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Abstract

This report develops a systematic approach for determining the acceleration capability and

the acceleration properties of the end-effector of a planar two degree-of-freedom manipulator. The

acceleration of the end-effector at a given configuration of the manipulator is a linear function of the

actuator torques and a (nonlinear) quadratic function of the "joint-velocities11. By decomposing the

functional relationships between the inputs (actuator torques and "joint-velocities") and the output

(acceleration of the end-effector) into two fundamental mappings, a linear mapping between the

actuator torque space and the acceleration space of the end-effector and a quadratic (nonlinear)

mapping between the "joint-velocity" space and the acceleration space of the end-effector, and by

deriving the properties of these two mappings, it is possible to determine the properties of all

acceleration sets which are the images of the appropriate input sets under the two fundamental

mappings. The determination of the properties of the quadratic mapping, a key feature of the

present work, allows us to obtain analytic expressions relating important acceleration properties of

the end-effector to all the manipulator parameters and input variables of interest



1 Introduction

In this paper, we develop and apply a systematic approach for studying the acceleration capability and

acceleration properties of (a reference point on) the end-effector of a planar two degrce-of-freedom

manipulator. The application of the theory developed in this paper to two important problems which

arise in the design of manipulators -selection of a manipulator type and determination of actuator sizes -

are described in companion paper (Desa and Kim, 1989). Acceleration theory for spatial manipulators is

developed in a third paper (Kim and Desa, 1989).

An informal statement of the acceleration problem is as follows:

Consider the planar two degree-of-freedom manipulator shown schematically in Figure 1. We are

interested in studying the acceleration of a reference point P on link 2. (P is typically a point on the joint

axis of the end-effector therefore the acceleration of P is often loosely referred to as the acceleration

of the end-effector.) The usefulness of studying the acceleration of the end-effector of manipulators has

been discussed in (Yoshikawa, 1985), (Khatib and Burdick, 1987) and (Graettinger and Krogji, 1988) and

will additionally be demonstrated in (Desa and Kim, 1989). -

As will be shown below, the acceleration capability of the point P under various conditions is best

described by certain acceleration sets. Two properties which are m^d* in general, to characterize these

sets are the maximum possible magnitude of the acceleration of P and the maximum magnitude of the

acceleration of P which is available in all directions. The former property is simply called the maximum

acceleration of P and the latter the isotropic acceleration of P (Khatib and Burdick, 1987).

The study of the acceleration properties of the "end-effector" has been a subject of recent interest

(Yoshikawa, 1985; Khatib and Burdick, 1987; Graettinger and Krogh, 1988). It is therefore useful

to clearly state what makes the problem of studying acceleration properties complex and how these

researchers have addressed this complexity.

The acceleration of the reference point P at a given configuration (in the workspace of the manipulator)

is a linear function of the actuator torques and a (nonlinear) quadratic function of the rales of changes

of the joint-variables ("joint velocities"). The complexity of the "acceleration problem" arises from

these quadratic nonlinearities in the "joint velocities". (Yoshikawa, 1985) studied the acceleration of (a

reference point P on) the end-effector in connection with developing a dynamic manipulabillty measure:
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in this study the nonlinearities were essntially ignored since the measure was estimated at zero "joint

velocities". In studying isotropic acceleration, (Khatib and Burdick, 1987) dealt with the nonlinearities

in a somewhat ad-hoc fashion by evaluating isotropic acceleration at a "low" and a "high" joint velocity

vector. (Graettinger and Krogh, 1988) handled the nonlinearities by posing the problem of determining

the isotropic acceleration as an optimization problem.

In contrast to the above approaches, the present paper demonstrates how these nonlinearities can

be handled in an analytical manner. The fundamental hypothesis of this paper is the following: By

decomposing the functional relationships between the inputs (actuator torques and joint variable rates)

and the output (acceleration of P) into two fundamental mapping a linear mapping between actuator

torque space and the acceleration space of point P and a quadratic (nonlinear) mapping between the "joint

velocity" space and the acceleration space of J\ and, by deriving the properties of these two mappings,

it is possible to determine the properties of all acceleration sets which are the images of the appropriate

input sets under the two fundamental mappings.

The properties of linear mappings are well-known. The determination of the properties of the quadratic

mapping between the joint velocities and the acceleration-space of P is one of the contributions of

this paper and permits us to obtain exact analytic solutions for the isotropic acceleration under various

conditions.

In summary, the contributions of this paper are the following:

1. Development of a systematic approach (stated in section 2) for defining, determining and charac-

terizing acceleration sets.

2. Closed-form analytic expressions relating important acceleration properties of manipulators to all

the manipulator parameters and input variables (torques, joint variable rates or "joint velocities")

of interest. (The only exception is the maximum local acceleration which is specified in terms of

tight lower and upper bounds in section 6.)

3. Necessary and sufficient conditions for the existence of isotropic acceleration. (Earlier studies seem

to implicitly assume that isotropic acceleration always exists.) These conditions are stated explicitly

in terms of manipulator parameters and input variables.



4. Analytical expressions for determining the maximum and isotropic acceleration of the end-effector

at any ("local") configuration of the manipulator.

5. The theory treats nonlinearities in an "exact" manner (as mentioned above).

One consequence of 2 and 3 above is the development of simple algorithms (Desa and Kim 1989)

for sizing actuators in order to guarantee a specified isotropic acceleration. The theory developed in this

paper is also applicable to two degree-of-freedom manipulators with closed-chains (Desa and Kim, 1989).

The next section, which describes our approach, also provides the dual function of being a "road-map"

of the paper.



2 Description of the approach

A systematic approach for studying the acceleration of (a reference point P on) the end-effector based on

the use of input-output mappings is as follows:

1. Define the input variables and output variables of interest (subsection 3.1). The output of interest is
the acceleration of the reference point P.

2. Define the input sets of interest (subsection 3.1).

3. Define the input-output functional relations. These are obtained from the dynamical and kinematical

equations of the manipulator (subsection 3.2).

4. Define fundamental mappings from these functional relations (subsection 33). There are two

fundamental mappings, a linear mapping and a quadratic mapping.

5. Define the image sets of the input sets under the mappings obtained in set 4 (subsection 3.4). These

image sets are the acceleration sets of interest

6. Define general properties which can be used to characterize ftaeasme") acceleration sets (subsection

SSI

7. Determine the properties of the mappings defined in step 4 (section 4).

8. Determine the acceleration sets defined in step 5 using the properties of the mappings obtained in

step 7 (section 4).

9. Determine the specific properties of the acceleration sets determined in step 8 using the "measures"

or general properties defined in step 6 (section 5).

1& Determine the local acceleration properties for any configuration q of the manipulator using the

properties of the acceleration sets obtained in step 9 (section 6).



Figure 1: Schematic diagram of a planar two degree-of-freedom manipulator

3 Definition of the acceleration sets

3.1 Manipulator input and output variables

Consider a serial two degree-of-freedom manipulator with two revolute joints shown in Figure 1. In this

subsection, we define the link parameters, the input variables, the input sets, the output variables and the

output sets for a planar two degree-of-freedom manipulator. The manipulator is assumed to be rigid with

negligible joint friction and operates in a horizontal plane peipendicular to the "gravity vector". (The

case of manipulators operating in gravity fields is relatively straightforward and is dealt with in (Earn and

Desa, 1989).)

The link parameters necessary for describing the kinematic and dynamic behavior of the planar two

degree-of-freedom manipulator (Figure 1) are as follows. Let l\ denote the length of link 1, a\ the distance

from joint axis 1 to the center of mass of link 1, mi the mass of link 1, and /: the principal moment of

inertia of Mnk I with respect to its center of mass about an axis perpendicular to the plane of the motion.



Similarly, let h% az, mi* and I2 denote the corresponding variables for link 2 (see Figure 1).

Next, we define the input variables, the input constraints and the corresponding input sets of the two

degree-of-freedom manipulator. Let q\ and qi denote the generalized coordinates of the manipulator (see

Figure 1), q\ being the joint variable at joint 1 and qi the joint variable at joint 2. Define

<li

to be the vector of joint variables; the corresponding vector space of all q is called the joint space. If

<qi<qiv, i = l , 2 (1.2)

denotes the constraint on joint variable i, then we can define the workspace W of a manipulator as

< qi <q*u,i = 1,2}. (1.3)

Let ^l aad ki denote, respectively, the rates of change of the joint variables q\ and q2l #i and fa will

be referred to as joint variable rates for short. Define

(1.4)

to be the vector of the joint variable rates. If

< = 1 , 2

denotes the constraints on the joint variable rates, then we can define

(1.5)

i = l , 2 } (1.6)

to be the set of all the possible joint variable rate vectors; graphically F can be represented by (the interior

and boundary of) the rectangle J1K1J2K2 shown in Figure 2.

Let n and 7% denote the actuator torques, respectively, at joints 1 and 2, and define

(1-7)
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Figure 2: Set of the joint variable rates of a two degree-of-freedom manipulator

to be the actuator torque vectors.1 Let

\Ti\<Tio, 1 = 1 , 2

denote the constraints on the actuator torques at joints 1 and 2. We define

r = {T\ I TJ |< Tio, 1=1 ,2}

(1.8)

O9)

to be the set of the allowable actuator torques; graphically T can be represented by (the interior and

boundary of) the rectangle ABCD in Figure 3.

The vectors q, q and r will be referred to as the input variables (more precisely the input variable

vectors) of the manipulator. We will also refer to the vector q as a configuration of the manipulator.

Let (xi, X2) denote the coordinates of a reference point P on link 2 (see Figure 1) in a coordinate

system fixed to the base reference frame N; (x\, xi) are commonly referred to as task coordinates. Define

(1.10)

to be the vector of task coordinates; the corresponding vector space of all x? is called the task space.

lThe vectors of actuator torques, joint variables, and joint variable rales denote column matrices, not physical vecicrs,
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Figure 3: Set of the actuator torques of a two degree-of-freedom manipulator

The velocity x? and the acceleration xp of the point P of the manipulator are, respectively, given by

Xl (1.11)

and

(1.12)

The acceleration of P, x*, is the output variable of interest in the present work. The corresponding vector

space A of all possible xp is called the acceleration space, expressed by

(1.13)

3.2 Functional relations between the inputs q, r and the acceleration

The men stq> is to oblain the funoional relations between the acceleration W and the inputs q and r

for a jpven amfigiintion q. In thte sul^xtion, we show how the necessary functional relations can be

obtained from the manipulator dynamic equations and the (so-called) manipulator Jacobian relation.

The dynamic behavior of the two degree-of-freedom planar manipulator in the joint space cm be

obtained using well-known methods (Kane and Levinson* 1983; Kane aid Levinson, 1985; Desa and

8



Roth, 1985) and is described by the following pair of equations:

(1.14)

(1.15)

where the coefficients, 4y (i j =1,2) and v, are given in the Appendix.

Defining the following matrix operators

D =

w =

dn dn

0

W21 0

fc
q =

{q>2 =

dynamic equadons,(l*14) and (1.15), become

Dq + W{q}2 = r.

(1.16)

(1.17)

(1.18)

(1.19)

(1.20)

Note that equation (1.20) is the most general expression of the dynamics of a two degree-of-freedom

planar manipulator. The matrices D and W standard for various planar manipulator types are given in the

Appendix. The matrix D is the mass matrix of the manipulator.

Since the matrix D is always invertible, we can write (1.20) in a more convenient form for our

purposes as

q = D-1[r~W{q}2] . (1.21)

A crucial step in the acceleration analysis of a two degree-of-freedom manipulator is the definition

of the matrix operator W and {q}2* which allows all the "non-linearities" (i.e. terms in the dynamic

equations (L14) and (1.15) which are non-linear in the joint variable rates, q% and <&) to be written as

the product of W and {q}2. The notation {}2 is used to draw attention to the fact that the elements of



the vector {q}2 are quadratic in the joint variable rates q\ and fc. Note that {q}2 is a vector and should

not be confused with the scalar q2 which is the square of the magnitude of q.

The relation between the velocity, xp
f of the point P, and the joint variable rate vector 4 is well known

(Desa and Roth, 1985):

** = Jq (1.22)

where J is a (2 x 2) matrix called the manipulator Jacobian. The detailed expressions of the Jacobian

matrix for various planar manipulator types are given in the Appendix.

To obtain the expression for the acceleration xp of the point P, we differentiate equation (1.22),

Sf = Jii + J4- " (1.23)

In the Appendix, we show that the second term in (1.23), jcj, can be written in the form

where matrix E is skew-symmetric.

Substituting equation (1.24) into (1.23), we obtain

Defining the quantities,

A = J D ~ \ (126)

B « -AW-E, (127)

it is easy to verify that the expression for tiie acceleration ip of the point P, obtained by combining

equation (1.20) with equations (1.25) through (1-27), is givm by

(128)

where Af B are conigiiratioa dependent.

Equation (L2S) expresses the required (Input-Output) fhnciiGna] relation between the input variables,

q and 7% aid the acceieratlon W of fbt point P (±t ompit vanabis) at t given configuration q. It is

impmtmi m note thai !he definition of Lhe matrix "operators5' W, E and {q}2 enables us to write ±e

dyntuiic eqmMms in the ooo^Md: fimn (1*28) wbich is critical in the «qiicL

10



3.3 Mappings

In this subsection, we define two fundamental mappings between the input variables and the acceleration

x? of the point P (the output variable).

It is convenient to regard the functional relation (1.28) as a mapping between the input variables q

and r and the output variable xp for a given configuration q of the manipulator. Furthermore, defining

ar =

and

= B{q}2,

(1.29)

(1.30)

equation (1.28) can be written as

^ = a r + a4 . (1.31)

The following two simple and obvious relations are useful when we define acceleration' sets below:

(1.32)

q (133)

It is convenient to think of the vector aT as the contribution of the torques to the acceleration of the

reference point P, and the vector aq as the contribution of the joint variable rates to the acceleration of P.

The sum of these two vectors, therefore, gives us the acceleration of P as expressed by equation (1.31)

for a two degree-of-freedom manipulator.

Equation (1.29) can be viewed as a linear, configuration-dependent, mapping between the torque vector

r and its contribution aT to the acceleration of P. Similarly, equation (1.30) can be viewed as a quadratic,

configuration-dependent, mapping between the joint variable rate vector q and its contribution a«j to the

acceleration of P. These are the two mappings of interest in this section.

3.4 Manipulator acceleration sets

Having defined two fundamental mappings of interest, we are interested in the image sets of the input

sets under the mappings (1.29) and (1.30) at a given configuration q of the manipulator. There are three

I I



image sets of interest.

3.4.1 Image set Sr of the actuator torque set T under the linear mapping

For a given set T of the actuator torques r described by equation (1.9), and represented graphically by the

rectangle ABCD in the r - plane (see Figure 3), we define the image set ST of T under the linear mapping

(1.32) as

ST = {x'jx'((i = 0) = AT, T 6 T}. (1.34)

(Note that Sr lies in the acceleration plane A.) From equation (1.32) and the above definition (1.34), we

see that Sr represents the set of all possible accelerations (the acceleration capability of the manipulator)

when it is at rest (q = 0) in any configuration q and the actuators are turned on.

3A2 Image set S^ of the joint variable rate set F under the quadratic mapping

For a given set F of the joint variable rates q described by equation (1.6)f and represented graphically

by the rectangle J1K1J2K2 in the q - plane (see Figure 2), we define the image set S§ of F under the

quadratic mapping (1.33) as

Sq = {x*|x'(r = 0) = B{q}2, q G F}. (L35)

(Note that Sq lies in the acceleration plane A.) From equation (1.33) and the above definition (1.35), we

see that the image set Sq represents the set of all possible accelerations (the acceleration capability of the

manipulator) when the actuators are turned off (r = 0) in any configuration q.

3.43 State acceleration set

Whoa a manipulator is in motion, the (dynamic) state of a manipulator am be specified by the p in t

variables, {qu ft)* and joint variable noes, ($1, fc). Tim state wctor 11 which characterizes the dynamic

stale of the manipulator is defined as fellows:

(136)

12



For a specified dynamic state of a two degree-of-freedom manipulator, the second term of the accel-

eration x* in equation (1.28) is a constant vector, which we denote by k(u) and define as follows:

k(u)^
te

= B{q}2 .

Equation (1.28) can then be written as follows:

x = Ar + k.

(1.37)

(1.38)

For a given dynamic state u of the manipulator, we define the state acceleration set, 5U, as the image set

of the actuator torque set T under the linear mapping (1.38):

Su = {xp\xp = AT + k, r € T}. (1.39)

.Su is therefore the set of all possible accelerations at any given dynamic state u of the manipulator. Since

the dynamic state u of the manipulator essentially specifies the velocity ±p of the point P in (1.11) in any

configuration, we can also interpret the state acceleration set Su (the set of available accelerations) as the

acceleration capability of the manipulator when the manipulator is moving with the velocity i f in a given

configuration q.

3.5 Characterization of the acceleration sets

Once the acceleration sets defined in the previous section have determined, one would like to characterize

them. In this section, we define two properties which are useful in characterizing acceleration sets.

Figure 4 shows an acceleration set 5 in the acceleration plane x, and two circles C\ and Cj. The circle

C\ of radius r\ is the smallest circle centered at the origin which completely encloses S. Its radius r\

therefore represents the maximum (magnitude of the) available acceleration in S. The circle C% of radius

ri is the largest circle centered at the origin which lies within S. Its radius r% therefore represents the

largest (magnitude of) acceleration available in all directions.

We define the following two properties of S:

• the maximum acceleration of S:

9f the isotropic acceleration of S:

13



acceleration set 5

isotropic acceleration
maximum acceleration, r1

figure 4: Characterization of an acceleration set in the acceleration plane

Comments:

1. As will be shown, the maximum acceleration and isotropic acceleration are two measures which

can be readily extracted once the acceleration set is known.

2. The isotropic acceleration (Khatib and Burdick, 1987; Graettinger and Kiogh, 1988) is a useful

measure of the acceleration set, since it is a property which does not depend on direction.

3. The average acceleration of die set S cannot readily be extracted in closed-form (or by appropriate

bounds) from the acceleration set S. It can however be numerically determined from descriptions

of the various acceleration sets given in the next section. Also the physical meaning of the average

acceleration is not clear.

14



4 Determination of the acceleration sets

Analytic expressions for the determination of the three sets 5T , Sq and 5U are presented, respectively, in

section 4.1, 4.2 and 4.3. The determination of Sr and the state acceleration set Su follows directly from

well-known properties of linear mappings while the determination of the set Sq requires the derivation of

the properties of quadratic mappings which are new

4.1 Determination of the image set Sr

The set ST is the image set of the actuator torque set T under the linear mapping (1.32).

Result 1: The image set ST of the actuator torque set T under the linear mapping (1.32) is (the interior

and boundary of) the parallelogram A'B C?D' in the x - plane whose vertices A',B'9(?9 and D* are

as follows:

A : (anno + a2\T2o, a2ino + 022^20),

B : (auTio — CI21T201 Q>2\T\Q — &nJlo)<>

C I (~a\iT\o - d2lT2a, —021 Ho 212o)y

' (1.40)

where a^ (i j=l,2) are the elements of the matrix A defined in equation (1.26). The centroid of the

parallelogram A'B'cfD* is the origin O of the

Result 2: The sides A'B', B'cf, (?D\ and D'A' of the parallelogram Sr (Figure 5), which comprise the

boundary of the set are given by the following equations:

: OQ2XI - ai2*2 = det(A)Ti<,, (1.41)

= dct(A)T2o, (1.42)

- det(A)n*, (1-43)

: -421*1 + at $2 = - det(A)r^. (L44)

where det(A) is the determinant of the (2 x 2) matrix A.

15



figure 5: Image setof the linear mapping of a two degree^f-freedom planar manipulator

Proof of Result 1:

The following arc well know properties of a linear mapping:

1. A line in the r-plane will map into a line in the x-plane. In particular, the line Ii, with equation r\

= 0, maps into the line tx whose equation is

4 : 022*1 - ^12*2 = 0,

and the line l%% with equation r% = 0, maps into the line 4 whose equation is

(145)

(1.46)

Both 4 **d 4 P 1 ^ thxoug î the origin (Figure 5).

2. Any line g\ parallel to It maps into a line g[ parallel to 4-

3. Any line gz parallel to 1% maps into a line g2 parallel to 4-



Regarding the rectangle ABCD (set T) as a set of lines parallel to l\ and h one can easily show the

well-known fact that the image of ABCD is a parallelogram A'B'C'Z)'. The vertices A#, B\ d and D'

are the images, respectively, of the vertices A, B> C and D. Substituting the coordinates of A(T\O, T^>),

B(T\O, —T2o)t C(—T\O, —T2o) and Z>(—T\O, vio) into equation (1.32), we obtain the coordinates of the

vertices A\ B\ d and D* as given in equation (1.40). From equation (1.40), we see that the vertices

A! and d are equidistant from the origin and that the vertices B' and D' are equidistant from the origin.

Therefore, the origin of the x-plane is the centroid of the parallelogram A'B'C'D'.

Proof of Result 2:

We next need to determine the equations of the lines A'B\ B'd, dD\ and D A', which fonn the

boundary of the parallelogram A'B'dD' in the x - plane. A'B' is the image of the line AS. whose equation

is r = T\O\ to obtain the equation of A'B\ substitute the equation of AS (r = T\O) into (1.32) to obtain the

following parametric equations in rz:

x\ = anTio + auTi, " (1.47)

x2 = anno + ann. (1.48)

Eliminating the parameter TI between (1.47) and (1.48), we obtain the equation of the line JLB* in the X

- plane as given by equation (1.41). In a similar fashion, we can obtain the equations of the lines B'd',

dD\ and D'A! as in equations (1.42) through (1.44). Note that from equations (1.41) through (1.44) we

see that A'B' is parallel to dD' and B'd is parallel to D'A' SO that A'B'dD' is indeed the parallelogram

shown in Figure 5.

42 Determination of the image set Sq

The set Sq is the image set of the joint variable rate set F under the mapping (1.33). Set Sq is determined

from the following results

Results:

The set F in the c| - plane is considered as a family of line segments passing through the origin. There

aie two such types of line segments: those which aid cm the boundaries J\K\ and J2K2 parallel to the

17



Figure 6: Image set of the quadratic mapping of a two degree-of-freedom manipulator

qz - axis, a typical member of which is the line segment g\ in Figure 6 (a), and those which end on the

boundaries J\Ki and J-}fL\ parallel to the q\ - axis, a typical member of which is the line segment gj in

Figure 6 (a).

1. Every line of the type g\ maps into a line g\ (see Figure 6 (b)) in the x - plane, one end of which

is the origin and the other aid of which lies on the line segment fit whose equation is:

where jci lies in the interval [bwlfa, + bn(<£o + , bn<^o + bn(<&, - 2<7i<tf

2. Every line of the type & (see Figure 6 (b)) maps into a line g2 in the 3t plane, one end of which

is the origin and the other end of which lies on the quadratic curve K'N'/ (shown dashed between

X? and V ) whose equation in the parametric (in ft) form is:

(130)

18



3. The image set of F is (the interior and boundary of) the region OlJfK! shown in Figure 6 (b), and

the coordinates of IV*,/, and K! are as follows:

(1.51)

&*)2, (621 - t>22)fio + £22(91* + <72*)2), (1.52)

2 , (621 -

Proof:

The quadratic mapping is defined by the following equation (1.33):

x = B{q}2

which can be written in the expanded form

X2 a 621^ + 622(^ + 2^ft ) 2 . (154)

The determination of the set Sq which is the image of the set F (Hgure 6 (a)) consists of two steps:2

1. Establishment of the properties of the quadratic mapping, and

2. Determination of the boundary of the image set $$.

Consider the (Input) q - plane. It is convenient to think of this plane as being generated by the

continuous family of lines passing through the origin with parametric equation

, - o c < m < oo. (1.55)

Each value of m gives us a member of the family of lines, a typical member of which is the line /

shown in Figure 7. The image / in the x - plane of the line I is obtained by substituting (135) into (134)
2While the approach described below is adequate for our present purposes, a more basic approach to deterniijiing Sq is

described in (Kim and Desa, 1989).
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x - plane

4- plane

Figure 7: Properties of the quadratic mapping

and is described by the following parametric equation,

(136)

From equation (155) and (136), one can enumerate the following facts:

Fact 1. The image of /, viz. t% is a straight line.

Fact 2. The origin of the q - plane maps into the origin of the x - plane.

Fact 3. Two distinct points (qu ft) and,(—4l» -ife) map into the same point of the x - plane.

These results are shown ipraphically in Hgme 7.

Fact 1 follows firm the fact that (1*56) is the equation of a straight line in the parameter t Fact 2

follows from t ie fact that the point (0f 0) in the <J - plane, lepicsenied by the parameter t = 0, maps

into the point (P, 0) in the i - plane. If r is the parameter corresponding to the point (qu <fe) in the



Figure 8: Input q - plane

emplane, thai —r is the parameter of the point (—q\f —fa) from (1.55). From (1.56), we see that points

with parameters t and —t will map into the same point in the it-plane. This proves Fact 3.

We can therefore state the following properties of the quadratic mapping:

Property 1. The image of any line segment in the q-plane, one end of which is the origin, is a line

segment in the x-plane with one end at the origin of the x-plane.

Property 2. The image of the line / passing through the origin in the q - plane is the half-line / \ one

end of which is the origin (see Figure 7).

Property 3. Given any line / passing through the origin, and the two half-planes p\ and pz formed by it

(see Figure 8), p\ and p% will have the same image set in the X - plane.

Property 1 is a direct consequence of Facts 1 and 2 t property 2 a direct consequence of Facts lf 2 and 3

and property 3 follows from Fact 3.

We now apply the above properties to determine the image set Sq of the set F in the q-plane (See

Figure 6). Property 3 tells us that if we "bisect" F into two **half-setsM with a line passing through the

origin, then we only need to determine the image of one of these 'Tialf-sets**. The most convenient half-set

21



Figure 9: Input set F in 4 - plane

for our purposes is the set KiJ\Ki (see Figure 9), one of the two half-sets formed by the "bisecting" line

In order to use Property 1, it is convenient to view the set K\J\K2 as a family of line segments passing

through the origin; we now need to determine the image of any line segment passing through the origin

in this set There are two cases to consider the family of lines such as gi, shown in Figure 9, which

have one endpoint on the origin and the other endpoint on the line segment K\J\ and the family of lines

such as #2» also shown in Figure 9, which have one eadpoint on the origin and the other endpoint on the

line segment J1K2.

It is convenient to decompose the half-set K\J\Ri too two subsets OK\J\ and OK2J1 as shown in

Figure 10. Subset OK\J\ includes only the families of lines such as gi while subset OK2J1 includes only

the families of lines such as gi. The desired image set is the union of the images of OK\J\ and OK2J1*

From property 1 of the quadratic mapping, we know that my line segment, such as g\ or g2 of the set F»

will map into a line segment with erne endperint passing through the origin of the x - plane. To obtain the

other endpoini of the images of the two families of lines, we need to find the image of the line segment

J\K\ of the subset OJ\K\ and the image of the line segment J1K2 of the subset OJ1K2.

First, we determine the image of subset OJ\K\ (10 (b)) by finding the image of K\J\. The equation
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(c)

K' (e)

Figure 10: Determination of the image set
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is

qi=qio; \<l2\<bo-

To obtain the image kf of K\J\, we substitute (1.57) into (1.54) to obtain

i (138)

Denning a parameter t as

*=«2 + 2$ lofc, (1.59)

equation (1.58) can be written in the form

Eliminating the parameter f between the two equations, we obtain the equation for the line segment

as given by equation (1.49). (This proves the first part of the result.) The resulting subset (Sq)i

which is the image of OK\J\ is shown in Figure 10 (d).

Next, we determine the image of subset OJ\Kz by finding the images of KTJ\. TO obtain the image

fpfk1 ofJ\K2t we substitute the equation for J\Ki%

fc«4w \ki\<Qio 0-62)

into (134) to obtain the parametric equation (1.50). Note that (150) represents the equation of a quadratic

curve in terms of the parameter q\. (This completes the second part of the result.) The resulting subset

(Sq)2 which is the image of OK%J\ is shown in Figure 10 (e).

The desired image set S^ of F is the union of (5q)i and (S^h and is shown in Figure 10 (f).

Note that the intersection of (Sq)\ and (Sqh, (5q)i n (Sq)z> is not empty. Because S^ is the imag^

of F under a quadratic mapping, there arc points inside Sq which are the image of two distinct points in

K1J1K2* In particular, any point in the set (Sq)\ n (Sq)i, will be the image of two points are belonging to

OK\J\ n d the other to 0KJ\.
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U

Figure 11: State acceleration set of a two degree-of-freedom manipulator

The images iv , / and K, respectively, of #i(0, fao)* J\(qi<» <ho) and K\(q\o, -qio\ are obtained

by substituting their (£i,#2) coordinates into equation (1.54) to obtain the required results (1.51), (132),

and (1.53).

43 Determination of the state acceleration set Sm

The state acceleration Su corresponding to a state u = (q,q)T of the planar manipulator was defined by

equation (1.39) and is the image set of the actuator torque set T under the mapping (138). We obtain the

following results for the determination of the state acceleration set 5U.

Result 1: For every element x(5T) of the image set ST, there is a corresponding element x(Su) of the

state acceleration set 5U, given by

4), (1.63)
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where

k(q, q) =
fa

(1.64)

Result 2: The state acceleration set Su* corresponding to a state u = (q, q)T of the planar two degree-of-

freedom manipulator is the parallelogram A"B"(?'D" shown in Figure 11 obtained by translating

the set Sr by the vector k(q, q) in the x - plane. The centroid of Su is (fci, fe).

Proof off Result 1:

The results 1 and 2 are straightforward.

From (134), a member x(ST) of ST is given by

AT. (1.65)

(1.66)

(1.67)

From (1.39), a member x(Su) of S a is givra by

where k is given by equation (1.64). Combining (1.65) and (1.66), we obtain

which is equation (1.63).

Proof of result 2:

From equation (L63), we see that if we take a vector x(ST) of ST and add the vector k to it we obtain

the corresponding member x(Su) of Sa. So, if we add the vector k to every vector in the set ST we obtain

the required set Su. Therefore, Stt is the parallelogram ti*B*'(?D" (Figure 11) obtained by translating the

set ST (the parallelogram KtldlS in Figure 11) by the vector k. The centroid of ST is x(ST) = (0, 0).

From (1.67), we see that the corresponding centroid of Stt is

k. (1.68)

TMs completes the proof of Result 2.
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reference line / 1

reference line

Figure 12: Characterization of the image set of the linear mapping for a two de~

gree-of-freedom manipulator

5 Properties of the acceleration sets

In this section, we extract the properties - defined in subsection 3 3 - of the acceleration sets ST$

Su determined in the previous section.

5.1 Properties of the acceleration set Sr

We characterize the image set ST of the linear mapping as follows:

Result 1: The maximum acceleration of the acceleration set ST is denoted

where

r) and is given by

(L69)

#) = ^/(aim* + fliin^)2



Result 2: The isotropic acceleration of the acceleration set ST will be denoted by <^K>(ST) and is given

by

ai,o(ST) = min[p(A'B'), p(B'd)] (1.70)

where

KB'd) - | d c t A | T ^

Proof of Result 1:

The maximum acceleration of ST is the distance from the origin to the furthest vertex of the parallel-

ogram A'B'dD* (see Figure 12). Letting d (OA') through d (OD*) denote, respectively, the distances of

vertices A1 through D' from the origin O in the x - plane, 0max(&r) is given by

) , d(OD') ]. (1.71)

A1 and (f are equidistant from the origin O. Also, B' and D' are equidistant from the origin O. So,

a^iSr) = max[ 4 0 A \ <OB') ]. (1.72)

Uskig (L32)f the distance d(0A') from the ori^n O to the poto A'

(1.73)

i i exiciy analogous faduoo. we obtain

72), (1.73) and (1.74) comprise Result 1.

2:
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The isotropic acceleration of ST is the shortest distance from the origin to the sides of the parallelogram

A'B'dD'. Letting p (A'B'\ p (B'C?)f p (f?'D'\ and p (Z)'A') denote, respectively, the perpendicular

distances from O to the sides A!B\ B'd\ dD\ and D'A\ aboCSr) is given by

' ) ] . (1.75)

Since the origin O is the centroid of the parallelogram ST> parallel lines of the parallelogram /itldd

must be equidistant from the origin. Therefore, we can write the following relations:

p(ABr) = P(C'D\ (1.76)

p{B'd) = p(DA'). (1.77)

Using (1.76) and (1.77), (1.75) can be written

^ ( S T ) = mintpCA^'), p(fi'(fy\. (1.78)

The distance from a point P(xo, y<>) to line ax + by + k = 0i& given by the following well-known result:

Using equation (1.41), (1.42) and (1.79), we obtain

(1.81)

Substituting (1.80) and (1.81) into equation (1.78), we can obtain the required result (1.70) for the isotropic

acceleration

5.2 Properties of the acceleration set 5q

We characterize the image set 5q by the maximum acceleration and the maximum distance of any element

of Sq from the two references lines /i and h shown in Figure 5.

Definition 1:

A
zz
A

i % (1.82)
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Figure 13: Maximum distance from reference line /i to a point on the set 5q

Befinition 2: Let #' denote the real solution of the following cubic equation in &:

Definition 3 : Let KM$$)Jt)

from Ibe llzt^ 1| and ^

(1.83)

fe) denote, respectively, the distance of any point x(S4) of Sq

t icpresmts the 'dî aiKX of that point of S^ further fiom l\; pmax(^(^)? ' i)

li) art neoesmry for dctennining the local Isouopic acceleration in subsubsection

Definition 4:

(1.86)



Definition 5:

<rl(to, to) i l^ i ( to , to)-^2(to, to)l

(1.87)

= I <ft»*>(to, to) - an*2(to, to) I

Result 1: For a general two degrce-of-freedom planar manipulator, the maximum acceleration of the

acceleration set Sq will be denoted by Omax(5q) and is given by

<W(Sq) = max[/(to,, -to*), K&, too), Kto.. to«), «(*i« -to*)] (1.89)

where ^ is defined in (1.83).

For the two degrce-of-freedom open-loop planar manipulator, shown in Figure 1,

Result 2: For a general two degree-of-freedom manipulator, the maximum distance from an element of

Sq to the reference lines l\ and h are, respectively, given by

/ W ( *CS,),4>1 0-91)

where if is defined in (1.86).

Proof of Result 1:

The magnitude squared of the acceleration of a point X(5q) of Sq, denoted by aHS$, is given by

^ 0-93)
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The maximum magnitude squared of the acceleration for the set Sq, denoted by a^CSq), is given by

where F is shown in Figure 2 and specified by the constraints

I to l< to,,
I qi \< fro- (1.96)

The maximum of i2, required in equation (1.94), will occur at point q 6 F which is either inside F or

on the boundaries of F where one or both constraints might be active. Furthermore, because of property

3 of the quadratic mapping, we only need to look at the boundaries J\K\ and J\K2 of the half-set KiJ\K\.

Therefore, to obtain the maximum of (1.82) under the constraints (1.95) and (1.96), we should consider

the following possibilities:

1. Neither of the constraints is active, i.e., the maxtf^i, #2)1 occurs at a point q inside F.

2. Constraint (1.95) is active, LeM max[/*(fr, ft)I occurs at a point $ lying on the boundary J\K\ of

F.

3. G>nstraint (1.96) is active, Le., mdx[9-{qu ft)] occurs at a point q lying on the boundary J\Ki of

F.

4. Both constraints are active, Le., max[/2(#i, Qii\ occurs at either (a) point J\ (b) point K\ or (c)

point K%. Since, by virtue of Fact 3 of subsubsection 3.1.2, points ^i and K2 have the same image,

we only need to consider either K\ or K%: we will choose K\.

To obtain tfae ooDditknis for eadi one of the above ca^s to yield a maximum, we first differentiate

fe) with r«&|̂ a to ^i and ^ to obtain

(1-97)

fc)

+ fc). (L98)
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Now, we consider each case.

Case 1

To bbtain the required <1 for the case where both constraints are inactive, we set the right-hand side

of (1.97) and (1.98) to zero,

| ^ = 0 and | ^ = 0 (1.99)

and obtain

Hi = & = 0 (1-100)

which actually corresponds to the minimum value of P(qi, fa), viz, zero. Therefore, max(]P) does not

occur at a point q inside F.

Case 2

Since constraint (1.95) is active on the boundary J\K\ of F, we have

q\ = Q\o (constant). (1.101)

To obtain the maximum of l\ we set df/d^i - 0. We therefore set the ri^it-hand side of (1.98) to

zero to obtain

4 i + f t = 0. (1.102)

Combining (1.101) and (1.102), we obtmn

in = ~qu (1.103)

mid

P P , -qio). (1.104)

Case3

Since constraint (1.96) is active on the boundary J1K2 of F, we have

qi-ifio (constant). (1.105)
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Figure 14: Common tangency between the quadratic curve and circle
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To obtain the maximum, we set dP/dq\ = 0. We therefore set the right-hand side of (1.98) to zero

and set fa = qio to obtain

0. (L106)

Equation (1.106) is a cubic in q\ and will therefore have three solutions. Using simple ideas from algebraic

geometry, we now show that (1.106) can have at most one real solution in the region \q\\ < q\o.

If ^071 > Qi) does have a maximum / ^ then the condition dffdq\ = 0 for obtaining /max is the

condition for the quadratic curve (1.50) -the image of J\Kz in the x-plane- and a circle of radius /max

to have a common tangent (see Figure 14). By Bezout's theorem (Semple and Roth, 1949), a quadratic

curve and a circle can have at most two common points of tangency. Therefore, equation (1.106), which

expresses the condition dP/dqi = 0, can have at most two real roots (one for each point of tangency).

However, (1.106) is a cubic in q\ and can therefore have either one real root or three real roots. Combining

the last two statements, we see that (1.106) can have at most one real root (Since we are looking at

the quadratic curve in the region \q\\ < qu* the real solution of (1.106) might lie outside the constraints

which simply means that (1.93) does not have an extremum in the region \q\\ < q\o). Denoting the real

solution (1.106) in the region \qi\ < q\o by qx and using (1.105), we can write

d-107)

Case4-a

When both constraints (1.95) and (1.96) are active, and max[/2(£i, ife)] occurs at Jiiqui <tzo)* then

q2)] = Hqio, &*). (1.108)

Case 4-b

When both constraints (1.95) and (1.96) are active, and max[f(qi^ <&)] occurs at Ki(q\c, —ifeo), then

max[/2($i, qztt^Hqio, -<&>). (1.109)

Therefore, flmax(5q) is obtained as the maximum of four quantities defined by equations (1.104),

(1.107), (1.108), and (1.109). This concludes the Proof of Result 1.
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Proof of Result 2:

The distance of any point x(Sq) of 5q from the line //, i=l, % is given by

qi) (1.110)

* ) ( l . n i )

where a\ and a2 arc defined in equations (1.87) and (1.88). We first wish to detennine Anax(x(5q)»/i) the

distance of l\ from that point of Sq furthest away finom it Q\). pmax(xCSq)./i) is shown in Figure 13 for

given S^ and given reference line h and can be defined as follows:

q, / i ) = nwx ki(4i, qi)\ (1.112)

where F is shown in Figure 2 and is specified by the constraints

\qi\<qio, (1.113)

The maximum of <ri, required in equation (1.112), will occur at a point q £ F which is either inside

F or on the boundaries of F where one or both constraints might be active. Furthermore, because of

property 3 of the quadratic mapping, we only need to look at the half-set K2J1K1 and its boundaries J\K\

and J\K2. Therefore, to obtain the maximum of (1.110) under the constraints (LI 13) and (1.114), we

should consider the following possibilities.

1. Neither of the constraints is active, i.e., max 01 (£1, qz) occurs at a point q inside F.

2. Constraint (1.113) is active, i.e., max<ri(#i, qz) occurs at a point q lying on the boundary J\K\ of

F.

3. Constraint (1.114) is active, i.e., maxai(4uft) occurs at a point q lying on the boundary J\Kz of

F.

4. Both constraints are active, Le.s max <ri (#1,^2) occurs at either (a) point J\ or (b) point K\ or (c)

point ifj. Since K\ and K% have the same image we only need to consider K%.
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To obtain the conditions for each one of the above cases to yield a maximum of o\% we first differentiate

qii <ti) (equation (1.87) with respect to q\ and qz to obtain

= 2{anbxianb2{)qi^2{anbnanbn)q\, (1.115)
dq\
| g = 2(022*12 -

Now we consider each case.

Casel

To obtain the required q, we set

= 0 and |? l=0. (U17)
dq2

We therefore set each of the right-hand sides of (1.115) and (1.116) to zero to obtain

fo » 41 = 0 (U18)

which actually corresponds to the minimum value of <?i(£i, qz), virf 0. Therefore, max(ai(#ir in)) does

not occur at a point q inside F.

Case 2

Since constraint (1.113) is active on the boundary J\K\ of F, we have

4l « ft« (constant). (1.119)

To obtain the maximum, we set d<r\fdq2 = 0. We therefore set the right-hand side of (1.116) to zero

to obtain

(L120)

Combining (1.119) and (1.120), we obtain

fe««-fc* (1.121)

and

(1.122)
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Case 3

Since constraint (1.114) is active on the boundary J\K% of F, we have

qi = too (constant)- (1.123)

To obtain the maximum, we set d(J\jdq\ = 0. We therefore set the right-hand side of (1.115) to zero and

set qi = ifio to obtain the linear equation

(022*11 - anbiiVli + (022&12 - 1̂2622)̂ 2 = 0. (1.124)

Combining (1.123) and (1.124), we obtain the solution of the equation (1.124)

*1»*\ (1.125)

who©

Q - — T —7— fto- • (1.126)

(1.127)

Whm both constraints (1.113) and (1.114) are aoive, and max01(41, ^2) occurs at J\{qiOj qio\

(1.128)

Case4-b

Whai both constraints (1.113) and (1.114) are active, and max<7i(#i, q£) occurs at K\{q\o, -qio)*

then

max[ai(^l5 &)] = *i(*l* - ^ X . (1-129)

Theiefoict /^«t(^(«%), /1) is otMained as the maximum of four quantities defined by equations (1.122),

(1.127), (1.128)t and (1,129). In exactly analogous fashion, An*x(*(^), fe) is obtained as in (1.92).
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isotropibvacceleration

Figure 15: Characterization of the state acceleration set of a two degree-of-freedom

manipulator

5 3 Properties of the state acceleration set Su

Definition:

K: centroid of the acceleration set in the X - plane with coordinates k\> fe given by (138).

, h) : distance from point K to the reference line l\.

\ k) : distance from point K to the reference line fe.

!B\ p(A"B")f : distance from the origin to A'B\ A*B"9 . . . (see Figure 16)

Result 1: The maximum acceleration corresponding to any dynamic state u of the manipulator is denoted

and is given by

"), d(OB'\ d(OC'\ d(OD')] (1.130)
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where

d(OA") »

d(OD") =

Result 2: The necessary and sufficient conditions for the existence of the isotropic acceleration are the

following:

[ det A | T I , - 1*1̂ 22 - han\ > 0, (1.131)

- \knni ~ teaul > 0. (1.132)

Result 3: The isotropic acceleration corresponding to any dynamic state u of the manipulator is denoted

tf conditions (1.131) and (1.132) are satisfied, is given by

i %
 n m \

* (1.133)

J
Proof of Result 1:

Let <%QA") thiougji (%PD') denote, respectively, the distances of vertices A" through D" from the

origin O in the x - plane. Then OmaxCSu) is the distances of the furthest vertex of the set Su which is the

parallelogram A"B"C?D"* Therefore, <w(Sii) is given by

), d(OB'\ d(OCf\ d(OD*')l (1.134)

Using (1.40), the coordinates x\(A") and X2(A") of vertex A" in the x - plane are given by

ii(A##) » JtiCA^ + fc^anr^ + aiiT^ + Ai, (1.135)

^ O O * %(Al)+*2 = a2!n^ + ̂ 2 2 ^ + fe. (1.136)

The distance d{OAM) from the origin 0 to the point A" is given by

(1.137)
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Figure 16: Isotropic acceleration of the state acceleration set of a two degree-of-freedom

manipulator

In exactly analogous fashion, we obtain

(02m* -

= y (anno + ^ 1 2 ^ - ^i)2 +

(L138)

(1.139)

(1.140)

Equadcms (1.134) and (1.137) through (1.140) comprise result 1.

Proof of Result 2 and 3:

In Figure 16, we have shown two sets, ST and Su which is obtained from ST by a translation k

(hj fe)r- The ccntroids of ST and Su arc, respectively, by O and JET.
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Using equations (1.79), (L64), (1.45), and (1.46), the distance from K to the reference lines l\ and

aie given by

h) = 1^2*1-Viatel, ( U 4 i )

' ( U 4 2 )

£, /i) represents the perpendicular distance between the lines AB* and A!'B" and also between the lines

and C"l>" (see Figure 16). Similarly, p(K, fe) is equal to the perpendicular distance between the

lines B*d and B"d' and also between the lines D'A' and D"A" (see Figure 16).

The state isotiopic acceleration a\so($u) is the maximum acceleration which is available in all direc-

tions. It is therefore equal to the minimum of the distances from the origin O (of the acceleration plane)

to the four sides of A"B"<?D* (the set Su).

Referring to Figure 16, we can write the following expression for

u) = min[p(AV), p(BV), p(CV), p(DV)] (1.143)

where P(A"B") is the (peipendicular) distance fran O to A"B" and similarly for p(fi"d'\ p(d'D"\

p(D"A"\ all assumed positive by definition, from the geometry of Figure 16, we can write,

p C / Z U C ' V ) = p(A'B') ± p(K, hX (1.144)

(Comment: In Figure 16, for example, />(AV) = p{A'B') + pQCJO and (*£"&') = p{do') - p(K, h);

the correct dioice of signs will depend on the direction of the translation but as will be shown below we

do not have to worry about the correct choice of signs.)

Similarly,

pCffVXp^V) - p(Bfd) ± KKJil (1.145)

(The above comment holds for (1.145), too.)

Combining equations (1.143), (1.144), and (1.145), we obtain

, hh K&d) ± p(K, fe)]. (1.146)
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Since all distances pO in the above equation arc positive by definition, we can rewrite the above equation

as

') - p(K, ft), f&'d) - p(K, h)l (1.147)

Substituting equations (1.80), (1.81), (1.141) and (1.142) into (1.147), we obtain the required result

(1.133).

Equation (1.147) clearly demonstrates that the isotropic acceleration auo(Su) for any state u ^ 0 is less

than tfisoGSr) = min[p(A'B'),p(B'(?)]. In fact, if p(K, ft) and p(AT, fc) arc sufficiently large (equivalently,

the "nonlinearities" k\ and ki arc sufficiently "large"), we may not have any isotropic acceleration. The

necessary and sufficient conditions for the existence of the isotropic acceleration can be obtained either

from (1.147) or (1.133). From (1.133), we obtain the following two necessary and sufficient conditions

for the existence of the isotropic acceleration:

| det(A)|ri, - 1*1022 - k2an\ > 0, (1.148)

| det(A)|T2, - jjtufci - haul > 0. (1.149)

These arc exactly the necessary and sufficient conditions expressed in (1.131) and (1.132) of result 2.
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6 Local acceleration properties

At any given (local) configuration q in the workspace, the following questions arc of theoretical and

practical importance.

• What is the magnitude of the maximum acceleration at any configuration q in the workspace?

• What is the magnitude of the isotropic acceleration at any configuration q in the workspace?

To answer both these questions, we need to use the properties of the sets STt Sq Su developed in the

preceding subsection.

Result 1: The local maximum acceleration flmaxaocai at a given configuration q is specified by

(Anax4ocal)]b < &msxJQcd < (<2max,local)ub (1.150)

where (OmaxjocaOib is given by (1.130) with Jfci(q,q) and fe(q,4) evaluated at that joint variable

vector q which maximizes l(q\y qi) in equation (1.89).

iism^ (1.151)

where <w(5q) is given by (1.89) and OmaxGSV) is given by (1.69).

Result 2: The local isotropic acceleration Oisojocd ^ a given configuration q is specified by .

,h)1 (1.152)

where P(A'B') and p(B'd) are given, respectively, by equations (1.80) and (1.81), and where

and max(x(<Sq),/2) are given by equation (152).

Hie local maximum acceleration a^^ is the maximum acceleration over all possible state acceleration

sets 5 B t t a given position q in the workspace. Therefore, Om^ can be written as

(1.153)
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SU(P')

Figure 17: Maximum local acceleration of a two degree-of-freedom manipulator

It is not possible to find an exact analytical expression for <3max,iocai- However, we can find an upper

bound and lower bound which are very good approximations to dmax̂ ocai-

Corresponding to every point P of the set £q, we have a state acceleration set Sn(P). Let P' be the

furthest point (from the origin) of Sq, and let SU(P) be the corresponding state acceleration set, as shown

in Figure 17. Also shown in Figure 17 is the set S^CP) obtained by rotating the set SU(P') about P' till

the longest diagonal (A"c" in this case) of Su is collinear with the line OP' joining the origin to the

furthest point P' of 5q. It is easily seen from Figure 17, that if vertex A' is the furthest vertex of Sn(P)

from 0, then a lower bound is given by

i, (1.154)

and an upper bound for Omaxjbcai is given by

= d{OP*) + d(A V ) , (1.155)
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(OmaxaocalU W ( q ) (1.156)

In general, one of the four vertices A", B", C", or D" would be the furthest vertex of 5U and therefore we

should write (1.154) as

(<Wjocai)ib = max[d(OA"), d(0B"), <f(0C"), d(OD")]. (1.157)

Combining (1.157) with equation (1.137) through (1.140), we obtain equation (1,130). The values of

k\ and ki in (1.130) correspond to the furthest vertex p of 5^ from the origin, i.e., to that joint variable

vector q which maximizes /(&, qi) in equation (1,89). This is simply a matter of computing Z(fr, q2)

at the four vectors (q\o, -qu)7, (<7i, Qio)7, (Qu, <ho)T and (q\o, -qio)T defined in subseaion 3.2.2 and

determining which of these four vectors maximizes l(q\, fc)- This completes the determination of the

lower bound (Omax>cal)fl>-
Substituting for OomCSq) and amtx(ST) from equations (1.89) and (1.69X respectively, we obtain

equation (1.151). Thus, Result 1 is proved.

Proof of result 2:

The local isotiopic acceleration is obtained in the following steps.

1. The maximum possible isotropic acceleration is obtained when q = 0 and is equal to a\so{ST) as

given by equation (1.70).

2. Every state acceleration set will have an isotrqpic acceleration which is less than that given by

(L70) because the "nonlinearities" effectively reduce the isotiopic acceleration. The resulting state

isotropic acceleration is fliso(Su) which is given by equation (1.147).

3. The local isotropic acceleration a ^ o o ! is the magnitude of the smallest state isotropic acceleration

at a given local configuration q, Lc*

(1.158)

4. Using «paioa (1.147) « I (U58X we cm express As tocal isottopfc araseto^m

l'B')-p(K,h)h mbO&'dy-fPM}'

as



5. Since rfA'*') and p&'d) are constants for a given manipulator and giwa «u«Dr tt^,v,
(1.159) can be written as

where max(p(AT,/i)) is the distance from the line h to the dement of % ftirthett iwiy fnxn

which we denoted in subsection 3.2.2 by Pm^mSqXhX and nuxCpCT, fe» ii Ac dsttnoe ftrnn tfx

line fc to the element of Sq furthest away from h wMdi we d a i o ^ by

therefore write

max p(K, h) = Pmax(x(S4), /i)

max p(iS:, fc) = Pmax(x(S4), fc)

Combining (1.160), (1.161) and (1.162), we oMain the inquired result (1J52K C^»

quantities in (1.152) have been analytically <ktamkwi cuter.)
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7 Summary and conclusions

In this paper, we have developed a theory for the acceleration sets of planar manipulators. In particular,

we have accomplished the following:

• Given the kinematical and dynamical equations of a manipulator, we have defined the image set Sr

corresponding to the set T of actuator torques, and the image set Sq corresponding to the set F of

the joint variable rates. We have also defined the state acceleration set Sn at a specified point u in

the state space.

• We have determined the image sets, Sr and 5q, and the state acceleration set Sw

• We have characterized the image sets ST and the state acceleration set Su by their maximum and

isotropic acceleration. The image set Sq has been also characterized by the maximum acceleration.

• At a configuration or position, q, in the workspace, we have established two local acceleration

properties: the local maximum acceleration and the local isotropic acceleration. The local maximum

acceleration specifies the magnitude of the maximum acceleration of (a reference point on) the

end-effector. The local isotropic acceleration specifies the magnitude of the maximum available

acceleration of the aid-effector in all directions.

We have, therefore, demonstrated the hypothesis which we stated in the introduction, Le., that the

analytical properties of acceleration sets can be detennined from the properties of the linear and quadratic

mappings which define them (the acceleration sets). Furthermore, the acceleration properties of interest

- especially the isotropic acceleration - have been determined in terais of the manipulator parameters

and the torque limits and joint variable rate ("joint velocity") limits. The stage has now been set for

the application of the theory developed in this paper to problems in the design of manipulators in the

companion paper (Desa and Kim, 1989).
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