) 55.6 570
In-motion | (°, 45%) 102 176
(=518 8=-51k)
Local | (1, 45°) 102 116

Table 3: Isotropic acceleration of the redesigned manipulator types 2and 3

1. Based on the local W acceleration (Whi«ﬁh takes the ponlinearities into account) of the initial
Wmnm manipulat
manInuiator Wl

or type 3 is “better” than the manipulator type 1 which slightly better

cleration in Table 3) manipulator type 3 is better than manipultor type
ani] “u’ﬂsca
These conclusions are bome out in practice: it is

well-known that manipulator type 3 is “faster” then
Istor type 2 which in turn is much “faster” than manipulator type 1. (The reason manipulator

16
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5 Determination of the actuator size for isotropic acceleration

In this section, we demonstrate how the theory developed in (Desa and Kim, 1989) can be used to solve

the “actuator size determination” problem in a relatively straightforward fashion.

5.1 Introduction

Given a manipulator at a configuration q in the workspace with specified geometric (i.e., link lengths,
etc.) and inertia parameters (i.e., masses, moment of inertias, etc.), and specified workspace and joint
variable rate constraints, determine the actuator torques required to yield a specified (desired) acceleration

property (for example, a specified local isotropic acceleration).

5.2 Definition of the problem

Definitions

”j 4 input parameter (or variable); the input parameters are the geometric and the ineni.a parameters.
n 214, b, a1, a3, my, my, I, LT input parameter vector with 4 component -

W : workspace of the manipulator.

F : joint rate variable set.

T : torque set.

a : some specified acceleration property under a given operation condition (start-up, in-motion, local),

for example, @jso,su-

Problem statement

Given the input vector 7 of link parameters and the constraint sets

W={qlge < ¢ < quw, i=1,2}

17
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and
F={4| | &l< 4w, i=1,2},
determine the torque set
T={7]|]|7i|< Tip,i= 1,2}

to yield the specified acceleration a. The required actuator sizes are of course 11, and T2,.

5.3 Solution procedure

We distinguish two cases, the first where the manipulator parameter vector 7 is independent of the weight
of the actuators and therefore of 71, and ™, and the second where 77 depends on the actuator weights and
therefore on 11, and ™,.

In each case we will obtain the actuator sizes to yield a desired isotropic acceleration under the three

operating ‘conditions.

Case 1: Manipulator parameter vector 7 is independent of the actuator sizes 71, and 7,

1 (a) Determination of actuator sizes for specified start-up isotropic acceleration

Given a specified manipulator parameter vector 7, determine actuator sizes 7, and 12, to yield a spec-
ified start-up isotropic acceleration a;,o,m at a given configuration q in the workspace of the manipulator,
i.e., determine 71, and 73, such that —

Gisom > Bigo - 2.8)

The minimum actuator Sizes Tjomin and T2 min required to satisfy the requirements (2.8) are given by

_ a;so,m 0%2 + 0%2 ‘
Tlomin = ' det(A) | 29)
o a;o,m a%l + a%l

18




Proof: Equation (1.70) expresses the isotropic start-up acceleration in terms of the actuator torques 71,
and 7,. Equation (1.70) is equivalent to the following two conditions
l det(A) | Mo o,

m

[ det(A) [ 2o o 2.12)

V@ +ddy

Combining equations (2.8) (2.11) (2.12), we obtam
I det(A) | Tlo '

Vot

| det() | m, 214

m-“‘“

For a given matrix A (i.e., for given a;; and det(A), the actuator size 71, will be a minimum when equation

(2.11)

(2.13)

(2.13) is an equality. Denoting by 71, min the value of 71, when (2.13) is an equality and solving (2.13)
for T1o,min, We obtain the result (2.9). Starting with (2.14) and reasoning in a similar fashion, we obtain
the result (2.10) for T25,min.

1 (b) Determination of actuator sizes for specified in-motion isotropic acceleration

Given a specified manipulator parameter vector 7, determine actuator sizes 7y, and 7, to yield a
specified in-motion isotropic acceleration a;,om for a given manipulator state u = (q, q), i.e., determine

T10 and 13, such that
Qiso,im > a:solm 2.15)

atu =(q, Q.

The minimum actuator sizes 71, min and T2, min required to satisfy the requirement (2.15) are given by

iso, im\/ a2, + ak+ | anky — arzk, | 2.16)

Tlomin = | det(A) l
. Qiso, im\/ 0%1 +a§1+ I aZlkl - allk2 I (2 1
T2oimin [det(a) | ' P

(Comment: k; and k» are the components of the vector k which is defined in section 4 of Part I (Desa
and Kim, 1989).)

19
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Proof: Equation (1.133) expresses the isotropic in-motion acceleration in terms of the actuator torques

T10, and 7,. Equation (1.133) is equivalent to the following two conditions

| det(A)| 1, — |azzks — araka|

> i (2.18)
B+ 2, -
| det(A)| 720 — lanks — auks] Gigo n- (2.19)
\[ ah + 3
Combining (2.18) (2.19) and (2.15), we obtain
| det(A)| 10 — |azzki — araks| > G in (220)
Vv ah+ah
|det(A)r2o — lantks — anka] G i 221)
\/ @ + @

For a given matrix A (i.e., for given a;; and det(A) and coefficients k; and k2, the actuator size 71, will
be a minimum when equation (2.20) is an equality. Denoting by T1omin the value of 71, when (2.20) is
an equality and solving (2.20) for 7j, min, We obtain the result (2.16). Starting with (2.21) and reasoning
in a similar fashion, we obtain the result (2.17) for 7, min-

1 (c) Determination of actuator size for specified local isotropic acceleration

Given a specified manipulator parameter vector 7, determine actuator sizes 71, and ™, to yield a
specified local isotropic acceleration a;om for a given configuration q, i.e., determine 7y, and 7, such
that

Gisoocal > Gigo Jocal- 222)

The minimum actuator Sizes Ty, min and ™, min required to satisfy the requirement (2.22) are given by

a, + ,
Tlomia = —ﬁaétammwm(x(sq), )l (223)
V& + ,
—‘—‘—fgi[a;,ow««pm(i(sq), )1 (2.24)

Tomin = Tie(A)
where pmax(%(Sq), ), (i = 1, 2) are given by equation (1.92) in subsection 5.2 of Part I (Desa and Kim,
1989).

20




Proof: Equation (1.152) expresses the local isotropic acceleration in terms of the actuator torques 71, and

7. Equation (1.152) is equivalent to the following two conditions

—==—=— Pmax(X(Sq), /1) 2 @iso,local (2.25)
V 0%2 + ‘1%2 '
|det@)Imso _ |, &(S)s ) > Gisomocal 2.26)

Vah +d;
Combining (2.25) (2.26) and (2.22), we obtain
|dCt(A)!Tla

== — prax(¥(Sq)s ) 2 Gigotocal @27
vV al, + a3,
Ld—CtzLAllT—zo - Pmu(x'(sq)v 12) Z a;so,local' (2.28)
a}) +a%

For a given matrix A (i.e., for given a; and det(A) and pmax(X(S¢), /1) (given by equation (1.92) in
section 3 of Part I (Desa and Kim, 1989), the actuator size 71, will be a minimum when equation (2.27) is
an equality. Denoting by T1omin the value of 71, when (2.27) is an equality and solving (2.27) for T14,min,
we obtain the result (2.23). Starting with (2.28) and reasoning in a similar fashion, we obtain the result

(2.24) for T2, min-
Case 2: Manipulator parameter vector 7 is dependent on the actuator sizes 71, and ™,

The algorithm for computing the actuator sizes is shown in Figure 7. Essentially, we should embed

“Case 1” in a closed-loop which compensates for the fact that 7 does depend on 71, and m,.
The algorithm (Figure 7) consists of the following steps:

1. Initialization. The initial parameter vector 7 is computed based on the actuator weights being set

to zero. The values of the actuator sizes, denoted by 71,(0ld) and m,(old), are set to zero.

2. Compute actuator sizes njo(new) and m™,(new) based on a éiven parameter vector 7 as in Case 1
(Use Case 1(a) for start-up, Case 1(b) for in-motion and Case 1(c) for local).

3. Check whether 1, and 72, converge using the following convergence criteria

T1o(new) — 71,(0ld)
T 2 8 229

21
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7e manipulator parameter
7 based on zero

Tlo(old) < Tlo(new)
Tp(old) < T, (new)

Update »

based on actuator weights

Obtain actuator weights
corresponding to

T1o(MeEw) To,(new)

Figure 7: Algorithm for computation of actuator sizes to yield desired acceleration
requirements for the case where the manipulator parameter vector 7 depends on the
actuator sizes 1y, and ™,
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>

Y

Compute actuator sizes
Tlo(new) , T (new)
as in Case 1

T1olnew) - Ty, (old)

Too(DeEw) - Ty (old)

T10(01d)

Th(0ld)

Tlo, min<S" 100V
T, miné' TZO(IICW)
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T2o(DEW) — T2,(01d)
o (old) < € (2.30)

where ¢; and ¢; are defined by the user. If (2.29) and (2.30) are satisfied, Tiomin = T1o(nEw) and

T2omin = To(new) and the design is complete.

4. If (2.29) and (2.30) are not satisfied, update the parameter vector  based on new actuator sizes

T10(new) and m,(new), and go to step 2.

The closed loop shown in Figure 7 essentially performs iterations of step 2, 3, and 4 till the convergence
criteria are satisfied.

Comment:

The “start-up” case can be used to get a quick design which can be successively refined by doing the

“in-motion case™ and “local case”. This is demonstrated in the example below.

5.4 Example:

Determination of actuator sizes for acceleration properties for a two degree-of-freedom serial planar
manipulator.
We illustrate how we determine the minimum actuator sizes of a planar two degree-of-freedom ma-

nipulator built in our laboratory for the following three cases
Case 1: (Start-up) Gisom =3 m/s? at (g1 =0°, g2 = 90°)
Case 2: (In-motion) @0 im = 3 m/s? at (q; = 0°, ¢2 = 90°, Q= lrad/s’, Q= lrad/sz)

Case 3: (Local) @isoloca = 3 m/s? at (¢ = 0°, ¢z = 90°)

Initialization

Initial link parameters for links 1 and 2 are as follows:

link 1: J; = 0.303 m, a; = 0.088 m, m; = 1.126 Kg, /; = 0.103 Kg m?,
link 2: 1, = 0.254 m, a; = 0.094 m, m; = 1.120 Kg, I = 0.003 Kg m?,
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Since our manipulator belongs to manipulator type 1 in section 4, we use the loop-algorithm in Case 2.

Case 1: Design for start-up acceleration
To give the reader a feel for how to size actuators using the algorithm, we include the results of the

three iterations which were needed to obtain the actuator sizes.

Iteration 1.
Using equations (2.9) and (2.10) with the initial link parameters, we come up with the following

actuator sizes,

Tlomin = 2.13Nm,
Tomin = 0.15Nm. .31
Iteration 2.

Since we can vary the actuator torques between 0.2 - 5 Nm using the gear reduction, the weight of
brushless motor is assumed to be around 1.1 Kg. Our manipulator is manipulator type 1 and we include
the actual weight of actuator 2 to obtain a new set of parameters.

link 1:/; = 0.303,a; = 0.196,m; = 2.259,1; =0.129,

link 2 : i =0.254,a; = 0.094,m; = 1.129, 12 = 0.003. (2.32)
If we use equations (2.9) and (2.10) with the new set of link parameters in (2.32), then we come up with
the following actuator sizes, )

Tlomin = 3.17Nm,

Tomin = 0.15Nm. (2.33)

Iteration 3.

Since the weight of actuators is assumed to be around 1.1 Kg, we have the manipulator parameter set

in (2.32). If we use equations (2.9) and (2.10) with the set of link parameters in (2.32), then we come up

with the same actuator sizes as in calculation 2 as follows,

Tlam = 3- 17Nm’

Tromin = 0.15Nm. (234)
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The required actuator sizes, therefore, are the values in (2.33).

Case 2: Design for in-motion acceleration
Similarly, using (2.16) and (2.17) and employing the algorithm (Figure 7), we obtain the following

minimum actuator sizes to satisfy the in-motion isotropic acceleration

Tlomin = 3.42Nm,
Tomin = 0.17Nm. (2.35)

As expected, because of the non-linear effects when the manipulator is “in-motion”, results (2.35) show
that we should use bigger actuators in order to achieve the same level of acceleration properties as in

manipulator start-up.

Case 3: Design for local acceleration
Using (2.23) and (2.24) and employing the algorithm, in Figure 7, we obtain the minimum actuator

sizes to satisfy the local isotropic acceleration

Tlomin = 4.12Nm,

Tomn = 0.17Nm. (2.36)

As expected, we come up with the bigger actuator sizes in (2.36) than those of the “in-motion” results in
(2.35).
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Figure 8: Mechanical components of a two degree-of-freedom manipulator
6 Experimental verification

In this section, we describe simple experiments which are used to determine the acceleration set S,
(Start-up acceleration capability) and then compare the experimental results with those obtained using the
analytical results of Part L

6.1 Description of the two degree-of-freedom manipulator experimental set-up

The mechanical structure of the two degree-of-freedom manipulator is shown schematically in Figure 8.
The design is modular so that the links can be easily changed, thus allowing one to study the effect of
changing the link parameters. Each link is driven by a motor as shown in the Figure. A schematic of the

control hardware which is used to drive each motor, and thereby control the torque applied to each link,

is shown in Figure 9; the main points to note in the control hardware are the following:

1. A specified input torque commanded from a terminal (by the user) is transmitted to the pulse-width-
modulation (PWM) generator by the MC68K microprocessor board.
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Figure 9: Control implementation of a two degree-of-freedom manipulator
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2. The PWM generator converts the torque command into a pulse width modulated voltage signal to

the motor resulting in the application of the torque to the link.

3. The motor position is measured by optical encoders and transmitted to the MC68K microprocessor

board where it is stored until needed by the host computer (for various purposes).

6.2 Experimental procedure

We describe the procedure for experimentally determining Sr. Because S, is a parallelogram in the X -
plane (see Figure 5), it is sufficient to obtain the four vertices A',B',C', and D' of S, which correspond,
respectively, to the vertices A, B, C, and D of the torque set T shown in Figure 3. Furthermore, because the
origin of the acceleration plane is the centroid of the parallelogram A'B'C’'D, it is sufficient to determine
the vertices A’ and B’ which correspond, respectively, to the vertices A and B of the torque set T.

If 1, and 7, denote, respectively, the magnitude of the maximum actuator torques at joints 1 and 2,
then
1. in order to generate point A’ of S,, we should apply actuator torques 71, and 75, respectively, at
joints 1 and 2, and
2. in order to generate point B’ of S, we should apply actuator torques 71, and —3,, respectively, at
joints 1 and 2.
The procedure to obtain the image point in S, (for example, A’) corresponding to a point (71, ™2)-in
T (for example, A) is as follows:

1. Apply the actuator torques 7y and 7 at, respectively, joints 1 and 2.

2. Measure the joint variables ¢;(f) and ¢2(7) at regular sampling instants. (The particular sampling
time chosen was 0.01 second.)

3. Obtain the second rates-of-change of the joint variables g;(k), i=1,2, at the £ sampling instant from
the following finite-difference equations, .

4 = gi(k+ 2)+qi$)2 — 2qi(k+ 1) @37
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Experimental result Calculated result Error
%(A")erp = (4.08, 6.02) | X(A")car = (-3.91, 6.65)
%(B exp = (2.96, 6.31) | %(B)ear = (3.91, 6.98)

| XA )exp | = 7.27 | X(AYeat | = 7.71 6 %
| %(B )ezp | = 6.97 | (B )ear | =8.00 |13 %

Table 4: Comparison of experimental and calculated accelerations for two data points

»

where k, k+1 and k+2 denote, respectively, the k2, (k+ 1)® and (k+2)® sampling instants, and At

is the sampling time.

4. Determine the required acceleration of P, X7 from

psl .
3P = =Jq+]Jq. 2.38)
X :
Since
q=0,
£ = Jg. (239

The coordinates %; and ¥; obtained from the equation (2.38) above is the required image point in S;.
The following details apply to the paniculat experiments which we performed:

1. The experiments were performed for the configuration ¢; = 0° and ¢z = 90°;
2. The parameters for the two links are given in section 5.
3. The maximum actuator torques applied were 71, = 8.12 Nm and 7, = 0.17 Nm, which were in the

set of actuator constraints determined in the previous section.

6.3 Experimental results
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Figure 10: Comparison of experimental (dotted parallelogram) and calculated (solid
parallelogram) start-up acceleration capability of the manipulator

The experimental results for the determination of the points A and B are given in Table 4 and
graphically described in Figures 10. Also included are the theoretical results. From Table 4, we see that

the experimental and theoretical results agree within experimental error ( < 15 % ) and are certainly good
enough for our purposes.

In Table 5, we compare the values of the start-up acceleration properties Gmaxsu and @iso s Obtained
from experiment and theory; the theoretical and experimental results agree to within 10 %. The results

of the experiment demonstrate the feasibility of using our theory to determine acceleration capabilities.
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Acceleration properties | Acceleration properties | Error
(experiment) (theory)
Omax,su = 7.27 Qmax,su = 8.0 9%
Giso,su = 3.63 Giso,a = 3.91 7 %

Table 5: Comparison of experimental and calculated acceleration properties (m/s?), (Error
= | Gexp — Geat | /@cal)
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7 Summary and conclusions

Using the theory of acceleration‘sets. (Desa and Kim, 1989), we have defined (in section 3) six
performance measures which can be used as a basis for designing manipulators for performance. We then

illustrated the usefulness of these performance measures by applying them to the solution of the following

two manipulator design problems.

1. Selection of the “best” manipulator type from a set of alternative manipulator types

2. Determination of minimum actuator sizes to achieve desired isotropic acceleration.

An explicit procedure was given in section 4 to solve the first problem, viz. "type selection”. Algorithms
for the determination of actuator sizes are given in section 5.

Finally in section 6, we addressed the experimental determination of the maximum and isotropic start-up
acceleration and presented experimental results which verified the theory for start-up acceleration sets and

start-up acceleration properties.
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Appendix. Equations of motion for planar manipulators

1. Jacobian matrix

The joint velocity is related to the velocity in Cartesian space by the Jacobian matrix,
x=Jq.

The Jacobian matrix J for the three types of manipulators are as follows:

Manipulator type 1:

~lisingy — L sin(qy + q2) —Lsin(q) + q2)
I hcosqy +lacos(q1 +q2)  hcos(qr + q2)

Manipulator type 2:

—11 sin q1 -15 sin q2

hecosqy Iscosq

Manipulator type 3:

J -lising; -—lsing;
hcosqr Lcosqr ‘

When this relationship is differentiated with respect to the time, we obtain the following equation,

% =Ji+J3q=J§ - E{q}? . (2.40)

where E is the matrix which has the following elements:

Manipulator 1:

E= hicos g1+l cos(q1 +¢2) L2cos(qr +¢2)
hsing; +Lsin(q1 +¢2) hLsin(q1 +42)

Manipulator 2:

E= hicosqy Iscosq
lisingy Issing:

Manipulator 3:
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licosqy hcosq

E= _
lising; ksing;

2. Dynamic equations
The dynamics of a two-degree-of-freedom planar manipulator is described by the following equation:

Dg+V{g}*=r. @.41)
The components of matrices D and V are as follows:
Manipulator 1:
D I +mad + I +mya3 + 233l cos g2+ B) 12 + my(a3 + a3l cos q2)
i Iy + my(d} + ayl c0s ¢2) I+ ma3
Ve 0 —maazl sin g2
maazl; sin g 0
Manipulator 2:
D= h+ma?+mB +Iy+mea  (muash +maash)cos(qy — q2)
L+md+mbB+I+ma

I (muaqly + maasly) cos(qr - q2)

(myasly + maash)sin(q; — ¢2)

0
V= [
| —(m4asly + maash)sin(q1 - q2) 0
Manipulator 3:
r
po| Ntmai+ml  mahcos(qi - ¢2)
I+ md

i maazly cos(q1 — q2)

0 maaxl; sin(g; - q2)

V=
0

| —maz2lysin(qy - ¢2)
The nonlinear vector {q}? is as follows:
Manipulator 1:




{a)*= ‘ﬁz
| 1+ 4)° - @
Manipulator 2:
o [ &]
{aP=| "
| & |
Manipulator 3:
- -
. a
{a=| "
K3

3. Acceleration equation

The expression of the acceleration of the end-effector is as follows:

&= Ar+B{q}?
where

A=JD"!
B=-AV-E

where J, D, V and E are given above for each manipulator type.
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