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Abstract

Traditional "crossed-grating” moire, as well as newer "sampled-grating” (scanning) moire,
have proven to be effective methods of shape measurement. There is speculation that the
moire patterns of a sampled grating, which are due to aliasing, can be modeled with crossed
gratings. We compare the two and show that while crossed gratings can correctly predict
the frequencies of a sampled grating, they cannot correctly predict the amplitudes. We go
on to formulate a new model which accounts for multiple stages of sampling and transmis-
sion, and show how neglecting multiple stages can lead to mistakes in moire analysis. We
_demonstrate our model with an experiment using a digital imaging system.



1 Introduction

Moire patterns can be caused by crossed gratings or by the discrete sampling of a single grating.
The crossed-gratings case can be seen in everyday surroundings in layers of fences or screens.
Figure 1 shows a contrived superposition of two crossed gratings that give rise to a moire pat-
tern. If one of the crossed gratings is distorted, the moire pattern will be distorted, too. This
phenomenon has been extensively exploited in metrology applications. One of the constituent
gratings is projected onto a distorted object and observed through a second, flat grating. Since
the resulting moire pattern is sensitive to small distortions in the object grating, accurate mea-
surements of the object’s shape can be derived. The object’s shape is a function of the geometric
layout of the original, undistorted gratings and the resulting moire pattern. Post [Pos67] has
shown that an analysis of the profiles of the crossed gratings can be used to sharpen the moire
fringe patterns, making it easier to track the fringes and thus easier to determine the shape of the
object. Therefore, both the geometry and brightness profiles of the moire method are important
to consider. ,_ '

Figure 1: Crossed gratings making a moire pattern

Moire patterns can also be caused by aliasing in the discrete sampling of a single grating. The
sampled-grating case can often be seen on television when a relatively high-spatial-frequency
grating, say a striped shirt, is shown. Idesawa er al. [[YS77] have shown that the flat grating in
traditional, crossed-grating, moire metrology can be replaced by a digital camera, still maintain-
ing observable moire patterns using only a single, object grating. We will distinguish these two
methods by calling the former "crossed-grating” moire and the later "sampled-grating” moire. The
moire patterns from both methods appear similar, and it has been shown that sampled-grating
moire can automate many time-consuming, subjective procedures of the traditional, crossed-
grating paradigm [MSHS88]. Idesawa er al. assert that the camera can be modeled by a second
grating, thus allowing the application of a considerable amount of past study on crossed gratings
to sampled gratings. However, this is not completely accurate. The two phenomena are funda-
mentally different, and it has never been shown explicitly how well crossed gratings can model
the effects of a digital camera. The moire patterns which result from crossed gratings are due
to the hetrodyning of their respective spatial frequencies. Moire patterns from digital cameras
(or any periodic, discrete, sampling device) come from aliasing of the spatial frequencies of the
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imaged grating. There have been moire pattern models which explicitly account for this discrete
sampling, but they do not account for lens blur or multiple stages of sampling. In this paper, we
present notationally consistent, frequency-space models of crossed-grating and sampled-grating
moire from flat gratings. Our sampled-grating model is a new formulation which accounts for
the video transmission (including lens blur) and multiple sampling stages in most digital imag-
ing systems. We use our multiple stage sampling model to demonstrate how ignoring multiple
sampling stages can lead to mistakes in moire analysis. We present results of an experiment
which verifies the model used in the sampled-grating formulation. We also examine the ability
of crossed gratings to model sampled gratings by developing a model of sampled-grating moire
patterns using crossed gratings, and we verify the model qualitatively with a simple experiment.

2 A Model .of Moire Patterns from Crossed Gratings

In this section we derive the Fourier transform of the superposition of an arbitrary number
of flat, periodic, crossed gratings with arbitrary profiles. Gratings are usually considered as
transparencies with regions of transmittance varying between zero and one. We can express
the transmittance of any infinite, 2-D, periodic grating whose transmittance profile satisfies the
Dirichlet conditions [Gas78] (p.108), and which is oriented so that its lines run perpendicular to
the x axis, as the Fourier series

) ) in2
g = L crexp), M

where T is the period of the grating, and the c, are the complex coefficients of the Fourier
series of the 1-D transmission profile along the x axis. We note that any physically realizable
transmittance grating will satisfy the Dirichlet conditions.

If the profile of the grating g(x,y) is a square wave as shown in Figure 2, the ¢, will be
given by ¢, = hsinc(nh), where sinc(x) = sin(zx)/(xx), and h is the fraction of a period that is
transparent. If & = 1/2, then the grating is called a Ronchi ruling, as shown in Figure 3.

— 1 —

Figure 2: Square wave transmittance profile

The Fourier transform of g(x, y) is
Gf)= [ [ gtxy)expl-r2n(hix + fy)idudy.
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The frequencies f; and f; are in units of cycles/unit length. We will use uppercase letters to
indicate the Fourier transforms of corresponding lowercase, spatial functions. Substituting the
Fourier series for the general grating g(x,y) into the Fourier transform equation gives

oo

Gt = 3 cablf = 7.

n=—00

This is a set of evenly spaced, Dirac §-functions spread along the f; axis. The volumes of
the §’s are given by the Fourier series coefficients. Figure 4 shows a plot of the Fourier
transform of the Ronchi ruling in Figure 3. The dots show the position of the é-functions with
.the corresponding value of n above in parentheses. The area of a dot is proportional to the
magnitude of its coefficient. For a Ronchi ruling, however, every 6 with an even, nonzero n will
have a coefficient of zero. We show these with small dots.
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We will call the orientation of g(x, y) zero because the é’s of its Fourier transform occur along
the f; axis. If g(x, y) is rotated around the origin by an angle 6, its Fourier transform rotates in
exactly the same way. This is shown in Figures 5 and 6 where we show a Ronchi ruling rotated
15° and its Fourier transform. The dots in Figure 6 are labeled like those in Figure 4. If gi(x,y)
is a rotated version of g(x,y), its Fourier transform is

(o <]

Gi(fx,f;) = Z Cnia(f;—

{==—00

%cos 0.1, — ;,- sin 6;), @)
where we have begun subscripting with i to account for multiple gratings. Only the positions of
the §’s change, not the coefficients.

If two of these transmittance gratings, go(x, y) and g;(x, y), are superimposed, the resulting net
transmittance will be given by the product of the constituent transmittances, go(x, y)g1(x,y). The
Fourier transform of the net transmittance will be the 2-D convolution of the Fourier transforms,
Golfu ) * Gi(f ). |

We show the two Ronchi rulings of Figures 3 and 5 crossed in Figure 7. The Fourier
transform of the crossed gratings is shown in Figure 8. We can think of the convolution operation
graphically by considering the Fourier transforms in Figures 4 and 6 of the two constituent
gratings. The first step in a 2-D convolution is to flip either one of the Fourier transforms
around both the f; and f; axes. Since the Fourier transforms of the gratings as we have defined
them are symmetric lines of §’s, this operation leaves the function unchanged. The next step
is to record the value of the product of the two functions as a function of the offset of one of
them. If we slide, say, the Fourier transform of the rotated grating around in (f;,f;) space over
the Fourier transform of the unrotated grating, we see that the product will only be nonzero
when two é’s overlap, at which point the product will the the product of the coefficients of
the overlapping é’s. As the Fourier transform of the rotated grating is moved, the position of
its center § will indicate the value of the offset. Since two different lines cannot intersect at
more than one point, it is clear that there will be, at most, only one pair of overlapping 4’s for
any given offset. Thus, we overlap every possible pair of é’s, recording the product of their
coefficients at the position of the center peak of the sliding Fourier transform.

If gi(x, y) has period T;, angle §;, and Fourier series coefficients c,;, then the Fourier transform
of two superimposed gratings will be

oo

= no n no . n .
Go(fe fy) * G1(Fx, 1) =M=2_jm§wcmc,15m - aw;cosao - aw-1<:ose9,,f, - sin 8 — -ﬂmel).
The parameters for the Ronchi rulings in the figures are To =T} =1, 65 =0, and 8, = 15°. The
ordered pairs in the Fourier transform in Figure 8 show (no, 7;). In general, the locations of the
6’s in frequency space are given by vectors
no n; ny . ny .
() = (—T;cos90+ T cos 6y, To mn(*o-l-Tl sin 6y)
for ng,my = —oo0,...,—1,0,1,...,00. This vector interpretation was suggested by Bryng-
dahl [Bry74]. The amplitudes of the corresponding complex exponentials in the spatial domain
are given by cnC,. A moire pattern is obvious when a § with sufficient amplitude falls closer
to the origin than the fundamental frequencies of either of the constituent gratings. In the case
of Figure 8, the fundamental frequency of both gratings is 1 cycle/unit length. The lowest fre-
quency shown in the Fourier tranform of the superimposed gratings is for (ng,m;) = +(—1,1),
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whose frequency is about +0.26 cycles/unitlength in the direction of 97.5°. These are the
frequency and direction of the dark, nearly horizontal bands seen in the moire pattern in Figure
7.

For every relatively prime pair (ng, n;) in the Fourier transform of the superimposed gratings
(Figure 8), there will be a set of §’s which fall on a line through the origin of frequency
space, and whose n’s are given by (mng,mn;), m = —oo,...,—1,0,1,...,00. These lines of
&’s in frequency space form periodic patterns in the spatial domain, because their harmonics are
spaced at equal intervals. The line of §’s whose relatively prime pair is (ng,71) = (—=1,1) in
Figure 8 is responsible for the obvious moire pattern in Figure 7, because it happens to have
a low fundamental frequency with a relatively large amplitude. There are, however, an infinite
number of relatively prime pairs, all of which serve as the fundamental frequency of a line of
&’s, all of which could be considered moire patterns. The well-known method of partial sum
extraction [PYS76] is to pick a relatively prime pair and sum up all the frequencies along that
line. Lines of §’s with higher fundamental frequencies are sometimes ignored as noise [PYS76].

If k transmittance gratings are superimposed, the above equation for the Fourier transform
generalizes to

Go(fe, f3) * G1(fs, fy) * . .. ¥ G (e ) =
0o 0o 00 k—1 k-1 . : k-1 _ -
Z Z Z [(chi>6(ﬂ‘z%cosai,.f;—z%sin95)} 3
=0 i

RY=—00 Ry=—00 g _1=—00 =0 =0 ¢

This is a distribution of §-functions at

k-1 1
(fefy) = (Z#cosﬁg,zf‘_sinﬁ,-)

=0 =0

with coefficients of 15! c,..

3 Moire Patterns from Sampled Gratings

The previous section shows how moire patterns develop from crossed gratings. Digital cameras
cause moire patterns by discrete sampling. The development of moire patterns in sampled
images is fundamentally different from crossed gratings. Sampled-grating moire patterns occur
when a periodic pattern is sampled at a rate less than twice the highest spatial frequency of the
periodic pattern. This is the familiar phenomenon of aliasing. Spatial frequencies which are
greater than half the Nyquist frequency are aliased into lower frequencies. Thus, much like the
crossed-gratings case, high frequencies patterns beget patterns of lower frequencies.

At least two sampled-grating moire models have appeared in the literature. Bell and Ko-
liopoulos [BK84] consider discrete, 2-D sampling of a projected, cosinusoidal grating and de-
velop a rule for producing unambiguous moire fringes. Cetica er al. [CFB8S5] specialize Bell
and Koliopoulos’ result to one dimension and report an experiment with a linear, photodiode
array. Neither model takes into account the effects of camera blurring or the multiple stages
of sampling which are common in digital imaging systems. We will develop a model which
accounts for these factors in the next section, and then apply it to a flat, periodic grating. It will
be seen that blurring and multiple-stage sampling have a significant impact on the brighmess
and geometry of moire fringes. p



3.1 A Model of Multiple Stage Reconstruction and Sampling

We will give a brief formulation of a single-stage, image sampling system to demonstrate aliasing.
Similar formulations can be found in most texts on image processing. The model can be easily
explained in terms of a digital camera recording an image, although we will see how the model
can be applied, recursively, to subsequent stages of image transfer and display. The input to
the sampling system is an arbitrary image of intensities g(x,y). Before sampling, it is blurred
by a convolution with the point spread function p(x, y). For the case of a camera, g(x,y) is the
ideal input image, and p(x, y) represents the effects of misfocus, diffraction, and pixel response,
all of which can be described by convolution. (We are neglecting geometric and photometric
scale factors here.) The image which is sampled by the photosensitive camera cells is then
p(x,y) * g(x,y). The Fourier transform of this image is P(f;,f;)G(f:,fy), where P(fy,f;) is the
Fourier transform of the point spread function, and G(f;, f;) is the Fourier transform of the ideal
image. The camera’s sampling grid can be represented by a grid of §-functions, each centered on
a photosensitive cell on the image plane. If the spacing of the cells in the x and y directions is T,
and Ty, the sampling grid is given by Z;‘;_w o0 0(x—n:Ty, y—n,T;). Here we have neglected
the finite size of the sampling array. This can be accounted for by multiplying the array by a
zero-one function in the shape of the sampling grid (usually a rectangle). Bell and Koliopoulos
do this in their analysis of moire patterns, but for our purposes, it only leads to unnecessary
complications. This is because although a truncated sampling grid can have a significant impact
on the frequency-domain representation of a sampled grating, it’s spatial-domain representation
(where moire pattern analysis is ultimately carried out) is simply a truncated version of the
infinite moire pattern. The sampled image is given by the product of the blurred image and the
sampling array as

ey x g, >, Y 6 —mT.,y—nTy).

Ry=—00 By=—00

The Founer transform of this is the convolution of the Fourier transform of the blurred image
and the Fourier transform of the sampling grid:

y
TT > ¥ 5(ﬂ x,ﬂ—;y)- @

Y ry=—00 Ay=—c0

[P(ﬁ,f})G(ﬂ,fy)] *

This equation indicates that the Fourier transform of the blurred image is repeated at intervals
of (1/T;, 1/Ty) in frequency space. These copies of the Fourier transform are called the spectral
orders of the function g(x,y), with the 0* spectral order centered at the origin of frequency

Figure 9 shows the Fourier transform of a function g(x, y) that is to be sampled. In this case,
the function happens to be a grating. The é-functions are shown as x’s. After sampling, the
Fourier transform looks like Figure 10. The original Fourier transform has been repeated into
an infinite number of spectral orders. The 0% spectral order is shown in x’s, while the others
are shown as e’s. The centers of the spectral orders are shown with larger symbols.
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Interpolation is applied to the samples in order to extract a continuous estimate of the original
image. This can be formulated in the spatial domain as a convolution of an interpolation
function, usually some kind of narrow pulse, with the samples. The convolution operation
means that the interpolation function is repeated at every sample point and modulated by the
values of the discrete samples. In frequency space, interpolation amounts to multiplying the
distribution of spectral orders by the Fourier transform of the interpolation function. This function
may be chosen to reduce the effects of aliasing or noise, but it is always band-limited by the
Nyquist frequencies, [+1/(2T%), +1/(2T,)]. These limits are shown as a rectangle in Figure 10.
If frequencies from spectral orders other than the Oth fall inside the nonzero region of the

interpolation function, aliasing will occur. This has happened in Figure 10.

For a typical digital image capture and storage system, the model above is incomplete. Once
the image is sampled into charge levels in the camera, the samples are converted into an analog,
video signal for transmission, then amplified, filtered and resampled by an analog-to-digital
converter. Thus, one set of samples is turned into another, and the sampling rates may not
be equal. We show the frequency domain effects of a second stage of sampling in Figures 11

and 12.

GO()‘;)f;)

|

Interpolation
& Blurring:
Pi(ﬁ;fy)

continuous
image

Sampling:
1 oo oo
TyTy; “ng=—00 Lny=—00]

5 (%~ 55— 8)

sampled
image

i(f!:fy)

Figure 13: Block diagram illustrating multiple stage reconstruction and sampling

We can think of such a system as a multiple stage reconstruction and sampling process. As
shown in Figure 13, each pass produces a new set of samples which are fed back through the
system. The index i is incremented for each pass. The initial input to the system is the original,
ideal image from the scene. It is first blurred and then sampled. The samples are then sent back
through the system, where they are reconstructed into a continuous image and blurred (in the
same step), and then sampled again. The process can be repeated over and over.

As we saw above, the reconstructed image is bandlimited by the Nyquist frequencies. Since
a pass through the loop does not impose any higher frequencies on the reconstructed image,
the final reconstructed image, no matter how many times the loop has been traversed, will be
bandlimited by the minimum Nyquist frequency encountered during any pass. Thus, no aliasing
can occur after the minimum sampling frequency has been encountered. Alternatively, if the
sampling rate decreases on each pass, there may be a complex interaction of frequencies as
aliased frequencies become themselves aliased in subsequent passes. These arguments apply
independently to the x and y directions.



The process can be characterized mathematically by putting subscripts on equation 4, which
describes one pass in the frequency domain.

o0

Sif ) = Plfe 5)Sia G I * o T > > G- ,fy = )
Yi ay=—00 ny;=—00 Yi
We have replaced G with S to stand for "samples". One pass may be interpreted as follows: The
samples S;_1(f%,fy) are converted to a continuous signal by filtering with Pi(f;,f;). P;: represents
not only the interpolation function, but the amplification and filtering that occurs before the it
sampling stage. The analog signal is then sampled with x and y spacings of T, and T, giving
a new set of samples in S;(f, f).

The process of creating a stored, digital image of a scene may be cast in this multiple stage
model. We start with the ideal image G(f;,f;) which serves as So(f;, f;), the initial sampled
image. While this is not really a sampled image, it is the appropriate place to start the recursion.
The first sampling loop (i = 1) is the digital camera. P,(f;,fy) accounts. for lens defocus,
diffraction, and the area integration of the pixels which are spaced at intervals of T, and Tj,.
The resulting samples are manifest as charges present on the image plane. The second sampling
loop (i = 2) is the analog-to-digital conversion. This stage starts by converting the image plane
charges to a 1-D analog signal using P3(f;,f,). Since the image plane samples are usually
scanned out row by row, there is no blurring in the y direction in this step. For the same reason,
T,, =T,,. T,, and T,, are not necessarily equal, because the sampling rate on the image plane
may be different from the sampling rate of the digitizer. We could go around the loop once more
to model the conversion to discrete charges on the phosphors of a display device. Yet another
loop could model certain facets of human vision, since the discrete sampling of the human fovea
can produce moire patterns, suggesting that it, too, has a fairly regular sampling grid (although
not rectangular{Wil85]). This would mqum that the model accommodate a non-rectangular
sampling grid.

The impossibility of aliasing after encountering the minimum sampling rate can be seen in
Equation 5. Suppose that in pass i = 1 (e.g. the sampling on the camera’s image plane), the
sampling periods T, and T,, are larger than the sampling periods of the digitizer, T, and T, in
pass i = 2. That is, the sampling frequency of the first stage is lower than that of the second
stage. The Fourier transform of the first set of samples will be a distribution of spectral orders
at intervals of (1/T,,,1/T,,). When this signal is reconstructed in preparation for resampling in
the second stage, it will be bandlimited by the Nyquist frequencies of the first sampling stage,
[£1/(2T,,),+1/(2T,,)]. The Fourier transform of the second set of samples will again be a
distribution of spectral orders, centered at intervals of (1/T,,1/T,,). Since these centers are
farther apart than the maximum dimensions of the Fourier transform of the reconstructed image,
Mﬁﬁbemmmﬁnqms and thus no aliasing.

nstrated graphically in Figures 10 and 11. The reconstructed image after one
depﬁngmﬂmmnofﬁmé’sinmdcﬁwNmm unding bommFig;m: 10 Thcse

ies  neighl "specmlmicm. Ifmnmconstmmdmgcwsmplcdr
m&ﬂcrmphngpcﬂods(ie Mghamphngﬁmmm)mcwﬂmofmmp}ed
image will be spread in frequency space such that no overlap occurs, as in Figure 11. Here
we have again shown the 0" spectral order as x’s and the others as ¢’s. The box indicates the
Nyquist bounds of the second sampling stage. If, on the other hand, the sampling rates of the
swmds&pmhmuﬂmﬂmufﬂxﬁmmg,mcﬂiningwﬁdmcm%isdwmin
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Figure 12. We see that the Nyquist bounding box includes some frequencies from neighboring
spectral orders and excludes some from the 0* order.

3.2 Moire Patterns

We can use the multiple stage sampling and reconstruction model above to predict the devel-
opment of moire patterns in an image sampling system. Equation 5 gives the expression for
one pass through the sampling system with an arbitrary input function G(f;,f;). Equation 2 is

a grating with an arbitrary profile at an angle §. If we substitute the grating equation into the
sampling equation, we see that the result of one stage of sampling on a rotated grating is

1
Sl(f;’fy) = T.T
S txnty

1

2 R L no ny . no s, ny . ny,
o o _h P Mg
> > > cnoP1 ( T cos 6o, T sin 60) ) (f; T cos 6 T 5 T sin T, 96)

Ry, =—00 Az =—00 NG=—00

This is a distribution of §’s whose locations are given by

The &’s of the grating’s Fourier transform are indexed by no, while the spectral orders are indexed
by (ny,ny,). The coefficients of the d-functions are independent of the particular spectral order,
but depend on the relative displacement from the center of the spectral order. As with crossed
gratings, a moire pattern will be especially obvious if the first fundamental frequency from
another spectral order falls closer to the origin than the fundamental frequency of the Otk spectral
order, because the first fundamental usually has significant amplitude. See [RK82] (pp. 83-87)
for a simple example.

In most digital imaging systems, the image above will be reconstructed and sampled again.
This process can have a significant effect on the moire patterns which are observed in the final
image. Given a suitable set of geometric parameters (i.e. the rotation of the grating and the
sampling intervals), there could actually be moire patterns developed in the first stage that are
aliased into other moire patterns in subsequent stages. This was shown in Figures 10 and 12
where frequencies which were aliased in the first sampling stage were again aliased in the second
stage. These extra, aliased frequencies cannot be accounted for in a single-stage sampling model,
and they would likely confound current moire fringe analysis techniques. '

In addition to affecting the geometry of moire fringes, multiple sampling stages also affect
their brightness. Each sampling stage has associated with it its own point spread function
which describes the combined effects of interpolated reconstruction and transmission to the next
sampling stage. Mathematically, the applications of the sampling grids and point spread functions
must be interleaved, which means that, in general, no single point spread function can be used
to characterize multiple sampling stages. Previous models of sampled-grating moire have used
either a simple, single-stage model with only one point spread function, or else no point spread
function at all. As was shown in Post’s [Pos67] work on fringe sharpening, a careful analysis of
the brightness profiles of moire fringes can lead to more robust detection of the fringes. Thus,
it is important to have an accurate model of the sampling system’s effect on the fringe profiles.
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4 Crossed-Gratings Models of Sampled Gratings
moire, and Equation 6, which describes sampled-

. . - . . iven the fundamentally different processes which they
m 1;0:;,;: mszﬁiﬂﬂ?m distribution of é-functions. It has been asserted .that
the moire patierns which result from digitally sampling gratings and those from crossed gratings
can be considered equivalent [IYS77]. The intuitive feeling behl.nd this .assemon is that the
rows and columns of the sampling grid can be considered as graungs which, when combined
with an object grating, make moire patterns like crossed gratings. This is important because it
means that the considerable amount of past work on metrology using crossed-grating moire can
be directly applied to the relatively new idea of "scanning moire” — moire with one grating and
a digital camera.

In order 10 assess the degree of similarity between crossed gratings and sampled gratings, we
will try 10 model a sampled grating with crossed gratings. We imagine a single grating go(x, y)
(the object grating) which is imaged by a digital camera. The grating has period T, angle 6, and
Fourier series coefficients c,,. If aliasing occurs, moire patterns will result in the reconstructed
image. We would like to know what set of crossed gratings of the form of Equation 2 would give
the same moire pattern for the same object grating. These "effective” gratings will be chosen
such that they give approximately the same Fourier transform as the Fourier transform of the
sampled, reconstructed image of grating go(x,y). The effective gratings will serve as a sort of
camera model. It is important to realize that the camera model is made of gratings (patterns
of some transmission profile which is periodic along some direction), not arbitrary transmission
functions. If we allowed arbitrary functions, then the camera model would be a simple inverse
Fourier ransform. We are restricting ourselves to gratings in order to test the assertion that
will only attempt 10 model 1 1/2 passes through our multiple stage model, meaning that the
input grating is first blurred, sample