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Abstract

This report describes the design and control of a two-joint, two-link flexible arm. Our purpose has
been to build an efficient arm in the sense that most of the energy provided by the motors is spent in
doing the task (moving the tip mass) instead of moving the arm structure. In order to achieve that, we
designed a flexible arm that has most of its mass concentrated on the tip. We wanted also to decouple
radial tip motions from angular tip motions. The special mechanical configuration that fulfills all these
specifications is described in Section 2.

Section 3 describes the control scheme of this arm. An important problem when controlling it was
the large Coulomb friction of the motors. A two-nested-loop multivariable controller has been used. The
inner loop controls the position of the motors while the outer loop controls the tip position. The resolved
acceleration method is generalized to control this flexible arm. The compliance matrix was used to model
the oscillations of the structure, and was included in the decoupling/linearizing term of this controller.
Experimental results are given in Section 4, and conclusions are drawn in Section 5.







1. Introduction

This report describes the design and control of a small two-joint, two-link flexible arm that we have built
in our laboratory. This arm operates in a plane on an air table. The arm is designed with exaggerated
flexibility to facilitate studying the control of flexible structures; and is very light in weight compared to
the mass placed at the tip (there is no mass placed at the elbow joint).

The purpose of our research on flexible arms is to design more efficient and faster arms than the actual
rigid amms. Our very lightweight arm is efficient in the sense that most of the energy provided by the
motors is spent in doing the task (moving the tip mass), and little is wasted in moving the arm structure
(unlike rigid arms).

We wanted also to decouple radial motions of the tip from angular motions. A special four-bar
linkage is used to drive the elbow joint from a motor mounted near the base. Mechanics of this arm are
described in Section 2; and a dynamical model is developed for this arm, that can be easily extended to
any n-degrees of freedom lumped-mass flexible arm.

Section 3 describes the control scheme of this arm. An important problem when controlling it was the
large Coulomb friction of the motors. A two-nested-loop controller has been used. The inner loop controls
the position of the motors while the outer loop controls the tip position. This method is the generalization
to robots with more than one degree of freedom of the control method described in [1],[2],[3], which is
very robust to changes in the dynamic friction and insensitive to the Coulomb friction.

A generalization of the resolved acceleration method ([4], a.e.) to the case of flexible arms is im-
plemented in the outer loop. The compliance matrix was used to model the oscillations of the structure,
and was included in the decoupling/linearizing term of this controller. Experimental results are given in
Section 4, and conclusions are drawn in Section 5.

_2. Mechanical issues
!

This arm has been designed to fulfill two specifications, from the mechanical point of view:

1. the arm had to be very lightweight,

2. radial motions of the tip had to be ncarly decoupled from angular motions (if we neglect the
vibrations because of flexibility).

In order 1o fulfill the first specification, the links were made of a very lightweight wire (having
consequently a significant elasticity), and the motor that moves the elbow was placed close to the base
of the arm. A four-bar linkage was used to transmit the motion of this motor to the elbow.

In order to fulfill the second specification, the length of the two links was made the same, and the
dimensions of the four-bar linkage were especially designed.

Subsections 2.1. and 2.2. study the kinematics and dynamics of this arm assuming that is rigid.
Subsection 2.3. includes the flexibility effects.



2.1. Kinematics

Figure 1 illustrates the kinematics of the arm, neglecting its compliance. The arm comprises a four-
bar linkage with pivots at points O, A, B and C, and tip position, P. Note that the length of link 0 — A
is twice that of link B — C; and links O — C and C — P are of equal length. With points O and A fixed,
as shown (for the sake of studying kinematic behavior-A is not normally fixed), it can be shown that the
tip describes a path very close to a straight line through the origin (O) at an angle of 45 degrees to the
x-axis. That is, as the radius to the tip (p) varies, the tip angle (y) remains close to 45 degrees (vo). The
point Py is'the ideal tip position, assuming that

p=po=2-1-cos(p —45). ¢))

Analysis of the geometry reveals that the error (deviation from ideal) in the tip angle is given by

&~ €/2 @
and the error in tip radius by

& ., . Sinp) — cos(y)

€ 2["' 2.\/5 ] (3)

where ¢, is the radial error, ¢, is the normalized radial error,

_ 2-(e+cos(p)) - (1 — sin(y))
1 -2 (a+cos(p)) - cos(y) ’

@

and

a=afl o))

Figure 2 gives the normalized errors as functions of the normalized tip radius (p/(2 - {)) for several
values of parameter a (a/l). The value p/(2 - [) represents the percentage of arm extension, and has a
maximum range of 0 — 1.0. For a typical value of a, say 0.2, we see from the plot that the deviations a
quite small (< 1%) in the range of .4 < p/(2-]) < .8; and less than 5 % in the range .25 < p/(2-)) < .9. By
restricting the range of motion of the arm, then, we can minimize the deviation from ideal behavior. While
the deviation will require consideration for precise tip positioning, that is in the kinematic calculations,
the effects can be ignored with regard 10 system dynamics. This can simplify dynamic calculations
substantially.

This kinematic design provides a means for decoupling the two joint actuators. We mount one of the
actuators so that it drives link O — A with respect to ground (see Figure 3). The net effect of a torque
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from this actuator is a tangential force at the tip. We mount the second actuator so that it drives link
O — C with respect to link O — A. Thus, it generates equal and opposite torques on the two links; the net
effect is a radial force at the tip. In terms of position control, a displacement of the first actuator generates
a pure tangential motion; of the second, a pure radial motion. The decoupling effects are based on the
ideal (straight-line) behavior of the arm; there will be some deviation from this fully decoupled behavior,
especially near the extremes of travel (o = 0,p = 1) of the arm. One consequence of this geometry is
that there is no torque coupling between actuators: a torque at one actuator generates no reaction torque
at the other. This simplifies control, and possibly reduces energy usage of the arm.

2.2. Rigid arm dynamics

We develop in this subsection the dynamics of this arm assuming that is rigid. We will complete this
model in the next subsection, adding the effects of the link compliance.

Using Lagrange equations (or Newton-Euler equations) we get:

Fo \omof P —p -
(5) = 25)- (1)

where F,, F., are respectively the radial and angular forces applied to the tip, (p, ) are the polar coordi-
nates of the tip and m is the tip mass.

We have to express the above equation in terms of the torques T} and 72 generated by the motors.
Because of the decoupling between the two motors, and applying the principle of virtual work, the next
approximate expression easily follows:

T\ _ 0 2-1-cos(p) \ [ Fp -
T )~ \ 2-1-sin(y) 0 F, |-

2.3. Compliance

For a system (2-joint, planar arm) that can be modelled as having all its mass concentrated at the tip, it
is useful to think in terms of the compliance at the tip. Control of the tip mass then becomes a matter
of producing deflections to generate the appropriate tip forces. This is the two-dimensional equivalent of
deflecting a spring to generate a force.

It can be shown that the compliance (or stiffness) of a linear, two-dimensional system can be defined
by two, orthogonal stiffness values, i.e. decoupled [5]. These principal axes of stiffness are offset by some
angle from the coordinate axes of the arm. Figure 4 shows a general, planar structure (arm) connecting
the tip with a fixed base. The vectors emanating from the tip indicate the magnitude and direction of the
principal stifnesses. A force along either of these axes (1/v) produces a deflection parallel to the force,
while a force not aligned with the axes produces a component of deflection perpendicular to the force.
The general relationship between forces and displacements is given by



Fy - ki1 k12 ) éx @®
Fy k21 ka2 by
where F; and F are forces applied to tip; 6x and 6y are tip deflections; and k;; are stiffness coefficients.

We can think of the system as comprising two separate parts, as shown in Figure 5: a rigid positioner
which controls the position of a cage; and inside the cage, a set of orthogonal springs, corresponding
to the principal stiffnesses, that connect the cage to the tip. Thus, by appropriately positioning the cage
using the arm (positioner), we can deflect the springs and generate arbitrary forces on the tip.

The question now arises as to how to find the relationship between forces and displacements, i.e. the
stiffness matrix at the tip. For simple systems, these values can be calculated. For more complex systems,
or for confirming analytical results, we can deduce these from observations of the natural frequencies of
the mechanical system. The stiffness matrix will, of course, vary with the configuration of the arm, in
particular, with the extension (p) of the arm. Note that we have defined the stiffness matrix with respect
to coordinates x — y aligned with the base-to-tip vector. We do this so that the stiffness matrix depends
only on the variable p. Thus a coordinate rotation is needed to transform to world coordinates. For use
on a digital computer, tabular storage of stiffness parameters is indicated.

The first approach involves calculating stiffness parameters for individual links, then combining these
through appropriate force/moment analysis. The stiffness parameters can be defined either in terms of
principal stiffness vectors (magnitude and orientation of the principal stiffnesses); or in terms of the
stiffness matrix. In either case, three values are required (for any value of the extension, p); and these
values will be referenced to the coordinate axis aligned with the base-to-tip radius vector. Performing
this analysis for our particular arm with its four-bar linkage, we get the following compliance matrix C,
which is the inverse of the stiffness matrix described in expression (8):

x\ _[ g ca ) Fr
(5)-(2a2)(5) ®

where:

. in
i1 = £ -sin’(p) s:: ©)  144. {:‘;) (1o
c12 =y = B - sin(p) - cos()/ ke an
c22 =B - cos*(p)/ ke, 12

and kp, k. are the individual stiffnesses of links O — C and C — P respectively. Notice that the stiffness of
link A — B does not appear because this link is not subjected to bending, only tension and compression.

Figure 6 plots the calculated stiffness vectors for various configurations of the experimental ama.
While it may be more convenient for control purposes to store values of stiffness matrix, the vector plots



give a readily understandable picture of the stiffness characteristics. Double arrowheads in figure indicate
vectors extend beyond available space.

In the second (empirical) approach to finding stiffness parameters, we excite the natural modes of
vibration of the system, having known tip mass, keeping both joints angles fixed. We can do this by
plucking the system and observing its time response; or by exciting with an adjustable-frequency harmonic
input signal, and seeking the peak responses. Either way, we obtain the magnitudes and directions of

the two principal vibration modes, which correspond to the two principal stiffnesses. The relationship
between frequency and stiffness is given by

wn=\[k/m (13)

where k is one principal stiffness, w, the corresponding frequency and m the tip mass. Using this
approach, we can find values for a substantial number of configurations (values of p) and interpolate to
get intermediate values to fill a table; or experimentally find values for only a few configurations, and

use an analytical model of the system to extrapolate over the needed range. Experimental results of this
approach are described later in Section 4.

The dynamic model of an n-degrees of freedom lightweight flexible arm with the mass concentrated
at the tip can be represented by the scheme of Figure 7, using the stiffness/compliance matrix. This is a
gcncmhzauon of the dynamics of the rigid arm case (rigid arm dynamics are a block in this diagram). In
this figure, 7 is the jacobian of the rigid arm kinematics, that relates motor velocities to tip velocities (in
our particular arm, in polar coordinates); Tr is the matrix of expression (7) that transforms tip forces into
motor torques; F are the tip forces; P is the tip position, and &, are the corresponding joint coordinates
(actuator coordinates) assuming that the arm is undeflected.

3. Control issues
3.1. General scheme

Our arm presents two special problems that most arms do not have: a large Coulomb friction in the
" joints, and flexibility in the links. They require the design of a special controller that is described in
this section. We use four measurements to control this arm: a tracking camera gives the tip position in
cartesian coordinates (x, y), and two potentiometers mounted on the motors give the motor position (joint
angles). Because the arm has been designed in such a way that its rigid dynamics are nearly decoupled
in polar coordinates, we will use these coordinates for the tip position control. Transformation to polar
coordinates from cartesian measurements given by the camera is straightforward and does not introduce
any error because it does not use any kinematic parameter of the arm.

In order to remove the effects of joint Coulomb friction and of time-varying dynamic friction, a
two nested multivariable loop control structure is proposed: we close an inner loop around the motor,
that controls the joint (motor) angles; and then an outer loop is closed that controls the tip position.
The general scheme of this control structure is shown in Figure 8. The inner controller uses the errors
between the actual (Ox) and the commanded motor positions (O), and generates control signals which
are the currents for the two motors. The outer loop basically uses the errors between the actual (P) and
the desired (P,) positions, and generates control signals which are the command positions for the motors
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at the inner loop. This scheme is the generalization to the multi-degree of freedom flexible arm case of
a control scheme robust to friction developed in Feliu et al. [1-3].

As result of the procedure for controlling the motor position developed in the next subsection, we
can describe the dynamics of the two closed-loop motors as two decoupled time invariant linear systems,
And, if we use high enough gains in the controllers of these loops, the dynamics of these systems can be
made much faster than the dynamics of the arm and, therefore, can be neglected in the design of the tip
position control loop. This greatly simplifies the design method.

3.2. Motor position control loops

We use here the control scheme described in [1-3]. Let the dynamics of each motor be described
by:

K‘..i‘-=j‘..ff_”£+vi.d_§:"_"l

= +CF; + Ct;, (14

where K is the electromechanical constant of the motor i, i; is its current, J; is its polar inertia, V; is its
dynamic friction coefficient, Ct; is the coupling torque between this motor and the mechanical structure,
CF; is its Coulomb friction, and subindex i = 1,2, designates the motor.

Then we add to the current i;, generated by the motor position controller, two feedforward terms:
i; =i;+ (CF; + Ct)/Ki, (15
the first one linearizes the motor system by compensating for the Coulomb friction which is nonlinear,

the second one decouples the dynamics of the motor from the rest of the arm.

We assume that Coulomb friction is of the form:

CF()= x| CF;| ]

where the sign is that of the motor velocity. Then the Coulomb friction compensation term is generae
by knowing the amplitude of the Coulomb friction, and by estimating the actual velocity of the motor
from position measurements. Comments to the velocity estimation procedure made in Subsection 4.1. o
[2] remain valid.

In order to generate the decoupling term, the coupling torque Ct may be directly obtained from
measurements of strain gauges placed at the joints, or can be estimated from the actual measurements o
motor and tip positions following the procedure below:

T
1. WMWWM@W&:( Po 'm) cormresponding to the arm without ay
deflection, in the case in which the joint angles are the actually measured values 8, and 8. P
is calculated from the direct kinematic model of the arm.



2. Calculation of the actual deflections, obtained from the actual tip position and Po:

_ P — Po
o= ( po-(‘y-‘ro))'

T
3. Calculation of the external forces F = ( F, F, ) , that applied to the tip generate such deflections.
This is obtained from the stiffness matrix (inverting the compliance matrix).

4. Transformation of these tip forces into the corresponding reaction torques at the joints. These
torques are the coupling torques Ct and can be obtained from expression (7).

This procedure gives an approximate estimation of the coupling torques because the expressions used
here are only approximate. But experiments will show that these estimations are sufficient for decoupling
purposes.

It was shown in [1],[2] that closing the motor position loop with high gain controllers makes the
system more insensitive to perturbations (caused by an imperfect compensation of the Coulomb friction,
a.e.), and to time varying parameters (dynamic friction coefficient, a.e.).

Figure 9 shows the resulting inner loop control scheme. The feedforward and feedback terms of the
discrete feedback controllers (Kp; and B;(z) respectively).are designed so that the response of this loop
(motor-position-control) is significantly faster than the response of the outer loop (tip-position-control)
and without any overshoot. This is done by making the gain of the feedforward controller large. It was
shown in [1],(2] that, in theory, this gain could be made arbitrarily large even in the case of the arm
being a non-minimum phase system. Practical limits to these gains are given by the saturation current
of the D.C. motor amplifier, unmodelled high frequency dynamics, or even instability because of the
discretization of the signals when using digital controllers.

It is important to mention that this controller is adequate only for steplike motor position references.
It is used here because we expect that the commands for the motor will have approximately this shape
(they will change very sharply). In other cases, a standard P.D. controller may be used.

When the closed-loop gain of the inner loop is sufficiently high, the motor position will track the
reference position with small error. Then the dynamics of the inner loop may be approximated by 1 when
designing the outer loop controller.

Then, summarizing, we want to achieve two objectives when designing a controller for the motor
position:
1. to remove the modeling errors and the nonlinearities introduced by Coulomb friction and changes
in the coefficient of the dynamic friction,

2. 1o make the position controlled response of the motor much faster than the response of the tip
position control loop (outer loop in Figure 8).



And these objectives are accomplished by:

1. feedforward term that compensates for Coulomb friction,
2. feedforward term that compensates for coupling torque between arm and motors,

3. closing a high-gain feedback loop, that increases the robusmess of the system and speeds the motor
response.

The fulfillment of the second objective will allow us to substitute for the inner loop, an equivalent
block whose transfer function is approximately equal to one; i.e. the error in motor position is small and
quickly removed. This simplifies the design of the outer loop as will be seen in the next subsection.

3.3. Tip position control loops

We describe here the method used to control the tip position. In what follows we assume that the
dynamics of the motor position loops (inner loops) are negligible compared to the dynamics of the am.
If this assumption holds, the arm dynamics may be cancelled using the scheme described in Figure 10 that
transforms these dynamics into two decoupled double integrators. Then this method can be considered
as an extension of the resolved acceleration method ([4], a.e.) to the case of lightweight two-link flexible
arms. Once the system has been reduced, two independent P.D. controllers may be designed, one for each
coordinate of the tip position. A feedforward term is added to avoid delays when following a trajectory,
and some integral action is included in the controllers in order to remove small errors due to non exact
modelling of the arm kinematics.

The dynamics-cancelling scheme has the following components:

1. First a positive feedback loop is closed, that uses the motor position calculated from the tip position
assuming that there are not deflections in the arm (inverse rigid arm kinematics).

2. Inverse of the jacobian of the rigid arm kinematics. This component transforms the deflections
expressed in terms of the tip position (difference in the tip position between the deflected and
the undeflected am for given motor angles), into deflections expressed in terms of motor position
(difference in the motor position between the deflected and the undeflected arm for a given tip
position).

3, Compliance matrix that relates the forces needed at the tip to move the mass as we want, with the
deflections needed to achieve this.

4. Component that computes the inverse dynamics of the rigid arm (model (6)).

Notice that, in this procedure, we are cancelling block by block the arm dynamics expressed in Figus
7 (we exclude motor dynamics, that have already been cancelled by the inner loop). A scheme equivalent
to this one was developed in (2], [3] for single-link lightweight flexible arms. Because we usc a specid
configuration that decouples radial from angular motions, components 1 and 2 of that cancelling scheme
are very simple: 6, may be approximately expressed as a linear function of ¢ and O as a linesr
function of p in component 1; and J is a constant diagonal matrix in component 2.

Finally, we mention that this scheme can be easily extended to lightweight flexible arms of n-degress
of freedom.
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4. Experimental results
4.1. Apparatus

We have designed and built an apparatus to enable real-time control experiments with a two-joint, planar
arm. As shown in Figure 11, the apparatus comprises an air table; aim, with tip mass, two actuators and
joint sensors; camera for tracking position of tip-mounted, infrared LED; and control computer.

The mechanical system was designed to closely approximate the behavior of the ideal system; i.e. the
arm isvery light in weight, carries an effective point mass at itstip and has minimal friction and backlash.
The arm is congtructed of music wire, .047" and .063" diameter, and has a total mass of about .045 #m.
Thetip massis a disk that floats on the air table, and has a pivoted connection so that it does not generate
torques on the tip of the arm; thus it appears to the arm as a mass concentrated at the tip. Tip massis
adjugable by using different disks, but is typically 0.12 #m. Thus tip mass is substantially greater than
am mass, and a lumped-mass model is reasonable. Small ball bearings, used at the three passive joints
of the arm, minimize friction. Tests have shown the friction on the air table to have negligible effect on
the behavior of the system. The dimensions of the aim are 1 =9 O —A =3\and B-C= 15" A
drut was connected between the middle points of bars A — B and C— O in order to prevent buckling in
link A - B; and to minimize the deviation from ideal behavior due to unequal bending in the two links

- (see Figure 12).

Joint actuators are DC torque motors. An Inland QT-2404B motor, rated at 36 #-in peak torque, drives
the base link (O - A) directly. A second motor, Inland model QT-1207D, rated at 1.25 #-in, rides on
the base link and generates torque between the base link (O — A) and firg link (O - Q, through a 3:1
gear reduction. Torques available from the motors are greater than the bending strength of the aim, so
torque limits are not a factor in the tip-control servo. Motor response is generally fast compared to the tip
response, although this is affected by amplifier current limits, which are adjusted in the range of .5 to 4
amps. One Inland model EM 19-48030-B01 linear current amplifier is used for each motbr. Experiments
showed that Coulomb friction at the motor joints is considerable, so our method is especially appropiate
to control this arm.

Three sensors are provided for control: one for each joint, and one for the tip. Joint sensors are
singleturn potentiometers connected directly to the motor shafts: a 2V unit for the larger motor (QT-
2404) and a 7/8" unit for the smaller. A Hamamatsu tracking camera, model PSD, with infrared passing
filter, provides +5v signals for the x and y positions of an LED attached to the tip. Range of trave within
the field of view of the camera is between 7-15" in x axis and about +4* iny axis.

A Sun/lronies computer system provides for real-time control, program development, and data display
and analysis. The system includes a Sun 3/160 workstation and Ironies FV320l. CPU connected via the
Sun VME bus, and Ironies 1V1645-01 A/D and 1V1640-G! D/A boaids providing analog input and output.
The Sun provides a networked Unix environment for program development, interface with the the real-
time control hardware, and storage and display of data. Control programs are written in C aid compiled
to run on the Ironies CPU* under the Chimera operating system developed ai CMU for real-time contral.
Chimera provides process scheduling am! control primitives thai facilitate real-time control programming,
while emulating many UNIX utilities for programming convenience.

11



A

4.2. Identification

The dynamics of the arm have been divided, for modelling and control purposes, into two submod
els: motors submodel and mechanical structure submodel, which are coupled by the torques at the twg
motors (see Figure 13). It was shown that this way of modelling flexible arms has some advantage
over other methods when dealing with arms with strong Coulomb friction in the joints [1-3]. In gy
identification procedure, we follow this approach identifying both submodels separately.

4.2.1. Mechanical Structure

We use here the experimental method indicated in Subsection 2.3.. We immobilized the two motor,
we deflected the arm by applying an arbitrary force to the tip, and then released the tip. The oscillation
produced at the tip had two orthogonal components of different frequencies, as it was stated in Section?,

In order to know the two vibrational modes and their directions, we used the following technique:

1. Record the x — y motion of the tip.
2. Calculate the Fourier transform of these two signals x(¢) and y(z).

3. The spectral analysis shows that x(w) presents two peaks x; and xz at frequencies w; and wy; ad
y(w) has other two peaks y; and y; at the same frequecies w; and w; as x(w). w; and w ae
the frequencies of the two vibrational modes. And the directions of the axes of oscillation
calculated from the expression:

Yi .
P = - =1,2. {1
P, m(x,,-) i 17

This procedure is repeated for different arm configurations (different p). We used the Matrix, packag
for analysis and simulation of control systems. In particular, we calculated the above mentioned
transforms using the FFT routine of this package. Experimental results are given in the next table for or

. p(inches) p/2-D w1 (hz) ) (degrees) w2 (hz) o (degrees) ky (in-#) ke (in-#)

10.1 0.56 0.6514 13.7781 2.1983 106.1437 11.57 6.14
10.55 0.59 0.6839 14.3237 21332 102.3821 123 6.54
11.0 0.61 0.6839 15.3966 20844 104.9338 11.6 6.58
11.6 0.64 0.7328 17.2057 1.9866 103.7644 129 6.77
122 0.68 0.7491 19.0925 19215 104.1487 12.5 6.82
12.6 0.7 0.7653 209127 19052 111.4644 12.5 6.87
13.0 0.72 0.7816  22.6677 1.90 112.6137 12.3 6.99
13.6 0.76 0.7979  26.173 19215 116.3932 11.9 7.0

140 0.78 0.7979  28.5903 1.8889 119.2472 113 6.75

Table. Experimental vibrational modes.

where the stiffnesses of the single links ks and k. are calculated using the following procedure:
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1. Calculate the compliances ¢, and ¢y in the principal coordinate axes using the expression

1 1
“Emr C“Tmad

2. Calculate matrix C, from ¢, and ¢y, by carrying out the matrix transformation that corresponds to
rotating an angle ) these main axes.

3. Calculate &, and k. from expressions (10)-(12).

These experimental results show that values kp and k. are quite consistent. We will use in our control

the average of the table values: k, = 12.1 and k. = 6.7. Notice that both modes are approximately
orthogonals: ¥ = i1 + 90.

Finally, in order to complete the verification of our theoretical model, we took out the strut between

bars A — B and C — O (to simplify the model and the verification), and repeated the experiment for one
configuration:

p (inches) p/(2-1) wy (hz) ) (degrees) wy (hz) ¥, (degrees) kp (in-#) ke (in-#)
10.55 0.59 0.6188 11.5842 2.003 100.6535 9.09 6.39

The theoretical individual stiffnesses were calculated for this case, using our massless flexible arm
model, and they were: 9.02 in - #. and 6.63 in - #., which substantially agreed with the result of this last
experiment. All these results confirm the assumption of arm with massless links and joints, with all its
mass concentrated at the tip.

4.2.2. Motors Parameters

In order to identify the motor submodel, the mechanical structure (links) was taken out from the motors.
Then the coupling torque between motors and arm was zero (Cy; in expression (14)), and the motors could
run freely. In what follows, the parameters of the second motor, which has some reduction, will not be
given in motor terms but in joint terms.

First, we identified the Coulomb friction CF; because it is a nonlinear term. We obtained Coulomb
friction values from measuring the current at which the motors started to move and they were: 0.12 amps.
for the first motor and 0.16 amps. for the second: Once we knew them, we were able to approximately
compensate for the Coulomb friction by adding a term to the current with the estimated absolute value
and the sign of the motor velocity, as was described in Subsection 3.2.

After compensating for the Coulomb friction, the remaining dynamics are linear and can be identified
by any of the standard techniques. The model is now:

Omis) _ % i=1,2. (18)
i(s) s-G+7)

’Ihcpammcmmmmminmbeidcnﬁﬁedmthcmominerﬁashmdmcdymmicﬁim:V;.Tbc
electromechanical constant of the motors K; are obtained from catalog. We estimate J; and V from the
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frequency response of the system. The Bode plot of the magnitude of the frequency response shows that
the response has a slope of -20 db at low frequencies and -40 db at high frequencies. These parameters
can be easily calculated from two points of this plot. We used the following two points: the point at

functions were:

Motor 1 : 9 6364
ml .
=—_—"" __ 19)
h s-(s+1638) ( );;
Motor 2 : 9 23150
”'2 —
T, s-(s+353) (20
4.3. Control

4.3.1. Motor control loop

The decoupling term of Figure 9 was implemented, as well as the compensation term for the Coulomb
friction. Controllers for the motor position were designed according to this scheme. We tried to make the
response of the motors as fast as possible, but without having any overshoot. Limits in the velocity
response were given by the amplifier current limits, which were 4 amps. for the first motor and 2 amps.
for the second. We used a sampling time of 3 msec. in this inner loop. '

The following experiment was carried out to test the motor control: the tip was kept fixed in ¢
position (12 inch., 0 mrad.) in polar coordinates, and steplike position commands were generated for ¢
e commanded positions for the motors were such that would have placed the tip in positi
{10.82%1&.,-50mmd.}md(l318mc}!..50mmd}ifmcuyhadbwnfmc Because the tip was fi
at the intermediate position between these two, the arm experienced substantial bending when the mo
tricd to follow these trajectories, and the coupling torques C1; were significant. Figure 14 shows
mpmswandﬂwwncmmmmﬁﬁs“m:cmmischmcofﬁgum9
mspomcs haw: ncarly zero steady-state error which shows the effectiveness of the coupling torque
§ Thcscnlmgumcm%omﬁﬂmmbothmomrs.mlsmamm

mmmmmwmmm"
term has been removed. The basic effects of removing these terms are the permanent errors that 2

mmnwm wmmmmﬁhmmumdmmfemmcmmnmsomcmfm
describes a parabola and so does v,. The sampling time of the tip position control loop is also 3 .
like in the motor loop.
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P.D. controllers were used fird, instead of RD.L's. We wanted the same responsein p and 7, so the two
P.D. controllers had about the same coefficients. Measurements given by the camera had sgnificant noise
s0 the estimations of the velocities, needed in the derivative term of the RD. controllers, were obtained
by using the discrete differentiation (1 - z~°)/(5 « T) instead of the typica (1 - z~')/T. Experimenta
results showed good agreement with the theoretical anadysis of the tempora response, but they showed a
permanent error probably caused by kinematic modelling errors. Then, in order to removethat error, we
used P.D.I. controllers for both p and 7 loops.

We carried out experiments on aim tip positioning using the complete scheme of Figure 10. We moved
the am from the point (10.82 inch., -100 mrad.) to the point (13.18 inch., 100 mrad.) and viceversa. We
programmed a high speed mation (it had to go from one position to the other in 0.4 sec). Responses are
shown in Figures 17 to 26. Figure 19 shows the estimated tip velocity in polar coordinates, and Figure 20
shows that motors follow very closdly their references, confirming the assumption that the dynamics of
the inner loop are negligible. This motion was then repeated under limit conditions, usng the maximum
dlowable accelerations (now the motion was programmed to last 0.2 sec.). The results are shown in
Figures 27 and 28.

5, Conclusons

Lightweight arms have the advantages of being easy to move, and being more effident than heavier
arms because very little energy is wasted in moving the aim structure. In turn, these ams usually exhibit
some flexibility phenomena that cause ncady undamped oscillations to appear in the mechanicd stmcture
during the motion.

A two-degrec-of-freedom, planar, very lightweight flexible aim has been designed, built and controlled
in our laboratory. The motor of the secondjoint was mounted near the base of the arm to minimize inertia,
and a four-bar linkage transmitted the motion from the motor to thisjoint. This linkage was specidly
designed to approximately decouple radia from angular tip motions. This aim exhibited two orthogonal
vibrational modes that changed in value and orientation with the configuration.

A smple dynamic model has been developed for this aim based on the use of two submodels. one
to describe the motors, and the other to describe- the mechanica structure, the two coupled through the
torques that the links generate on the motors. A control scheme has been deduced from this mode which
is robust to changes in the dynamic friction of the motor, and that removes the effects of the Coulomb
friction. This control scheme is based on very simple concepts, and each term of the controller is designed
according to very precise directions. terms that cancel Coulomb friction, terms that decouple the motors
from the aim, inner loop controller to make the motor response fast, cancelling terms for the mechanica
structure dynamics, feedforward torn for the tip response, etc.

Experimental results have been presented, and they stow that our control scheme performs well

Our control scheme is based on the assumption thai motor dynamics are much faster than mechanical
structure dynamics. This point must be confirmed before closing the tip position loop. The decoupling
between radia and angular motions achieved by the four-bar linkage smplifies kinematic comtderatioas,
but Is not a necessary condition of our control method.

Finally, this method may be easily extended to lightweight iexibie aims with any number of degrees
of freedom.
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