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The acceleration set theory developed in the companion report is applied to two important

problems which arise in the design of manipulator systems for performance: manipulator type

selection and actuator size determination. A systematic procedure is given for the comparison of

the performance, based on acceleration, of a set of alternative manipulator types* This procedure is

then used to compare the performance of three well-known manipulator designs which have been

proposed for high performance. Simple algorithms, based on the acceleration set theory, are given

for the determination of the minimum actuator sizes to obtain a specified isotropic acceleration.

The ease of implementation of these algorithms is demonstrated by actual examples. The

experimental determination of acceleration sets is also addressed and simple experimental results

are presented and compared with those predicted by the theory.



1 Introduction*

In this paper, we apply the acceleration set theory developed in (Desa and Kim, 1989) to the following

two important problems which arise in the design of manipulator systems:

1. The selection of manipulator type from a given set of feasible alternatives.

2. The determination of the actuator sizes for a given manipulator type.

One approach to solving the above two problems is to define suitable perfonnance measures. These

perfoimance measures could then be used as a basis for comparing different manipulator types in order

to select the "best" one. Furthermore, if the performance measures could be explicitly related to the input

design variables of the problem, for example actuator size, then we could use these measures to obtain

values ("sizes") of the design variables to meet a desired level of perfonnance.

In this paper, we show how acceleration properties of the acceleration sets, when interpreted as

perfonnance measures can be used to provide solutions to the ** manipulator type selection** problem and

the " actuator sizing*' problem state above.

Several performance measures for manipulators have been proposed in earlier studies (Asada, 1983;

Yoshikawa, 1985; Khatib and Burdick, 1987; Gracttingcr and Krogh; 1988) and it is useful to briefly

discuss these perfonnance measures within the present context. (Asada, 1983) has defined a General Inertia

Ellipsoid (GIE) to characterize manipulator dynamics: this measure does not have a dear physical meaning

and is mostly useful in those cases where the nonlinearities in the joint velocities are zero. (Yoshikawa,

1985) defines a dynamic manipulability index which is essentially based on the linear mapping between the

actuator torques and end-effector acceleration and therefore does not take into account the nonlinearities in.

joint velocities. (Khatib and Burdick, 1987) define a performance measure whose physical meaning is not

clear and which, in addition, accounts for the nonlinearities in a somewhat ad-hoc fashion by evaluating

the measure at one "high** and one "low** joint velocity vector. These drawbacks have been pointed out in

(Graettinger and Krogh, 1988) who propose an acceleration radius, which in the teraiinology of (Khatib

and Burdick, 1987) or (Desa and Kim, 1989) is the isotropic acceleration over an operating region and can

be thought of as a "global isotropic acceleration9*. Since the isotropic acceleration does not always exist

and is zero at a singular point, global isotropic acceleration (acceleration radius) will in general be zero

* Equation (1 jt) refers to equation (1 Jt) in Part I (Le. (Desa and Kim, 1989)). Every equation in the cmraif papa:
(Le. Putll) starts with "2.", for example (2.46).



unless the opening region is small enough, in which case it approaches the local isotropic acceleration,

a * of the JBOisiifes proposed in the current paper. Furthermore, designing for global isotropic acceleration

(aooeknttan radius) when possible will result in actuators which are grossly oversized.

fa m^m 3t we propose a group of performance measures of increasing complexity, based on the

tfaeofy devaoped in the companion paper, (Desa and Kim, 1989), which arc attractive for the following

mums:

L Hey hive simple physical meanings.

2. They can be directly related to the manipulator parameters and input variable rates (actuator torques,

joint variables) and therefore cm be used for design and redesign.

3, Tie mo* m complex1' pafoimanc© measure, the local Isotropic acceleration takes nonlinearities into

account m m lexact" manner.

A direct ©Qfijafiia^ of (Z) and (3) ia that t typical desiga problem like the determination of actuator

sites to guarantee a ipediied isctropic aocelenfion am be solved in a relatively straightforward manner

tmA without itKfft • co»pkx mooliwif optuntation as to CGrasiimger and Krogh, 1988).

T ^ {MfMf m w ^ e t e i ^ « folto^: to section 2, we pment ft heuristic justification for using accelera-

lias C'Mi .. r- ;••...':: r "•:.:- :f., -,v ^ s mmmm cf dpttmic pen'onr. ar.ee for oianipulatofs. Several usefiil

^ » f c « ^ , » ^ ^ ' pmtettMicc ^ t t w t nc itko ^ ^ w l ia ̂ c i c » 3. T h ^ peffimnaoxaB measures are

ttat ^ r f Id telve te * » ^ : p i ^ » t | p « t o k » w pufcHesi ia ««ic»4 and to solve the MmmmDT aaingf9

malm 5*

^^^^^mmmmw^$^ltm^msh^mn^iumMtM'6. The «

f«e«eiiiedl it tiit tecticNEi KIVC H» valkfane the tttawy p ^ m t e l in the ooMospaokxi

2 fHnamtc performance

I • -f ̂ '* ̂  i-..rsr:'( A« irwgnti ic pcrfcra a vawetv cf tasks. Each task general]v has an inherent measure

, r— • -r.^*;- *« . - *t ^:I! "cfer t^ ss ±z task peifcrrnance nseasure. for example, If the dynamic

v ' ^ ^ ;̂  M r^r / . i.: ••.* ir-.2 ;::.f :^4 ̂ f e i ̂ ftrtr^c poin: F to rno%-£ fem cne pokl to another, then



the ml ulaon If one "improves" the acceleration capability of a manipulator, then the time required to

oofon the task is reduced. Therefore, the "acceleration capability" of a manipulator is a useful dynamic

system pcrfcwniiice measure.

Spd&aBy* we use two properties of the acceleration sets (or acceleration capability) as dynamic

stem perfonstfice measures: the maximum acceleration and the isotropic acceleration. Furthermore,

m ait poert ly interested in these performance measures under three operating conditions, start-up, in-

aotioo, and local, which are defined below. Figure 1 depicts the view of tasks and performance measures

fee tsumipulatois presented in this chapter.

Comment*:

L nbe teases for defining three types of operating conditions is that the stait-up condition is easier to

deslfn for thin ttat Mi-motion condition which in turn is easier to design for than the local operating

coeditiOiL Therefore; the start-up condition can be used to obtain very quick approximate results

wfcidl can then be refined for other operating conditions (see section 6).

2. Tbt isotropie mczkmslm is a measwe of the ability of the manipulator to accelerate in all directions

m& ZM& be shou^it erf i s i n^asuit of the manuverability of the manipulator (Graettinger and Krogh,

I9iti or its ability to atvoid ofanacles.

$ Performance measures

IJ Sl«rl*»f accettration capability

ftanntip mmkmtlm capability of a manipulator conesponding to a given configuration

f m Ac »*t*tp©e# is the set of all wtUtblc acxelcration vectois of t refexenoe pcint P whoi the

ttliwiod i ap i toques n mi n wt apg&kd at the (driven) join

i:;OR. Ii is dear that the start-up acceleration capability as defined above is simply

-' = v - l *rn by equations (1*34),



3.2 In-motion acceleration capability

Definition 1: The in-motion acceleration capability of a manipulator is the set of all available acceleration

vectors of a reference point P when the point P is moving with a velocity xp at a given position x^

in the workspace.

When the point P is at a position xp with a velocity xp,

1. the corresponding configuration q of the manipulator can be obtained from X? by solving the inverse

kinematic problem (Desa and Roth, 1985), and

2. the corresponding joint variable rate vector q can (except for a certain finite number of singular

positions) be obtained from equation (1.22) as

q=rV. (2.1)

We can therefore restate Definition 1 in the following equivalent form:

Definition 2: The in-motion acceleration capability of a manipulator is the set of all available acceleration

vectors of a reference point P when the manipulator is in the dynamic state u = (q, q) and the

actuator torques T\ and r*i arc applied at the driven joints.

From the above definition, it is clear that the in-motion acceleration capability of the manipulator as

defined above is amply the state acceleration set Sm which is given by equations (1.39).

33 Definition of performance measures

In order to be able to design a manipulator to have desirable acceleration capability, we need to be

able to extract suitable performance measures. Six such measures are defined below: the first two

characterize the acceleration capability at start-up, the next two characterize the acceleration capability

when the manipulator is in motion, and the last two characterize the (local) acceleration capability at any

configuration m the workspace. It should come as no surprise that the performance measures as defined



below ait the propcnics of the acceleration sets deteimined in section 5 of the companion paper (De$a

md Kim, 1989).

1. Maximum start-up acceleration,

Definition: The maximum start-up acceleration am**,*® *« the maximum available acceleration of a ref-

erence point P when the manipulator is at rest and (osput) torques n ^ ^ a i t applied at the

Ftom the above definition, it is dear that the maximum stait-up acceleration is given by

wfecrc ) is given by equation (169).

X Ifotropfc start-up accderatloii,

: The « E K ^ I C sttit-iip accelenaion a^ « is the maximimi available acceleration in all direc-

tions of a reference poM P whtn the naaaiptilator is at rest in t cxwifiguratiois q and (input) torques

ri and 1% mt applied at the jcrfats*

the above definition, it k clear that die Isotrcpic start-eft acceleration is given by

(23)

whtm is gives fey equation (L70).

3, MaiJmum ^n-raotfon" atctleratlon,

1: The z&sxinttEis "in-xnoHon** accekraticm of a manipulator Is the maximum available mxth

the itfeitnoe point P moves with a velocity i f at a position xF In the workspace*

Jte ivateiu defeiuM tor ^mn.m i% the foSowisg:

2s Tbt !RUt.«um "in-nusticn** acceleration of a miTiipulAcr Is the maximum aviE^le aecel-

iiCR ef i !?fcr«rs^ «si!K f ^ t o iht manipwlatCMr is is a d^amic sine u and actuator torques n_



From the above definition, it is clear that the maximum "in-motion" acceleration is given by

<W,im = <W(SU) = max[0(£u)], (2.4)

where flmaxGSu) is given by equation (1.130).

4. Isotropic "in-motion"acceleration,

Definition 1: The isotropic "in-motion" acceleration of a manipulator is the maximum available accel-

eration in all directions when the reference point P moves with a velocity xp at a position x^ and

torques are applied at the driven joints.

An equivalent definition for a^im is the following:

Definition 2: The isotropic "in-motion" acceleration of a manipulator is the maximum available accel-

eration of a reference point P in all directions when the manipulator is in a dynamic state u and

torques T\ and rz arc applied at the driven joints.

From the definition above, it is clear that the isotropic in-motion acceleration is given by

£|so,im = tfisoCSu), (2.5)

where OisoiSu) is given by equation (1.133).

5. Maximum local acceleration,

Definition: The maximum local acceleration tfmax, local of a manipulator is the maximum available accel-

eration of the reference point P at a configuration q of the manipulator.

The maximum local acceleration flmaxjocai is bounded by the upper bound (tfmaxjocaiXib given by (1.151)

and the lower bound (<2bax,iocai)/fc given by (1.130) with the vector k evaluated at the joint variable vector

4 which maximizes /(ft, qi) in equation (1.89).

4 Isotropie local acceleration,



*',;;.!•, ?J

Definition: The isotropic local acceleration dbojoaa of a manipulator is the maximum available acceler-

ation of the reference point P in all directions when the manipulator is at the (local) configuration

q in the workspace.

The isotrapic local acceleration a^^ocat is given by equation (L152).

3*4 Uses of the acceleration measures

The ax acceleration measures can be used for the following puiposes:

L To compart different manipulaiar types in order to select a manipulator type with the *1>esf aooel-

cntiofl capabilities.

2. T0 & a p i manqmlalor to yield ontain acceleration

3. To t p¥ta k crier to tstpiofe its acce'eraaon propsnies.

4. To yield estimates of the inertia faces which cm thai be used to size the links in very 4*high-

perfoiraance" applications,

to tfce tmm tm ^^toi» iws i^moattr^ the first two u ^ of the «aieration measuxes. In

4t we also ̂ ^ Aaple i^teip# Lc«, peffominoe impfovaiicmt % dianpng actuator size.

Comment:

Since the ii0H0p!€ acceleration is i measme whids, by

issefid meassae for tht soiuUeB of jpnsbSems 1 and 2,

iiloa^ Is "direction-invariant**, it is a mom



4 Selection of manipulator type

After defining the manipulator type selection problem, we present a procedure for its solution (section 4.2).

This procedure is applied in section 4.3 to three popular manipulator types which have been proposed for

"high performance".

4.1 Definition of the problem

General problem statement

Given a set of alternate manipulator types, select the manipulator type which yields the best perfor-

mance.

In section 5.1 and 5.2, we established the use of acceleration and acceleration pioperties as measures

of performance. We can therefore restate the above general problem statement in a more precise manner

for our purposes as follows:

Specific problem statement

Given a set of alternative manipulator types, select the manipulator type which yields the largest

isotropic acceleration under various operating conditions (start-up, in-motion and local).

42 Procedure for type selection

1. Determine the geometric and inertia parameters for each manipulator type.

2. Determine the ranges for the inputs, q and r , of each manipulator type.

3. Determine the acceleration sets Sr* S$ and £ u for each manipulator type. (We did this in section 4

of Part I (Desa and Kim, 1989) for the planar two degree-of-freedom manipulator of Figure 4.)

4. Extract the isotropic acceleration for the sets ST» S% and Sm (using the theory developed in section

5 in Part I (Desa and Kkn, 1989)).



joint «

lick 4

joint 5

figure!: Manipulator type 2 (fron Asada and Youcef-Toumi, 1 9 8 5 )

5L Obtain the isotiopic acceleration for each manipulator type undo* various operating conditions

(stait-up, in-motioii and local) using (1.70). (1.133) and (1.152).

6. The "best" manipulator type is the one which has the largest isotropic acceleration under the various

opening conditions for the configuration (q) of Interest.

7. QMcally exanlfic the possibility of redesigning each manipulator type and then repeat steps 1

t t e w # 6 for the ratesigocd manipulatoc.

t . Rciibmi atqpsl i w » ^ 7 Jbr varioita coaQgisiaiioas (q) erf Interest

43 Extntplf

A« m ilta«wii» of die Mkmm ptootdxat* mt 'awipw the perfoimawx of the three manipulator types

sl»W!t h Bpm S ( A ^ » wad Kaudbt 1^3), Ft^m 2 (Andi and Ywcrf-Totmi, 1985) and Hguie 3

p « v » m 19StK ^ ^ wS b* tefejwl » t furtively, «* mwipulator ^pe 1» maupulaior type 2 and

manipulator type 3. Manipidaior tjfpe I wm the ertjpMl dixect ciriw majii»l«cM: MmipilMcH' type 2

in which both aftuatois ire n ^ i M i at die taw was proposed in onto- to taspiovc tic perfiwrnaace of

10



l i n k 2

s t e e l bands

motor 1
motor 2

Figure 3: Manipulator type 3 (from Newman, 1987)

manipulator type 1; note that this manipulator type has a "closed kinematic chain". Later manipulator type

3 was proposed in order to improve the performance of manipulator type 2. The parameters and variables

for manipulator types lf 2 and 3 are given, respectively, in Figure 4, Figure 5 and Figure 6. (Note that

the joint variable qz for manipulator type 1 is different from the joint variable qx for manipulator type 2).

The dynamic equations for each manipulator type are given in Appendix A and were used to determine

and extraa the properties of the acceleration sets ST, S$ and Su using the theory developed in (Desa and

Kim, 1989). The maximum and isotropic acceleration under the three operating conditions are then

determined.

The numerical values of the link parameters for each manipulator type are given in Table 1. Two

identical actuators, with maximum torques r\o and T^ of 30 Nm were used. The input torque set is given

by

T* {r\ 1 n |< 30.0 Nm, i= 1,2}

aid the set of joint variable rales given by

F« ftl | * l < 5.0 iad/s, i = l ,2}.

(2-6)

C2.7)

11



reference point P

Figure 4: Pawmetes MM! variables of manipulator type 1

12



Figure 5: Parameters and variables for manipulator type 2

Figure 6z Parameters and rambles for inaniptilaGor type 3

13



Manipulator 1:

l inkl :

link 2:

Manipulator 2:

l inkl :

link 2:

link 3:

link 4:

Manipulator 3:

l ink l :

link 2:

h = 0.303

h = 0.303

h = 0.303

h = 0.303

h = 0.303

U = 0.303

Is » 0.303

/i = 0.303

h = 0.303

oi = 0.196

02 = 0.088

ay - 0.088

O2 = 0.088

03 = 0.088

04 = 0.088

01 = 0.088

02 = 0.088

mi = 2259

in2 = 1.126

mi = 1.126

7712 = 1 .126

7713 = 1.126

7714 = 1-126

mi = 1.126

7712 = 1 .126

7i = 0.129

72 = 0.103

7i = 0.103

72 = 0.103

73 = 0.103

74 = 0.103

h = 0.103

72 = 0.103

Table 1: Initial design parameters of manipulator types 1,2 and 3

14



Operating

condition

Start-up

In-motion

Oft = 5 r/s, q% = -5 r/s)

Local

Configuration

q = Oft. &)
(0°, 45°)

(0°, 90°)

(0°, 45°)

(0°, 45°)

Isotropic acceleration, auo

manipulator type 1 manipulator type 2

24.4

26.9

20.8

5.74

21.5

27.8

5.14

5.14

m/s2

manipulator type 3

21.1

285

8.83

8.83

Table 2: Isotropic acceleration of the initial design of three manipulator types

Each link of all the three manipulator types was chosen to be the same. The weight of the second actuator

TZ (mounted on the second link) causes the values of a\ and mi for link 1 of manipulator type 1 to be

different from the corresponding values of link 1 for the other manipulator types.

The results obtained for isotropic acceleration for the initial design are given, respectively, in Table

2. (Note that the start-up accelerations were computed for two different configurations).

Let us now examine the possibility of performance improvement by increasing the actuator size of the

two actuators. Increasing the size of actuator 2 (n) for manipulator type 1 wfll have an adverse effect on

its performance because the additional weight of the second actuator will be an additional inertM "load"

on the first actuator. So, it is not advisable to increase the size of the second actuator. Furthermore," In

the present example it is the size of actuator 1 which determines the isotropic acceleration and increasing

the size of the first actuator alone will not change the isotropic acceleration (see section 53). Therefore*

manipulator type 1 is not a good candidate for redesign. The actuator sizes of both actuators can be

readily increased for manipulator types 2 and 3 since both actuators (for each of these types) are mounted

at the base. We will therefore consider the effects of doubling the size of berth actuators of manipulator

types 2 and 3. The results obtained for the isotrapic acceleration for the redesigned manipulator types 2

and 3 are given in Table 3.

From the results of Table 2 and Table 3» we can draw the following condition.

15



Operating

condition

Start-up

In-motion

(ft » 5 r& & = -5 ift)

Local

Configuration

(0°, 45°)

(0°, 90°)

(0°, 45°)

(0°. 45°)

Isotropic acceleration, 0jK m/s2

manipulator type 2 manipulator type 3

43.0 42.2

55.6 57.0

10.2 17.6

10.2 17.6

Table 3: Isotropic acceleration of the redesigned manipulator types 2 and 3

1. Based on the local isotropic acceleration (which takes the nonlinearities into account) of the initial

design (Table 2), the manipulator type 3 is "better" than the manipulator type 1 which slightly better

thai maoipiilaJDr type 2.

1 When we ttte advantage of the fact that manipulator types 2 and 3 can be redesigned, we see that

fbtsed1 an focal fsotajpic acceleration in Table 3) manipulator type 3 is better than manipultor type

2 wbUk if tetter thai (the initial) manipulator type 1.

Tkm cmclwmm we beat out k practice: it is well-known that manipulator type 3 is "faster" fha»

Biffl^Mw type 2 «Hdi « turn is modi Tastef than manipulator type 1. (The reason manipulator

tffW 2 m4 3 am better thai mrapilttor type 1 is because they both have all their actuators mounted

m the twa& Tie m m « « i p l A j r type 3 ig better than manipulator type 2 is because the "steel-belf

wed i t » » p l g w type 3 to immtit tte tx»que fiom the base actuator to the second link has negligible

inertia « » p « ^ to (be Urifcage* iiaed k s i r a p l ^ r type 2 to transmit the torque fiom tk base actuator

10 the second link.)



5 Determination of the actuator size for isotropic acceleration

In this section, we demonstrate how the theory developed in (Desa and Kim, 1989) can be used to solve

the "actuator size determination" problem in a relatively straightforward fashion.

5.1 Introduction

Given a manipulator at a configuration q in the workspace with specified geometric (i.e., link lengths,

etc.) and inertia parameters (i.e., masses, moment of inertias, etc.), and specified workspace and joint

variable rate constraints, determine the actuator torques required to yield a specified (desired) acceleration

property (for example, a specified local isotropic acceleration).

5-2 Definition of the problem

Definitions

rjj SB input parameter (or variable); the input parameters are the geometric and the inertia parameters.

V - Ih, hi &u &2i tf*i> wii hr h]T input parameter vector with/* component rjj.

W : workspace of the manipulator.

F : joint rate variable set

T : toique set.

a : some specified acceleration property under a given operation condition (start-up, in-motion, local),

for example, aiso,su.

Problem statement

Given the input vector r/ of link parameters and the constraint sets

17



and

determine the torque set

to yield the specified acceleration a. The required actuator sizes are of course r\o and r^.

53 Solution procedure

We distinguish two cases* the first where the manipulator parameter vector rj is independent of the weight

of the actuators and therefore of r\o and T2o and the second where tf depends on the actuator weights and

therefore on r\o and v^,.

In each case we will obtain the actuator sizes to yield a desired isotropic acceleration under the three

operating conditions.

Case 1: Manipulator parameter vector t\ is independent of the actuator sizes T\O and T ^

1 (a) Determination of actuator sizes for specified start-up isotropic acceleration

Given a specified manipulator parameter vector T/, determine actuator sizes T\O and rio to yield a spec-

ified start-up isotropic acceleration a ^ ^ at a given configuration q in the workspace of the manipulator,

LeM determine r\o and r ^ such that

The minimum actuator sizes Tio^ and 7 ^ , ^ required to satisfy the requirements (2.8) are given by

dcu.4) 1

det(A)

18



Proof: Equation (1.70) expresses the isotropic start-up acceleration in terms of the actuator torques r\o

and T2o. Equation (1.70) is equivalent to the following two conditions

I > tfiso.su- (2.12)

V 4 l + °21

Combining equations (2.8) (2.11) (2.12), we obtain

| det(A) 1 r l o ,
> Oiso.su (-2-13)

(2.14)

For a given matrix A (i.e., for given ay and det(A), the actuator size T\O will be a minimum when equation

(2.13) is an equality. Denoting by TU^ the value of r\o when (2.13) is an equality and solving (2.13)

for Tiâ mjn, we obtain the result (2.9). Starting with (2.14) and reasoning in a similar fashion, we obtain

the result (2.10) for r ^ ^ .

1 (b) Determination of actuator sizes for specified in-motion isotropic acceleration

Given a specified manipulator parameter vector rj, determine actuator sizes r^ and v^ to yield a

specified in-motion isotropic acceleration a^rim for a given manipulator state u = (q, q)f Lcf determine

T\O and T2o such that

> ^ s o ^ (245)

at u = (q, q).

The minimum actuator sizes riOym^ and T ^ ^ required to satisfy the requirement (2.15) are given by

^ (2.16)

also, i

(Comment: k\ and fe arc the components of the vector k which is defined in section 4 of Part I (Desa

and Kim, 1989).)

19



Proof: Equation (1.133) expresses the isotropic in-motion acceleration in terms of the actuator torques

T\0 and T20. Equation (1.133) is equivalent to the following two conditions

1 det(A)[rlg - \a^i - anh\ ^ „ n l

> ^ i i (2.1

Combining (2.18) (2.19) and (2.15), we obtain

- \a2\ki - ank2\ ^ >
^ ^ (2.21)

For a given matrix A (i.e.f for given ajj and det(A) and coefficients Jfci and k2, the actuator size r\o will

be a minhn,itm, when equation (2*20) is an equality. Denoting by r ^ ^ the value of T\O when (2.20) is

an equality and solving (2.20) for r ^ ^ , we obtain the result (2.16). Starting with (2.21) and reasoning

in a similar fashion, we obtain the result (Z17) for 7 ^ , ^ .

1 (c) Determination of actuator size for specified local isotropic acceleration

Given a specified manipulator parameter vector rj9 determine actuator sizes T\O and T^, to yield a

specified local isotropic acceleration <4otim for a given configuration q, i.e., determine r\o and r ^ such

that

<^so>cal > 4so,local' (2.22)

The minimum actuator sizes r^j^a and T ^ , ^ required to satisfy the requirement (2*22) are given by

= dlt(A) [^gojDMl * pnn(^S^h)} (223)

det(A)

(X(Sq)? ii), (i = 1» 2) are given by equation (1.92) in subsection 5.2 of Pait I (Desa and Kim,

1989).
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Proof: Equation (1,152) expresses the local isotropic acceleration in terms of the actuator torques no and

T20. Equation (1.152) is equivalent to the following two conditions

), ft) > aiso,load (2.25)

- PmaxWSq), fe) > tfiso,local. (2.26)

Combining (2.25) (2.26) and (2.22), we obtain

, /i) > aiso?local (2.27)

- PmaxWAq), Z2) > îso,local-

For a given matrix A (i.e., for given ay and det(A) and Pmax(x(Sq),ft) (given by equation (1.92) in

section 3 of Part I (Desa and Kim, 1989), the actuator size no will be a minimum when equation (2.27) is

an equality. Denoting by T ^ ^ the value of no when (2.27) is an equality and solving (2.27) for nojrfa*

we obtain the result (2.23). Starting with (2.28) and reasoning in a similar fashion, we obtain the result

(2.24) for

Case 2: Manipulator parameter vector rj is dependent on the actuator sizes r\o and T ,̂

The algorithm for computing the actuator sizes is shown in Figure 7. Essentially, we should embed

"Case 1" in a closed-loop which compensates for the fact that r\ does depend on r\o and r%o.

The algorithm (Figure 7) consists of the following steps:

1. Initialization. The initial parameter vector rj is computed based on the actuator weights being set

to zero. The values of the actuator sizes, denoted by Ti<>(old) and r*a(old), are set to zero.

2. Compute actuator sizes rio(new) and 7^(new) based on a given parameter vector rj as in Case 1

(Use Case l(a) for start-up, Case l(b) for in-motion and Case l(c) for local).

3. Check whether no and no converge using the following convergence criteria

TI«(PCW) - n*(old) n
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< e2 (2.30)

where t\ and €2 arc defined by the user. If (2.29) and (2.30) are satisfied, r ^ ^ & r^(new) and

T^(new) and the design is complete.

4. If (2.29) and (230) are not satisfied, update the parameter vector TJ based on new actuator sizes

Ti<>(new) and T^(new), and go to step 2.

The closed loop shown in Figure 7 essentially performs iterations of step 2f 3, and 4 till the convergence

criteria are satisfied.

Comment:

The "start-up" case can be used to get a quick design which can be successively refined by doing the

"in-motion case** and "local case*9. This is demonstrated in the example below.

5.4 Example:

Determination of actuator sizes for acceleration properties for a two degree-of-freedom serial planar

manipulator.

We illustrate how we determine the minimum actuator sizes of a planar two degree-of-freedom ma-

nipulator built in our laboratory for the following three cases

Case 1: (Start-up) Obo,«u « 3 m/s2 at (q\ = O°r 42 = 90*)

Case 2: (In-motion) <Zi»o,ira - 3 m/s2 at (qi = 0*, ^2 - 90*, $1 - Irad/s2, & = lrad/s2)

Case 3: (Local) aijo,iocii - 3 m/s2 at (̂ 1 =0^, <n =

Initialization

Initial link parameters for links 1 and 2 are as follows:

link 1: h = 0303 m, ai « 0.088 m, mi * 1.126 Kg. h * 0.103 Kg xn2
f

link 2: h = 0.254 mf a2 = 0.094 m, m = 1.120 Kg, h = 0.003 Kg m2.
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Uni

Since our manipulator belongs to manipulator type 1 in section 4, we use the loop-algorithm in Case 2.

Case 1: Design for start-up acceleration

To give the reader a feel for how to size actuators using the algorithm, we include the results of the

three iterations which were needed to obtain the actuator sizes.

Iteration 1.

Using equations (2.9) and (2.10) with the initial link parameters, we come up with the following

actuator sizes,

T\ofiam = 2.13A/IH,

= OASNm. (2.31)

Iteration 2.

Since we can vary the actuator torques between 0.2 - 5 Nm using the gear reduction, the weight of

brushless motor is assumed to be around 1.1 Kg. Our manipulator is manipulator type 1 and we include

the actual weight of actuator 2 to obtain a new set of parameters.

link 1 : Ii = 0.303,flX = 0.196,mi = Z2S9,/i = 0.129,

link 2 : h = 0.254, ai = 0.094,mi = 1.129, h = 0.003. (2.32)

If we use equations (2.9) and (2.10) with the new set of link parameters in (2.32), then we cone up with

the following actuator sizes,

= QASNm. (2.33)

Iteration 3.

Since the weight of actuators is assumed to be around LI Kg, we have the manipulator parameter set

in (2.32). If we use equations (2.9) and (2.10) with the set of link parameters in (2.32), then we come up

with the same actuator sizes as in calculation 2 as follows,

= 3.17A&H,

« QASNm. (234)
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The required actuator sizes, therefore, are the values in (2.33).

Case 2: Design for in-motion acceleration

Similarly, using (2.16) and (2.17) and employing the algorithm (Figure 7), we obtain the following

minimum actuator sizes to satisfy the in-motion isotropic acceleration

= OAlNm. (2.35)

As expected, because of the non-linear effects when the manipulator is "in-motion", results (2.35) show

that we should use bigger actuators in order to achieve the same level of acceleration properties as in

manipulator start-up.

Case 3: Design for local acceleration

Using (2.23) and (2.24) and employing the algorithm, in Figure 7, we obtain the minimum actuator

sizes to satisfy the local isotropic acceleration

rl0,mm = 4.12JV/7I,

= OAlNm. (236)

As expected, we come up with the bigger actuator sizes in (2.36) than those of the "in-motion'* results m

(235).
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Figure 8: Mechanical components of a two degree-of-freedom manipulator

6 Experimental verification

In this section, we describe simple experiments which are used to determine the acceleration set Sr

(Start-up acceleration capability) and then compare the experimental results with those obtained using the

analytical results of Part I

6.1 Description of the two degree-of-freedom manipulator experimental set-up

The mechanical structure of the two degree-of-fireedom manipulator is shown schematically in Figure 8.

The design is modular so that the links can be easily changed, thus allowing one to study the effect of

changing the link parameters. Each link is driven by a motor as shown in the Figure, A schematic of the

control hardware which is used to drive each motor, and thereby control the torque applied to each link,

is shown in Figure 9; the main points to note in the control hardware are the following:

1. A specified input torque commanded from a terminal (by the user) is transmitted to the pulse-width-

moduMon (PWM) generator by the MC68K microprocessor board.
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Figure 9: Control implementation of a two degree-of-fkeedom manipulator
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2. The PWM generator converts the torque command into a pulse width modulated voltage signal to

the motor resulting in the application of the torque to the link.

3. The motor position is measured by optical encoders and transmitted to the MC68K microprocessor

board where it is stored until needed by the host computer (for various purposes).

6.2 Experimental procedure

We describe the procedure for experimentally determining 5T. Because iST is a parallelogram in the x -

plane (see Figure 5), it is sufficient to obtain the four vertices A \ B \ C \ and D' of ST which correspond,

respectively, to the vertices A, B, C, and D of the torque set T shown in Figure 3. Furthermore, because the

origin of the acceleration plane is the centroid of the parallelogram A'B'C'Z>', it is sufficient to determine

the vertices A* and B' which correspond, respectively, to the vertices A and B of the torque set T.

If T\o and Tio denote, respectively, the magnitude of the maximum actuator torques at joints 1 and 2,

then

1. in order to generate point A' of ST, we should apply actuator torques r\o and 7^, respectively, at

joints 1 and 2, and

2. in order to generate point B' of ST, we should apply actuator torques r\o and — r^, respectively, at

joints 1 and 2.

The procedure to obtain the image point in Sr (for example, A') corresponding to a point (Ti,

T (for example, A) is as follows:

1. Apply the actuator torques r\ and r% at, respectively, joints 1 and 2.

2. Measure the joint variables q\(f) and qxtf) at regular sampling instants. (The particular sampling

time chosen was 0.01 second.)

3. Obtain the second rates-of-change of the joint variables #;(£), i=l,2, at the k?h sampling instant from

the following finite-difference equations,

" O37,
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Experimental result

*<£')«* = (-4.08, 6.02)

x(B'W = (2.96, 6.31)

I x(A')«p 1 = 7.27

1 x(B')«p 1 = 6.97

Calculated result

*(A')cal = (-3.91, 6.65)

*(B')cai = (3.91, 6.98)

I *(A')cai | = 7.71

1 Wycai | = 8.oo

Error

6%

13%

Table 4: Comparison of experimental and calculated accelerations for two data points

where k, k+1 and k+2 denote, respectively, the £*, (£+1)* and (Jt+ 2)A sampling instants, and At

is the sampling time.

4. Determine the required acceleration of Pt HP from

(2.38)

Since

The coordinates X\ and ~x% obtained from the equation (238) above is the required image point in ST.

The following details apply to the particular experiments which we performed:

L The experiments were performed for the configuration q\ = 0* and qz = 90^;

2. The parameters for the two links are given in section 5.

3. The maximum actuator torques applied were T\O = 8.12 Nm and v^ = 0.17 Nm, which wene in the

set of actuator constraints determined in the previous section.

63 Experimental results
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Figure 10: Comparison of experimental (dotted parallelogram) and calculated (solid

parallelogram) start-up acceleration capability of the manipulator

The experimental results for the determination of the points A* and B' are given in Table 4 and

graphically described in Figures 10. Also included are the theoretical results. From Table 4, we see that

the experimental and theoretical results agree within experimental error ( < 15 % ) and are certainly good

enough for our purposes.

In Table 5, we compare the values of the start-up acceleration properties ann^m and auo^ obtained

from experiment and theory; the theoretical and experimental results agree to within 10 %. The results

of the experiment demonstrate the feasibility of using our theory to determine acceleration capabilities.

\ I 8

•?
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Acceleration properties

(experiment)

0max,su = 7.27

tfiso,su = 3.63

Acceleration properties

(theory)

^nax,su = 8.0

Oiscsa = 3.91

Error

9%

1 %

Table 5: Comparison of experimental and calailated acceleration properties (m/s2), (Error
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7 Summary and conclusions

Using the theory of acceleration sets, (Desa and Kim, 1989), we have defined On section 3) six

performance measures which can be used as a basis for designing manipulators for performance. We then

illustrated the usefulness of these performance measures by applying them to the solution of the following

two manipulator design problems.

L Selection of the "best" manipulator type from a set of alternative manipulator types

2* Determination of minimum actuator sizes to achieve desired isotropic acceleration.

An explicit procedure was given in section 4 to solve the first problem, viz. "type selection". Algorithms

for the determination of actuator sizes are given in section S.

Finally in section 6, we addressed the experimental determination of the maximum and isotropic start-up

acceleration and presented experimental results which verified the theory for start-up acceleration sets and

stan-up acceleration properties.
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Appendix, Equations of motion for planar manipulators

1. Jacobian matrix

The joint velocity is related to the velocity in Cartesian space by the Jacobian matrix,

The Jacobian matrix J for the three types of manipulators are as follows:

Manipulator type 1:

- / i sin <7i - h sin(<7i + ft) -h sinfoi + ft)

h cos <?i +12 cosfai + ft) h cosfo + ft)

Manipulator type 2:

J =
/i cos a

Manipulator type 3:

J =
"-film*,

h cos q\

-h sin ft

h cos ft

-fe sin ft

/2 COS ft

When this relationship is differentiated with respect to the time, we obtain the following equation,

(2.40)

where E is the matrix which has the following elements:

Manipulator 1:

h cosqi+k cos(q\ + ft) l2 cos(gi + q2)

h sin q\ +12 sin(q\ + q2) l2 sin(qi -f

Manipulator 2:

Is cos ft

/s sin ft

Manipulator 3:
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/l COS 01

l\ sin q\

2. Dynamic equations

The dynamics of a two-degiee-of-freedom planar manipulator is described by the following equation:

= r . . (2.41)

The components of matrices D and V are as follows:

Manipulator 1:

I\ + m\d{ + h + ^"2(̂ 2 + 2<i2'i cosft + *?) ft + ^ ( ^ + fli^i cos ft)

v« 0

m2&2h sin qi

Manipulator 2:

D =

V =

Manipulator 3:

D =

V«

m2fl2/l COS(̂ 1

0

—TKlC

3/i)ca

0

-ft)

1-ft)

The nonlinear vector {q}2 is t

Manipulator 1:

0

r4 + TTl^Cr^ (/7I4 J4/2 "** iWsfljil) COS(̂ 1 — ft)

(̂ft "" ft) ft "+" l^^2 ^ "U^ "** ft **" "*3 £3

an(<f 1 - ft) 0

rnidjh cos(^i — ft)

• 0

is follows:
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(q}2 =

Manipulator 2:

Manipulator 3:

3. Acceleration equation

The expression of the acceleration of the end-effector is as follows:

where

B=-AV-E

where J, D, V and E are given above for each manipulator type.

(2-42)

(2.43)

(2-44)
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