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Abstract

Traditional "crossed-grating" moire, as well as newer "sampled-grating" (scanning) moire,
have proven to be effective methods of shape measurement There is speculation that the
moire patterns of a sampled grating, which are due to aliasing, can be modeled with crossed
gratings. We compare the two and show that while crossed gratings can correctly predict
the frequencies of a sampled grating, they cannot correctly predict the amplitudes. We go
on to formulate a new model which accounts for multiple stages of sampling and transmis-
sion, and show how neglecting multiple stages can lead to mistakes in moire analysis. We
demonstrate our model with an experiment using a digital imaging system.



1 Introduction
Moire patterns can be caused by crossed gratings or by the discrete sampling of a single grating.
The crossed-gratings case can be seen in everyday surroundings in layers of fences or screens.
Figure 1 shows a contrived superposition of two crossed gratings that give rise to a moire pat-
tern. If one of the crossed gratings is distorted, the moire pattern will be distorted, too. This
phenomenon has been extensively exploited in metrology applications. One of the constituent
gratings is projected onto a distorted object and observed through a second, flat grating. Since
the resulting moire pattern is sensitive to small distortions in the object grating, accurate mea-
surements of the object's shape can be derived. The object's shape is a function of the geometric
layout of the original, undistorted gratings and the resulting moire pattern. Post [Pos67] has
shown that an analysis of the profiles of the crossed gratings can be used to sharpen the moire
fringe patterns, making it easier to track the fringes and thus easier to determine the shape of the
object. Therefore, both the geometry and brightness profiles of the moire method are important
to consider.

Figure 1: Crossed gratings making a moire pattern

Moire patterns can also be caused by aliasing in the discrete sampling of a single grating. The
sampled-grating case can often be seen on television when a relatively high-spatial-frequency
grating, say a striped shirt, is shown. Idesawa et at. JIYS77] have shown that the flat grating in
traditional, crossed-grating, moire metrology can be replaced by a digital camera, still maintain-
ing observable moire patterns using only a single, object grating. We will distinguish these two
methods by calling the former "crossed-grating1' moire and the later Msampled-giatingfl moire. The
moire patterns from both metkxis appear similar, and it has been shown that sampled-grating
moire can automate many time-consiimiBg? subjective procedures of the traditional, crossed-
grating paradigm [MSH88]. Idesawa et aL assert that the camera can be modeled by a second
grating, thus allowing the applicatiai erf a omsidcimble amount of past study on crossed gratings
ID sampled gratings. However, this is not completely accurate. The two phenomena are funda-
mentally different, and it has never been shown explicitly how well crossed gratings can mockl
the effects of a digital camera. The moire patterns which result from crossed gratings arc due
to the hetrodyning of their respective spatial frequencies. Moire patterns from digital cameras
(or any periodic, discrete, sampling device) come from aliasing of the spatial frequencies of the
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imaged grating. There have been moire pattern models which explicitly account for this discrete
sampling, but they do not account for lens blur or multiple stages of sampling. In this paper, we
present notationally consistent, frequency-space models of crossed-grating and sampled-grating
moire from flat gratings. Our sampled-grating model is a new formulation which accounts for
the video transmission (including lens blur) and multiple sampling stages in most digital imag-
ing systems. We use our multiple stage sampling model to demonstrate how ignoring multiple
sampling stages can lead to mistakes in moire analysis. We present results of an experiment
which verifies the model used in the sampled-grating formulation. We also examine the ability
of crossed gratings to model sampled gratings by developing a model of sampled-grating moire
patterns using crossed gratings, and we verify the model qualitatively with a simple experiment

2 A Model of Moire Patterns from Crossed Gratings

In this section we derive the Fourier transfonn of the superposition of an arbitrary number
of flat, periodic, crossed gratings with arbitrary profiles. Gratings are usually considered as
transparencies with regions of transmittance varying between zero and one. We can express
the transmittance of any infinite, 2-D, periodic grating whose transmittance profile satisfies the
Dirichlet conditions [Gas78] (p. 108), and which is oriented so that its lines run perpendicular to
the x axis, as the Fourier series

CD

where T is the period of the grating, and the cn are the complex coefficients of the Fourier
series of the 1-D transmission profile along the x axis. We note that any physically realizable
transmittance grating will satisfy the Dirichlet conditions.

If the profile of the grating g(x,y) is a square wave as shown in Figure 2, the cn will be
given by cn = hsiac(nh\ where suic(x) = sin(xx)/(xjc), and h is the fraction of a period that is
transparent If h = 1/2, then the grating is called a Ronchi ruling, as shown in Figure 3.

Figure 2: Square wave transmittance profile

The Fourier transform of g(x,y) is

-J2x1fyc +f#)}tbufy.



The frequencies fx and fy are in units of cycles/unit length. We will use uppercase letters to
indicate the Fourier transforms of corresponding lowercase, spatial functions. Substituting the
Fourier series for the general grating g(x, y) into the Fourier transform equation gives

nG(fxjy) = £ cj(fx - -,/,).
oo

This is a set of evenly spaced, Dirac <5-functions spread along the fx axis. The volumes of
the <5's are given by the Fourier series coefficients. Figure 4 shows a plot of the Fourier
transform of the Ronchi ruling in Figure 3. The dots show the position of the 6-functions with

.the corresponding value of n above in parentheses. The area of a dot is proportional to the
magnitude of its coefficient For a Ronchi ruling, however, every 6 with an even, nonzero n will
have a coefficient of zero. We show these with small dots.
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We will call the orientation of g(x, y) zero because the <$'s of its Fourier transform occur along
the j£ axis. If g(x,y) is rotated around the origin by an angle 0, its Fourier transform rotates in
exactly the same way. This is shown in Figures 5 and 6 where we show a Ronchi ruling rotated
15* and its Fourier transform. The dots in Figure 6 are labeled like those in Figure 4. If gi(x,y)
is a rotated version of g(x,y), its Fourier transform is

£ (2)

where we have begun subscripting with i to account for multiple gratings. Only the positions of
the 8's change, not the coefficients.

If two of these transmittance gratings, go(x,y) and gifay), are superimposed, the resulting net
transmittance will be given by the product of the constituent transmittances, go(x,y)gi(pc,y). The
Fourier transform of the net transmittance will be the 2-D convolution of the Fourier transforms,
Go(fx,fy)*Gx(fxJy).

We show the two Ronchi rulings of Figures 3 and 5 crossed in Figure 7. The Fourier
transform of the crossed gratings is shown in Figure 8- We can think of the convolution operation
graphically by considering the Fourier transforms in Figures 4 and 6 of the two constituent
gratings. The first step in a 2-D convolution is to flip either one of the Fourier transforms
around both ihcfx andfy axes. Since the Fourier transforms of the gratings as we have defined
them are symmetric lines of £'s, this operation leaves die function unchanged. The next step
is to record the value of the product of the two functions as a function of the offset of one of
them. If we slide, say, the Fourier transform of the rotated grating around in (fxify) space over
the Fourier transform of the unrotated grating, we see that the product will only be nonzero
when two <J's overlap, at which point the product will the the product of the coefficients of
the overlapping <5's. As the Fourier transform of the rotated grating is moved, the position of
its center 6 will indicate the value of the offset Since two different lines cannot intersect at
more than one point, it is clear that there will be, at most, only one pair of overlapping <5*s for
any given offset Thus, we overlap every possible pair of 5's, recording the product of their
coefficients at the position of the center peak of the sliding Fourier transform.

If gifay) has period T<, angle 0;, and Fourier series coefficients cm* then the Fourier transform
of two superimposed gratings will be

The parameters for the Ronchi rulings in the figures are To = Ti = 1, 60 = 0, and Bt = 15*. The
ordered pairs in the Fourier transform in Figure 8 show (no7ni). In general, the locations of the
5*s in frequency space are given by vectors

for n®^n\ = — oo,. . . ,—1,0, l , . . . , oo . This vector iatnTpretation was suggested by
daM [Biy74J. The amplitudes of the coircspcmdiEg complex exponentials in the spatial domain
are given by cmcmr A moire pattern is obvious when a S with sufficient amplitude falls closer
to the origin than the fundamental frequencies of cither of the constituent gratings. In the case
of Figure 8, the fundamental frequency of both gratings is 1 cycle/unit length. The lowest fre-
quency shown in the Fourier tranfann of the superimposed gratings is for (%,HI) = ±(—1,1),
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whose frequency is about ±0.26 cycles/unit length in the direction of 97.5". These are the
frequency and direction of the dark, nearly horizontal bands seen in the moire pattern in Figure
7.

For every relatively prime pair (n0, m) in the Fourier transform of the superimposed gratings
(Figure 8), there will be a set of 6f$ which fall on a line through the origin of frequency
space, and whose n's are given by (m/io> tftfii), m = —oo,..., — 1 ,0 ,1 , . . . , oo. These lines of
d>'s in frequency space form periodic patterns in the spatial domain, because their harmonics are
spaced at equal intervals. The line of 5's whose relatively prime pair is (no, n\) = (—1,1) in
Figure 8 is responsible for the obvious moire pattern in Figure 7, because it happens to have
a low fundamental frequency with a relatively large amplitude. There are, however, an infinite
number of relatively prime pairs, all of which serve as the fundamental frequency of a line of
8% all of which could be considered moire patterns. The well-known method of partial sum
extraction [PYS76] is to pick a relatively prime pair and sum up all the frequencies along that
line. Lines of Sys with higher fundamental frequencies are sometimes ignored as noise [PYS76].

If k transmittance gratings are superimposed, the above equation for the Fourier transform
generalizes to

Go(fxrfy) * Gx(fxJy) *... * Gk^(fxJy) -
oo oo

E £ - £
L\*=0

This is a distribution of 5-functions at

(3)

with coefficients of n£o! <V

3 Moire Patterns from Sampled Gratings

The previous section shows how moire patterns develop from crossed gratings. Digital cameras
cause moire patterns by discrete sampling. The development of moire pattens in sampled,
images is fundamentally different from crossed gratings. Sampled-grating moire patterns occur
when a periodic pattern is sampled at a rate less than twice the highest spatial frequency of the
periodic pattern. TMs is the familiar phenomenon of aliasing. Spatial frequencies which are
greater than half the Nyquist frequency are aUased into lower frequencies- Thus, much like the
qrossed-gratings case, high frequencies pattems beget patterns of lower frequencies.

At least two sampied-grating moire models have appeared in the literature. Bell and Ko-
llopotifos JTBK84] consider discrete, 2-D sampling of a projected, cosinusoidal grating and de-
velop t rale for producing unambiguous moixe fringes* Cetica et cd. [CFB85] specialize Bell
and Koltopotilos* result to one dimension and report an experiment with a linear, photodiode
array* Neither model lakes into account the effects of camera blurring or the multiple stages
of sampling which are common in digital imaging systems. We will develop a model which
accounts for these factors in the next section, ami then apply it to a flat, periodic grating. It will
be seen that Miming and multiple-stage sampling have a significant impact on the brightness
and geome&y of moke fringes,
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3.1 A Model of Multiple Stage Reconstruction and Sampling

We will give a brief formulation of a single-stage, image sampling system to demonstrate aliasing.
Similar formulations can be found in most texts on image processing. The model can be easily
explained in terms of a digital camera recording an image, although we will see how the model
can be applied, recursively, to subsequent stages of image transfer and display. The input to
the sampling system is an arbitrary image of intensities g(p,y). Before sampling, it is blurred
by a convolution with the point spread function p(x, y). For the case of a camera, g(x,y) is the
ideal input image, and J?(JC,JO represents the effects of misfocus, diffraction, and pixel response,
all of which can be described by convolution. (We are neglecting geometric and photometric
scale factors here.) The image which is sampled by the photosensitive camera cells is then
P(xry) * g(x,y). The Fourier transform of this image is P(fxJy)G(fxJy), where P(fx,fy) is the
Fourier transform of the point spread function, and G(fx,fy) is the Fourier transform of the ideal
image. The camera's sampling grid can be represented by a grid of 5-functions, each centered on
a photosensitive cell on the image plane. If the spacing of the cells in the x and y directions is Tx

and Ty, the sampling grid is given by E£=-oo £^=-oo 8(pc-nxTx,y-nJTy). Here we have neglected
the finite size of the sampling array. This can be accounted for by multiplying the array by a
zero-one function in the shape of the sampling grid (usually a rectangle). Bell and Koliopoulos
do this in their analysis of moire patterns, but for our purposes, it only leads to unnecessary
complications. This is because although a truncated sampling grid can have a significant impact
on the frequency-domain representation of a sampled grating, it's spatial-domain representation
(where moire pattern analysis is ultimately carried out) is simply a truncated version of the
infinite moire pattern. The sampled image is given by the product of the blurred image and the
sampling array as

l»r=—OO ttyst—OO

The Fourier transfonn of this is the convolution of the Fourier transfonn of the blurred image
and the Fourier transform of the sampling grid:

(4)

This equation indicates that the Fourier transform of the blurred image is repeated at intervals
of (l/TXj l/Ty) in frequency space. These copies of the Fourier transform are called the spectral
orders of the function g(x,y), with the 0^ spectral Older centered at the origin of frequency
space.

Figure 9 shows the Fourier transform of a function gfay) that is to be sampled. In this case,
the function happens to be a grating. The ^-functions are shown as x *s. After sampling, the
Fourier transform looks like Figure 10. The original Fourier transform has been repeated into
an infinite number of spectral orders. The 0^ spectral order is shown in x *s, while the others
are shown as #'s. The centers of the spectral orders are shown with larger symbols.



Figure 9: Fourier transform of grat-
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Interpolation is applied to the samples in order to extract a continuous estimate of the original
image. This can be formulated in the spatial domain as a convolution of an interpolation
function, usually some kind of narrow pulse, with the samples. The convolution operation
means that the interpolation function is repeated at every sample point and modulated by the
values of the discrete samples. In frequency space, interpolation amounts to multiplying the
distribution of spectral orders by the Fourier transform of the interpolation function. This function
may be chosen to reduce the effects of aliasing or noise, but it is always band-limited by the
Nyquist frequencies, [±1/(2TX), ±1/(27^)]. These limits arc shown as a rectangle in Figure 10.
If frequencies from spectral orders other than the Oth fall inside the nonzero region of the
interpolation function, aliasing will occur. This has happened in Figure 10.

For a typical digital image capture and storage system, the model above is incomplete. Once
the image is sampled into charge levels in the camera, the samples are converted into an analog,
video signal for transmission, then amplified, filtered and resampled by an analog-to-digital
converter. Thus, one set of samples is turned into another, and the sampling rates may not
be equal. We show the frequency domain effects of a second stage of sampling in Figures 11
and 12.

Go(fxJy)

Interpolation
& Blurring:

continuous
image

Figure 13: Block diagram illustrating multiple stage reconstruction and sampling

We can think of such a system as a multiple stage reconstruction and sampling process. As
shown in Figure 13, each pass produces a new set of samples which are fed back through the
system. The index / is incremented for each pass. The initial input to the system is the original,
ideal image from the scene. It is first blurred and then sampled. The samples are then sent back
through the system, whore they are reconstructed into a amtinuoas Image and blurred (in the
same step), and then sampled again. The process can be repeated over and over.

As we saw above, the reconstructed image is bandMmited by the Nyquist frequencies. Since
a pass througji the loop does not impose any Mgher freqiiencies on the reconstructed image,
the final reconstructed image, no matter how many times the loop has teen traversed, will be
bandEmited by the minimum Nyquist frequency encountered during any pass. Thus, no aliasing
can occur after the minimum sampling frequency has been encountered. Alternatively, if the
sampEng rate decreases cm each pass, there may be a complex interaction of frequencies as
aliased frequencies become themselves aliased in subsequent passes. These arguments apply
independently to the x and y directions.



The process can be characterized mathematically by putting subscripts on equation 4, which
describes one pass in the frequency domain,

^ £ £ *<£ - JK/, - £*) (5)
We have replaced G with S to stand for "samples". One pass may be interpreted as follows: The
samples S^\(fxJy) are converted to a continuous signal by filtering with Pi(fxJy). Pi represents
not only the interpolation function, but the amplification and filtering that occurs before the ith

sampling stage. The analog signal is then sampled with x and y spacings of Tz. and Tyn giving
a new set of samples in Si(fx,fy).

The process of creating a stored, digital image of a scene may be cast in this multiple stage
model We start with the ideal image G(fx,fy) which serves as So(fx,fy), the initial sampled
image. While this is not really a sampled image, it is the appropriate place to start the recursion.
The first sampling loop (/ = 1) is the digital camera. P\(fXjfy) accounts for lens defocus,
diffraction, arid the area integration of the pixels which are spaced at intervals of TXl and Tyi.
The resulting samples are manifest as charges present on the image plane. The second sampling
loop (i = 2) is the analog-to-digital conversion. This stage starts by converting the image plane
charges to a 1-D analog signal using Pi(fx,fy\ Since the image plane samples are usually
scanned out row by row, there is no bluiring in the y direction in this step. For the same reason,
Tn =Tn. T^ and 7^ are not necessarily equal, because the sampling rate on the image plane
may be different from the sampling rate of the digitizer. We could go around the loop once more
to model the conversion to discrete charges on the phosphors of a display device. Yet another
loop coakl model certain facets of human vision, since the discrete sampling of the human fovea
can produce moire patterns, suggesting that it, too, has a fairly regular sampling grid (although
not jmangularfWil85]). This would require that the model accommodate a non-rectangular
sampling grid..

The impossibility of aliasing after encountering the minimum sampling rate can be seen in
Equation 5. Suppose that in pass i = 1 (e.g. the sampling on die camera's image plane), the
sampltog periods TXl and TB are larger than the sampling periods of the digitizer, T^ and Tn in
pt$$ i = 2. That is, the sampling frequency of the first stage is lower than that of the second
stage. TTie Fourier transform of the first set of samples wfll be a distribution of spectral onders
at intervals of (1/T^, 1/Ij*). When this signal is xeconstnicted in preparation for resampling in
tbe mx»d stage* it will be bandttmited by the Nyquist frequencies of the first sampling stage,
(±lf(lFMl%±lf(2Tn)}. The Fourier transform of the second set of samples wiH again be a
dtstrilratiott of spectral onfers, centered at intervals of (lfTm, l/Tn% Since these centers are
father apart than tic maximum dimensions of the Fourier transform of the reconstructed image,
there wH be no overlap in fmqmmcms* and thus no aliasing.

Hi s is demaasxntod fpapfeietly in FigtHts 10 and II . The immstnicted image after one
stage erf sampling will consist of the ^*s kside die Nyqimt bounding box in Figrae 10. These
fwqtieiiciei include some (bit not all) of die fkxjiieiities of the original gating along with aHased
fitquendes from nrighboring spectral orders. If this rwoitttndccl image Is sampled again with
sa i l e r saipliag periods (le» higher sampiiig freqi»iicie$X the spectral criers of the sampled
istftfe will be $pwtd in fteqtxaicy space such that no overlap occurs, as in Figure 11. Here
wo hive ififa shown the 0* spectral odor as x fs and the ofhem is • 's . The box indicates tbe
Mycpifi kxarfs of the «€orri sniping stage. If, on the other faui4 the sampling rates of the
second stage aie lower than those of the first stage, more aliasing cmiM occur. This is the case in
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Figure 12. We see that the Nyquist bounding box includes some frequencies from neighboring
spectral orders and excludes some from the 0th order.

3*2 Moire Patterns

We can use the multiple stage sampling and reconstruction model above to predict the devel-
opment of moire patterns in an image sampling system. Equation 5 gives the expression for
one pass through the sampling system with an arbitrary input function G(fX7fy). Equation 2 is
a grating with an arbitrary profile at an angle 0. If we substitute the grating equation into the
sampling equation, we see that the result of one stage of sampling on a rotated grating is

Sff)

£E £ E
This is a distribution of <5's whose locations are given by

TnJ

The £'s of the grating's Fourier transform are indexed by no, while the spectral orders are indexed
by (njq, n^). The coefficients of the ^-functions are independent of the particular spectral order,
but depend on the relative displacement from the center of the spectral order. As with crossed
gratings, a moire pattern will be especially obvious if die first fundamental frequency from
another spectral order falls closer to the origin than the fundamental frequency of the Oth spectral
order, because the first fundamental usually has significant amplitude. See [RK82] (pp. 83-87)
for a simple example.

In most digital imaging systems, the image above will be reconstructed and sampled again.
This process can have a significant effect on the moire patterns which are observed in the final
image. Given a suitable set of geometric parameters (Le. the rotation of the grating and the
sampling intervals), there could actually be moire patterns developed in the first stage that are
aliased into other moire patterns in subsequent stages. This was shown in Figures 10 and 12
where frequencies which were aliased in the first sampling stage were again aliased in the second
stage. These extra, aliased frequencies cannot be accounted for in a single-stage sampling model,
and they would likely confound current moire fringe analysis techniques.

In addition to affecting the geometry of moire fringes, multiple sampling stages also affect
their brightness. Each sampling stage has associated with it its own point spread function
which describes the combined effects of interpolated reconstruction and transmission to the next
sampling stage. Mathematically, the applications of the sampling grids and point spread functions
must be interleaved, which means that, in general, no single point spread function can be used
to characterize multiple sampling stages. Previous models of sampled-grating moire have used
either a simple, single-stage model with only one point spread function, or else no point spread
function at all. As was shown in Post's [Pos67] wok on fringe shaipening, a careful analysis of
the brightness profiles of moire fringes can lead to more robust detection of the fringes. Thus,
it is important to have an accurate model of the sampling system's effect on the fringe profiles.
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4 Cr^ed-Gratlngs Models of Sampled Gratings
Equation 3, which Ascribes cmsscd-gratiBg moixe, and Equation 6, which describes sampled-
mting nioim. «e smpriskgly similar, given the fuodamenmUy C e r e n t processes which they
SodeL TT ŷ art both a itgularly-spaced distribution of ^-functions It has been asserted that
the mote p a m which nssult from digitally sampling gratings and those from crossed gratings
cm be cmmkmi equivalent [IYS77]. The intuitive feeling behind this assertion is that the
mm and columns of the sampling grid can be considered as gratings which, when combined
with ao ofegect grating, make mote patterns like crossed gratings. This is important because it
tmm$ thai the ccwsiderablc amount of past work on metrology using crossed-grating moire can
be dtuxdy applied to the relatively new idea of "scanning moire" — moire with one grating and

i digital cament
In order to assess the degree of similarity between crossed gratings and sampled gratings, we

will try to model i sampled grating with crossed gratings. We imagine a single grating go(pc,y)
(the object fritting) which is imaged by a digital camera. TTie grating has period Jo, angle 0O, and
Fourier series coefficients cH. If aliasing occurs, moire patterns will result in the reconstructed
image. We would like to know what set of crossed gratings of the form of Equation 2 would give
the same mote pattern for die same object grating. These "effective" gratings will be chosen
inch that tey five ap^xintately the same Fourier transform as the Fourier transform of the
stapled, iwmstrpcted image erf grating gofcjO- 1^ e effective gratings will serve as a sort of
eastern model I is important to realize that the camera model is made of gratings (patterns
of tout* transmission profile which is periodic along some direction), not arbitrary transmission
fmotions. W we allowed ariritnoy functions, then the camera model would be a simple inverse
tow anMrfenn. We tic restricting ourselves to gratings in onler to test the assertion that
m»j^^puiM$ motae patterns can be considered the same as crossed gratings- In addition, we
m l mlf attempt ID model 11/2 passes through CHIT multiple stage model, meaning that the
igpit pt&tf is first Waned, sampled, and then reconstructed. This is necessary because crossed
jptSftp vesnlc in a cttitiai^is image, sot a sampled image which' results from one pass through
At loop* A fc^f t i t tw^ ampW image of a grating is given by

I
•JW»/,> L E

,"lt'
( )

Pi *i Ae Fourier transform of the point spread function of the camera (including lens and
pml ifeipe), and f3 represents the interpolation function.

The tet ai effectiw gmings is not unique. In fact, even the number of effective gratings is not
detenwuesd (For tninnas, any grating can be composed of two or more parallel gratings, each
of wtiicii tttket # ptrt of Ac first fitting's profile.) It is reasonable, however, to consider a set
of nw> effedwe pu iup , apueienting the rows and columns of the sampling grid respectively.
We win fen derive an approximate pair of effective gratings by assuming that they arc each
i«ictii nttugv We will then relax the conditions on the two effective gratings by allowing
ttommf pngftfct.

«3w umefy to both cues will be to compare an equation which characterizes the assumed

m*m «» wa then imumiMe the free parameters of the effective gratings and evaluate how
mil iht furo tormimi «st£h
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4.1 An Approximation With Two Ronchi Rulings

Equation 3 gives the expression for k superimposed, transmission gratings. We will let k = 3
for two effective gratings and one, arbitrary, object grating. The cn for a Ronchi ruling are
sinc(/i/2)/2. The expression for the superposition of the arbitrary grating Go(fx,fy) and the two
Ronchi rulings representing the camera is then

£ E £ i A i ^ ) 6(fx - £cos«o - ^-cos* - £cosfc,
r 0 Tx r 2

/? - ^ sin0o ~ Jr sin#i - ^ sin02)r0 Ti T2

where To, #o» and c^ characterize the arbitrary grating. The free parameters are the periods and
angles of the Ronchi rulings, i.e. Ti,T2,0i, and 02. We see from Equation 7, which gives the
expression for the sampled grating Go, that a reasonable choice is to have T\ = Txy T2 = Ty9

91 = 0, and 02 = f • The periods and angles of the effective gratings then match the periods
and angles of the rows and columns of the sampling grid. The positions of the ^-functions in
both the sampled-grating case and crossed-gratings case are thus equivalent The amplitudes,
however, are not The most significant difference is that die sampled grating is bandlimited by
the Nyquist frequencies, while the crossed gratings have no such limits. Likewise, the crossed
gratings arc not subject to the interpolation function or camera blur. Thus, two Ronchi rulings
can accurately generate a superset of the frequencies from an aliased grating, but they will not
give a good indication of the amplitudes.

We can demonstrate the Ronchi ruling approximation in pictures. Figure 3 and Figure 14
show the two constituent, orthogonal Ronchi rulings which serve to simulate the sampling grid
of a camera. Figures 4 and 15 show the respective Fourier transforms. When these two gratings
are crossed, they look like Figure 16, and the Fourier transform looks like Figure 17. The Fourier
transform is a grid of £'s whose spacing is the reciprocal of the periods of the two Ronchi rulings.
If the grating periods are equal to the sampling periods of the camera, as we have shown they
should be, then the <5's of the two, orthogonal Ronchi rulings will coincide with the centers of
the spectral orders of a sampled grating. In Figure 18 we show the two, orthogonal Ronchi
rulings crossed with a third Ronchi ruling at 15*. This is the same 15* Ronchi ruling shown
with its Fourier transform in Figures 5 and 6. Finally, Figure 19 shows the Fourier transform
of the three, crossed Ronchi rulings. Although it is difficult to tell from the figure, the effect of
convolving the Fourier transform of the tilted ruling with that of the two, orthogonal rulings has
teen to repeat the Fourier transform of the tilted ruling on a grid of 6% just like the repeated
spectral orders of a sampled grating.

13
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4.2 An Approximation With Two Arbitrary Gratings

When we relax the conditions on the profiles of the two effective gratings, we still find that
the geometric parameters should match those of the sampling grid. Thus, the equation for the
crossed-gratings moire pattern becomes

Here again the positions of the ^-functions in both the crossed-gratings case and the aliased-
grating case are equivalent. The remaining free parameters are the Fourier series coefficients,
cni and c^, of the two effective gratings. We would like these coefficients to account for the
point spread function of the camera and the interpolation function of the reconstruction. We
see, however, that this is in general impossible, because these coefficients are not sensitive to
the necessary variables. From Equation 7, the Fourier transform of the point spread function
appears as Pi(noCOs(0Q)/To,nosin(6o)/To). Pi is a function of no, while cni and c^ have no
such dependence. Since the nys vary independently of each other in the three sums, crtlc^
cannot, in general, be equal to P\(rto cos(#o)/7b, nosin(6o)/To). A similar argument applies to the
interpolation function Pitfxify) which must be zero outside the Nyquist frequencies. For a given
tti and n2j the cnicni product will multiply 5-functions at frequencies both inside and outside the
the Nyquist bounds, because no is still free to vary and take the ^-functions inside and outside
the Nyquist bounds. Thus, by relaxing the conditions on the profiles, we cannot generally get
better results than from the two Ronchi rulings.

We can reach a more concrete conclusion if we disregard the point spread function and the
interpolation function for the sampled grating case (by setting them to one). By comparing
Equations 7 and 8 we then have, for the effective gratings, c^c^ = l/(TxTy). We will arbitrarily
set cni = l/Tx and c^ = 1/Ty. The Fourier series for g\(x,y\ the effective grating with the
vertical lines, becomes

Similarly,

y)= E
These are each a series of evenly-spaced lines on otherwise qpaque transparencies. Their product
is a grid of pinholes, coincident with the centers of the pixels of the camera's image plane. These
effective gratings model a camera with no blur and no Nyquist limitations.

The practical conclusion from these two-grating approximations is thai the point spread
function and interpolation function cannot be accurately modeled using crossed gratings* while
the constituent frequencies can be. Thus, the body of research developed for crassed-grating
moire can be applied to sampled-grating moire if the profiles of the moire patterns are not
important It should be noted that the crossed-gratings model pnedicts frequencies beyond the
Nyqelst bounds which will never appear in sampled-grating moire.
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If we want to simulate more passes through the sampling and reconstruction loop, we can
add two more gratings for each pass. The periods of the gratings should be equal to the sampling
periods. Their angles should match the angles of the sampling grid. In this way, we can generate
a superset of the constituent sinusoids of the sampled moire pattern, although the lamplitudes
will still not match.

5 Experimental Verification of Sampled-Grating Moire

We performed an experiment to verify our model of sampled-grating moire patterns by taking
a digital image of a square-wave grating. We used a Sony CCD, monochrome camera, model
AVC-D1, a Gosmicar 12.5 mm - 75 mm zoom lens, model number 24789, and an infrared filter
und^ incandescent lights. The Sony is a conventional, medium quality camera purchased new in
1985. We created a square-wave grating using a 2-D graphics program and printed it on 28 cm
x 43 cm paper using a laser printer. The period of the grating was about 0.85 mm, and the duty
ratio h was about 0.48. The grating contained 301 lines. We sandwiched the grating in between
a clear, plastic plate and a flat grid of calibration squares to reduce wrinkles in the grating, as
shown in Figure 20. We registered the bottom of the grating with one of the horizontal lines
on the calibration grid The camera was positioned about 1 m away from the grating with its
optical axis approximately normal to the the plane of the grating.

<calibration grid
l l i | i | f | i |• j grating

clear, plastic cover

Figure 20: Method of mounting grating for experiment

The sampled-gratiiig model predicts that the moine pattern will vary with the period and
angle of the gnting and the sampling periods of the camera. We could vary these values by
adjusting the angle of the grating and the focal length of die lens. Indeed, the mdre patterns
Ytriecl wifely with oily small adjustments.

Our 256 x 256 lest image is shown in Figure 21, which can be compared to our simulated
moot pattern in Figure 22* Tie dark, nearly horizontal bands make up the primary moire pattern.
The lines of the gating ait not visible because their fundamental spatial frequency was beyond
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the Nyquist limits. There are still some wrinkles in the left half of the grating. The DFT of the
actual moire pattern is shown in Figure 23. We have thresholded the DFT so the smaller peaks
are still visible. The peaks are blurred because the DFT was taken over only a finite region of
2-D space.

Figure 21:
Pattern

Sampled-Grating Moire Figure 22: Predicted Moire Pattern
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5.1 Geometric Parameters

In this section we describe how we determined the geometric parameters of the experiment and
how well our model predicts the constituent frequencies of the moire pattern. We will take
as our fundamental unit of length the "y-pixel". This is the sampling period of the CCD in
the y-direction. Since the image is scanned out in rows, it is also the sampling period of the
digitizer in the y-direction. We estimated the period and angle of the grating by slipping out
the grating from in front of the calibration grid and taking another image. The calibration grid
provided an absolute ground truth for scaling and rotation. Because of our choice of units, the
sampling periods in the y-direction for the camera and digitizer were both one. We calculated
.the sampling rates in the x-direction from the specifications of the camera and digitizer. In terms
of our multiple stage sampling model, we will call the camera "stage 1H and the digitizer "stage
2". The geometric parameters for our model were

= 1.21 y-pixels
= 1.70 y-pixels

t = L28 y-pixels

Q QQ '20*0
<7Q — O o O O

Fyi = LOO y-pixels
Fn =s 1.00 y-pixels

The digitizer does not figure prominently in our predictions, because its two sampling rates,
T^ and 7^, arc both less than or equal to their respective counterparts on the CCD, TXl and
7^. As we saw previously, this means that no additional aliasing can occur in the digitization
stage. Thus, the digitizer values represent true (unaliased) samples of the moire pattern after
11/2 passes through the reconstruction and sampling loop. Therefore, an adequate model of
the process is Equation 7 which represents 1 1/2 passes. We note that this includes the effects
of image blurring before sampling, CCD sampling, and any filtering which occurred before the
image was digitized

0.50

i-iom

-#J§

mm

Hi

0|*30

Figure 23: Tteesk>lctoi Fotirier
of Moire Pattern

Figure 24; Ptedkted R w i a Trtns-
form of Mmre Ptttcra
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no
-1
4
-2
3

peak

0
0
0
0

"y

1
-3
2
-2

prediction

frequency ( £ & )
0.18
0.32
0.35
0.48

angle
97.65°
72.94"
97.65"
81.66"

experiment
frequency (^§a)

0.18
0.28
0.37.
0.46

angle
96.78"
74.20°
96.23"
82.71"

error
frequency

-3.04%
13.70%
-3.98%
5.83%

angle
0.87"

-1.26"
1.42"

-1.04°

Table 1: Predicted and actual frequencies of four peaks

A plot of the predicted Fourier transform is shown in Figure 24. The strongest, nonzero
frequency on the plot is for (no, nx,ny) = ±(—1,0,1). These are the fundamental harmonics of
the spectral orders just above and below the &h spectral order in frequency space. They have
spilled into the region which is not cut off by the Nyquist bounds. In fact, the fundamental
frequencies of the 0/A spectral order are outside the Nyquist bounds, so the grating itself is not
visible in the image. The frequency of these strongest peaks is

(fxjy) = ( ^ + ̂  cos 00, £- + ?r sin 0Q) = ±(-0.023,0.17)- CydeS

y — pixel

These two peaks sum to a cosine wave with a frequency of 0.18 cycles/y-pixel in a direction of
97.65* from the horizontal. This is the obvious moire pattern that is apparent in Figure 21. An
analysis of the DFT of the actual moire pattern shows the strongest, nonzero-frequency peak to
be at a frequency of 0.18 cycles/y-pixel in a direction of 96.78°, which is in good agreement
with the predicted fundamental. We can visually match three other peaks between the actual
and predicted Fourier transforms. The four matched peaks are shown as x's in Figure 24. The
four actual and predicted values are given in Table 5.1. We note that the absolute value of the
percentage error in frequency increases with increasing values of no and fly. This is because
increasing these values magnifies the effect of errors in the geometric parameters 7b, #o, and Tr

All the ^-functions on the plot in Figure 24 have nx = 0. Since TXl appears only as nx/TXl

in the equation for the position of the £'s, the CCD sampling period in the x-direction has no
effect on the moire patterns. This is because the grating was oriented so its lines were almost
parallel to the rows of the CCD. If the grating were rotated through another 90°, we would
see the dependence on T^ lessen until all the Ky = 0. We suspect that Idesawa et al. [IYS77]
had a similar situation, since they actually consider the camera to be modeled by one grating
corresponding to the horizontal scanning lines of the camera.

5*2 Amplitude Prediction

Having successfully predicted the constituent frequencies of a sampled-grating moire pattern,
we turn our attention to predicting the amplitudes of the sinusoids. The amplitude of a sinusoid
(Le. the coefficient of a ^-function in frequency space) is determined by three factors: the c^,
p\{fxJyX and Pz(fx,fyy The c^ are the Fourier series coefficients of the grating profile. We
know these with a fair amount of confidence since we know that the profile is approximately a
square wave with a duty ratio of about 0.48. Thus, c^ = O.48sinc(G.48no).
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Finding Pi and P2 is more difficult P\. represents the effects of lens blur, diffraction, and
the response of a single, photosensitive CCD element, P2 represents the filtering which occurs
in the electronics of the camera (when the CCD samples are being assembled into a 1-D, analog
signal), the transmission from the camera to the digitizer, and the time sampling window of the
digitizer for each digitized sample.

The CCD charge values are samples of P\G, where G is the ideal input image. If P\G is
bandlimited below the Nyquist frequencies of the CCD, then no aliasing will occur in the camera
sampling stage. The signal arriving at the digitizer sampling stage will then be P\PiG. If the
digitization rate is sufficiently high (as it is in our case), then no additional aliasing will occur
at this stage. In general, once the minimum x and y sampling rates have both been reached in a
multiple stage sampling system, the transfer functions of successive steps will simply multiply
into one effective transfer function. These are the (often tacit) band-limitation assumptions made
by researchers when they attempt to measure the point spread function of a digital camera system
by imaging a scene with high spatial frequencies such as a point, line, or step edge. Even if we
did know the product P\P2, it would not be sufficient for our model. Pi must be applied to the
unaliased frequencies, while P2 is applied after aliasing.

Ideally, we could determine P2 by applying test charges to the CCD elements of our camera*
Instead, we attempted to project a step edge onto the CCD by placing a piece of metal foil as
close as we dared to the sampling chip. We were able to lay the foil on a glass cover over the
chip, leaving about a 2mm gap of glass and gas between the two. The results were disappointing.
The derived line-spread function varied significantly depending on whether the step edge was
a dark-to-light or light-to-dark transition, and the crude transfer function that we derived from
the data did not fit the moire pattern data well. We attribute this to many things. The step edge
was subject to a certain amount of diffraction as its image traversed the gap, so we were not
imaging a perfect st€p edge. Tfaeie may have been aliasing in the higher harmonics of the step
edge. Finally, we know that the camera electronics is not a purely linear system. For the rest of
our experiment, we assumed that P2(fxjy) = rect(TxJx, TyJy% that is, the only band limitations
between the CCD and the digitizer were the Nyquist frequencies of the CCD. Given the difficulty
of experimentally finding P2> along with the acceptable predictions we were able to make in the
end, we felt this to be a tolerable assumption.

Having accounted for two of die tfaee amplitude attenuation factors (the cm and P2\ we
then attributed the remainder erf tie attenuation to P\9 which represents the efforts of lens blur,
diffraction, and the response of the CCD elements.

We can extract experimental data with which to fit this function from the actual moiie
pattern date in the form of the amplitudes of the four matched peaks from the previous section.
Since Pi is a fraction of tic pre-aiiased spatial frwjuencies, it is important to know what these
frequencies were. Rom the peak matches in the previous section, we know the corresponding
values of % (the hannonics of the grating). The spatial frequency is then, from the Fourier series
in Equation ls na/To, where To is the period of the grating. Since we measure T§ in unite of
y-pixcl$» the spttltl fircqueiities wMI be in units of cyclcs/y-pixel, consistent with die frequency
units used above. The experinteotal tatgmttxles of the four matched frequencies come from die
Vmmm transform of tie moire pattern. For each peak, we divided mat the efforts of F2 (which
we have assumed to be one msicte the Nyquist bounds) and c% to get the dttt with which to i t
Pi.

In choosing the form of Pu we derided to ignore the effects of fees blur and the CCD
clement response profile. We neglected fens blur because we foaiscd very ctrcfuiy with the aid
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of a test pattern, and because we were imaging a flat scene perpendicular to the optical axis, so
depth of field was not an important issue. We ignored the CCD element response because we
did not have a good idea of the response profile. At one point we assumed a flat rectangular
response, but it did not help the fit over accounting for diffraction alone.

We chose as the basis for P2 the optical transfer function (OTF) derived by Goodman[Goo68]
which describes the effects of diffraction of monochromatic, incoherent light in an aberration-free
lens system with a circular exit pupil. It is

for/ < 2/o

otherwise

It is a circularly symmetric function of spatial frequency/, s o / = yjff+jf . A plot of H(f, A)
for two different wavelengths of light is shown in Figure 25. By convention, H is scaled so
that //(0, A) = 1. The value of fo is the spatial cutoff frequency Of the corresponding coherent
system, given by

f_ 1

where / is the diameter of the exit pupil of the lens, d is the distance from die last lens to
the image plane, and A is the wavelength of the monochromatic light For our purposes, it is
sufficient to consider the ratio l/d as a single parameter erf the lens system.

I
MM m

/ !

/ i
/ /

/ /
/ /

1.00*

OM

0.70
•

0.50

0.40

0.30

030

0.10

\ m
• \ \ 0TFfiw4«

• \ \

" \ \

" \ \

\ \

-5.00 -4.00 -3.00 -ZOO -1.00 0.00 1.00 ZOO 3.00 4.00 5.00

frequency (1/y-pixels)

Figure 25: GTF's for monochromatic* incoherent light

If the spectrum of incident light w o t narrow enough, it would be sufficient to use H(f, A)
dirrctly. But, as can be seen in Figure 25, there is a significant difference in H from mm side of
the visible spectrum to the other. The effects of polychromatic light can be taken into account
by using a sum of H(f} A) weighted by the power of the incident light at every wavelength*
The effect is to integrate out the wavelength variable. If the power spectrum of the Incident,
incoherent fight is $(\\ then the polychromatic OTF is given by

(
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where we have normalized so Pi(0) = 1.
The power spectrum of the light, which orginated from an incandescent bulb, was affected

by the reflection from the grating and by the passage through the camera lens and filter. In
addition, the CCD has a particular spectral response profile. We approximated the spectrum of
the incandescent bulb with CIE Standard Hluminant A, which was appropriate because it models
idealized incandescent bulbs. We assumed that the grating (and plastic cover) had a flat spectral
response based on the simple observation that it looked white to our eyes. Since the rest of the
system was bandlimited to the visible spectrum, this assumption was appropriate. The response
of the filter, lens, and CCD were taken from spectroradiometer measurements in our laboratory.
The constituent and resulting spectra are shown in Figure 26. We have scaled all the spectra so
their maxima are one. The curve we used for s(\) is the product of the curves for the illuminant,
infrared filter, and the combined lens and CCD response. It is shown as a solid line in the figure.

standard illuminant A
infrared filter
lens and camera
aggregate response

400 mo 600 TOO 8m 900
wavelength (nanometers)

Figure 26: Spectral Curves

We fit jPi to the experimental data by determining two parameters - the l/d ratio and a scale
factor on the four peak magnitmies to account for the scaling effects of the overall light intensity,
the hmf the camera, the digitizer, and the FFT. We fit the two ptfamefers using the subroutine
"dunbT from 1MSL* a ccmmerdal package of mathematical subroutines in FORTRAN, This
subroutine aitempts to numerically minimize the sum of squared emm between data and a
function by vaiykg the free parameters of the function. From this fit, we determined that
l/d » 0.079, t physically reasonable value. The resulting fit is shown in Figure 27. We note
that P% has ctptecd the general downward trend of the data* but has not accounted for all of
the variation. This is likely doe to a number of effects which we have neglected, such as lens
binning, tens abcmtloiis, and the spatial response of lie CCD elements. Also, the two peaks
with odd values o€ % had cm close to zero and were very dependent on the valiK of h, the duty
ratio of the grating. Also, as indicated in our experiment with imtging step edges, the camera
deetrcinjcs do not constitute a linear system.

As shown in Figure 27, the data for P\ extends well beyond the Nyquist freqtiencies of the
22
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Figure 27: Fitted curve for Pt

CCD, which are 0.29 cycles/y-pixel in the x direction and 0.50 cycles/y-pixel in the y direction.
Conventional end-to-end techniques for determining the OTF of digital cameras are Nyquist-
limited. Our experiments suggest a new technique for finding OTF's beyond the Nyquist bounds
by introducing controlled aliasing.

As our model shows, it is important that the peaks in the Fourier transform be related to
their pre-aliosed frequencies when analyzing the camera's point spread function. It would be a
mistake to use the frequencies directly indicated by the Fourier transform, since they have been
altered by aliasing. We note that an attempt to fit our P\ to the aliased data resulted in a squared
error of over three times that of die fit for the pre-aliased frequencies and an unreasonable value
of l/d.

53 Moire Pattern Simulation

We can use our estimates of Pi and P2 to model the moire pattern from our experiments.
Figure 22 shows our prediction of the moire pattern in the spatial domain. The period and angle
of the prediction are about right, as we demonstrated above quantitatively. Figure 24 stows our
prediction of the Fourier transform of the moire pattern in Figure 21. As before, we hive shewn
the ^-functions as dots. The peaks in the actual Fourier transform in Figure 23 axe spiead out
due to the finite number of samples in the image*

A more telling visual comparison is to look at the 1-D Fourier transfonn of a vertical flee
through the moire pattern* The dotted curve in Figure 28 was pradaced by calculating t i t
discrete Fotmer transform of each of the columns of the actual motre pattern in Rgiro 21, then
taking magnitudes and averaging. Since each column should differ in phtsc oily, this m c i ^ i
allowed us to average random mom effects. The mm large spikes represent the obvious ramie
pattern. Figure 28 also shows our prediction of the stmc slice. This prciictiai was made by
first calculating the sp&tial-dcraalii, colantii profile mil then using the $a»e DIPT rottine tkM
was used on the actual data. We see that the actual dtta is offset Ytrticaliy by an almost cotitait
value indicating almost white noise* The predictions on the pOTitk»$ of the peaks is goo4 is
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was demonstrated in the previous section. The amplitude prediction is not as good, indicative
of the mediocre fit of Pi to the amplitude data.
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Figure 28: Slices of vertical Fourier transforms

This experiment shows that our sampled-grating, moire pattern model correctly predicts the
locations of the frequency peaks. Since the sampling rates of the digitizer (1/T^, l/Tn)9 were
greater than or equal ID those of the CCD, no additional aliasing occured in the second sampling
stage, and the digitizer sampling rates did not figure explicitly in our predictions. These rates
were used implicitly, however, because the final image was sampled at these rates, and we had
to account for this in our calculations. Specifically, the distance between adjacent samples along
a row in the final image actually repiesents a distance erf T^{TXI = 0.75 samples along a row on
die COD. The experiment also shows that our model does a fair job of predicting the amplitudes
of the moine pattern. This was especially apparent in the improved fit of P\ when using the
pre-aliased data over using allased data.

6 Crossed-Gratings Moid of Sarnpled-Grating Moire

We prctcnt hem a brief experiment to stow tow aa alltsed moire pattern can be approximated
with crossed ffnmg$. We ane pitpwed to do tins at Ms point because we have detemined above
die memmxy geometric ptrameien of die actual, tiased moire pattern- Rguie 29 stows three
superimposed gratinp whose periods and angles m&lrh d»§e of the CCD camera and grating
voted in die experiment above. We have made na tttcropt to impose any particular profile on the
three gntings, ether than 10 make At lines dun so they wiU not ran together during reproduction.

Accfmisg to cwr analysis in section 4f we can §efiGHic 1 superset of the constituent fre-
queiities of an aliased mmm pattern by suuehing die ^mmuy of the sampling system with
crossed gratings* A visual comparison of the crossed g f t i a p in Figure 29 with die aHased
moire pattern in Pignut 21 shows MM m be qualitatively true* The periods and angles of both
moire patterns ait about equal. In FIgo« 30 mt show the mmm crasscd-gratings model without
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Figure 29: Aliased moire pattern
simulated with three crossed gratings

Figure 30: ' Aliased moire pattern
simulated with two crossed gratings

the vertical-line-grating which models the columns of the camera. Essentially the same moire
pattern is visible in both. This is to be expected. As we demonstrated in Section 5.1, for our
particular set of parameters, the sampling rate in the x direction had virtually no effect on the
moire pattern, because the lines of the object grid were almost parallel to the horizontal scanning
lines.

7 Conclusion

Past attempts at characterizing sampled-grating moire have used either a crossed-gratmgs model
or a single stage sampling model. We were able to evaluate these models by developing notation-
ally consistent, frequency space models of crossed-grating moire and multiple stage, sampled-
grating moire, of which single stage sampling is a special case* In evaluating the crossed-gratings
model, we found that if we chose the periods and angles of the crossed gratings to match those
of the sampling grid, the resulting arossed-grafing moire pattern would contain a superset of
die frequencies of the sampled grating. We demonstrated fMs fact with equations and a simple,
qualitative experiment We also showed that the cmsed-gratings model cannot correctly predict
the amplitudes of sampled-grating moire.

The single stage, sampled-gratiBg models proposed in the literature arc better than tic crossed-
gratings model for characterizing moire patterns doe to aliasing. But we have shown how our
model of multiple stage sampling accounts for multiple stages of aliasing, which has a significant
impact on both the geometry and brightness of sampled-grating moire patterns. Tie geometry can
become complicated if later sampling stages have lower sampling rates than earlier stages. Thus,
in practically applying sampled-grating techniques, It Is Important to be aware of the sampling
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rates of all stages of the imaging system. Otherwise, there could be unanticipated aliasing
effects which would likely lead to mistakes in shape measurement In terms of brightness, we
have shown that a single point spread function cannot, in general, characterize a multiple-stage
sampling system. We demonstrated with an experiment how our model does a good job of
predicting the frequencies present in an actual sampled grating, and a fair job of predicting the
amplitudes.

This research demonstrates clearly the justification for using a crossed-gratings model to
characterize sampled gratings, but also shows its limitations. We have demonstrated the sorts of
errors which can result from a crossed-gratings model or single stage, sampled-grating model,
and how these errors can be avoided using our multiple stage, sampled-grating model. The
multiple stage sampling model should be used to avoid errors whenever sampling considerations
become important in a digital imaging system. A future use of this model might be to increase
the sensitivity of moire methods by adjusting the relative sampling rates of the stages of the
imaging system.

26



References

[BK84] Bernard W. Bell and Chris L. Koliopoulos. Moire topography, sampling theory, and
charge-coupled devices. Optics Letters, 9(5): 171-173, May 1984.

[Bry74] Olaf Bryngdahl. Moire: formation and interpretation. Journal of the Optical Society
of America, 64(10): 1287-1294, October 1974.

[CFB85] Maurizio Cetica, Franco Francini, and Duilio Bertani. Moire with one grating and a
photodiode array. Applied Optics, 24(11): 1565-1566, June 1985.

[Gas78] Jack D. Gaskill. Linear Systems, Fourier Transforms, and Optics. John Wiley &
Sons, 1978.

[G0068] Joseph W. Goodman. Introduction to Fourier Optics. McGraw-Hill, 1968.

[IYS77] Masanori Idesawa, Toyohiko Yatagai, and Takashi Soma. Scanning moire method and
automatic measurement of 3-d shapes. Applied Physics, 16(8):2152-2162, August
1977.

[MSH88] Yoshihara Morimoto, Yasuyuki Seguchi, and Toshihiko Higashi. Application of moire
analysis of strain using fourier transform. Optical Engineering, 27(8):650-656, August
1988.

[Fos67] Daniel Post. Sharpening and multiplication of moire fringes. Experimented Mechanics,
7(4): 154-159, April 1967.

[PYS76] Krzysztof Patorski, Shunsuke Yokozeki, and Tatsuro Suzuki. Moire profile prediction
by using fourier series formalism. Japanese Journal of Applied Physics, 15(3):443-
456, March 1976.

[RK82] Azriel Rosenfeld and Avinash C. Kak. Digital Picture Processing, Second Edition*
Volume 1, Academic Press, 1982.

[Wil85] David R. Williams. Aliasing in human foveal vision. Vision Research 25(2): 195-205,
1985.


