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Abstract

This report describes progress in development of an integrated mobile robot system at the Carnegie
Mellon Robotics Institute from July 1987 to June 1988. This research was sponsored by the Defense
Advanced Research Projects Agency and monitored by the US Army Engineer Topographic Laboratories
under contract DACA76-86-C-0019.

Our program includes a broad agenda of research in the development of mobile robot vehicles,
focused on the NAVLABcomputer-controlled van. In the year covered by this report, we addressed major
issues in both hardware and software for autonomous mobile robots:

• Evolution of the NAVLAB Vehicle. We built the NAVLAB mobile robot vehicle in our
previous work under this contract, by outfitting a commercial truck chassis with computer-
controlled drive and steering controls and a set of on-board computer workstations. The
NAVLAB serves as a mobile navigation laboratory that allows researchers to interact
intensively with the system during testing and execution. This year has seen a continued
evolution and improvement of the NAVLAB mechanism, sensors, controller, and Virtual
Vehicle interface to higher-level planning and perception software.

• Evolution of the CODGER Blackboard. Last year, as part of this research program, we
designed and implemented the CODGER blackboard system for robot perception and
reasoning on a distributed collection of processors. This year, in response to our experience
in using CODGER for mobile robot control, we have upgraded it to deal with geometric
models and uncertainty in perception and map data.

• Experiments With the Driving Pipeline. To control the NAVLAB and Terregator mobile
robot vehicles, we developed the Driving Pipeline architecture last year for coordinating road
following, obstacle avoidance, and vehicle motion control. In our ongoing research, we have
performed numerous experiments with this system that demonstrate its value.

This hardware and software is the basis for the New Generation System (NGS) for robot vision and

navigation, which integrates many independent technologies to produce an integrated mobile robot

system.
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Section I

Introduction

Introduction and Overview

This report reviews progress at Carnegie Mellon from July 1, 1987, to June 30, 1988, on research
sponsored by the Strategic Computing Initiative of DARPA, DOD, through ARPA Order 5682, and monitored
by the US Army Engineer Topographic Laboratories under contract DACA76-85-C-0019, titled
"Development of an Integrated Mobile Robot System." This report consists of an introduction and
overview, and detailed reports on specific areas of research.

In our previous work under this contract, we developed a computer-controlled mobile robot, the
NAVLAB, as a tool and testbed for research in robot navigation, and we developed a software framework
for integrating vision, planning, and control modules into a single working system. The modules
themselves are under development through a related research effort in wRoad Following", which is also
sponsored by DARPA. The total system has been demonstrated in outdoor navigation runs without human
intervention, on a road in Schenley Park, Pittsburgh, near the Carnegie Mellon campus.

This year, we have made progress in several areas of the NAVLAB hardware and software:
• Evolution of the NAVLAB Vehicle. We built the NAVLAB mobile robot vehicle in our

previous work under this contract, by outfitting a commercial truck chassis with computer-
controlled drive and steering controls and a set of on-board computer workstations. This
year has seen a continued evolution and improvement of the NAVLAB mechanism, sensors,
controller, and Virtual Vehicle interface to higher-level planning and perception software.

• Evolution of the CODGER Blackboard. Last year, as part of this research program, we
designed and implemented the CODGER blackboard system for robot perception and
reasoning on a distributed collection of processors. This year, in response to our experience
in using CODGER for mobile robot control, we have upgraded it to deal with geometric
models and uncertainty in perception and map data.

• Experiments With the Driving Pipeline. To control the NAVLAB and Terregator mobile
robot vehicles, we developed the Driving Pipeline architecture last year for coordinating road
following, obstacle avoidance, and vehicle motion control. In our ongoing research, we have
performed numerous experiments with this system that demonstrate its value.

Summary: Evolution of the NAVLAB Vehicle.

In this year, Robotics Institute researchers logged over 900 hours of mobile robot experiments abord
the NAVLAB. Significant maintenance efforts have been carried out to support this demanding schedule.
In addition, improvements have been made in several aspects of the NAVLAB itself, including the
NAVLAB hardware, new sensors, and improvement of t ie Virtual Vehicle Interface.

Ongoing development of the hardware has been aimed at Improvement of the power generation,
reliability, and driveability of the NAVLAB. One problem was the falloff of power during uphill runs. This
was solved by replacing the original throttle with an analog engine speed control system to provide
constant engine speed and thus constant power. We also re-configured the on-board computers to



facilitate support of the WARP supercomputer on the NAVLAB. The motion control boards were
redesigned to provide smoother driving. All of these and other upgrades of the vehicle are placing an
ever-increasing load on the air conditioning and weight limits of the vehicle.

We have also installed and integrated several new sensors on the NAVLAB. Two of these, a Global
Positioning System satellite receiver and an inertial navigation unit, are joined together into a subsystem
for vehicle position determination. Another sensor is specialized for collision avoidance: a single-scan-
line (1D) laser range scanner. This laser scanner allows us to implement a rapid-response clearance
check for obstacles in the environment. This is necessary even with perfect 3D terrain and obstacle
sensing, because the control error in the vehicle can cause it to deviate from the planned path through
the terrain and obstacles.

The Virtual Vehicle Interface was also improved this year. This interface is the command set through
which the high-level software for perception and planning can communicate with the vehicle control
subsystem. Improvements to the Virtual Vehicle Interface include a new mode of operation that executes
commands immediately instead of queuing them in order of receipt, and providing more feedback to the
high-level software concerning vehicle status and the execution of commands. Also, the control software
can now handle variable-length driving units, which was an important feature for conducting the Driving
Pipeline experiments described below.

This research is described in more detail in Section II: "Evolution of the NAVLAB Vehicle".

Summary: Evolution of the CODGER Mobile Robot Blackboard.

In the first year of this contract, the CODGER mobile robot blackboard was developed and used to

control the NAVLAB. CODGER implements a distributed database with a central database manager

module, and features date values and qperators to support geometric reasoning for robot navigation. In

the last year, we have devetoped CODGER II, which is based on CODGER but includes new features to

address important Issues In mobile robot integration.

The first set of new features in CODGER II were added to suport map representation. A robot that is

navigating using a map neecs to make many different kinds of queries about the data, such as "what is

t ie next mad segment?' and "are there any visible obstacles in this region?". While CODGER I had

facilities for geometric representation of polygons* it did not posess a mechanism for answering

topoiogical questions about connectivity and adjacency. We devetoped a complete 2D geometric

modeling capability and added it to CODGER for use in representing and utilizing map data.

in a motile robot vehicle, the geometric relationships between the vehicle and the world are coristantfy

changing, and the vehicle itself may 'have moving parts such as vehicle suspension and pan-tilt mounts

for sensors. The systems needs to he able to maintain both the current relationships and a complete

history of the geometric relationships among objects. To facilitate this, CODGER It introduces the

concept of ^mrngemmtomft^ represent time-varying geometric transformations between objects. The

Gbfeets fwmsttves are organized into afFixmmit groups of relatively stationary objects. Within an

afffxintnt group* a i geometric transforms are stationary; across affixment groups, the transforms vary

Representing map information is very important for vehicle navigation, but map data is not always



complete and accurate. It is very important for the vehicle to be able to update map information as it
makes new observations about the world. This requires that each observation about the world be
recorded, and be marked as an observation so that it can be used to incrementally revise the pre-stored
map information. Observations are a particular type of frame generator. Whenever an observation is
made, the other frame generators are updated to resolve any inconsistency between the old and the new
data. This same approach is used to resolve multiple, possibly inconsistent, sources of information about
vehicle position itself; this provides a capability for landmark navigation that integrates on-board motion
sensors with landmark recognition.

CODGER II will be a capable framework for continued experimentation in the integration of symbolic
and quantitative map data with observations from a robot vehicle in the field. This research is described
in more detail in Section III: "Evolution of the CODGER Blackboard".

Summary: Experiments With the Driving Pipeline.

Mobile robot vehicles must control the execution of numerous perception and planning processes to
navigate successfully in complex environments. In the past, most mobile robot systems have utilized
"stop-and-go" control schemes that avoid addressing the driving control problem, or have used fixed
control schemes that do not allow for the changing environment and field of view of the vehicle. This
report presents our architecture for mobile robot control called the "Driving Pipeline", that integrates
multiple perception and planning processes and provides continuous motion with adaptive control. The
Driving Pipeline has been impL rented and tested on numerous versions of two vehicles: the Terregator
and the NAVLAB. It has proven to be a flexible and powerful mechanism for building integrated software
for mobile robot perception and planning.

The Driving Pipeline is based on the principle of dividing the navigation area into small (5-1 Om) pieces
called driving units. By dividing the ground into driving units, each unit can be processed separately by
the various sensors and planning systems on the vehicle.

The processing steps themselves include vision and range sensing, analysis of the environment, and
trajectory planning. Each step must be executed in turn before the vehicle actually traverses each driving
unit. Since the steps are sequential and the vehicle travels sequentially over the driving units, the steps
can be executed in parallel on the successive driving units ahead of the vehicle. This arrangement
provides fast enough throughput to allow continuous motion of the robot vehicle.

The driving units are not always the same length. When the vehicle approaches a curve or
intersection, the field of view of the sensors does not completely overlap the road, This reduces the
distance that the vehicle can look ahead; therefore, smaller driving units will be used in such places.
Since the vehicle travels each driving unit in approximately constant time, the result is that the vehicle
automatically and smoothly slows down when the vehicle turns.

When the vehide has a map available in advance, the Driving Pipeline can operate as just described.
However, if there is no map, then the environmental analysis for one driving unit must be completed
before the next driving unit can begin to be processed. This reduces the ability of the system to execute
multiple functions in parallel, and naturally results in a slower vehicle speed. Thus, the availability of a
map allows the vehicle to move faster.



This research is described below in Section IV: "Experiments With the Driving Pipeline".

Summary: Experimentation on the ALV

Our experience at Carnegie Mellon includes both the integrated NAVLAB system (this contract) and
basic research on perception and planning (the related Road-Following contract). This has given us at
CMU a rather unique perspective on the interaction between the two. At the DARPA Autonomous Land
Vehicle workshop in Vail, Colorado (April 1988), the subiect of discussion was h^ v basic research and
integrated system development can interact most profitably for both. Because of our experience in both
domains, we were asked by DARPA to prepare a summary after the workshop for use as a planning
document by the ALV and Strategic Computing Vision communities for future research. We prepared
such a document, and it has been used for such research planning within the ALV/SCVision community.

Our experience has been both positive and negative in the interaction among research paradigms

(basic v. systems). Our conclusions are:
• Basic research without systems development can make great progress but eventually

becomes out of touch with real-world problems.

• Beyond that point, integrated systems research and development is essential for defining the
specific problems that need to be addressed by further basic research efforts. Furthermore,
the simple act of collecting data for basic research becomes so demanding that only an
integrated system can serve as an appropriate data-collection platform.

• When specific problems have been defined through the system development effort, more
basic research is then needed. However, because integrated systems are big and have
great inertia, they are resistant to easy change. Thus, for purely software engineering
reasons, it is wrong to expect that all the new basic research will be fully compatible with
existing systems. Rather, the basic research should be allowed to Mpiggy-backM on the big
systems, for example using the system to move a robot vehicle while collecting brand-new
data for off-line analysis with the new perceptual techniques.

• Finally, when the basic research has shown how to construct new, more reliable and useful
components, then a new integrated system development is appropriate.

These issues are discussed in our report to DARPA, which is reproduced as Appendix I:

"Experimentation Issues for Mobile Robot Systems". Although the report specifically talks about the ALV,

the issues and conclusions are appropriate for all research in large, integrated robot systems.

Accomplishments

The key accomplishments of i l l s research in the time period from, July 1987 to June 1988 have teen:

• Vehicle and confrolltr enhancements in support of 900 experimental hours.

• fas: processing of radial range data for safeguarding by a soft bumper.

• improvement of the Virtual Vehicle Interface between the high-level and low-level computer
systems.

• Development of the CODGER II blackboard with new features for geometric modeling, time-
varying coordinate systems, and uncertainty modeling.

• B^mimmU with the Driving Pipeline and development of variable-sized driving units.

• Demonstrations of complete NAVLAB system with these new features in Schenley Park.



Technology Transfer

The NAVLAB has a fairly unique status as a robot vehicle whose architecture is suited for research in
both integrated robot systems and invidual component technologies (path planning, map navigation, and
perception). Thus, the NAVLAB fills an important role in the research community as a focal point for
technology transfer operations. The key areas of technology transfer to and from the NAVLAB have
been:

• Exchange of software and concepts for perception and planning: Image data and visual
motion analysis code have been exchanged with the University of Massachusetts. A path
planner developed at Hughes is being expanded on for use in the NAVLAB.

• Export ofNA VLAB hardware and software for other robot vehicles: The CODGER database
has been sent to Martin-Marietta for use in the ALV, to other ALV contractors including FMC
and ADS, and to non-DARPA sites including NASA-Goddard and DEC. This hardware and
software is being used at CMU and elsewhere for space exploration and underwater robots
as well as several land vehicles.

Future Directions

We have identified several problems and issues as likely directions for our research in the next year:
• We need to develop a new generation of the low-level controller system that provides a

high-performance UNIX-like environment.

• The vehicle path tracking is not as predictable as we would like. We have begun to develop
a new path tracking method based on continuous replanning of quintic arcs to provide more
precise vehicle control.

• We will continue development of the x-y-8 path planner based on the Hughes path planner,
and add to it uncertainty management and representation.

• The Driving Pipeline concept has been very serviceable, but it has some key limitations. In
particular, the need for all subsystems to operate in a pipeline means that computational and
sensing resources are not operated at maximum efficiency. The new path planner may
provide a good alternative scheduling mechanism for perception and other activities.



Section II

Evolution of the NAVLAB Vehicle

Under this contract, we developed the NAVLAB mobile robot van last year. With on-board sensors and
computing, and seating and controls for researchers, the NAVLAB is a self-contained laboratory for
research in autonomous mobile robots.

In the year from July 1987 to June 1988, Robotics Institute researchers logged over 900 hours of
mobile robot experiments aboard the NAVLAB. In the course of this research, development has
continued on several aspects of the NAVLAB itself, including: ,

• Upgrades of the NAVLAB Hardware ;

• Integration of New Sensors

• Improvement of the Virtual Vehicle Interface " :

In addition, significant maintenance has been carried out to support the demanding schedule of live ,
experimentation.

Ongoing Hardware Development ^

This year, we made several improvements to the NAVLAB's mechanical systems to enhance its power
generation, reliability, and driveability (Figure 1):

• The NAVLAB, as originally designed, suffered from power falloffs during uphill runs, due la
primarily to inappropriate carburetor design. To correct for this deficiency, we designed, built, <»
and installed an analog engine speed controller, which replaced the original throttle. The
new throttle control adjusts the engine carburetion to maintain a constant engine speed
regardless of load.

• New computers were installed in early 1988: one rack was re-configured to consolidate three
SUN 380s into one enclosure, and a re-worked WARP supercomputer was installed in a
VME cabinet. Modifications to the air conditioning system were made to cool these devices. 3 .
In additions thermal shutdown sensors were installed in the WARP to prevent overheating.
While we experienced no difficulties in providing ample, dean power for these computers, the
air conditioning is operating continuously at full capacity and will require an extensive
overhaul or replacement in the near future.

to
• The electrical power generation problems, stemming from generator design, were resolved AJ

with the vendor in 1988. A clean, constant power supply is now in place. s p
X T

• Sound proofing was added to reduce interior noise levels.
• The hydraulic drive controls were upgraded to increase their reliability.
• New motion control boards were designed, built, and installed to improve motion control;

driving performance is now smoother and virtually free of oscillation.

The net effect of all of these improvements is to create a more reliable research vehicle, with greater
uptime, more predictable behavior, and a better environment for the passenger/researchers. However,
there are additional mechanical issues that will need to be addressed in the near future. In p a r t e d
some consideration will have to be given to engine performance. The vehicle's weight has doubled since
tre project began, and as the capability to increase autonomous driving speed increases, so will tht
demand for more horsepower.
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Integration of New Sensors

In conjunction with a related contract to develop high-speed off-road navigation, three new sensors

were integrated into the NAVLAB for specific experiments. These include a Global Positioning System

satellite receiver and an inertial navigation unit which together we call the Vehicle Positioning System

(VPS), and a front bumper-mounted single-axis (1D) radial laser scanner that provides a "soft bumper for

vehicle safeguard. The inertial navigation unit provides position data that is consistently accurate to 0.5

m. However, inertial measurements tend to drift with distance traveled. Software proprietary to the

contractor processes data from the GPS to correct this.

To help with our experimentation, we devoted an extensive effort to developing utilities for imaging

inertial and range data. For range data, we developed utilities to store and retrieve scanner

* measurements. These images can be displayed on either a SUN or an external video monitor. We also

developed a utility to store and recall data collected from the VPS system. Data from the VPS can be

displayed relative to time or to any other VPS data. Finally, we developed utilities to display a reference

path and compare it graphically to the actual path traveled.

Figure 2: Unexpected Obstacle Due to Control Error

With these new sensors, we were able to pursue the idea of clearance checking as opposed to t i

traditional terrain planning for obstacle avoidance. In this approach, me space immediately ahead of St

vtWett is conttmaffy checked lor obstacles, instead of relying on strict adherence to a long path r. £*TK

t rough cluttered terrain. The problem with the traditional terrain planning approach arises from mmm $

estimation relative to a global coordinate frame. Such errors result in the vehicle fottowtfig m
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actual path that deviates from the reference path by the amount of the error. However, since the tracking
and collision avoidance schemes use the same position estimate, collision avoidance continues to search
about the reference path rather than the actual vehicle path. Thus, even with perfect range data, terrain
planning can cause collisions due to imperfect vehicle control. However, with online clearance checking,
collision avoidance is controlled at the lowest level by dedicated sensors that move along with the vehicle
and thus are centered on the actual path rather than the idealized reference path. This is illustrated in
Figure 2, which shows how control error in the vehicle path can cause it to encounter obstacles that could
not be predicted from range data, even perfect range data, taken at a distance.

So far, the scheme we have used for collision avoidance presumes a flat and level ground plane. The
range sensor scans in a plane horizontal to the ground plane and thus is certain to miss objects lower
than the height of the beam. We have so far demonstrated an implementation of collision avoidance
using two processors working on the vehicle at 5 mph. Consideration of other schemes is in progress
and will be implemented in simulation in the near future.

Improvement of the Virtual Vehicle Interface

The Virtual Vehicle Interface (VVI) is the command set through which the high-level planning and
perception software communicates with the low-level vehicle control system. In the past year, several
aspects of the Virtual Vehicle Interface were improved. One area of improvement was the enhancement
of the VVI command set. The new commands allow explicit control of steering angle and drive speed by
a host computer. This feature enables high-speed path-tracking algorithms to supply reference signal
updates to the vehicle servo controllers at rates of up to 4 Hz. In this mode of operation, no queuing of
commands takes place; the reference signals to the servo controllers are updated as soon as the
corresponding command is received. We also added status fields to the arc commands to indicate
whether a commanded arc was executed normally by the vehicle.

In addition, we improved the ability of the controller software system itself to respond to external events
occurring asynchronously. These signals include current gearing (low/high/neutral and forward/reverse),
control mode (computer/manual), brake status (on/off), and activation of the kill switch. These hardware
status signals have also been made available to the host computer by activating the previously unused
"REP" command of the W l command set

The W l was also modified to handle variable-length driving units, which allows it very naturally to
control speed at intersections. When the vehicle approaches an intersection to make a turn, the
lookahead distance of the sensors is reduced because of the bend in the upcoming path of the vehicle.
The NAVLA8 can new account for this by shortening the driving unit size. The vehicle naturally stows
when passing tfirough the turn, according to the driving unit size. This enhancement to the NAVLAB was
dictated by the needs of the Driving Pipeline research, which is described in Section IV of this report.

Finally, we have formulated a likely future enhancement that will be needed to the NAVLAB. There is a
need for faster processing of immediate arc commands, which are necessary to control the robot at
higher road speeds. During typical operation of the vision/navigation system, several immediate arc
commands are issued to the controller, witti the intent that the most recent one of them is to supersede all
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previous ones. The controller currently queues arcs in the order they are received. The new algorithm,
which places highest priority on the most recently received commands, will allow faster execution of
immediate arc commands.
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Section III

Evolution of the CODGER Blackboard
In the previous year of this contract, we designed and implemented the CODGER mobile robot

blackboard to serve as the framework for the high-level NAVLAB software. CODGER was successfully
built, and with it we have performed many experimental runs with the vehicle. On the basis of these
experiences, we have become aware of a number of additional problems in mobile robot system design
that have not been raised in the literature to date. Accordingly, we have implemented a new version of
CODGER with many fundamental new features that address these issues.

The CODGER I System

The basic design of CODGER was described in our previous annual report, "June 1987 Annual Report:
Development of an Integrated Mobile Robot System at Carnegie Mellon" [8], and will not be repeated in
detail here. However, the significance of CODGER's key features has only become clear to us through
the last year of research and experimentation, so we will begin with a brief review of CODGER-

CODGER is a "blackboard" of the type that is now fairly common for robot systems. Actually, in
traditional terms, it is a distributed database with synchronization facilities. Each module is then a
separate program, which communicates with the central database; the modules may all be on one
computer, or they may be distributed among machines on a network, or any combination of these. Some
other mobile robot systems are based on message-passing, which is not equivalent to using a database:
a database system is more powerful then message-passing. To see this, note that there are two types of
data communication - explicit passing of data from one module to a specific other module, and implicit
communication where the data is anonymously recorded, stored indefinitely, and reported to one or more
clients upon request. Message-passing systems implement only the explicit communication, but require
an outboard "database module" to handle the implicit communication; whereas database systems
implement the implicit communication which can carry out explicit communication as a special case.
Thus, database systems are more powerful than message-based systems. CODGER is a database
system; thus each module is provided with primitive operations to store data, to search for and retrieve
data, and to wait for data to arrive (as in producer/consumer dataflows).

CODGER implements a centralized database, with a single program that actually stores the data and
handles all communications with the modules. CODGER thus has a "star architecture with the database
module (called the 1MB, "Local Map Builder) in the center. Other designs might be to distribute the data
by broadcasting and replicating all data, or by partitioning the database among the processing modules;
these provide the same functionality as the centralized implementation, and differ only in performance.
The centralized implementation of the CODGER database adds a bit of (usually negligible) overhead time
to data transfers, but it facilitates the implementation of many of the sophisticated features described
beiow, such as updating observed object locations when the vehicle position is corrected. The star
architecture of CODGER Is therefore a good choice for a research-oriented mobile robot system.

CODGER is based on a fairly standard database design that implements tokens composed of
attribute/value pairs. The values are generally of common data types such as integer, floating-point
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What obstacles are
known to be within
this area?

Figure 3: The Need for Geometric Values

number, Boolean, string, enumerated type, or array (or set) of any of these. However, CODGER begins
to depart from traditional databases by incorporating geometric vaiues as well. The need for geometric
values is illustrated in Figure 3. Here, the vehicle is traveling down the roadway, has perceived the road
boundaries, and wants to perform path planning. Therefore, the database is requested to provide tie set
of aO obstacles known to be within the area of the roadway, up to the desired planning horizon of m
robot To perform the query, the database must know where to search; thus, three things must be
intersected:

• the area of tie roadway
• the field of view of the obstacle (range) sensor
• t ie distance limit of the path planner

The resulting intersected area is the search area for the the data retrieval; then, the Local Mas Bkttr
IMS) must Ind ail obstacles whose area intersects this search area. To solve this problem, COOSB!
fenptemeflb cata values that are geometric objects of the foiiowing types: point, line segment, potyfii
The search requests can specify a number of geometrk: operations such as intersection, union, cerr: :
convex hul, area For example, a module can' request to find waB objects with area > toor or "aiiofcjtat
*-ose location is within tie intersection of pofygon X and polygon Y and whose distant mm i f
wiftfeii Is ttss then 3tT, Such geometric primitives are necessary for geometric reasoning, whkfo U ! •
heart of "m;dc!e-;ever mobile robot planning for obstacle avoidance.

CODGER was the irst system to implement such geometrte masoning along with otfwr
t but ft is TO longer unique »n that regard. Other systems, such as the SRI Corn
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Figure 4: Fusion of Data in a Moving Robot

System, also implement geometric reasoning. However, such facilities address only the most basic
problem in geometric reasoning. Figure 4 illustrates the additional problem that arises from attempting to
fuse data from several sensors in an asynchronous system. Here, vision data from time 17 is analyzed at
time 24, while range data from time 19 is analyzed at time 23; both results are fed into a sensor fusion
module at time 26, which produces an answer at time 28. "me key point is that the data received by this
fusion module includes vision data relative to the vehicle's position at time 17, and range data relative to
the vehicle's position at time 19. Thus, all data concerning the vehicle/world relations^ must be time-
stamped, and the system must continuously maintain the vehide-to-wortd transformation. Most systems
solve this problem by immediately transforming all data into some absolute worid coordinates as soon as
it is received. However, this assumes that the vehide-to-wortd transformation is always accurate, which
is a bad assumption tor most robot vehicles.



16

actual path ^ - r
If

estimated path JJI-,

L

t=28: Sensor fusion complete

t=26: Sensor fusion begins

t=24: Vision analysis complete

t=23: Range analysis complete

t=19: Range sensor gets image

(t=18: Vehicle position estimate corrected

Time WI7: Vision gets image

Figure 5: The Need for Multiple Coordinate Systems

The problem is rHustrated in figure 5. In this figure, the vehicle had drifted from its ideal path, and the
drfftwas corrected at time 18. Kthe data were always stored in gtobai world coordinates, then the vista*
data from time 17 would have to be updated at time 18 when the vehicle position is corrected. However,
the vision system has just begun to analyze this data, and wont be finished with it until time 24. Thas,
the system has to remember untB time 24 that me vision ciatafrc*n time 17 has to be corrected acw«lrf
to the update of time 18{ Such chains of geometric corrections quickly become unmanageable.
Therefore, CODGER implements a different approach. In CODGER, ail data related to sensor
observation is stored relative to a ' V e h M e ' o ^ ^ The "VeMcfela-
world" transformation is parameterized by time. Thus, the fusion module at time 26 actually receives
sensor data from "vehicle at time 17" and "vehicle at time 19"; CODGER provides facilities for perform^
ail necessary coordinate feansformattons. In this case, the transformation depends only on the retail
vehicle motion and is independent of me vehicJe-to-worW update at time 18. Then, later on, when f t
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path planner attempts to relate the sensor data to the "world" coordinate system, CODGER will
automatically incorporate the entire history of the vehicle-to-world transformation including the update at
time 18. Thus, the vehicle-to-world update at time 18 will be automatically taken into account by
CODGER and need not be explicitly remembered by the processing modules themselves.

These essential features - geometric values and retrieval primitives, time-varying coordinate
transforms, and multiple coordinate systems - were all implemented in the original CODGER system a
year ago. However, the discussion here has pointed out a number of significant insights about the
system that were developed within this past year.

This year, the representational facilities in CODGER have been upgraded to deal with a number of
additional problems that we have encountered or that we anticipate as a result of our further
experimentation with the NAVLAB vehicle. Together, we call this new version of the system CODGER II.

Geometric Modeling in CODGER II

What is beyond this road segment?

What is beyond the side edge
of the road?

Figures: The Need for Connectivity Information

Irs CODGER I, the oily information about object locations was contained in the polygon attached ID

each individual object. This has rot proved adequate to represent map information for two reasons, as

shown in Figure 6. First, there is a constant need to identify the roadway segments in order, which is very

difficult using only geometric operations. The concept of "connectedness" of sequential road segments
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needs to be represented in the database itself. Additionally, for tasks such as perceptual identification of
road edges, it is necessary to ask what is "beside1* the road so that its color can be identified. Such a
query requires that the current road segment have identifiable "sides", with connectivity information for
each. CODGER I had no facility for representing such connectivity information.

V
—[Road Segment \

X Terrain Patch

Intersection

T

(Ribbon ) (Polygon

) ( )

7
SEMANTIC
LEVEL

(Polygon)

7t\ GEOMETRIC
LEVEL

Figure 7: The Semantic/Geometric Network in CODGER II

The solution adopted for CODGER II was to implement a combination of semantic and geometric

network, as illustrated in Figure 7. In this new representation, there is an upper "semantic? level in which

objects are represented symbolically with toplogical connections. However, there is no actual quantitative

geometry at this level of representation. Instead, there is an additional "geometric" level of data objects i

which a complete 2D modeling system is implemented. In the geometric level, each object corresponds

to a ribbon or polygon, with separate data tokens tor each edge and each vertex. Thus, semantic peris

such as "what is the next road segment?" can be answered by tradng along the

pointers in f ie database, while metric queries such as "what is the shape of this intersection?* m

answered by examining the geometric objects ami pointers. Different processing modules tray b§

interested in one m the other, or sometimes both, levels of the system.

The semanticfgeofiieftic network works well for representing map information, but it does

the issues raised by the task of map' revision as the vehicle discovers details and corrections to add to tit

a priori map data. Figure 8 shows an: example of the problem: the map contains an mm U f»

cewcftwtes ol objects A and 3. If A and B are stored geometrically in "world coordinates** I is i f f

fJHSeuit to decide eacactfy tmt to modify those coordinates to reflect the new information. tasftNl Si

aohjUon used In CODGER II is the customary one for geometric modeling systems - each, po i t iS t t

ertitjr is assigned MB own Intrinsic* coordinate frame, and each geometric link has attached & i a

tmnstormatfon between the intrinsic frames of the objects being linked. With this nrachanhm. f*
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Map says these are
8 feet apart

We now see they are
actually 10 feet apart

Figure 8: Map Revision Requires Local Coordinates

transformation from A to B can be updated as needed. Of course, this may create an inconsistency if A
and B are both defined in world coordinates; the inconsistency is handled by uncertainty-modeling
techniques described later.

Time-Varying Transformations in CODGER 11

With the new geometric modeling facilities of CODGER 11, map information can be stored and revised.
However, such facilities are only suitable for a completely static world. When the vehicle moves in the
world, there arises a new type of geometric transformation tttat varies over time - a dynamic
transformation. For example, the vehicie-to-worid transformation vales over time, and the vehicle may
have a pan-tilt mount whose relationship to the vehicle also vales over time. To deal with time-varying
transformations, ail transformations should in concept be parameterized by time; thus, rather than asking
"what is the distance from A to 87* we should ask -what is the distance from A to B at time T T To
implement this, we introduce the concept of frame generators. A frame generator is a function F(t) that
returns a geometric transform for any given time t Now, each Ink between geometric objects can have a
frame generator attached to it, so that time-varying relationships can be managed.

Several types of frame generators are needed to adequately represent atl the necessary relationships
in the database. First, there are the truly tkm-VMiy§r$g transforms such as the vehfde-to-worid
relationship, which we symbolize as F(t). However, most objects are stationary in the world and thus the
relationship to the world is the same for all times t We call these constant ttamtomis and symbolize
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A is in the map

At time to we see B

What is the relationship between A and B?

Figure 9: Several Types of Time-Varying Relationship

C World

F(t) /
time-vaiying/

' f
. (Vehicle

inferred constant

to observation

Figure 10: Several Types of Frame Generator

them by F- In Figure 9, object A is stationary and thus has a constant transform to the world coofdjrsfe
system. In this example, the vehicle observes object 8 at a specific instant of time t^. We cat Ws s
abservaflbn, and denote its frame generator by Ft. This frame generator can only produce an a d i
transform at the time fa otherwise, its value is undefined. Finally, although B is detected in sensor m
that is relative to vehicle coordinates, we do not believe mat B is attached to the vehicle, instead, w
assume tt Is fixed in t ie worid and infer a frame generator to attach it to world coordinates, "mis require
a raw kind of frame generator that is constant, yet is inferred from observations; we call it an Warm
transform and denote it by ^ Note that it is determined from the observation and the vehfde-tHW*
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transform according to /*« Ft Ffy, i.e. the product of the observation of B relative to the vehicle, and the
vehicle-to-world transform at that moment tp. The resulting geometric modeling network is shown in
Figure 10.

F*

[ Range
I Sensor

(Camera)

Figure 11: Affixment Groups

With this rich set of frame generators, all the important time-varying relationships can be represented.
However, there is a danger that the system may degerate into a chaotic spaghetti of geometric
relationships, with no clear rules for finding the transform between two arbitrary objects. To eliminate this
problem, we have developed the concept of affixment groups, which are groups of objects that are
assumed to have a constant relationship to each other (Figure 11). We partition all objects into affixment
groups of mutually fixed objects; thus, there is one affixment group for the world, containing all objects in
the world, and one for the vehicle that includes all vehicle-relative objects. If the vehicle had a pan-tilt
mount for a camera, the camera would have its own affixment group. Now, within each affixment group,
we create an object called the affixment object That simply represents the coordinate frame within which
the objects of the affixment group is defined. Each affixment group has a single affixment object, so there
is one for the world coordinate frame, one for the vehicle coordinate frame, etc.

Now some simple rules are adopted for the frame generators that link the objects in the database.
Every object defined in a coordinate system has a constant frame generator F. that links it to the
corresponding affixment object Thus, for example, all objects in the map have constant frame generators
that specify where they are in world coordinates. So, for any two objects in the world, the transform from
one to the other is simply computed from the transforms that link each to the world coordinate frame. No
search through the database is required. Where desired, objects within an affixment group may also
have constant frame generators that link them directly.

Constant tame generators are rot allowed to link objects from different affixment groups, because
such objects am assumed to be moving relative to each other- For these calculations, the affixment
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objects themselves are linked by a network of time-varying transforms F(t). One of these is the vehicle-
to-world transform; another may be the pan/tilt-to-vehide transform, etc. These time-varying frame
generators can produce transforms that depend on time. No other time-varying transforms occur in the
database; only those that link affixment objects. Thus, to find the transform between two objects in
different affixment groups, at a particular time, one applies the constant transform from each object to its
respective affixment object, and the transform between the affixment objects which depends on the time.
Again, no search through the database is required to evaluate such relationships.

Uncertainty Modeling in CODGER II

Figure 12: Recording an Observation

When an object is real in from a map database, it can be directly attached to its affixment object by a

constant transform as descrtoad above. However, when it is derived from the robofs perception, a

sightly different representation is needed. The situation is illustrated in Figure 12. Here, an object has

been seen by the vehicle but Mis assumed to be affked to the world. It would be wrong to affix it to re

vehicle, because then it would be assumed to move as the vehicle moves. Instead, the object is create:

within tie affixment group of the world, with an observation transform Ft to relate it to the vehicle

coordinate system.. To affix the object to the world, an inferred transform U must now be created to retail

the object to the world coordinate system. This is done by using the observation transform in conjuncton

mm the current value of the vehide-to-worid transform. This, while the object is seen by tie vehicle, I s

stoned in relation to the world, using the best estimate of the current vehicle position.

Observations of objects can also form one of the most important sources of information for updatfn§ f t
vehide-to-worid transform, that is, for performing landmark navigation. Such navigation primary takes
the fafih of awecttng lor drift ami error that has accumulated over time from such other i r iadwte
fnducflng wheel motion encoders, feiertiai guidance systems, ami visual motion analysis. GQOGBi1

inctucies a complete tacBRy for implementing such navigational updates. The baste for updating j§i§

representation of each geometric transform not only by its value, but also by the ccvariance msto m

ciesccfots the uncertainty with which the value is known. Thus, at all times, geometric uncart*! §

mcarded tftm^tWiiit the database. In this way, measurements that are slightly in error cm be '
by ifeighfad averaging of muipie uncertain values.
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/ A is in the map.
/ At time to we observe A.

/ How can we use this information for navigation?

time t2

timett

Object B is not in the map.
We see it two times.
How can this aid in navigation?

Figure 13: Two Scenarios for Landmark Navigation

Two scenarios tor landmark navigation are shown in Figure 13. In ttie first, an object A is known from
the map. and the vehicle now observes i t From the map, the representation of Figure 14(a) is created,
with a constant transform from the object to world coordinates. Now, when the observation is made, the
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(a): Since A is in the map, F* is known from the map data.

( World )

(EB
(b): When A is seen at to, a cycle is created from F*. FtO, and F(t) at to.

F(t) at tO

(Vehicle

(World )
/ \

(c): When B is seen at t1, f* is calculated from Ft1 and F(t) at t1.
When B is seen again at t2, f* is recalculated from Ft1, Ft2, and F(t) at t1 and t2

F(t)att1,t2

(Vehicle

(World)
f* created at t1,
recalculated at t2

Figure 14: Representation of Landmark Observations

situation is shewn in Figure 14(5), where a cycle is created between the constant transform from wcrr::
Object, the observation from object to vehicle, ami the vehicle position which is the transform from v r ; : i
to wond. Any time there is a cycle in the geometric relationships, inconsistency may arise due to f t
movement errors ated above ami uncertainty in perception. Such cycles of uncertainty can be -esc ve:
by classical least-squares methods to yield updated transforms that have optimal values. In this case i i
uncertainties thai would be weighed against each other are uncertainty in the map data, uncertainty i f t
perceptual process, ami uncertainty in the vehicle position estimate. Most likely, the vehicle poslfos
the least certain; thus, the effect will be to correct the vehic!e-to-wor!d mapping at this moment to am.

The second scenario of Figure 13 shews an object that is not in the map, but it is seen twice. Tints
time It is seen, at time tj, an inferred transform is created to relate it to world coordinates. When it to a *
again at time %t a new observation is obtained as shown in Figure I4(c). This creates a cycbof*
different type within the database. First, rote that the inferred transform does mt create a
cyete because ft was only the result of the computation from the vehicle-to-worfd transform
observation. However, Sit second observation and 1he first observation create a cycle as tofews; a

fttwi1 the object to the vehicle at time tp through the vehsd'e-to-worW transform at * » i
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back through the vehicle-to-world transform at time t2, and back to the object through the observation at
time t2. This cycle can be resolved to find the new optimal estimate of the inferred location of the object in
the world, and also to balance this against the uncertainty in the vehicle-to-world transform itself. Thus,
multiple observations of the same object give improved estimates of the vehicle position and motion.

Of course, it is also possible that several observations of an object simply cannot be reconciled
consistently with each other and with the estimated vehicle motion. In this case, there is a solid statistical
grounds for assuming that the object itself is moving. A new affixment group can be created for that
object, and it can now be tracked over time to determine its motion, i.e. the time-varying transform from
that object to the world. We have not performed any experiments along these lines, but this at least
points the way towards a data representation that can manage information about a dynamic environment.

We may note that each position or motion sensor, as well as the landmark navigation processes just
described, all produce "snapshot" estimates of the vehicle motion or the vehicle-to-world transformation.
These estimates themselves can be kept in a network, which will have many cycles; the classical
algorithms can then be used to provide a least-squares estimate for the entire history of the vehicle
motion. In this way, the current vehicle position estimate can be kept continuously up-to-date, and the
estimated history of vehicle travel will be smooth. Whenever a new, highly confident estimate is made,
such as the sighting of an important landmark, the vehicle's entire estimated history of travel will be
smoothly updated instead of producing an instantaneous "jump" to a new position.
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Section IV

Experiments With the Driving Pipeline

Introduction

High Level Plan

Driving Control Scheme

Perception

Planning

Environment
Modeling

Vehicle
Control

Motion Cooand Sensor Data

-I—L

-oJ

Figure 15: Driving Control Scheme

This paper describes a driving control scheme for a mobile robot that drives the robot vehicle
avoiding obstacles, ami keeping the vehicle within a navigable area. As illustrated by Figure 15* U
driving control scheme takes a high-level navigation plan from planning modules and sensor dua tan
sensors, and generates vehicle motion commands, performing the necessary computations tatodty
perception, environment modeling, path planning, and vehicle control. We have developed a sdwi§lr
t ie coordination of thew toks, whkdi vm call the Driving Pipeline. This paper describes t» Oriii
' f ^ ^ r a , the ̂ rtoi© processes thai ft coordinates, ami the experiments in which me Driving Ptpeiiiia
seen successfully used for building mobile 'robot systems.

Dm objective is to bold an autonomous mobile robot working In the real world in reaHfnt, m m
adopted the ; ccw re de^gn gesis:

• Ftodii.Wy; Other systems have been developed mat perform a single navigation task mf;
however, tfiese sy^ems are not easily extended to handle a broad range of tasks.
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• Continuous Vehicle Motion: Continuous motion is more desirable than stop-and-go
motion, because it produces higher vehicle speeds and smoc.ner control.

• Adaptive Control: Driving control must be adaptive to the environment and to the internal
condition of the robot vehicle. For example, the vehicle should be able to drive faster using
less sensor data on a flat broad ground than on a winding narrow road. The driving control
scheme must adjust its computation and maintain effective coordination among numerous
perception and planning processes.

• Parallel Execution: For real-time motion, driving control requires a large amount of
computation in a variety of different procedures. For this end, parallel computing is the most
practical solution. In addition to small-grain parallelism such as parallel machines for signal
data processing, large-grain parallelism can be used to coordinate the various tasks involved
in driving. Parallel computing can take advantage of two kinds of parallelism: parallelism in
processing steps and parallelism in data to be processed.

In order to achieve these goals, we developed the Driving Pipeline. A pipeline is a form of parallelism
in which the computation is decomposed into a sequence of processing steps, called stages, to be
executed in a fixed order. Typically, each stage is a separate processor receiving input data from the
previous stage and providing output data to the next stage. A stage commences execution whenever
data arrives from the input. A pipeline is used for performing the same computation over a number of
different data sets. Since the pipeline can begin processing a second data set before the first has
finished, the stages run in parallel. The pipeline processes data sets at the rate of one per cycle time.
The cycle time is the longest stage time. The total time required to process a given data set (called the
job time) is the sum of individual stage times. The construction of our pipeline is based on two key ideas:

• The Driving Unit: We divide the area in which the vehicle navigates (road, hillside, etc.)
into a sequence of small areas called driving units so that it can process each driving unit
separately. Each processing module for perception and planning will operate successively
on each driving unit in turn.

• Execution Pipeline: The Driving Pipeline allocates the primitive processing steps along a
pipeline so each one can work independently, receiving input data from the previous
processing step and passing data to the following processing step.

These two key ideas enable the pipelined execution of the primitive processing steps on the sequence
of driving units, which provides enough throughput to allow continuous vehicle motion. As the vehicle
encounters changes in the road configuration, it can place driving units with different sizes and intervals
by adjusting the sensor view frames, execution intervals, and vehicle speed.

Although several mobile robot systems have been built in the past, they did not address driving control
scheme very deeply. Stop-and-go motion, although it does incorporate all of the primitive processing
steps, deliberately avoids the problem of continuous motion control [2, 4, 7,11]. Waxman et al.
mentioned the necessity for vehicle speed adjustment using knowledge, but didn't show any method for
doing so [12]. Brooks developed a layered control structure that drives a vehicle continuously [1].
However it does not have the ability to adapt the control to meet the changing needs of perception.
Dickmanns and Zapp develped a system for high-speed navigation on the German Autobahn [3]. This
system tracks simple visual features (e.g., white lines bordering tne road) and can net be easily extended
to handle more difficult perceptual scenarios.

To solve these 'problems, we have developed the concept of the Driving Pipeline and verified it in two
experimental 'mobile robot systems: the Terregalor and the MAVLAB. This paper describes the Driving
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Pipeline, including the component concepts of the Drivina Unit *nH «, c
our experiments with these vehicles. * E x e c U t i o n P i p e l i n e - a n d describes

Processing Steps and the Driving Unit

' ^ Perception step detects navfcaHe area b o u r n s a * o e ^ e s using sensor da*

environment

-The Local PatfiPlannlnj step plans the vehicle iraiectory.

'The Vehicle Control step drives the vehicle mechanism

™ ~ steps „ « each exe«,e in tan to process each area o, terrain tha, the vehW e « ,

at a t,me, to eac of me primiBve

synchronized to provide driving control.

Prediction and the Driving Unit

«ay, Planning and pmspta „

o

16: Sequence of Driving Units

that the travels
B e c a u s e ^ driving u n t e are

* * V 6 h i d e P 3 8 8 3 9 6 ' * * * *

The parameters for placing the driving units are-

•tocattonofthedrMngunit

• type of the driving unit: such as onload, open-terra/*

•sfee of the driving unit: the width and length of the driving unif
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depending also on the map and the vehicle position. The factors that determine the size and the interval
area are discussed in the following sections.

Perception and the Driving Unit
The Perception step scans a driving unit with sensors to determine the key objects within it. Perception

results will be used by the Environment Modeling step both for determining navigable areas and for
updating the vehicle position estimate.

Two parameters, the driving unit and a scanning position, direct the Perception step. The driving unit,
which is given by the Prediction step, indicates the area that the Perception should see. Because sensor
data must cover the driving unit, the sizes of sensor view frames give the upper limit of the driving unit
sizes.

The scanning position is the position at which the Perception step should scan the driving unit. Two
factors determine the scanning position: the required accuracy of the visual measurement, and the need
for specific vehicle position information. The required accuracy of the visual measurement is important
because of the reduced accuracy as distance increases. Thus, the vehicle should be close enough to the
driving unit to satisfy the accuracy needs of the Environmental Modeling step. The need for specific
vehicle position information also constrains the scanning position. The vehicle position estimation is
updated with both the perceptual results and dead reckoning from the control system. In general, the
perception result gives a more accurate vehicle position estimate. The vehicle position estimated with the
perception result will, of course, be a scanning position. Therefore, when the mobile robot system needs
an accurate vehicle position estimation at a specific position, this position should be the scanning
position.

Once the driving unit and the scanning position are determined, the Perception step can calculate the
sensor view frame relative to the vehicle and aim the sensors. This enables Perception to aim the
sensors adaptively.

Environment Modeling and the Driving Unit
By analyzing the perception results, the Environment Modeling step produces an environment

description that indicates a navigable area from the current vehicle position toward the end of the last
scanned driving unit.

The Environment Modeling step also updates the vehicle position estimation. Because the vehicle is
traveling continuously and the scanning positions are discrete, the Modeling step merges the perception
result and the dead reckoning updates to estimate the vehicle positions between the scanning positions
and beyond the last scanning position.

Local Path Planning and the Driving Unit
The Local Path Planning step determines the physical vehicle trajectory within the navigable area

determined by the Modeling step, from the current vehicle position to the end of the last scanned driving
unit

As shewn in Figure 17, the local path plan restricts the minimum size of a driving unit, because the
driving unit must be large enough to allow the vehicle to manuever and avoid obstacles.

The Driving Pipeline includes two levels of path .planning: the driving passage from the Prediction step
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Obstacle Goal of

Path Plan

Figure 17: Driving Unit Size for Vehicle Maneuvering

and the trajectory from the Local Path Planning step. If the map database is complete, the driving
passage can be planned before navigation by consulting the map data. If not, it is determined gradually
based on perception results from the previous driving units. This is the reason why we include planning
the vehicle passage in the Driving Pipeline level of the system rather than in a higher level.

Vehicle Control and the Driving Unit
The Vehicle Control step drives the physical vehicle. It generates a set of motion commands for the

vehicle mechanism from the trajectory plan given by the Local Path Planning step. Because the trajectory
plan ends at the far edge of the last scanned driving unit, the vehicle never moves into an unscanned
area. Also, this step adjusts the vehicle speed to be optimal unless the Local Path Planning step gives
commands on speeds (such as stopping at a specific place). The details will be described below.

Continuous Motion, Adaptive Control, and the Driving Pipeline

The simplest control structure for implementing the Driving Unit concept would be for the vehicle to
stop at the end of each driving unit, process the next one through each of the primitive steps, then drive
across the next driving unit ami stop, repeating this cycle over and over. This paradigm is known as the
*stop-and-go" model of vehicle control, and it produces very jerky motion as well as being far below the
optimum vehicle speed. To remedy these problems, we apply the concept of pipelined execution of the
primitive steps to fcpi the Driving Pipeline.

Pipelined Execution for Continuous Motion
In order to drive the robot vehicle continuously, the Vehicle Control step should work on one driving unit

after another without stopping the vehicle. To accomplish this, the Prediction step, the Perception step,
the Modeling step, and the Local Patti Flaming step must haw© finished processing the next driving unit
before me Vehicle Control step finishes the current driving unit This is the reason that continuous vehicle
motion needs a Driving Pipeline to process multiple driving units in parallel

TTie Driving PfpeSne supports continuous vehicle motion by using pipelined execution* As desofeed
above* t ie processing steps are allocated along t ie pipeline, and the Driving Pipeline executes fm
processing steps in paralel toy passing a sequence of the driving units through this pipeline. Figure 18
Instates the pipeline execution of the Driving Pipeline as follows:

1. When t ie vehicle is on Driving Unit 1, the Prediction step places a new prediction for
Driving Unit 4,
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Figure 18: Pipelined Execution of the Driving Pipeline

2. When the vehicle is on Driving Unit 2, the Perception step works on Driving Unit 4. At the
same time, the Prediction step places the next driving unit, Driving Unit 5.

3. When the vehicle is on Driving Unit 3, the Modeling step determines the vehicle passage
and the Local Path Planning step plans the path to the end of Driving Unit 4. In parallel, the
Prediction step defines Driving Unit 6 and the Perception step works on Driving Unit 5.

4. When the the Vehicle control step drives the vehicle on Driving Unit 4, the Prediction step is
defining Driving Unit 7, Perception is working on Driving Unit 6, and the Modeling and the
Local Path Planning step are working on Driving Unit 5.

Several key features of the Driving Pipeline make the pipelined execution possible. Rrst is the concept
of the driving unit, which is critical because it allows the route ahead of the vehicle to be partitioned into
individual units for processing by the successive steps. Because each driving unit specifies an area on
which one processing step works, the Driving Pipeline may assign the different processing steps to
different areas aiong the vehicle passage.

The second is the constant flow of the driving units through the processing steps in a prearranged
sequence. Each driving unit is created at the Prediction step and is passed through the following steps
from one step to the next step ending with the Vehicle Control Step, tius forming the data ftow through
the processing steps. This flow is always one way and in the same direction; no driving unit skips any
processing step or goes back to the previous steps. Therefore, the order of execution of the primitive
processing steps can be •hard-wired* Into the system without the need for symbolic reasoning to decide
what to do next.
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The third necessary feature is the independent computation of the processing steps. The computation
for driving control is divided into processing steps in such a way that each processing step performs a
different function. Each step requires as input only the outputs of the previous steps. Therefore, each
step can only work on a driving unit after the previous steps have completed their processing on that
driving unit.

The fourth feature is the order of the driving units themselves. Since the driving units are created as
the vehicle travels and are placed along the vehicle passage, the order of their generation is always the
same as the order in which they are processed by the processing steps. Therefore, the Driving Pipeline
can feed the driving units to the processing steps continuously.

Finally, the ability of the sensors to look ahead of the vehicle more than one driving unit's distance is ^
necessary. This permits Perception to be working at a distance beyond the next driving unit. This
ultimately limits the distance over which pipelining can be effective. p

The existence of all of these features allows pipelined execution in both of the necessary aspects, the
processing and the data. The name "Driving Pipeline" comes from the pipeline of processing steps, the
sequence of driving units, and the pipelined execution. The following sections provide a more detailed
examination of the pipelined execution. 1~

Execution Intervals of the Driving Pipeline
The "execution interval" of the driving control system refers to how often the mobile robot system :

executes the cycle of the primitive processing steps. Adjusting the execution interval to be optimal is

essential for an autonomous mobile robot system, because the necessary execution intervals depend on

driving conditions such as the width, flatness, and curvature of the road. Execution intervals that are too

long may cause unstable vehicle motion, because the vehicle position and the path plan are updated only

once in each interval. On the other hand, execution intervals that are too short consume unnecessary

computation and slow down the vehicle speed because the amount of computation in each interval is

roughly constant.

To provide the optimal vehicle speed control, the driving control scheme needs a way to compote and

change the execution intervals, in the Driving Pipeline the sizes of the consecutive driving units

determine the execution intervals, because each execution cycle works on one driving unit and the

number of driving units per unit trajectory length is equal of the number of the execution cycles.

Therefore, the Driving Pipeline is able to adjust the execution intervals by changing the driving arts
intervals.

If the vehicle could be controlled to exactly follow the planned path, the driving unite could be inacte as

Song as the range of the effective field of view of the sensors. Unfortunately, the actual vehicle trajectory

may differ from the local path plan because of many reasons, particularly the error In the conta

mechanism and the Inaccuracy of dead reckoning. The cumulative error in the control of vehicle moicr

and the allowed error tolerance in the vehicle position are the factors used to determine the driving jre

intervals.

The mmt in the vehicle position and direction, which grows as the vehicle travels, must be cartcaii fijr

t i e execution of t ie driving pipeline before it surpasses an error tolerance. Therefore, if the aocunt tK •

error increases very rapidly, the intervals of the driving pipeline must be shorter. tf the accomtiafecS w
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increases slowly, they can be longer. For example, because errors in the vehicle direction can produce a
larger accumulated error in the vehicle position than errors in the vehicle displacement, the interval must
be shorter in turning than in moving straight.

2

^diction I 1
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rception h" I I 1 I

Modeling

2 3 *

l ann ing I 1 I 1 I 1

1 2 3

control I " II lf~

Figure 19: Badly-Balanced Execution of the Driving Pipeline

As mentioned above, vehicle maneuverability restricts the minimum size of a driving unit. If a driving
unit interval is shorter than a driving unit length, adjacent driving units overlap.

Parallelism in the Driving Pipeline
Although the pipelined execution allows the processing steps to work in parallel, it does not ensure a

high degree of parallelism. Figure 19 illustrates an extreme example in which parallel execution is not
well maintained. In this figure, the vehicle speed is too high. This brings the vehicle to the end of the
local path plan before the next plan is produced by the Local Path Planning step. The vehicle then has to
stop at the end of the current driving unit to wait for the new path plan to be completed. In this example,
the Prediction step, the Perception step, the Environment Modeling step, and the Local Path Plan step
must work serially without any parallelism. In this section and the next we discuss the parallelism in the
Driving Pipeline and a mechanism for keeping it high. This section discusses parallel execution among
the Prediction, Perception, Environment Modeling, ami Local Path Planning steps. The next section
discusses parallelism between these steps and the Vehicle Control step.

The Prediction, Perception, Environment Modeling, and Local Path Planning steps generally work on
each driving unit sequentially, with their execution times overlapping each other on consecutive driving
units due to the execution pipeline. However, the parallelism among these steps depends on whether or
not there exists a sufficiently rich map database. When such a map exists, we call this the map
navigation mode; if not the vehicle drives in the map building mode. The timing of the start of pipelined
execution varies in these these two modes. In the map navigation mode, the map database can offer
enough information so that the Prediction step is able to place a new driving unit without using the
perception results from the preceding driving unit relying instead on the map database and the
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Rfeit* 20: Parallel Execution Pattern in the Map Navigation Mode

perception results from earfter driving units. Therefore, the Prediction step can work on the next driving
umt before 0» Picc§f»fen and the environment Modeling steps finish the current driving unrt. This
products tfti tJceoiSoti patttm iftistrated In Figure 20. In this case, since ait processing steps are ready
to writ on t t t nftt sttdf^ unit just Mm (Mshhfig tie curmnt one, complete pipelined execution is
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In the map building mode, the map database does not have enough information about the unscanned
areas, so the Prediction step needs the perception result on the current driving unit in order to place the
next driving unit. In this case, the Prediction step has to wait until the Perception step and the
Environment Modeling step finish the current driving unit. The resulting execution pattern is illustrated in
Figure 21. Consecutive execution cycles overlap less in the map building mode than the map navigation
mode.

The difference between the map navigation and map building modes explains one reason that a rich
map database results in a higher vehicle speed than the poor map database. In addition, a rich map
database allows perception to potentially be faster and more accurate, thus reducing the processing time
and/or allowing larger driving units.

In both execution modes, the scanning position is a key factor in maintaining these parallel execution
patterns because it regulates the execution patterns. The Environment Modeling step, the Local Path
Plan step, and the Vehicle Control step start just after the previous step finishes. The Prediction step
starts just after the Perception step finishes in the map building mode, and may start any time in the map
navigation mode. So, all of these steps can start at a time independent of the actual vehicle progress.
On the other hand, the Perception step can start working only when the vehicle reaches the desired
scanning position. The scanning positions that produce the highest parallelism, illustrated in Figures 20
and 21, are given by the following equation:

T
scanning distance = — * Li (1)

where
Li a driving unit interval

T = total job time of Perception, Environment Modeling and Path Planning

Tc = cycle time of Driving Pipeline

In this equation, the "scanning distance" is the distance from the scanning position to the driving unit to
be scanned. The "cycle time" is the time between consecutive execution cycles, which is the time taken
for the vehicle to travel one driving unit. In the map navigation mode, the cycle time is determined as:

Tc=Tm (2)

whereas in the map building mode, the cycle time is:
Tc = Max(Tm,Tt) . (3)

where
Tm = job time of the most time consuming step

Tt =s toted job time of Prediction, Perception and Environment Modeling

in t ie map navigation mode, if the most time consuming processing step works in the whole cyde time,
the execution pattern will be the most condensed and will exhibit the highest degree of parallelism. In this
execution pattern, the Perception, Environment Modeling, ami Local Path Banning steps must work after
the vehicle passes the scanning position. That is the derivation of the above equation for the map
navigation mode. In me map building mode, the processing for the sequence of the Prediction,
Perception, and Modeling steps can not overlap with the processing of this sequence for consecutive
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driving units. Therefore, this execution sequence behaves like one individual processing step. That is the
reason for the above equation for the map building mode.

Vehicle Speed and Driving Pipeline
The Vehicle Control step must take into account the execution time of all the processing steps in order

to achieve the optimum vehicle speed. Too high a vehicle speed requires the vehicle to stop at the end of
each driving unit, as described in the previous section. In this section, we discuss the highest possible
vehicle speed and the method to achieve it.

Because the distance that the vehicle moves in one cycle time is equal to the interval of the driving

unit, the highest vehicle speed is described by the following equation:

i

vehicle speed < — (4)

The maximum vehicle speed is less than the driving unit interval divided by the cycle time because
distance must be allocated for decelerating the vehicle in the event that some stage of the pipeline
requires more time than expected.

If the scanning position is adjusted as described above, the cycle time is given by Equations 2 and 3.

Then the above equation can be rewritten as follows:

in the map navigation mode,

vehicle speed = — (5)

and in the map building mode*

vehicle

These equations are based on the highest degree of parallelism among the processing steps and

therefore give the highest achievable vehicle speed.

The vehicle speeds given by ttiese equations are possible only when t ie scanning position is optimaiy

adjusted. The scanning position, however, may be determined by other factors as described previously.

For example, t ie scanning distance may be shorter than t i e distance given by Equation 1 because the

Perception step requires a closer distance tor rrore accurate measurement If the scanning: distance is

shorter than the distance given by Equation 1, the speed of the Driving Pipeline is given by the following

equation:

mMck speed * — (7)
Tp

where
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Ds = scanning distance

These equations (Equation 4 -7) describing the vehicle speeds explain the following vehicle behavior
patterns, which demonstrate the adaptive control capabilities of the Driving Pipeline:

• The most time consuming processing step limits the highest vehicle speed. The Driving
Pipeline is capable of adjusting the vehicle speed to be as high as the processing times will
allow.

• Longer driving unit intervals produce a higher vehicle speed. If the robot vehicle drives in
easy driving conditions such as a broad, flat, straight road, then the Prediction step may
define driving units with large intervals. The vehicle speed will then be adjusted to be higher.

• Likewise, shorter scanning distances produces a slower vehicle speed. If the Perception
step has to look at objects from a closer distance, the vehicle slows down. This behavior is
similar to a human driver looking around carefully.

These behaviors need not be explicitly programmed into the system. They arise naturally as a result of
the operation of the Driving Pipeline and the calculation of each driving unit interval based on the
geometry of the road, the vehicle, and the sensor field of view.

Although Equations 4 - 7 assume that each processing step always requires a constant execution time,
the actual requirements may vary from time to time and place to place. In such a case, the Driving
Pipeline calculates the vehicle speed with the following equation, which is a modified version of Equation
7:

Dr
vehicle speed = — (8)

Dr = remaining distance of local path plan

Tr =s remaining job time

In this equation, Dr is the distance from the current vehicle position to the end of the path plan in the
current driving unit, and Tr is an estimate of the total remaining execution time for the Prediction,
Perception, Modeling, and Local Path Planning steps working on the next driving unit. The initial value of
Tr is a predicted execution time for these processing steps. Whenever these processing steps finish
processing a driving unit, Tr and Dr are recalculated and the vehicle speed is updated. This allows the
vehicle speed to adaptively respond to the changing requirements for its own computation time.

The Driving Pipeline in Action: Experimental Results

Implementing the Driving Pipeline
We have developed and tested the Driving Pipeline through building several experimental mobile robot

systems, called Sidewalk System 2, Sidewalk System 3, and the Park System, [5] [6] [10]. Sidewalk
System 2 and Sidewalk System 3 drive an experimental vehicle called the Terregator on the network of
sidewalks on the campus of Carnegie Mellon University. The Park System drives the NAVLAB, a
computer-controlled van, on a road in Schenley Park adjacent to Carnegie Mellon. Figure 22 shows
these vehicles, which are both equipped with color TV cameras and a laser range scanner made by
ERIM. While the Terregator is linked to several SUN-3 workstations in the laboratory with radio
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Figure 22: Terregator and Navlab

communication and cables, the NAVLAB carries four SUN-3S on board. In the remainder of this chapter,

we will describe primarily Sidewalk System 3 because it demonstrates the Driving Pipeline most dearly.

Figure 23 shows the module stricture of Sidewalk System 3. The processing steps are implemented
as individual programs ami are linked through the CODGER distributed database, a system-building tool
written at Carnegie Melton to support large-grain parallelism for mobile robot navigation [9]. CODGER
makes it relatively easy to build the Driving Pipeline because of its capability to support parallel
processing among multiple computers. AM of the systems mentioned above use CODGER in this way.

Processing Steps and Driving Units
Figure 24 shows a diagram of t ie primitive processing steps working on one driving unit in approaching

an intersection. Figure 24(a) shows the driving unit placed by the Prediction step. In Figure 24(b)» t h e
trapezoid is the sensor view frame aimed by f ie Perception step to cover the driving unit Figure 24{c)
shows the vehicle position estimated by the fykxtelng step* The Vehicle Control step drove the vehicle a s
illustrated in Figure 24(d).

Pipeline Execution and Parallelism
Figure 25 is a recorded timing diagram of 9m processing steps. The bars In the figure indicate the tkne

during which each step is processing a driving unit The driving unit number appears next to the b a r .
Because Sidewalk System 3 has a complete pro-stored rap database* the Prediction step does rot nmmi
to wait for the Perception step lo place a rww driving unit and the consecutive pipeline executions over lap
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Figure 23: Module Structure

completely. This is the "map navigation" mode described above. Because the scanning position and the
vehicle speed were adjusted as described above, the most time consuming step (Perception) was the
limiting factor in the cycle time of the system.

Execution Intervals
Because turning at intersections requires more accurate vehicle position estimation than following

sidewalks, and because the Terregator vehicle makes larger dead reckoning errors in tuming than in
straight motion, the Prediction step uses a shorter driving unit interval while the vehicle is turning. Figure
26 shows the driving unit intervals around the intersection and the straight sidewalks. On the other hand,
Sidewalk System 2 used constant driving unit intervals and had unstable turning because of the large
dead reckoning error. Sidewalk System 3, however, did not have such unstable motion thanks to the
adjustment of the driving unit intervals.
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Q
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Figure 24: Processing Steps

Vehicle Speed
Rgure 27 shows a recorded vehfcte speed that was adjusted according to Equation 8. The vehfcte

speed was recalculated whenever the processing steps were done. The vehicle stowed down around the
intersection where the driving unit tntervate were snorter and went back to a high speed on the straight
road where the driving unit intervals were longer. Because of me hardware limitations of the Terregator
vehtde, the vehicle speed cotrid not be changed frequently; this is the reason that the recorded vehicle
speed is not smooth.
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Figure 25: Timing Diagram of the Processing Steps

Sensor Aiming
Our experiments on the Carnegie Mellon campus test site showed the necessity for adaptive sensor

aiming. The fixed sensor view frame created a problem in turning at the intersections, because the
vehicle had to turn through a large angle and the fixed sensor view frame could not cover the destination
sidewalk while the vehicle was turning. To remedy this problem, the sensor view frame has to be aimed
so that it covers the vehicle's destination. In addition, the scanning distance must be different in following
straight sidewalks and in turning through intersections. In turning through an intersection, the vehicle
position estimation must be accurate in both me vehicle's heading direction and the direction
perpendicular to the vehicle's heading. Therefore, the scanning distance must be short During straight
travel, however, the vehicle position estimation along the vehicle's heading direction does not need to be
so accurate and the scanning distance may be longer.

Figure 28 shows the sensor view frames ami the scanning positions. The scanning positions were
calculated using Equation 1 ami the focal path plan that was produced in the previous execution cycle.
The scanning distance varied at the intersection ami on the sidewalks.

To aim the TV camera into the predicted driving units, pan and M mechanisms are needed. This can
present a very challenging timing problem if mechanical pan and tilt mechanisms are used. To avoid this,
the Terregator vehicle was equipped with two cameras and switched between them instead of using a
mechanical pan. The TV cameras had wide angle lenses ami covered broad areas. The Perception step
processed the desired rows of the image in place of a mechanical tilt This "software pan/tilt is very fast
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Interval

Figure 26: Driving Unit Intervals

ami simple to program, as opposed to a mechanical pan/tilt which is relatively slow and difficuit to control

optimally. However, the software pan/tiit requires duplicated sensor hardware.

Our experiments have demonstrated the basic operation of t ie driving pipeline and dynamic
adjustment of t ie execution interval, vehicle speed, and aim of the sensor. We have shown that the
speed of the vehicle must be reduced and the driving unit shortened in situations involving uncertainty in
the map or targe vehicle control1 error (e.g., driving m intersections), likewise, we have shown that the
vehicle can drive cjbfckly using Sarge dnvsng units on well-mapped straightaways. At both extremes ami
across the range we have denx>ns:rated hew the seaming distance can be adjusted la maximize
paraliefsm*
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Figure 28: Sensor View Frames
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Section V

Conclusions

Evolution of the NAVLAB Vehicle

The NAVLAB vehicle has been a successful platform for mobile robot research, logging over 900 hours
of experimental time. At this point, we are pushing up against the various physical limitations of the
vehicle: electrical power, air conditioning, internal volume, and weight capacity. This limits the total
computational power of the NAVLAB and its suite of sensors. Thus, future improvements must optimize
the quality and use of these resources rather than simply adding on more and more equipment.

We have also found in this research that the low-level vehicle control must incorporate many different
subsystems, each of which may implement a simple control scheme, rather than doing everything in a
single computational loop. For example, we needed to build an analog control system to provide constant
engine speed, so that power would not fall off during uphill runs. This would have been very difficult to
implement by adding more code to centralized controller software.

In addition, there is a constant demand for more and more powerful sensors and control systems. The
reason is that the robot has certain needs, such as knowing its position and the 3D description of the
environment. These needs can either be met by adding appropriate complex hardware, or by clever
software with simple hardware. The software is sometimes theoretically possible to write, but developing
it is major research in itself, and it may or may not work. Therefore, for actually building a vehicle, the
best solution is almost always to buy the best available hardware. This means a very large capital outlay
is needed to obtain the equipment necessary to sustain the most productive research. Otherwise, the
researchers spend all their time trying to compensate for the poor quality equipment. In the NAVLAB, this
shows up most clearly in the need for a high-quality GPS and INS for vehicle position determination, and
the need for the WARP and other massive computational power.

Evolution of the CODGER Blackboard

The CODGER blackboard system has reached a certain level of maturity in its current form, CODGER
II. CODGER II includes many facilities for map data representation, map revision, and vehicle position
estimation, that distinguish it qualitatively from other mobile robot systems. Although not all of the
uncertainty-modeling facilities have yet been implemented, the system has already proven to be very
useful in simple map-updating experiments. Such experiments are among the most challenging mobile
robot tasks, because they require perception of an unknown environment as well as integration of
information with existing map data.

To accomplish this, the CODGER system centralizes the task of managing geometric and other map
data. This is an example of the "database" approach in which each module talks to a central database of
map information, as opposed to the -message-passing" approach in which each pair of communicating
modules do so as needed. The database approach is more powerful than the message-passing
approach because it allows anonymous storing and fetching of data; thus, it is more conducive to
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supporting robot development research. CODGER uses this central database to implement centralized
facilities for storing and retrieving geometric data.

The data representation facilities of CODGER include primitive geometric objects, organized into a
complete 2D geometric modeling network with local coordinate systems, and time-varying transformations
among the objects. We have developed the concepts of frame generators and affixment groups as ways
to manage the complexity and ambiguity of representing time-varying relationships. With this battery of
tools, the NAVLAB uses CODGER to implement real performance of map updating missions.

Experiments With the Driving Pipeline

The Driving Pipeline is a driving control scheme to control a robot vehicle maneuvering in the physical
world. By organizing and managing the primitive processing steps, the Driving Pipeline provides the
following capabilities:

• Continuous Vehicle Motion: The Driving Pipeline drives the vehicle continuously by
adjusting the vehicle speed and executing the Vehicle Control step in parallel with other
processing steps.

• Parallel Execution: The Driving Pipeline executes the primitive processing steps in parallel
and maintains a high degree of parallelism. Thanks to the pipelined execution, the Driving
Pipeline achieves the highest possible vehicle speed.

• Adaptive Control: The Driving Pipeline is capable of adapting sensor aiming, vehicle
speed, and execution intervals to the driving conditions.

These capabilities of the Driving Pipeline are made possible by the two key ideas of the Driving

Pipeline, the driving unit and the pipelined execution of the processing steps. By using driving units, the

data to be processed is divided into a sequence of driving units that can be processed separately by the

processing steps. Hie steps themselves am designed to work in a fixed order on each driving unit

Because of the pipelined execution, :he computation tor these processing steps can be overlapped an

successive driving units. These pipelines in both the processing steps and the data enable the pipelined

execution, giving rise to .parallel computation ami continuous vehicle motion. The driving units also

enable adaptive control. By adjusting the location, size, ami interval of each driving unit, the Driving

Pipeline adapts t ie processing to the driving situation. The pipeline execution thus enables the acaptive

control in the continuous vehicle motion.

The Driving Pipeline deafly doecribes t ie driving control scheme in tour aspects: primitive processing
steps, organization of these processing steps, execution scheduling* ana control parameters. In the case

of stcD-ard-go motion, the last three aspects of t ie driving contra! scheme are Implicit and do not need to

be well defined* However, to aeWevs our goals - continuous motion, paraiet execution, and' adaptive

control - we have developed the Driving Pipeline based m an explicit understanding of alt of these

aspects* This is why t ie Driving Pipeline is capable of control ing botti geometry, such as the sensor view

frames, and time, such as execution timing. Adjusting t i e vehicle speeds demonstrates these capabilities

of the Driving Pipettim

Although the Driving Pipefine supports continuous vehicle motion, the primitive processing steps
mvofved in the Driving Pipeline employ only jlalto algorithm. The Perception step, for example, analyzes

the sensor date witio f;t tailing into account the vtWd© motion. Simitcty, t ie local Path Planning step
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determines the trajectory path plan as if the vehicle were not moving while the Local Path Planning step is
processing. By introducing the driving units, the Driving Pipeline converts dynamic problems into a set of
static problems for each driving unit. By employing the pipelined execution, the Driving Pipeline overlaps
the static processing steps to perform dynamic vehicle motion. This feature of the Driving Pipeline gives
two advantages. First, the Driving Pipeline makes it easier to build mobile robot systems by integrating
relatively well developed processing algorithms for perception and path planning. Second, the Driving
Pipeline provides a test bed for studying these primitive algorithms using real mobile robot systems.

Future research will center on expanding the concept of the driving unit and pipelined execution to
accomodate multiple sensors, uncertainty in the map database, and off-road travel. Multiple sensors with
different view frame sizes introduce additional synchronization points into the pipeline, thus affecting the
execution flow. Uncertainty about the positions of objects in the map affects the aiming of the sensors
and vehicle speed. For example, in the presence of little uncertainty, the vehicle can look far ahead and
drive quickly. Off-road travel provides a new set of Prediction, Perception, and Planning steps to be
incorporated with on-road travel in a single pipeline to permit multiple modes of navigation. Algorithms
are needed to dynamically determine the parameters of the pipeline in these scenarios while maximizing
parallelism.

Technology Transfer From This Research

The NAVLAB has a fairly unique status as a robot vehicle whose architecture is suited for research in
both integrated robot systems and invidual component technologies (path planning, map navigation, and
perception). Thus, the NAVLAB fills an important role in the research community as a focal point for
technology transfer operations.

One level of technology transfer involving the NAVLAB has been the exchange of software and
concepts for perception and planning. In 1987, researchers from the University of Massachusetts
obtained data from the NAVLAB for use in their visual motion research under DARPA's SCVision
program. They sent CMU their code, which was evaluated at CMU in terms of its suitability for tasks such
as visual navigation for the NAVLAB. Additionally, Hughes Corp. developed an x-y-6 path planner, which
appears to be very valuable for mobile robot navigation. CMU is now undertaking to improve and
enhance this path planner by incorporating vehicle kinematics models, uncertainty modeling, and
computational speedups. The resulting module promises to be a key ingredient in future versions of the
NAVLAB software system.

In addition, the NAVLAB hardware and software developed under this contract has been exported to
other sites or used as the basis for research in other robot vehicles. The CODGER blackboard database
has been sent to Martin-Marietta, where it has controlled the ALV, and to other ALV contractors including
ADS and FMC. It has also been sent to several non-DARPA sites, including NASA-Goddard, DEC, and
Florida Atlantic University (for use in underwater robot design). On the tow-level side of the system, the
controller has been adapted for building the Locomotion Emulator (LE), a platform for the emulation and
study of various schemes for wheeled robot locomotion. The LE controller consists of two Intel 80286
processor boards that run code developed for the NAVLAB; the user Interface code was expanded to be
more user-friendly since the LE's application involves more human interaction ttian the NAVLAB. The
development of the LE controller occurred at me same time that the NAVLAB was switching from Gali!
motion control boards to the newer Creonics boards. The LE was used for development and testing of
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the new Creonics device driver, to reduce the downtime of the NAVLAB vehicle.

The NAVLAB controller architecture, along with much of the perception software, will be the basis for
corresponding components of the Mars Rover being developed at CMU under NASA sponsorship. As in
the NAVLAB, a multitasking, priority-based real-time operating system is used to implement
asynchronous I/O and coordination of robot motions. The Creonics motion control cards, found to be very
effective for the NAVLAB vehicle, are now being adapted tor the Mars Rover. In addition, the path
planning and terrain perception capabilities of the NAVLAB are being used as the basis for the Mars
Rover software. In addition, the FASTNAV project under sponsorship from Caterpillar Corp. used the
NAVLAB as the basis tor studying high-speed autonomous traversal of known roadways.

Future Directions

We have identified several problems and issues as likely directions for our research in the next year:

• We need to develop a new generation of the low-level controller system that provides a
high-performance UNIX-like environment.

• The vehicle path tracking is not as predictable as we would like. We have begun to develop
a new path tracking method based on continuous repianning of quintic arcs to provide more
precise vehicle control.

• We will continue development of the x-y-9 path planner based on the Hughes path plainer,
and add to it uncertainty management and representation.

• The Driving Pipeline concept has been very serviceable, but it has some key limitations. In
particular, the need for all subsystems to operate in a pipeline means that computational and
sensing resources are not operated at maximum efficiency. The new path planner may
provide a good alternative scheduling mechanism for perception and other activities.
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Appendix I

Experimentation Issues for Mobile Robot Systems

The following document is incorporated into the annual report. It chronicles the role that the research

under this contract has played in aiding DARPA's formulation of a research agenda in mobile robots and

real-world machine perception.

A workshop was held in Vail, Colorado, in April 1988, for the purpose of planning the ongoing research
in the ALV (Autonomous Land Vehicle) and SCVision (Strategic Computing Vision) programs. One of the
key issues addresed at this workshop was how the basic research community might benefit from the
continued availability of working, integrated robot systems such as the ALV, and what are the limitations
of such integrated systems for supporting basic research. The Pis on this (NAVLAB) contract made a
presentation to outline a number of possible research paradigms, and also to indicate what we have
learned from the NAVLAB about the limitations of using an integrated system to support basic research.

After the workshop, we were asked by DARPA to prepare a document to summarize these issues. The
following is that document. It has been used by DARPA internally and in conjunction with other research
contractors in the ALV/SCVision community, as an aid to identifying the best strategies for continued
research in this area.

Although the document refers specifically to the ALV at Martin-Marietta, the broad issues apply
generally to big-system robotics research and may therefore be of interest to all readers. For that reason,
we include the document in this annual report.
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EXPERIMENTATION ON THE ALV:
TEMPLATES FOR EXPERIMENTS IN 1988 AND BEYOND

by Steve Shafer, CMU

18 April 1988

Submitted to DARPA and the ALV Experiment Steering Group.

Abstract

At this point in the ALV and SCVision programs, there exists a highly capable and instrumented vehicle
and accompanying software system at Martin-Marietta, along with an engineering and development staff.
At the same time, a number of the Technology Development Contractors (TDCs) in these programs have
developed research paradigms and software with varying degrees of maturity. To further the
development of research in vision and navigation, plans are now needed for interaction to provide the
TDCs with the data and system facilities they need from the ALV to promote basic research, while at the
same time providing Martin-Marietta with access to the most mature software to add to the repertoire of
the ALV system.

Two relevant facts have become clear through the research to date: First, the notion of building a
single "integrated" system by somehow applying Super-Glue to all the component technology research is
neither practical nor desirable at the present time; and Second, the disparate properties of the various
technology research efforts demand many different plans for interaction with Martin-Marietta.

This document presents a brief discussion of the nature of system integration and how it differs from
experimentation. At present, it is experimentation rather than integration that will serve as the best model
for joint effort between Martin-Marietta and the TDCs. A number of possible modes of experimentation
will then be outlined that may be suitable for various types of technology research with varying degrees of
maturity. It is hoped that this outline will form a basis for doser cooperation and joint activity between the
Technology Development Contractors and Martin-Marietta in the near future.
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INTEGRATION AND EXPERIMENTATION

It is tempting to believe that perhaps the ALV software system comprises a framework into which
component research results can be inserted, tike electrical plugs into sockets, forming a harmonious
working system with interchangeable parts.

Unfortunately, the state of robotics research is not sufficiently advanced to support this model. In order
to create working mobile robot systems, typically numerous software modules must be made to work
together in harmony, each consisting of tens of thousands of lines of code, and each performing a highly
complex function. We attempt to define the interfaces between these modules as specifically as we can,
but these descriptions fall far short of being complete characterizations of such complex software. The
most obvious aspects of a module that we typically describe as interface specifications include some
abstract task description and perhaps the programming conventions for communication with the other
modules; yet equally important are the programming language and operating system assumptions made
by the module, the amount of time it is allocated for execution, the amount and nature of the vehicle
motion between successive invocations, the nature of the sensors, the resolution of the input and output
data, the nature of the test data used to develop the module, et cetera, et cetera, et cetera!

Ail these factors must be compatible with the other modules in the system in order for the
Integrated system to succeed.

Suppose for a moment that we desire to create a high-performance integrated system using pieces
from more than one development site. Not only must these factors be described in detail in the interface
specifications, but each contractor must build this complex research software in conformance with these
elaborate descriptions. This would not be a recipe for successful research - it would be a demanding
development effort suitable only for mature software - the antithesis of creative and wide-ranging
research.

To develop integrated systems at the current state of the art demands an extraordinarily high

bandwidth of communication among the module developers over an extended period of time, so that each

module can be conceived and matured within a shared model of the context for execution of every

module in the system. For this reason, mufti-site integration has not been the methodology utilized by the

successful systenrvbuiWiog efforts at Martin-Marietta, CMU, Hughes, and other ALV/SCVision sites.

Rattier than that, these sites haw relied on a methodology of intensive in-house system development,

with the smallest possible bandwidth of interlace to software developed elsewhere. This has been a

successful approach so far, and should continue to be so in the future.

However, this model does tittle to contribute to the development of component technology research,

which is essential for us to push t ie state-of-the-art most rapidly. For this research, it is not reasonable to

demand that preliminary conceptual development should produce polished "modules" that will instanfy i f

into someone else's highly evolved system. A more appropriate view is that the existing ALV system cart

contribute in various ways to the maturation of the concepts and software being developed at the various

sites. TOs can take place through a number of forms of experimentation that take forms other than the

integrated system model described above.

This document briefly sets forth descriptions of a number of possible templates of experimentation that

appear to be prontsffng models for productive collaboration between Martin-Marietta and the Technology
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Development Contractors to promote research in both systems and component technologies for
navigation and vision.

EXPERIMENTATION TEMPLATE FOR SYSTEM DEVELOPMENT RESEARCH

To date, several systems have been developed for outdoor navigation of sophisticated vehicles within
the ALV and SCVision programs. These systems have all had several features in common:

• a perception subsystem

• a planning subsystem

• a virtual vehicle to follow elementary path descriptions

• a software framework to bind together these elements
In some cases, all of these elements have been developed at a single site, such as Martin-Marietta or
CMU. Such efforts have been quite successful, but fall outside the scope of this document.

There have also been successful experiments involving ALV support for other contractors' system
development efforts, and these establish a template for future efforts as follows:

TEMPLATE A: VIRTUAL VEHICLE SUPPORT FOR SYSTEMS EXPERIMENTS

Description: When a contractor has developed a complete system, there may be many reasons
for testing it on the ALV:

• To perform live testing when the developer does not posess a vehicle.

• To test the system in conditions not available at the development site.

• To take advantage of hardware, software, or expertise not available at
the development site.

• To test the system in a standardized scenario for comparative purposes.
In this case, the usual desire is to preserve the integrity of the system as much as
possible, using only the smallest bandwidth interface to the ALV. This involves using
the hardware and Virtual Vehicle of the ALV, with ail of the other software elements
being provided as part of the imported system.

Suitability: This model of experimentation is appropriate for a complete system developed
outside of Martin-Marietta, which runs in real-time on hardware and operating
systems available at the ALV site.

TDC Preparation: Preparation by the the TDC includes ensuring that the system conforms to the
interface requirements of the ALV virtual vehicle, and ensuring that the system will
run with the sensors, computing hardware, and system software at Martin-Marietta.

M-M Preparation: Martin-Marietta is responsible for the vehicle and sensor hardware, the virtual vehicle,
and the basic computing hardware and system software.

One result of each experiment in this model is the potential for Martin-Marietta to accumulate these
complete working systems as tools to support the other experiments described below. Of course, Martin-
Marietta cannot be expected to provide substantial manpower for the maintenance of such systems over
time.

Uke all experiments involving the ALV, the TDC must expect to send one or more people to Martin-
Marietta for some period of time to accomplish the experiment Because of the intensive resource and
personnel requirements on me part of both Martin-Marietta ami the TDC8 it may be appropriate for
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concrete planning to be undertaken well in advance of the experiment and for DARPA to provide explicit
funds for undertaking the experiment. Joint research proposals to DARPA appear to be a good
mechanism for achieving both of these goals.

EXPERIMENTATION TEMPLATES FOR COMPONENT
TECHNOLOGY RESEARCH

The previous model is aimed at systems experiments, but does not address the role of the ALV in
supporting basic research. There has been some concern on DARPA's part that perhaps the ALV is not
a useful tool for promoting basic navigation and vision research, but this appears to be groundless. The
lack of support in the past can be attributed to the startup and system-building effort at Martin-Marietta,
and the progressive maturation of the technology development efforts throughout this period. At present,
there appears to be a clamor for access to the ALV on the part of the TDCs, because of the richness of
the data and the system context it can provide.

Each module or algorithm being investigated as a component technology needs to undergo a
potentially lengthy process of maturation in terms of quality of results, robustness, speed of execution,
and mating to the ALV system, before it can be fully integrated as a module in the system. At each stage
of evolution, a somewhat different type of experiment with the ALV may be appropriate. Accordingly,
several models of experimentation are outlined here, in order of increasing evolution of the module. It is
not suggested that every module utilize all of these types of experimentation, nor that this list is
exhaustive; this is simply a menu of several options that currently appear to be of general interest. Some
of these have already been performed in the past, or are currently in progress.

TEMPLATE B: GENERIC DATA COLLECTION - THE SIMPLEST CASE

Description: The simplest use of the ALV to support basic researchers is in generic data
collection. This involves the use of the hardware and sensors of the ALV, along with
calibration and/or ground truth data. The input is a specification of the data needed,
which must conform fairly ctoseiy with the capabilities of the ALV system itself. The
output is the data set and accompanying descriptive data.

Suitability: This mode of operation is suitable tor modules in early stages of development, with
little or no compatibility with the ALV system.

TDC Preparation; The TDC must provide a complete specification of the data to be collected. In
addition, the TDC should expect to semi someone to Martin-Marietta to participate in
the data eject ion process.

M-M Preparation: Control of the hardware ami software, and provision of the accompnying data.

TEMPLATE C: CUSTOMIZED DATA COLLECTION WiTH DIRECT VEHICLE CONTROL

Description: There are some reasons why generic data collection may not be adequate for a
particular basic research effort:

• need tor unconventional sensors or configurations

• need for data collection patterns not compatible with normal ALV
operation

In these cases, a more appropriate form of experiment would be lor the TDC to
mount tfie desired sensors (if other than the usual ALV sensors) on the vehicle, awl
to perform date coitectton while dceeSy providing instructions to the virtual vehicle to
cause the ALV to move in the de&irtd way. In this case, t i e ALV is being utilized
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Suitability:

TDC Preparation:

M-M Preparation:

TEMPLATE D:

Description:

Suitability:

TDC Preparation:

M-M Preparation:

simply as a platform for moving sensors outdoors, along with the accompanying data
recording equipment and instrumentation.

This mode of experiment is also suitable for modules that are not particularly
compatible with the current ALV system, and would provide much more detailed
control over the data collection than Type B experiments.

The TDC must ensure that the necessary sensors will be available to the ALV, and
must prepare software to give the desired commands to the virtual vehicle of the ALV
software (unless manual control is to be used).

Martin-Marietta must ensure that the virtual vehicle is working and may need to
provide a nicer interface for the TDC to utilize. It may be desirable, for example, to
provide a small repertoire of LISP functions that the TDC software can call to cause
the vehicle to move in simple ways. In addition, Martin-Marietta must ensure that the
TDC will have software access to the sensors and the data recording media for the
experiment. If the sensors include controls such as pan/tilt, zoom, or focus, some
hardware and software interface must also be provided.

CUSTOMIZED DATA COLLECTION WITH THE ALV SYSTEM

A variation of the above plan is to perform data collection while the ALV moves along
the path it would normally follow (such as a roadway), but using unconventional
sensors or movement increments. In this case, the TDC needs to meet all the
requirements above, but the intention is to utilize the entire ALV system to move the
vehicle to successive data collection points, rather than interfacing directly to the
virtual vehicle. It is also possible that the experimenter will need access to some
internal data from the ALV such as the vehicle attitude.

This is better suited than Type C experiments when it is important for the vehicle to
travel as it will in an actual demonstration run. For example, this may be desirable for
an object recognition module looking at an object at the side of the road as the ALV
travels along the road - in this case, the TDC does not desire to control the vehicle
path, but may need to control the distance of travel between image collection points.
The vehicle path must be controlled by the ALV system, which must therefore utilize
all the normal perception and planning elements of the full ALV system.

Similar to Type C. In addition, if internal ALV system data is needed, the TDC will
need to utilize the software provided by Martin-Marietta to make it available.

Supporting a Type D experiment requires a substantially more sophisticated interface
to the ALV system than the Type C model above. The mode of operation would still
be essentially stop-and-go, but the full ALV system will be running essentially in
parallel with the TDC software. Again, Martin-Marietta will probably need to provide a
small repertoire of commands to be used by the TDC software to invoke vehicle
motion; however, only the distance of motion would be adjustable by the TDC. If the
module needs internal data from the ALV system, Martin-Marietta will have to provide
a software mechanism to make it available.

TEMPLATE E: OPEN-LOOP PIGGY-BACK EXPERIMENTATION

Description: The data collection models presented above should allow for much more flexible and
sophisticated data collection than has occurred in the past. However, the amount of
data that can be pragmatically collected and transmitted to the TDC by these means
is still somewhat limited. When a module has been tested on such stored data and
has matured to the point that it runs in reasonably realistic time, it is possible to
expose the algorithm to a much larger amount of data by actually running it in a
"piggy-back" mode, in parallel with the ALV system but only loosely connected to the
basic ALV software. This can be viewed as an extension or evolution of the Type D
data collection experiment; but rather than store the data at each point the data
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Suitability:

TDC Preparation:

M-M Preparation:

would be actually run through the experimental module on-line. The output of the
module could be stored for later analysis, or could be displayed for direct on-line
evaluation, debugging, and error analysis. This can put the researchers into fairly
intimate contact with the performance of their algorithm under real operating
conditions. In fact, if the output is fairly closely related to some internally generated
data of the ALV system, Martin-Marietta might provide a way for the TDC software to
get a copy of the internal data for comparison purposes. In this case, a direct
comparison can take place on-line - though the ALV will, of course, be actually
controlled by its own internal data rather than by the potentially flaky results of the
experimental module. If the module is really running at real-time speeds, then the
ALV might be able to undertake continuous motion while running the piggy-backed
experimental module in parallel.

Before a module can realistically be run in this mode, it must be tested on real,
canned ALV data, producing reasonably good results, and it must run in a reasonable
amount of time. Processing time per frame of sensor or path data ought not to
exceed, say, several minutes or perhaps a fraction of an hour; otherwise, the motion
of the vehicle will be only a few frames per hour, which can be taxing on the ALV
vision system due to environmental changes, and would be in any case a colossally
inefficient waste of research time and money. In the best case, processing time per
frame ought to be between a few seconds and a minute. Of course, this might
require considerable engineering of the module such-as receding for the WARP or
Connection Machine. However, if the module is promising under Type D
experimentation, then there is a strong motivation to do the necessary enginering to
take it to the stage of this Type E on-line testing.

The TDC must be willing to prepare the module to meet the criteria above, and to
integrate the vehicle control commands into the module to allow it to be run in
conjunction with the ALV software. If special sensors are needed, these must of
course be provided and configured by the TDC.

Similar to the Type D scenario, in the simplest case. If the vehicle is to run in
continuous motion, or if the TDC needs access to internal data from the vehicle to
compare with its output, then more work will be required by Martin-Marietta.

TEMPLATE F: CLOSED-LOOP PIGGY-BACK EXPERIMENTATION (Module Replacement)

Description: The Type E "open-loop* model provides for ALV input to the experimental module,
but ttie output of the module is not fed bade into the ALV system. That model is
therefore useful for early on-line testing. Once a module has been run successfully in
that mode, If the output is useful to the ALV system, then it may be desirable to hook
up the output to feed back into the ALV system. In this way, a functional replacement
can be made for a part of the ALV software, or a new source of information ran be
made available to it. This allows on-fine testing of the module as a system
component which is a qualitatively different concern than the previous experimental
models that ted the module as an entity on its own. At this stage, Martin-Marietta
may decide to incorporate the module into its baseline ALV system. This constitutes
technology transfer of actual code, which can be seen as an evolutionary step that
must follow a substantial preliminary process of module development ami1 testing as
outlined in the previous templates.

Suitability:

TDC Preparation:

Only a mature module* running in realistic time on the ALV and known to provide
high-quality output in a form compatible with the ALV system, is a suitable candidate
lor this mode of experimentation.

Successful Type E experimentation is probably a pre-requisite for ciosed-toop testing.
In additton, the instigator of the experiment (the TDC or Martin-Marietta) must, be
prepared to modify t ie module to produce its output In a form suitable for direct
yilization by the ALV system.



57

M~M Preparation: The ALV system itself must be modified to accept the data produced by the module.

PROGNOSIS FOR RESEARCH PROGRESS USING THE ALV

At the present time, there appears to be a substantial demand on the part of the technology and
systems researchers to have access to the ALV as a data collection platform, experimental system
context, and virtual vehicle. While the interactions between Martin-Marietta and the technology
development sites have been limited in the past, the current degree of maturity of the various efforts is
creating an increasing need for data that can only be provided by the ALV or by prohibitively elaborate
laboratory facilities. Hopefully, this document will promote future interactions by providing some common
models of experimentation between Martin-Marietta and the various Technology Development
Contractors.


