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Absiract

This report develops a systematic approach for determining the acceleration capability and
the acceleration properties of the end-effector of a planar two degree-of-freedom manipulator. The
acceleration of the end-effector at a given configuration of the manipulator is a linear function of the
actuator torques and a (nonlinear) quadratic function of the "joint-velocities". By decomposing the
functional relationships between the inputs (actuator torques and "joint-velocities") and the output
(acceleration of the end-effector) into two fundamental mappings, a linear mapping between the
actuator torque space and the acceleration space of the end-effector and a quadratic (nonlinear)
mapping between the "joint-velocity" space and the acceleration space of the end-effector, and by
deriving the properties of these two mappings, it is possible to determine the properties of all
acceleration sets which are the images of the appropriate input sets under the two fundamental
mappings. The determination of the properties of the quadratic mapping, a key feature of the
present work, allows us to obtain analytic expressions relating important acceleration properties of
the end-effector to all the manipulator parameters and input variables of interest.



1 Introduction

In this paper, we develop and apply a systematic approach for studying the acceleration capability and
acceleration properties of (a reference point on) the end-effector of a planar two degree-of-freedom
manipulator. The application of the theory developed in this paper to two important problems which
arise in the design of manipulators -selection of a manipulator type and determination of actuator sizes -
arﬁ described in companion paper (Desa and Kim, 1989). Acceleration theory for spatial manipulators is
developed in a third paper (Kim and Desa, 1989).

An informal statement of the acceleration problem is as follows:

Consider the planar two degree-of-freedom manipulator shown schematically in Figure 1. We are
interested in studying the acceleration of a reference point P on link 2. (P is typically a point on the joint
axis of the end-effector: therefore the acceleration of P is often loosely referred to as the acceleration
of the end-effector.) The usefulness of studying the acceleration of the end-effector of manipulators has
been discussed in (Yoshikawa, 1985), (Khatib and Burdick, 1987) and (Graettinger and Krogh, 1988) and
will additionally be demonstrated in (Desa and Kim, 1989). -

As will be shown below, the acceleration capability of the point P under various conditions is best
described by certain acceleration sets. Two properties which are used, in general, to characterize thcsc
sets are the maximum possible inagnitudc of the acceleration of P and the maximum magnitude of the
acceleration of P which is available in all directions. The former property is simply called the maximum
acceleration of P and the latter the isotropic acceleration of P (Khatib and Burdick, 1987).

The study of the acceleration properties of the “end-cffector” has been a subject of recent interest
(Yoshikawa, 1985; Khatib and Burdick, 1987; Graettinger and Krogh, 1988). It is therefore useful
to clearly state what makes the problem of studying acceleration properties complex and how these
researchers have addressed this complexity.

The acceleration of the reference point P at a given configuration (in the workspace of the manipulator)
is a linear function of the actuator torques and a (nonlinear) quadratic function of the rates of changes
of the joint-variables (“joint velocities”). The complexity of the “acceleration problem™ arises from
these quadratic nonlinearities in the “joint velocities”. (Yoshikawa, 1985) studied the acceleration of (a
reference point P on) the end-effector in connection with developing a dynamic manipulability measure:



in this study the nonlinearities were essntially ignored since the measure was estimated at zero “joint
velocities”. In studying isotropic acceleration, (Khatib and Burdick, 1987) dealt with the nonlinearities
in a somewhat ad-hoc fashion by evaluating isotropic acceleration at a “low” and a “high” joint velocity
vector. (Graettinger and Krogh, 1988) handled the nonlinearities by posing the problem of determining
the isotropic acceleration as an optimization problem.

‘In contrast to the above approaches, the present paper demonstrates how these nonlinearities can
be handled in an analytical manner. The fundamental hypothesis of this paper is the following: By
decomposing the functional relationships between the inputs (actuator torques and joint variable rates) -
and the output (acceleration of P) into two fundamental mappings, a linear mapping between actuator
torque space and the acceleration space of point P and a quadratic (nonlinear) mapping between the “joint
velocity” space and the acceleration space of P, and by deriving the properties of these two mappings,
it is possible to determine the properties of all acceleration sets which are the images of the appropriate
input sets under the two fundamental mappings.

The properties of linear mappings are well-known. The determination of the properti€s of the quadratic
mapping between the joint velocities and the acceleration-space of P is one of the contributions of
this paper and permits us to obtain exact analytic solutions for the isotropic acceleration under various
conditions.

In summary, the contributions of this paper are the following:

1. Development of a systematic approach (stated in section 2) for defining, determining and charac-
terizing acceleration sets.

2. Closed-form analytic expressions relating important acceleration properties of manipulators to all
the manipulator parameters and input variables (torques, joint variable rates or “joint velocities™)
of interest. (The only exception is the maximum local acceleration which is specified in terms of
tight lower and upper bounds in section 6.)

3. Necessary and sufficient conditions for the existence of isotropic a jon. (Earlier studies seem
to implicitly assume that isotropic acceleration always exists.) These conditions are stated explicitly
in terms of manipulator parameters and input variables.




4. Analytical expressions for determining the maximum and isotropic acceleration of the end-effector

at any (“local”) configuration of the manipulator.
5. The theory treats nonlinearities in an “exact” manner (as mentioned above).

One consequence of 2 and 3 above is the development of simple algorithms (Desa and Kim 1989)
for sizing actuators in order to guarantee a specified isotropic acceleration. The theory developed in this
paper is also applicable to two degree-of-freedom manipulators with closed-chains (Desa and Kim, 1989).

The next section, which describes our approach, also provides the dual function of being a “road-map”

of the paper.




2 Description of the approach

A systematic approach for studying the acceleration of (a reference point P on) the end-effector based on

the use of input-output mappings is as follows:

10.

. Determine the specific properties of the acceleration sets determined in step 8 using the “measures

- Define the input variables and output variables of interest (subsection 3.1). The output of interest is

the acceleration of the reference point P.

. Define the input sets of interest (subsection 3.1).

. Define the input-output functional relations. These are obtained from the dynamical and kinematical

equations of the manipulator (subsection 3.2).

. Define fundamental mappings from these functional relations (subsection 3.3). There are two

fundamental mappings, a linear mapping and a quadratic mapping.

. Define the image sets of the input sets under the mappings obtained in set 4 (subsection 3.4). These

image sets are the acceleration sets of interest.

. Define general properties which can be used to characterize (“measure™) acceleration sets (subsection

3.5).

. Determine the properties of the mappings defined in step 4 (section 4).

. Determine the acceleration sets defined in step 5 using the properties of the mappings obtained in

step 7 (section 4).

or general properties defined in step 6 (section 5).

Determine the local acceleration properties for any configuration q of the manipulator using the
properties of the acceleration sets obtained in step 9 (section 6).
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Figure 1: Schematic diagram of a planar two degree-of-freedom manipulator
3 Definition of the acceleration sets

3.1 Manipulator input and output variables

Consider a serial two degree-of-freedom manipulator with two revolute joints shown in Figure 1. In this
subsection, we define the link parameters, the input variables, the input sets, the output variables and the
output sets for a planar two degree-of-freedom manipulator. The manipulator is assumed to be rigid with
negligible joint friction and operates in a horizontal plane perpendicular to the “gravity vector”. (The
case of manipulators operating in gravity fields is relatively straightforward and is dealt with in (Kim and
Desa, 1989).) |

The link parameters necessary for describing the kinematic and dynamic behavior of the planar two
degree-of-freedom manipulator (Figure 1) are as follows. Let /; denote the length of link 1, g; the distance
from joint axis 1 to the center of mass of link 1, m; the mass of link 1, and 7; the principal moment of
inertia of link 1 with respect to its center of mass about an axis perpendicular to the plane of the motion.
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Similarly, let k, @, mz, and I, denote the corresponding variables for link 2 (see Figure 1).

Next, we define the input variables, the input constraints and the corresponding input sets of the two
degree-of-freedom manipulator. Let ¢; and ¢» denote the generalized coordinates of the manipulator (see
Figure 1), ¢; being the joint variable at joint 1 and g, the joint variable at joint 2. Define

q2|” (L1

to be the vector of joint variables; the corresponding vector space of all q is called the joint space. If
qL < qi<qu, i=1,2 : (1.2)

denotes the constraint on joint variable i, then we can define the workspace W of a manipulator as
W={dlqz < ¢ < qw, i=1,2}. (1.3)

Let 1 and 42 denote, respectively, the rates of change of the joint variables ¢q; and ¢2; ;1 and 42 will
be referred to as joint variable rates for short. Define )

Al @
Q=] (1.4)
Q
to be the vector of the joint variable rates. If
| 4i 1< Gy i=1,2 1.3)
denotes the constraints on the joint variable rates, then we can define
F={q | &< &, i=1,2} (1.6)

to be the set of all the possible joint variable rate vectors; graphically F can be represented by (the interior
and boundary of) the rectangle J1K1J2K> shown in Figure 2.
Let ny and =, denote the actuator torques, respectively, at joints 1 and 2, and define

n i

i

1.7
| ™ |




42

- - q
“Q10 910

12 - 2120

Figure 2: Set of the joint variable rates of a two degree-of-freedom manipulator

to be the actuator torque vectors.! Let

| 7 1< Tioy i=1,2 | ' (1.8)
denote the constraints on the actuator torques at joints 1 and 2. We define

T={rl|n|< 7, i=1,2} | 9

to be the set of the allowable actuator torques; graphically T can be represented by (the interior and
boundary of) the rectangle ABCD in Figure 3.
The vectors q, q and 7 will be referred to as the input variables (more precisely the input variable
vectors) of the manipulator. We will also refer to the vector q as a configuration of the manipulator.
Let (x1, x2) denote the coordinates of a reference point P on link 2 (see Figure I)inacobmdinatc
system fixed to the base reference frame N; (x;, x2) are commonly referred to as task coordinates. Define

(1.10)

ing vector space of all x” is called the task space.

“The vectors of actuator torques, joint variables, and joint variable rates denote column matrices, not physical vectors.
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Figure 3: Set of the actuator torques of a two degree-of-freedom manipulator

The velocity x? and the acceleration %7 of the point P of the manipulator are, respectively, given by

=
=" : (1.11)
X2
and
e
=M. (1.12)
] 32

The acceleration of P, %7, is the output variable of interest in the present work. The corresponding vector
space A of all possible ¥? is called the acceleration space, expressed by

A={z|%€R%}. | (1.13)

3.2 Functional relations between the inputs ¢, 7 and the acceleration ¥?

The next step is to obtain the functional relations between the acceleration X” and the inputs ¢ and 7
for a given configuration q. In this subsection, we show how the necessary functional relations can be
obtained from the manipulator dynamic equations and the (so-called) manipulator Jacobian relation.
The dynamic behavior of the two degree-of-freedom planar manipulator in the joint space can be
obtained using well-known methods (Kane and Levinson, 1983; Kane and Levinson, 1985; Desa and




Roth, 1985) and is described by the following pair of equations:

dugn + dpg-wi(B+2a3p) =1, (1.14)
dagn + dnpph+wall=r2, (1.15)

where the coefficients, djj ({,j = 1,2) and v, are given in the Appendix.
Defining the following matrix operators

dy d
D = 11 12 , (1.16)
: _d12 dxn
0
W = iz : (1.17)
| w21 0
i = @ ’ (1.18)
{a}? = a , ‘ (1.19)
_@%*‘2('11?12

dynamic equations,(1.14) and (1.15), become
D+ W{q}*=r. (1.20)

Note that equation (1.20) is the most general expression of the dynamics of a two degree-of-freedom
planar manipulator. The matrices D and W standard for various planar manipulator types are given in the
Appendix. The matrix D is the mass matrix of the manipulator.
Since the matrix D is always invertible, we can write (1.20) in a more convenient form for our
4=D"'[r - W{q)}’]. (121

A crucial step in the acceleration analysis of a two degree-of-freedom manipulator i
of the matrix operator W and {¢}?, which allows all the “non-linearities” (i.c. terms in the dynamic
equations (1.14) and (1.15) which are non-linear in the joint variable rates, §; and ) to be written as
the product of W and {q}?. The notation {}? is used to draw attention to the fact that the elements of

9




the vector {q}? are quadratic in the joint variable rates §; and . Note that {q}? is a vector and should
not be confused with the scalar ¢ which is the square of the magnitude of q.
The relation between the velocity, X?, of the point P, and the joint variable rate vector q is well known

(Desa and Roth, 1985):
% =Jq (1.22)

where J is a (2 x 2) matrix called the manipulator Jacobian. The detailed expressions of the Jacobian
matrix for various planar manipulator types are given in the Appendix.

To obtain the expression for the acceleration ¥ of the point P, we differentiate equation (1.22),
¥ =J4+1Jq. ) (1.23)
In the Appendix, we show that the second term in (1.23), J4, can be written in the form
Jg=-E{¢q}’ (124)

where matrix E is skew-symmetric.
Substituting equation (1.24) into (1.23), we obtain

= J4 - E{q}* (1.25)
Defining the quantities,

A = Jp7}, (1.26)

B = —AW-E, (127

it is easy to verify that the expression for the acceleration ¥ of the point P, obtained by combining
equation (1.20) with equations (1.25) through (1.27), is given by
# = Ar +B{q)? (128)

where A, B are config

Equation (1.28) expresses the required (Input-Output) functional relation between the input variables,
4 and 7, and the acceleration # of the point P (the output variable) at a given configuration q. It is
important to note that the definition of the matrix “operators” W, E and {q}* enables us to write the
dynamic equations in the compact form (1.28) which is critical in the sequel.

10



3.3 Mappings

In this subsection, we define two fundamental mappings between the input variables and the acceleration
¥? of the point P (the output variable).
It is convenient to regard the functional relation (1.28) as a mapping between the input variables §

and  and the output variable X7 for a given configuration q of the manipulator. Furthermore, defining

2| M | 2ar (1.29)
azr
and
o]
14 .
aqf| Y| £B{aY, (1.30)
a2

equation (1.28) can be written as
¥ =a,+aq- (131
The following two simple and obvious relations are useful when we define acceleration sets below:
#(q=0) = a,=Ar (1.32)
#(r=0 = og=B{q}% (1.33)
It is convenient to think of the vector a, as the contribution of the torques to the acceleration of the
reference point P, and the vector ag as the contribution of the joint variable rates to the acceleration of P.
The sum of these two vectors, therefore, gives us the acceleration of P as expressed by equation (1.31)
for a two degree-of-freedom manipulator.
Equation (1.29) can be viewed as a linear, configuration-dependent, mapping between the torque vector
7 and its contribution ., to the acceleration of P. Similarly, equation (1.30) can be viewed as a quadratic,
configuration-dependent, mapping between the joint variable rate vector q and its contribution ag4 to the
acceleration of P. These are the two mappings of interest in this section.

34 Manipulator acceleration sets

Having defined two fundamental mappings of interest, we are interested in the image sets of the input
sets under the mappings (1.29) and (1.30) at a given configuration q of the manipulator. There are three

11



image sets of interest.

3.4.1 Image set S, of the actuator torque set T under the linear mapping

For a given set T of the actuator torques T described by equation (1.9), and represented graphically by the
rectangle ABCD in the T - plane (see Figure 3), we define the image set S, of T under the linear mapping
(1.32) as

S, ={¥"|¥?(q=0)=Ar,T €T} » (1.34)
(Note that S, lies in the acceleration plane A.) From equation (1.32) and the above definition (1.34), we
see that S, represents the set of all possible accelerations (the acceleration capability of the manipulator)
when it is at rest (q = 0) in any configuration q and the actuators are tumed on.

3.4.2 Image set Sy of the joint variable rate set F under the quadratic mapping

For a given set F of the joint variable rates q described by equation (1.6), and represented graphically
by the rectangle J1K1J2K? in the § - plane (see Figure 2), we define the image set Sq of F under the
quadratic mapping (1.33) as

Sq = {¥|¥°(r = 0) =B{q}*,q € F}. | (135)
(Note that Sq lies in the acceleration plane A.) From equation (1.33) and the above definition (1.35), we
see that the image set S4 represents the set of all possible accelerations (the acceleration capability of the
manipulator) when the actuators are tumed off (r = 0) in any configuration q.

34.3 State acceleration set

When a manipulator is in motion, the (dynamic) state of a manipulator can be specified by the joint
variables, (g1, ¢2), and joint variable rates, (§1, 4&2). The state vector u which characterizes the dynamic
state of the manipulator is defined as follows:

u= |. (1.36)

12



For a specified dynamic state of a two degree-of-freedom manipulator, the second term of the accel-

eration ¥ in equation (1.28) is a constant vector, which we denote by k(u) and define as follows:

N N 22
k() 2 ky | _ buds + bial(q1 + &)* — 41 = B{q} (137)
k2 b2t + bal(41 + 32)* - &)

Equation (1.28) can then be written as follows:
¥=Ar+k (1.38)

For a given dynamic state u of the manipulator, we define the state acceleration set, Su, as the image set

of the actuator torque set T under the linear mapping (1.38):
Sy = {¥°|%" = AT +Kk, T € T}. (1.39)

Su is therefore the set of all possible accelerations at any given dynamic state u of the manipulator. Since
the dynamic state u of the manipulator essentially specifies the velocity X? of the point P in (1.11) in any
configuration, we can also interprét the state acceleration set Sy (the set of available accelerations) as the
acceleration capability of the manipulator when the manipulator is moving with the velocity XP in a given

configuration q.

3.5 Characterization of the acceleration sets

Once the acceleration sets defined in the previous section have determined, one would like to characterize
them. In this section, we define two properties which are useful in characterizing acceleration sets.

Figure 4 shows an acceleration set S in the acceleration plane %, and two circles C; and C;. The circle
C; of radius ry is the smallest circle centered at the origin which completely encloses S. Its radius ry
therefore represents the maximum (magnitude of the) available acceleration in S. The circle Cz of radius
ry is the largest circle centered at the origin which lies within S. Its radius r, therefore represents the
largest (magnitude of) acceleration available in all directions.

We define the following two properties of S:

¢ the maximum acceleration of S: Guax(S) = 11,
¢ the isotropic acceleration of S: @;,(S) = .

13
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Figure 4: Characterization of an acceleration set in the acceleration plane

Comments:

1. As will be shown, the maximum acceleration and isotropic acceleration are two measures which

can be readily extracted once the acceleration set is known.

2. The isotropic acceleration (Khatib and Burdick, 1987; Graettinger and Krogh, 1988) is a useful
measure of the acceleration set, since it is a property which does not depend on direction.

3. The average acceleration of the set S cannot readily be extracted in closed-form (or by appropriate
bounds) from the acceleration set S. It can however be numerically determined from deséﬁptions
of the various acceleration sets given in the next section. Also the physical meaning of the average
acceleration is not clear.

14



4 Determination of the acceleration sets

Analytic expressions for the determination of the three sets S, Sq and Su are presented, respectively, in

section 4.1, 4.2 and 4.3. The determination of S, and the state acceleration set Sy follows directly from

well-known properties of linear mappings while the determination of the set Sq requires the derivation of

the properties of quadratic mappings which are new

4.1 Determination of the image set S,

The set S is the image set of the actuator torque set T under the linear mapping (1.32).

Result 1: The image set S, of the actuator torque set T under the linear mapping (1.32) is (the interior

and boundary of) the parallelogram A'B'C’D’ in the % - plane whose vertices A', B', C, and D’ are

as follows:
,
A (aumo+a2170, Q21710 + A22T20),
1
B (a117T10 — @21 T20, @21T10 — A22T20),
C (—=a11710 — 2120, —G21T10 — G22T20),
D : (—a11mo+ 821720, —321T10 + a22720),

(1.40)

where g;; (i,j=1,2) are the elements of the matrix A defined in equation (1.26). The centroid of the

parallelogram A'B'C'D’ is the origin O of the %-plane.

Result 2: The sides A'B’, B'C’, C'D’, and D'A’ of the parallelogram S, (Figure 5), which comprise the

boundary of the set are given by the following equations:

3

AB' @ apiy — apk = detd)m,,
B'C' : —auk +ani: = det(A)r,,

C'D' : ani - aiziz = — det(A)n,,
D's" —a X + a1 = - det(A) .

where det(A) is the determinant of the (2 X 2) matrix A.

15
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Figure 5: Image set of the linear mapping of a two degree-of-freedom planar manipulator

Proof of Result 1:
The following are well know properties of a linear mapping:

1. A line in the 7-plane will map into a line in the X-plane. In particular, the line /;, with equation n
= 0, maps into the line [, whose equation is | _
Iy : axnty — apiy =0, (1.45)
and the line /;, with equation 73 = 0, maps into the line /, whose equation is
é:—anig-ralliz:(). (1.46)
Both /; and / pass through the origin (Figure 5).

2. Any line g; parallel to Iy maps into a line g; parallel to J.

3. Any line g; parallel to ; maps into a line g5 parallel to 5.

16



Regarding the rectangle ABCD (set T) as a set of lines parallel to /; and ; one can easily show the
well-known fact that the image of ABCD is a parallelogram A'B'C’'D’. The vertices A', B', C’ and D’
are the images, respectively, of the vertices A, B, C and D Substituting the coordinates of A(7i,, T20),
B(T10, —T20), C(—T10, —T20) and D(—71,, T2,) into equation (1.32), we obtain the coordinates of the
vertices A, B', C' and D’ as given in equation (1.40). From equation (1.40), we see that the vertices
A’ and C' are equidistant from the origin and that the vertices B* and D' are equidistant from the origin.

Therefore, the origin of the X-plane is the centroid of the parallelogram A'B'CD.

Proof of Result 2:

We next need to determine the equations of the lines A'B', B'C/, C'D, and D'A’, which form the
boundary of the parallelogram A'B'CD in the X - plane. A’'B' is the image of the line AB. whose equation
is T = T1,; to obtain the equation of A'B’, substitute the equation of AB (T = 11,) into (1.32) to obtain the
following parametric equations in 73:

X = anme+anmn, ) (147)

¥ = antme+ann. (1.48)
Eliminating the parameter r, between (1.47) and (1.48), we obtain the equation of the line A'B’ in the %
- plane as given by equation (1.41). In a similar fashion, we can obtain the equations of the lines B'C,
C'D', and D'A’ as in equations (1.42) through (1.44). Note that from equations (1.41) through (1.44) we
see that A'B’ is parallel to C'D’ and B'C’ is parallel to D'A’ so that A'B'C’'D’ is indeed the parallelogram
shown in Figure 5. '

4.2 Determination of the image set Sq

The set Sy is the image set of the joint variable rate set F under the mapping (1.33). Set Sq is determined
from the following results

Results:
The set F in the q - plane is considered as a family of line segments passing through the origin. There
are two such types of line segments: those which end on the boundaries J1K; and J>K; parallel to the

17
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Figure 6: Image set of the quadratic mapping of a two degree-of-freedom manipuylator

{2 - axis, a typical member of which is the line segment g; in Figure 6 (a), and those which end on the
boundaries J1K> and J>K parallel to the §; - axis, a typical member of which is the line segment g; in
Figure 6 (a).

1. Every line of the type g; maps into a line 8’1 (see Figure 6 (b)) in the X - plane, one end of which
is the origin and the other end of which lies on the line segment J' K whose equation is:

1 1. bu bn _ '
e (-b—n+ EE) #,=0 (1.49)

where ¥, lies in the interval (51142, + b12(33, + 2810020)» B1183, + 1282, — 2d10G20)].

2. Evetylincofthctypcgz(secﬁgureﬁ(b))mapsintoalincg'zinthciplanc, one end of which
is the origin and the other end of which lies on the quadratic curve K'N'J' (shown dashed between
K’ and N') whose equation in the parametric (in 4;) form is:

2 = budd+b@, +2nin),
%2 = b+ bn(@B,+2n14). (1.50)
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3. The image set of F is (the interior and boundary of) the region ON'J' K’ shown in Figure 6 (b), and
the coordinates of N ,.I' ,and X are as follows:

N ( bud, bnd,), (1.51)

J (b - b1d&, +bia(q1o + &20), (B21 — b22) 33, + b22(q10 + 320)%), (1.52)
K ( (b1 - b3, + b12(d1o — 2, (b21 — b)), + b22(d10 — §20)°) (1.53)

Proof:
The quadratic mapping is defined by the following equation (1.33):

2= B{q}*

which can be written in the expanded form

"

bt + b1o( B + 21 n)?, )
buqs + b (B + 2n&)*. (1.54)

X

X
The determination of the set Sq which is the image of the set F (Figure 6 (a)) consists of two steps:2
1. Establishment of the properties of the quadratic mapping, and

2. Determination of the boundary of the image set Sg.

Consider the (input) q - plane. It is convenient to think of this plane as being generated by the
continuous family of lines passing through the origin with parametric equation

Qq=t
‘ , —o0o<m< oo. _ (1.55)
Q=m

Each value of m gives us a member of the family of lines, a typical member of which is the line /

shown in Figure 7. The image [ in the % - plane of the line ! is obtained by substituting (1.55) into (1.54)

*While the approach described below is adequate for our present purposes, a more basic approach 1o determining Sy is
described in (Kim and Desa, 1989).
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Figure 7: Properties of the quadratic mapping
and is described by the following parametric equation,
i o= [bu+ b +2m)?, i
B = [ba+bp( +2m)P. ase

From equation (1.55) and (1.56), one can the following facts:
Fact 1. The image of I, viz. [, is a straight line.

Fact 2. The origin of the q - plane maps into the origin of the % - plane.

follows from the fact that the point (0, 0) in the ¢ - plane, rep
{0’ Mi’fi”s

ling to the point (41, &) in the

m m D ‘ﬂ‘fs‘iﬁ,
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Figure 8: Input { - plane

4-plane, then —¢ is the parameter of the point (—§1, —&2) from (1.55). From (1.56), we see that points
with parameters ¢ and —¢ will map into the same point in the X-plane. This proves Fact 3.

We can therefore state the following properties of the quadratic mapping:

Property 1. The image of any line segment in the §-plane, one end of which is the origin, is a line
segment in the X-plane with one end at the origin of the X-plane.

Property 2. The image of the line / passing through the origin in the § - plane is the half-line I, one
end of which is the origin (see Figure 7).

Property 3. Given any line [ passing through the origin, and the two half-planes p; and p, formed by it
(see Figure 8), p1 and p; will have the same image set in the X - plane.

Property 1 is a direct consequence of Facts 1 and 2, property 2 a direct consequence of Facts 1,2 and 3
* and property 3 follows from Fact 3.

We now apply the above properties to determine the image set S¢ of the set F in the ¢-plane (See
Figure 6). Property 3 tells us that if we “bisect” F into two “half-sets™ with a line passing through the
origin, then we only need to determine the image of one of these “half-sets”. The most convenient half-set
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Figure 9: Input set F in § - plane

for our purposes is the set K1J1K; (see Figure 9), one of the two half-sets formed by the “bisecting” line
KiK;.

In order to use Property 1, it is convenient to view the set K1J1 K3 as a family of line segments passing
through the origin; we now need to determine the image of any line segment passing through the origin
in this set. There are two cases to consider: the family of lines such as g;, shown in Figure 9, which
have one endpoint on the origin and the other endpoint on the line segment K;J; and the family of lines
such as g3, also shown in Figure 9, which have one endpoint on the origin and the other endpoint on the
line segment J1Ky. )

It is convenient to decompose the half-set K;J1K> into two subsets OK;J; and OK»J; as shown in
Figure 10. Subset OK;J; includes only the families of lines such as g; while subset OK»J; includes only
the families of lines such as g;. The desired image set is the union of the images of OK1J; and OKyJ;.
From property 1 of the quadratic mapping, we know that any line segment, such as g; or g; of the set F,
will map into a line segment with one endpoint passing through the origin of the % - plane. To obtain the
other endpoint of the images of the two families of lines, we need to find the image of the line segment
J1K; of the subset OJ1K; and the image of the line segment J1 K> of the subset 0J1K;.

First, we determine the image of subset OJ;K; (10 (b)) by finding the image of KJ;. The equation
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of KyJ; is
a1 =100 | @2 |< Q20 (1.57)

To obtain the image K'J' of KyJi, we substitute (1.57) into (1.54) to obtain

¥ = budl+bu(B+ 201002,
X =

b3, + bn(@ + 241.02)". (1.58)
Defining a parameter ¢ as
a4, ..
2 G+ 21002, (159)

equation (1.58) can be written in the form

f1 = bugs,+bnt, (1.60)
B = bug,+bnt. (1.61)

Eliminating the parameter ¢ between the two equations, we obtain the equation for the line segment
JK' as given by equation (1.49). (This proves the first part of the result.) The resulting subset (Sg)
which is the image of OK}J; is shown in Figure 10 (d).

Next, we determine the image of subset OJ;K; by finding the images of K3J;. To obtain the image
JN'K of J1K,, we substitute the equation for /1K,

2=8a @1 1< 810 (1.62)

into (1.54) to obtain the parametric equation (1.50). Note that (1.50) represents the equation of a quadratic
curve in terms of the parameter §;. (This completes the second part of the result.) The resulting subset
(S4)2 which is the image of OK3J; is shown in Figure 10 (e).

The desired image set S4 of F is the union of (S¢)1 and (Sq)2 and is shown in Figure 10 (f).

Note that the intersection of (Sg)1 and (S¢)2, (Sgh N (S¢)2, is not empty. Because Sy is the image
of F under a quadratic mapping, there are points inside Sq which are the image of two distinct points in
K1J1K3. In particular, any point in the set (S¢)1 N (S¢)2, will be the image of two points are belonging to
OK)J, and the other to OK>3J).
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Figure 11: State acceleration set of a two degree-of-freedom manipulator

The images N', J' and K, respectively, of N1(0, &), J1(q10, &2) and K1(410, —@2o), are obtained
by substituting their (43, 2) coordinates into equation (1.54) to obtain the required results (1.51), (1.52),
and (1.53).

4.3 Determination of the state acceleration set S,

ing to a state u = (q,q)7 of the planar manipulator was defined by
equation (1.39) and is the image set of the actuator torque set T under the mapping (1.38). We obtain the
following results for the determination of the state acceleration set Su.

Result 1: For every element %(S,) of the image set S, there is a corresponding element (Sy) of the

X(Sw) = X(S;) + Kk(g, @, (1.63)




e
g
where
. ky bt + bio( B +2q142) .
k(g, @ = =| 20T =Big)t (1.64)
k2 b & + b + 201 42)

Result 2: The state acceleration set Sy, corresponding to a state u = (q, ¢)7 of the planar two degree-of-
freedom manipulator is the parallelogram A”B"C” D" shown in Figure 11 obtained by translating
the set S, by the vector k(q, ) in the X - plane. The centroid of Sy is (k1, k2).

Proof of Result 1:

The results 1 and 2 are straightforward.
From (1.34), a member %(S,) of S, is given by
(S,) = Ar. (1.65)
From (1.39), a member %(Sy) of Sy is given by
. X(Sy) = AT +k (1.66)

where k is given by equation (1.64). Combining (1.65) and (1.66), we obtain

X(Su) =X(Sr) +k, (1.67)

which is equation (1.63).

Proof of resalt 2:
| equation (1.63), we see that ifwctakc a vector X(S,) of S, and add the vector k to it we obtain
the corresponding member £(Sy) of Su. So, if we add the vector k to every vector in the set S; we obtain
the required set Sy. Therefore, Sy is the parallelogram A”B”C”D” (Figure 11) obtained by translating the
‘ gram A'B'C’'D’ in Figure 11) by the vector k. The centroid of S, is %(S;) = (0, 0).
From (1.67), we see that the corresponding centroid of Sy is .

#(Sa) =0+k=k. (1.68)
i pletes the proof of Result 2.
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Figure 12: Characterization of the image set of the linear mapping for a two de-
gree-of-freedom manipulator

5 Properties of the acceleration sets
In this section, we extract the properties - defined in subsection 3.5 - of the acceleration sets S, Sq and
Su determined in the previous section.
5.1 Properties of the acceleration set S,
We characterize the image set S, of the linear mapping as follows:
~Result 1: The maximum acceleration of the acceleration set S, is denoted by @max(S,) and is given by
Gmax(S7) = max[d(0A'), d(OB)] | (1.69)

where

d(0A)) = \/ (@11710 + 812720)% + (821710 + G22T20)

d(OB') = \/(duflo — @127 + (@710 — a2 7Y
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Result 2: The isotropic acceleration of the acceleration set S; will be denoted by aiso(S;) and is given

by
Giso(S,) = min[p(A'B"), p(B'C)] (1.70)
where
0t l detA I Tlo
PAB) = —F/——,
va%2+a2n
’ I detA ' T20
pB'C) = —==.
\/‘ﬁl ""él
Proof of Result 1:

aximum acceleration of S, is the distance from the origin to the furthest vertex of the parallel-
ogram A'B'C'D’ (see Figure 12). Letting d (0A’) through d (OD’) denote, respectively, the distances of
vertices A’ through D' from the origin O in the % - plane, gmex(S-) is given by

Gmax(S,) = max{ d(OA'), d(OB'), d(OC'), d(OD') ]. (1.71)

ot from the origin O. Also, B’ and D' are equidistant from the origin O. So,

Gumax(S,) =max[ d(OA"), d(OB') . (1.72)

Using (1.32), the distance d(OA") from the origin O to the point A’

dOA) = \J(Br1m10 + G220 + (@21710 + 27202 (1.73)
In exactly analogous fashion, we
dOB) = \[(aune — ama) + (@nmio — G020 (1.74)

jons (1.72), (1.73) and (1.74) comprise Result 1.

Proof of Resuilt 2:



s

The isotropic acceleration of S is the shortest distance from the origin to the sides of the parallelogram
A'B'C'D'. Letting p (A'B"), p B'C'), p (C'D’), and p (D'A’) denote, respectively, the perpendicular
distances from O to the sides A'B’, B'C’, C'D’, and D'A’, a;s0(S») is given by

Giso(S-) = min[p(A'B"), p(B'C), p(C'D’), p(D'A")]. (1.75)

Since the origin O is the centroid of the parallelogram S, parallel lines of the parallelogram A'B'c'D'

must be equidistant from the origin. Therefore, we can write the following relations:

pA'B) = p(C'D), (1.76)

p(BC) = pD'A). (L.77)
Using (1.76) and (1.77), (1.75) can be written |

8iso(S-) = min[p(A'B"), p(B'C")]. (1.78)
The distance from a point P(x,, ¥,) to line ax+ by + k=0 is given by the following well-known result:
Using equation (1.41), (1.42) and (1.79), we obtain

pa'By = LotAlne (1.80)

Vv aly +
pBC) = LAl (1.81)

\/“%1"’“%1.

Substituting (1.80) and (1.81) into equation (1.78), we can obtain the required result (1.70) for the isotropic
acceleration @i (S+)-
52 Properties of the acceleration set S4

We characterize the image set S4 by the maximum acceleration and the maximum distance of any element

of S4 from the two references lines /; and & shown in Figure 5.
Definition 1:

LG

>

Ka1, &)
VOu@ + b + 2612018027 + On & + bndh + i1 2P (1.82)

]
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Figure 13: Maximum distance from reference line / to a point on the set Sy

Definition 2: Let § denote the real solution of the following cubic equation in §;:
(61143 + b12(83, + 281222))(B11dn + bra2)

+ [budt + bn(@, + 201321001 + b)) = 0. (1.83)

Definition 3: Let p(%(Sq), i) and p(X(Sq), k2) denote, respectively, the distance of any point ikSq) of Sq

from the lines ]} and k. )

Poax(%(Sg), 1) & max p(%(Sg), h), (1.84)

Poax(K(Sg), k) £ max p(R(Sg), - | (1.85)

Pemax(R(Sq), Iy), for example, represents the distance of that point of Sg furthest from Iy; pmax(X(Sg¢), 11)
and pmax(X(Sg), 2) arc necessary for determining the Jocal isotropic acceleration in subsubsection

6.
Definition 4:
» a4 anbyy — apby .
¥ = aobiu—anbn & (1.86)
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Definition 5:

| @a2251(q1, &2) — @r12%2(4n, &) |

o1(41, §2)
o xR

| a22[bnd? + b12(8 + 21 &2)] — a12lbn & + bn(B + 2in42)) |

nn

(1.87)
\/ “%1 +ah,
02(41, qz) é | axi (Qh QZ) - al]iz(ql, 02) |
Ve +
| anlbudt + @ + 20120 - anlbn B +bu@ +2080 | g g
\/agl +a}

Result 1: For a general two degree-of-freedom planar manipulator, the maximum acceleration of the

acceleration set Sq will be denoted by amax(Sq) and is given by‘

max(Sq) = max ({10, —410)s K&, @200 A1or G200, K1or —20)) (1.89)
where §) is defined in (1.83).
For the two degree-of-freedom open-loop planar manipulator, shown in Figure 1, -

amu(sq) = U105 §20)- (1.90)

Result 2: For a general two degree-of-freedom manipulator, the maximum distance from an element of

Sq to the reference lines /; and /; are, respectively, given by
Pmax  ( X(Sq), 1)) (191
= max[ai(qlm -qlb)’ U.Q“, h)s ai(mﬂ Qﬂ)) Ui(ﬂ]c, -Q‘Zo)], isl’z (192)

where g is defined in (1.86).

Proof of Result 1:
The fnagnitudc squared of the acceleration of a point X(Sg) of Sq, denoted by &(Sq). is given by

Sy 2 P, &) =8, &) +B, &)
(11 + b12d + 261201 32)? + (bu i + bl + 2001 ). (1.93)
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The maximum magnitude squared of the acceleration for the set Sg, denoted by @2,,,(Sq), is given by

Zi(Sg) = (rggxp)ll(ql, &), (1.94)

where F is shown in Figure 2 and specified by the constraints

| @1 1< quo, (1.95)

| &2 1< 2. (1.96)

The maximum of £, required in equation (1.94), will occur at point q € F which is either inside F or
on the boundaries of F where one or both constraints might be active. Furthermore, because of property
3 of the quadratic mapping, we only need to look at the boundaries /1K and J1K> of the half-set K3/1K).
Therefore, to obtain the maximum of (1.82) under the constraints (1.95) and (1.96), we should consider
the following possibilities:

1. Neither of the constraints is active, i.e., the max[2(q1, 2)] occurs at a point q inside F.

2. Constraint (1.95) is active, i.e., max[2(g1, ¢2)] occurs at a point ¢ lying on the boundary J1K; of
F.

3. Constraint (1.96) is active, i.c., max[2(q1, ¢2)] occurs at a point ¢ lying on the boundary J1 K, of
F.

straints are active, i.e., max[2(q1, &)] occurs at either (a) point J; (b) point K; or {c)
point K>. Since, by virtue of Fact 3 of subsubsection 3.1.2, points X; and K> have the same image,
we only need to consider either K; or K3: we will choose K.

To obtain the conditions for each one of the above cases to yield a maximum, we first differentiate
(g1, ) with respect 10 &; and 4, to obtain
(B

Bq = Abudl+ @+ 20Kbud + o)
+ Albudi +bn(@ + 2 &) Nbudi + bad), (197
" %ﬁl = 4budt + b+ 2o + &) |

+ Albnd] + bn(@ + 210)1buXa1 + &) (1.98)
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Now, we consider each case.

Case 1
To obtain the required ¢ for the case where both constraints are inactive, we set the right-hand side

of (1.97) and (1.98) to zero,

a—.tz-=0and-“£2-=o (1.99)
oq 042

and obtain
$n1=4=0 (1.100)

which actually corresponds to the minimum value of (g1, §2), viz, zero. Therefore, max(#?) does not

occur at a point q inside F.
Case 2
Since constraint (1.95) is active on the boundary J1K; of F, we have
¢1 = q1, (constant). (1.101)

To obtain the maximum of 22, we set d2/8g; = 0. We therefore sct the right-hand side of (1.98) to

zero to obtain
n+q=0. (1.102)
Combining (1.101) and (1.102), we obtain

72 = —Q10 (1.103)

max[(g1, 42)] = B(Q10, —G10)- (1.104)

Case 3
Since constraint (1.96) is active on the boundary J1K> of F, we have

&2 = &2, (constant). - (L.105)
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To obtain the maximum, we set 82/8¢; = 0. We therefore set the right-hand side of (1.98) to zero

and set §2 = ¢y, to obtain

b1 @ + b12(@B, + 21320))(b11 41 + b12420)
+ [bud +ba(F, + 241042)1(b21d1 + b2dz,) = 0. (1.106)

Equation (1.106) is a cubic in 1 and will therefore have three solutions. Using simple ideas from algebraic
geometry, we now show that (1.106) can have at most one real solution in the region [#1] < §10-

If 2(71, @) does have a maximum Ip,, then the condition 82/8g; = 0 for obtaining /pn.x is the
condition for the quadratic curve (1.50) -the image of J1K> in the X-plane- and a circle of radius /pax
to have a common tangent (see Figure 14). By Bezout’s theorem (Semple and Roth, 1949), a quadratic
curve and a circle can have at most two common points of tangency. Therefore, equation (1.106), which
expresses the condition 82/8§; = 0, can have at most two real roots (one for each point of tangency).
However, (1.106) is a cubic in ; and can therefore have either one real root or three real roots. Combining
the last two statements, we see that (1.106) can have at most one real root. (Since we are looking at
the quadratic curve in the region |g1| < 1., the real solution of (1.106) might lie outside the constraints
which simply means that (1.93) does not have an extremum in the region |§;| < §1,)- Denoting the real

solution (1.106) in the region |§1| < g1, by 'q; and using (1.105), we can write

max[(q1, §2)] = B(@1, d20)- (1.107)

Case 4-a
When both constraints (1.95) and (1.96) are active, and max[lz(ql; )] occurs at J1(q10, G20), then

max{(@1, §2)1= (@10, 20)- | (1.108)

Case 4-b
When both constraints (1.95) and (1.96) are active, and max[(g1, &2)] occurs at K1(§10, —@20), then
max[A(q1, )] = P10, —G20)- (1.109)
Therefore, amax(Sq) is obtained as the maximum of four quantities defined by equations (1.104),
(1.107), (1.108), and (1.109). This concludes the Proof of Result 1.
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Proof of Result 2:
The distance of any point %(Sq) of Sq from the line J;, i=1, 2, is given by

o1(q1, @) (1.110)
o1, ¢) (1.111)

P(X(Sq), 1)
P(X(Sq), )

where o1 and o, are defined in equations (1.87) and (1.88). We first wish to determine pmex(¥(Sq)./1) the
distance of /; from that point of Sq furthest away from it (/1). Pmax(X(Sq)./1) is shown in Figure 13 for

given Sy and given reference line /; and can be defined as follows:

X(S4), l1) = max |o1(q1, § 1.112
Pmax(®(Sq), 1) I eF)I 1(q1, @)l (1.112)
where F is shown in Figure 2 and is specified by the constraints
|41 1< quo, (1.113)
| & |< 4. (1.114)

The maximum of o, required in equation (1.112), will occur at a point q € F which is either inside
F or on the boundaries of F where one or both constraints might be active. Furthermore, because of
property 3 of the quadratic mapping, we only need to look at the half-set K3/1K; and its boundaries J1K)
and J1K;. Thercfore, to obtain the maximum of (1.110) under the constraints (1.113) and (1.114), we
should consider the following possibilities. )

1. Neither of the constraints is active, i.c., maxo1(41,42) occurs at a point q inside F.

2. Constraint (1.113) is active, i.e., max o1(q1, &2) ata q lying on the boundary J1X; of

nstraint (1.114) is active, i.c., max 0;(41, g2) occurs at a point § lying on the boundary J1K> of

straints are active, i.e., maxay(g1,§2) occurs at either (a) point J; or (b) point K or (¢)

point K>. Since K; and K3 have the same image we only need to consider Xj.
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To obtain the conditions for each one of the above cases to yield a maximum of o, we first differentiate

o1(q1, ¢2) (equation (1.87) with respect to ¢; and &2 to obtain

a ,

-5% = 2(axbn1 — a12b21)q1 + 2(a22b12 — a12b22)q1, (1.115)
o

3, = embn—aubn)di+@). (1.116)

Now we consider each case.

Case 1
To obtain the required q, we set
301 30’1
— =0 and — =0. 1.11
o4 ¢z 1

We therefore set each of the right-hand sides of (1.115) and (1.116) to zero to obtain
f=q=0 (1.118)
which actually corresponds to the minimum value of 01(41, ¢2), viz, 0. Therefore, maxfa;(ql, ¢)) does
not occur at a point q inside F.
Case 2
Since constraint (1.113) is active on the boundary J; X of F, we have
&1 = §1, (constant). (1.119)

To obtain the maximum, we set do1/3g; = 0. We therefore set the right-hand side of (1.116) to zero
to obtain

1+ =0. (1.120)
Combining (1.119) and (1.120), we obtain

= —d1o (1.121)

max{o1(§1, ¢2)]1=01(G105 —q10)- : ‘, (1.122)
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Case 3
Since constraint (1.114) is active on the boundary J1X, of F, we have

42 = §2, (constant). (1.123)
To obtain the maximum, we set 01/9q; = 0. We therefore set the right-hand side of (1.115) to zero and
set g2 = {2, t0 obtain the linear equation

(@2b11 — an2b21)qn + (anb12 — a12bn)iz = 0. (1.124)

' Combining (1.123) and (1.124), we obtain the solution of the equation (1.124)

n=q, (1.125)
where

n  Gpbia —apnby

== . - 1.
axnbi — apb (1.126)

Therefore,

max{o1(71, &)1 =010, &o)- (1.127)
Case 4-a

- When both constraints (1.113) and (1.114) are active, and maxo1(q1, ¢2) occurs at J1(G10, ¢20), thien

max[o1(g1, 32)]1=01(10, &20)- ‘ (1.128)

s (1.113) and (1.114) are active, and maxo01(q1, &) occurs at K1(G10, —§20)s

max[a1(q1, @] =01(Q10; —20)- : (1.129)

Therefore, pmex(X(Sg), 1) is obtained as the maximum of four quantities defined by equations (1.122),
(1.127), (1.128), and (1,129). In exactly analogous fashion, pmex(X(S¢), k2) is obtained as in (1.92).

38




maximum acceleration X2

Aﬂ

X1

isotropis\acceleration

Figure 15: Characterization of the state acceleration set of a two degree-of-freedom
manipulator

5.3 Properties of the state acceleration §et Su
Definition:
K : centroid of the acceleration set in the ¥ - plane with coordinates k;, k2 given by (1.38).
p(K, 1) : distance from point X to the reference line ;.
p(K, b) : distance from point X to the reference line k.
pA'B), p(A"B"), ... : distance from the origin to A'B', A"B", ... (see Figure 16)

‘Result 1: The maximum acceleration corresponding to any dynamic state u of the manipulator is denoted
bY Gmex(Su) and is given by

Gmax(Su) = max[d(0A"), d(OB"), d(OC"), &OD")] (1.130)
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where
d0A") = \/ (@11710 + a12m20 + k1) + (@21710 + A22720 + K1 )
d(0B") = \/ (11710 — a12T20 + k1)? + (@21 T10 — G22720 + K1)?,
aoc’y = \/ (@11710 + 81272 — k1) + (@21 710 + G22725 — k1)?,
dOD") = \[(aumio— a12me — k1P + (@1T10 — Gn2m0 — k1)

Result 2: The necessary and sufficient conditions for the existence of the isotropic acceleration are the

following:
| detA|m1, — |k1a22 — k2ana| > 0, (1.131)
|detA|rz, — |kia21 — k2a11| > 0. _ (1.132)

Result 3: The isotropic acceleration corresponding to any dynamic state u of the manipulator is denoted
by aiso(Su) and, if conditions (1.131) and (1.132) are satisfied, is given by

. | 1det(A)|my, — |axak; — apoky| | det(A)lm, — |anky — aniky) )
o(Su) = mir s . 1.133
S =i [ \/2122@ ‘\/;11 +a5, ] ¢ )

Proof of Result 1: |
Let d(OA”) through d(OD") denote, respectively, the distances of vertices A” through D" from the

origin O in the X - planc. Then Gme(Su) is the distances of the furthest vertex of the set Sy which is the

parallelogram A”B"C”D”. Therefore, amax(Su) is given by ;

max(Su) = max{d(OA"), d(OB"), &OC"), d(OD")]. | (1.134)
Using (1.40), the coordinates %;(A") and %2(A") of vertex A” in the X - plane are given by

1A") = n@)+k=anne+are+k, (1.135)
B2A") = B@A)+k=an,+anm, +k. (1.136)

= \/(mzm+mzm+kx)’+(az1m+azzm+ka)1. (1.137)
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Figure 16: Isotropic acceleration of the state acceleration set of a two degree-of-freedom
manipulator

In exactly analogous fashion, we obtain

4‘(03”) = \/ (@710 — 12720 + k1)? + (@21710 — A2272, + k1)?, (1.138)
doc’y = \/(allTlo +a12m, — k1)? + (821710 + az2720 — K1), (1.139)
dOD") = 1/(aumio — @120 — k1) + (@710 — G22720 — k1) (1.140)

Equations (1.134) and (1.137) through (1.140) comprise result 1.

Proof of Result 2 and 3:
In Figure 16, we have shown two sets, S, and Sy which is obtained from S, by a translation k =
(k1, k). The centroids of S, and Sy are, respectively, by O and X.
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Using equations (1.79), (1.64), (1.45), and (1.46), the distance from KX to the reference lines /; and

are given by
K L) = _I_‘iZ_Zkl_—a_E_k_Z_l_. (1.141)
\/“%.z"’“%z
K, ) = M ) (1.142)

b
\/0%1 +a}y
" "

p(K, I) represents the perpendicular distance between the lines A'B’ and A”B” and also between the lines
C'D' and C'D" (see Figure 16). Similarly, p(K, L) is equal to the perpendicular distance between the -
lines B'C’ and B”C” and also between the lines D'A’ and D”"A” (see Figure 16).

The state isotropic acceleration giso(Su) is the maximum acceleration which is available in all direc-
tions. It is therefore equal to the minimum of the distances from the origin O (of the acceleration plane)
to the four sides of A"B"C"D" (the set Su).

Referring to Figure 16, we can write the following expression for a@iso(Su):

"n__n " n

Giso(Su) = min[p(A"B"), p(B"C"), p(C"D"), p(D"A"™)] ' (1.143)

where p(A"B”") is the (perpendicular) distance from O to A“B” and similarly for p(B8”C”"), p(C"D"),
p(D"A”), all assumed positive by definition. from the geometry of Figure 16, we can write,

pA"B"), p(C"D") = p(A'B')  p(K, h). ‘ (1.144)

(Comment: In Figure 16, for example, p(A"B”) = p(A'B') + p(K,l}) and p/(C"D") = p(C'D’) — p(K, I);
the correct choice of signs will depend on the direction of the translation but as will be shown below we
do not have to worry about the correct choice of signs.)

Similarly,

p(B"C"),p(D"A"y = p(B'C) £ p(K, bp). (1.145)

(The above bolds for (1.145), too.)
ining equations (1.143), (1.144), and (1.145), we obtain

@iso(Sw) = minfp(4'B")  p(K, h), p(B'C’)  p(K, b)]. (1.146)
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Since all distances p() in the above equation are positive by definition, we can rewrite the above equation

as
Giso(Su) = min[p(A'B’) — p(K, 1), pB'C') — p(X, b)) (1.147)

Substituting equations (1.80), (1.81), (1.141) and (1.142) into (1.147), we obtain the required result
(1.133).

Equation (1.147) clearly demonstrates that the isotropic acceleration aj;o(Su) for any state u # 0 is less
than a;s(S,) = min[p(A'B’), p(B'C)]. In fact, if pK, Ii) and p(X, l) are sufficiently large (equivalently,
the “nonlinearities” k; and k; are sufficiently “large”), we may not have any isotropic acceleration. The
necessary and sufficient conditions for the existence of the isotropic acceleration can be obtained either
from (1.147) or (1.133). From (1.133), we obtain the following two necessary and sufficient conditions

for the existence of the isotropic acceleration:

| det(A)| 71, — |k1a22 — k2a12| > 0, (1.148)
| det(A)| T2, — |k1a21 — k2a11| > 0. (1.149)

These are exactly the necessary and sufficient conditions expressed in (1.131) and (1.132) of result 2.
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6 Local acceleration properties
At any given (local) configuration q in the workspace, the following questions are of theoretical and
practical importance.
e What is the magnitude of the maximum acceleration at any configuration q in the workspace?
e What is the magnitude of the isotropic acceleration at any configuration q in the workspace?
To answer both these questions, we need to use the properties of the sets Sy, Sq Su developed in the
preceding subsection.
Result 1: The local maximum acceleration @max jocal at a given configuration q is specified by
(BmaxJocat)tb < Bmaxjocal < (Gmaxocal)ub (1.150)
where (ZmaxJocal)w is given by (1.130) with k1(q, @) and k2(q,q) evaluated at that joint variable
vector q which maximizes I(¢1, ) in equation (1.89). )
(@max,Jocat Jub = Gmax(Sq) + Gmax(S+) (1.151)
Where mex(Sq) is given by (1.89) and amsx(S-) is given by (1.69).
Result 2: The local isotropic acceleration gis, local at 2 given configuration q is specified by .

Giso,Jocal

= min[p(4'B") — pmax(®(Sg), 1), pB'C)) — Praax(X(Se), )] (1.152)
where p(A'B’) and p(B'C’) are given, respéctively, by equations (1.80) and (1.81), and where

max(¥(Sg), 11) and max(X(Sy), k) are given by equation (1.92).

\ ation @myy is the maximum acceleration over all possible state acceleration
sets Sy at a given position q in the workspace. Therefore, @max can be written as

(1.153)
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0 *1
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a max( Sq)

Figure 17: Maximum local acceleration of a two degree-of-freedom manipulator

It is not possible to find an exact analytical expression for gmaxiocal. However, we can find an upper
bound and lower bound which are very good approximations t0 @max local-

Corresponding to every point P of the set Sq, we have a state acceleration set Sy(P). Let P’ be the
furthest point (from the origin) of Sq, and let Su(P’) be the corresponding state acceleration set, as shown
in Figure 17. Also shown in Figure 17 is the set Sy(P") obtained by rotating the set Su(P’) about P’ till
the longest diagonal (A”C” in this case) of Sy is collinear with the line OP’ joining the origin to the
furthest point P’ of Sg. It is easily seen from Figure 17, that if vertex A’ is the furthest vertex of Su(P")

from O, then a lower bound is given by
(GmaxJocal)p = d(OA"), (1.154)
and an upper bound for Gmax jocal is given by
(@maxjocal)ub = d(OP") + d(A"P), (1.155)
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(amu,loal)ub = amax(sq) + Gmax(Sr)- (1.156)

. In general, one of the four vertices A" B",C" or D" would be the furthest vertex of Sy and therefore we

should write (1.154) as
(Gmaxtoca)> = max[d(0A”), d(0B"), dc"),doD"). (1.157)
Combining (1.157) with equation (1.137) through (1.140), we obtain equation (1.130). The values of
k; and k2 in (1.130) correspond to the furthest vertex p' of S4 from the origin, i.e., to that joint variable
vector ¢ which maximizes I(q1, &) in equation (1,89). This is simply a matter of computing I(q1, §2)
at the four vectors (4o, —41)7 (@1 B20)T> (@10 420) a0d (G105 —oo)T defined in subsection 3.2.2 and
determining which of these four vectors maximizes (g1, §2)- This completes the determination of the

lower bound (@maxjocal)ib-
Substituting for amax(Sq) and Gmax(S,) from equations (1.89) and (1.69), respectively, we obtain

equation (1.151). Thus, Result 1 is proved.

Proof of result 2:
The local isotropic acceleration is obtained in the following steps.
. The maximum possible isotropic acceleration is obtained when § = 0 and is equal 10 diso(S-) a5
given by equation (1.70).
2.Evcrystatcaocelmaﬁonsctwiﬂhavcaniswopicwoclemﬁonwhichislcsthanthatgivcnby
(1.70) because the “nonlinearities” cffectively reduce the isotropic acceleration. The resulting state
 isotropic acceleration is @iso(Su) Which is given by equation (1.147).

io Wsmmmofmmm isotropic acceleration

at a given local configuration q, i.c.
Qiso Jocal = xﬁgdmﬁ&)- (1.158)
4, Using equation (1.147) and (1.158), we can express the local isotropic acceleration @iso,Jocal aS
Gisojocal = ggammmw'm — p(K, 1), p(B'C) — p(K, )]

= min{min{p(4'B) - P&, 10}, min{e(B ') - p&, )} (1.159)
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5. Since p(A'B’) and p(B'C’) are constants for a given manipulator and given actuator constraims
(1.159) can be written as

Gisoocal = Min[p(A'B') — max p(K, ), p(B'C') — max p(K, b)]. (1.160)
where max(p(K, }))) is the distance from the line I; to the element of Sy furthest away from
which we denoted in subsection 3.2.2 by Pmax(X(Sq), 1), and max(p(K, b)) is the distance from the

line /7 to the element of Sg furthest away from I, which we denoted by Pmax(R(Sg), k). We can
therefore write

maxp(K,l1) = PmaxX(Sq), ) (1.161)

max p(K, I2) Pmax(X(Sq), I2) (1.162)

Combining (1.160), (1.161) and (1.162), we obtain the required result (1.152). (Note that all
quantities in (1.152) have been analytically determined earlier.)
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7 Summary and conclusions

In this paper, we have developed a theory for the acceleration sets of planar manipulators. In particular,

we have accomplished the following:

¢ Given the kinematical and dynamical equations of a manipulator, we have defined the image set S,
corresponding to the set T of actuator torques, and the image set Sq corresponding to the set F of
the joint variable rates. We have also defined the state acceleration set Sy at a specified point u in

the state space.
e We have determined the image sets, S and Sq, and the state acceleration set Sy.

e We have characterized the image sets S, and the state acceleration set Sy by their maximum and
isotropic acceleration. The image set S4 has been also characterized by the maximum acceleration.

e At a configuration or position, q, in the workspace, we have established two local acceleration
properties: the local maximum acceleration and the local isotropic acceleration. The local maximum
acceleration specifies the magnitude of the maximum acceleration of (a reference point on) the
end-effector. The local isotropic acceleration specifies the magnitude of the maximum available
acceleration of the end-effector in all directions.

We have, therefore, demonstrated the hypothesis which we stated in the introduction, i.e., that the
analytical properties of acceleration sets can be determined from the properties of the linear and quadratic
mappings which define them (the acceleration sets). Furthermore, the acceleration properties of interest
- especially the isotropic acceleration - have been determined in terms of the manipulator parameters
and the torque limits and joint variable rate (“joint velocity”) limits. The stage has now been set for

plication of the theory developed in this paper to problems in the design of manipulators in the
ion paper (Desa and Kim, 1989).

Hughes and Leonidas Paparizos who served on Yong-yil Kim’s doctoral thesis commitee. Yong-yil Kim
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