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Abstract
An innovative approach is described for enhancing the selectivity of an integrated multi-element thick
film gas sensor. A temperature gradient maintained along the sensor surface induces spatial
sensitivity and selectivity gradients. The response map of the sensor is examined in the vapor of
several organic compounds and their binary mixtures. Subtle but recognizable and separable
signatures are observed. Emphasis is on identification, since quantitation of identified mixtures is
straightforward. An effective and robust classification technique using a neural network trained via
the back propagation method is described.



Introduction
The demand for selectively sensing vapors and gases is keen. For example, it would be valuable to
distinguish toxic exhaust gases from fuel vapors and warn of either of these in the passenger
compartment of automobiles, boats, and airplanes. Similarly, it is important for a domestic gas
leakage detection system to avoid false alarms by differentiating between the odors of alcoholic
beverages and the utility gas. Additional examples that require selectively sensing gases and vapors
are found in military, industrial, and domestic applications. Most chemical analysis systems for
gaseous samples, such as gas chromatography, are expensive, complicated to use, and at best
marginally portable. In contrast, relatively inexpensive, simple, highly portable gas sensing devices
based on resistivity changes of semiconducting materials are in common use. One of the most
common materials is tin oxide, SnO2. It has high sensitivity to a large number of gases and is
relatively easy to use. However its high sensitivity to many gases is a weak point when it comes to
sample discrimination and mixture analysis. Substantial efforts have been directed at improving the
selectivity of SnO2 based sensors by various approaches using filters, special absorbing layers, and
various catalysts or promoters. The bibliography contains an extensive survey of the SnO2 gas
sensor literature [1,2, 3, 4, 5, 6, 7, 8, 9,10] [11,12,13, 14, 15,16,17, 18,19, 20, 21, 22, 23].

Temperature programming is among the many techniques that have proven useful for enhancing
selectivity. The sensing mechanism of SnO2 to reducing agents is believed to be due to the chemical
reactions between their molecules and surface adsorbed and ionized oxygen as O~ and perhaps
other species. There is an optimum temperature at which sensitivity maximizes. If the temperature is
lower, the reaction is too slow to give high sensitivity; if the temperature is higher, the overall
oxidation reaction proceeds too rapidly. In the latter case, diffusion of the reducing agent is confined
to a thin layer near the surface, and the effective concentration of reducing agent seen by the sensor
bulk is decreased. Thus if an SnO2 sensor is ramped through an appropriate temperature range, the
sensitivity to a gaseous sample will show a peak at a particular temperature. Sensitivity peaks
associated with the various gases present will generally appear at different temperatures in this
temperature programming technique. However, hysteresis in the sensor resistance during
temperature cycling generally broadens these peaks. Thus, temperature programming of the sensor
is not a common technique used for selectivity enhancement; a notable exception is the Figaro
Corporation approach to CO alarming, which employs a Taguchi sensor and a complex temperature
programming method [19].

We are approaching discrimination by temperature from another direction. Instead of cycling the
temperature of a single sensor, we apply a static temperature gradient along a linear sensor array. In
fact, the "array" is a continuous film on a ceramic substrate, and the discrete array elements are
defined only by the contact metalizatfon. Since the sensing elements on the substrates are fabricated
under exactly the same conditions, their sensing properties should be extremely uniform at constant
tenrperature. But when these sensors are at different temperatures, their relative responses to the
components of gas mixtures differ, providing recognizable signatures.1 Significantly different
response patterns of an SnO2 array to ethanol, methanol, heptane and their binary mixtures were
observed using the temperature gradient technique. The reproducibility of these response patterns is
acceptable for laboratory studies, but stability improvement is a subject of ongoing research toward
field applications.

The coarse spatial resolution of our sensor (seventeen elements in 23 mm), the difficulty in

1 An alternative approach, operating m conetanf temperature wfth a gmienf m catalyst concentration or composite, and a
combination approach w ih peipendfeular temperature and catalyst gradients is also employed and wM be described in future
repoiti. in fact, tome of our devices entpioy bot i approaches, m± pmpmdkwlm' graders in temperature and' catalyst



measuring precisely the temperature distribution, and the small but non-negligible intrinsic structural
differences among the sensing elements, makes the development of an analytical model to describe
the sensing properties of the integrated thick film sensor very difficult. An alternative approach is to
interpret pragmatically the experimental data via machine learning, pattern recognition, and perhaps
knowledge based artificial intelligence methods. In this report we test this approach when
implemented via the neural network [24] with training by back propagation method [25].

Sensors
The sensor arrays we use in these experiments are fabricated on commercial alumina ceramic
substrates intended for hybrid circuits. The area of the substrate is compatible with a 20-pin dual-in-
line integrated circuit. A gold electrode metallization pattern is printed, then fired at high temperature
onto the substrate, as shown in Figure 1. Next a layer of a modified commercial SnO2 semiconductor
ink is screen printed on top of the electrodes. The gold pattern provides stable electrical contact
between the sensing layer and the measurement equipment. The modified SnO2 ink and the screen
printing technique provide a cost-effective method to fabricate a high quality sensor array. Catalysts
such as fine Pt metallic powder are blended into the commercial inks to enhance sensitivity. The
organic binders in the ink are burned away by firing in an oven. A detailed description of the
fabrication procedure, which is actually carried out by collaborators at Oak Ridge National
Laboratories, is given in [26, 27,28].

Top-view

Side-view

METALLIZATION PATTERN FOR CONTACTS BETWEEN INSTRUMENTATiON AND
SENSING LAYER

Measurements
The integrated sensor is mounted on a specialty designed chip holder that Incorporates pressure
contact probes, electrical heaters, and temperature sensing devices. The whole assembly is Installed
in an air-tfght metal test chamber suppled wth a constant flow of ether pure synthetic air or dilute
sample vapor In synthetic air, Experiments have been performed on the integrated sensor wt i i the
vapor of ethancl, metfianol, heptane and their binary mixtures. These vapors are generated by
saturating a secondary synthetic air flow in a bubbler, then diluting it in a 'precision flow controled
mixing system. The binary mixtures am mace by faibufari riming of the outputs of two bubblers.
The ccrcemra^icn of the sample is computed from the volume of sample mixed with synthetic air,
:ernperature measurements, and vapor pressure tables. The result is confirmed by measuremert
wth a total hydrocarbon analyzer located down-stream of the test chamber. A simplified block
diagram of the gas defhrery system is shown tn Figure 2.
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Figure 2. BLOCK DIAGRAM OF THE GAS DEUVERY SYSTEM

Solenoid valves and flow rate controller set points are
controlled by the IBM-XT via the Keithley data acquisition system.

A temperature gradient is established along the length of the sensor by preferentially heating one end
of the substrate with an asymmetrically located, small, high power ceramic heater. The temperature
difference between the hot end and cold end of the sensor surface Is typically about 100 C. Before
taking any measurements, the test chamber is flushed with synthetic air at 1000 mtfmin flow rate for
at least five hours. Then in a typical experiment the sample gas is turbulentiy mixed with the main air
flow and is introduced into the test chamber for 50 min. The response patterns of the sensor
associated with various gases are recorded by measuring the resistances cyclically. Data are
collected with an automated data acquisition system using an HP 3421A IEEE 488 unit and a Keithley
500 memory mapped data acquisition system controlled by an IBM-XT. Preliminary data reduction is
done on-line by the XT. RnaJ processing, as well as methods development, is done off line on a 750
VAX to which the IBM-XT is connected by ethemet. A simplified blodc diagram of the data acquisition
and control system is shewn In Figure 3.

Data
Typical resistance responses erf several sensing elements to ethanol, methanol and heptane are
shown in Figure 4. The resistance cf each integrated sensor etemert is reduced by each vapor as
expected for an n-type semiconductor material. The response plotted in Figure 4 fe the ratio of the
change in resistance to the original resistance in air, this is t ie conventional definition of response
used in the solid state gas sensing field. Each sensitivity to each test compound increases with
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Figure 3. BLOCK DIAGRAM OF DATA ACQUISITION AND CONTROL SYSTEM COMPONENTS

High precision measurement of sensor element resistances is via the
HP 3421A data acquisition system on trie iEEE-4888 bus controlled by the

IBM-XT. Moderate and low precision monitoring of housekeeping and support
sensors, and control of valves and heaters, is via the Keith ley 500 data

acquisition system, whose functionality is memory mapped on the IBM-XT bus.
Preamplifiers lor thermocouples and RTDs are standard modules for these

-'unctions. The total hydrocarbon analyser (a flame fonization detector
manufactured by l ine Safety Appliances) and the Figaro #812 Taguchi-type

sensor are used lor checking and comparison. The capacitive humidity sensor
is monitored via a frequency measurement applied to the
capacfta^ce-io-frequency output of a capacitance meter.

operating temperature in the temperature rang® of these experiments. At the hot end, each absolute
sensitivity is three to four times higher than at the cold end, ami of a simitar magnitude to the
commerce! Figaro 812 sensor that is installed in the test chamber for comparison. To minimize the
irreversible changes due to abrupt environmental shock to the sensor, several measurement cycles
are rrade with each sample vapor before changing to another vapor. This method, as opposed to
mm f recpent cycling of sample type, increases vulnerability to slow drift. To alleviate the effect of
,;org term dHR, the iwSvkksM sensitivities are normalized by the difference between the tmximm ar.c
minimum sensor ttemert s e i ^ ¥ l e s (bund in each sspsrbnent ^5aiate^. Sen^vMy cistributiofis
'fmmaMmd im way are wry consistent with respect to repeated mrs with the same sample spec îes:

ami distinct^ dllsmnl fromsampia species to sample species.



Sample: Ethane* Sample: Methmoi Sample: Heptane

Flgurt 4. TYPICAL RESPONSES OF THE SEMSOR TO ETHANOL, METHANOL AND HEPTANE
VAPORS

Sample vapor is mixed into the artificial air flow through the test
chamber lor 50 minutes. The "sensitivity" is by convention the resistance

difference between the sensor In air and the sensor in air with sample vapor
dvtded by resistance in ar» Le., AR/RQ. The time constant of

the rapid resistance drop at the hot end upon methanoi and heptane
introduction is dose to t i e fJmi set by the ratb of test chamber volume

to volumetric flow rate. The longer fall times for ethanol, and for
methanoi afKl heptane on fhe cedar parts of f i e sensor, ami t i e longer lisa

times for af sainples at af temperatures upon termination of sample
introduction are characteristic of the sensor.
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Algor i thms

Data Interpretation

A three-layered neural network, the simplest non-trivial implementation [29, 30], is investigated for
data interpretation with our integrated thick film sensor. It has one input layer, one hidden layer, and
one output layer. The topology of this neural network is illustrated in Figure 5. Each unit above the
input layer is completely connected to all unite in the layer one level below.

The learning capacity of a neural network is bounded by its complexity in number of levels and
number of units in each level. The information stored in a neural network is distributed in the weights
of the connections and the thresholds of the units. Initially, all weights and thresholds in the network
are randomly set to small values. Then a set of training data (in a demonstration of this sort a subset
of the experimental data) is presented to the input units of the network. The weights and thresholds
are adjusted by the back propagation [25] learning algorithm until the outputs converge on the known
input classifications. The result of a classification is interpreted by a decision rule that relates the
numerical outputs of the top layer to a set of symbolic descriptions of the systems activating the
inputs, e.g., "methanol/ethano! mixture". The generality of the result is tested by measuring the
trained network's classification performance on the remainder of the experimental data, i.e., the part
not in the training set.

Quantitatton is straightforward once identification is achieved, since any one sensor is sufficient to
quantitate an identified unary sample, any two linearly independent sensors are sufficient to
quantitate an identified binary mixture, etc.

Input Feature Selection

We have investigated two ways of presenting the data to the neural network. We can categorize
these as the "direct input method" (DIM) and the "extracted features input method" (EFIM). The
difference between them is the degree of preprocessing of the experimental data before they are
input to the neural network. DIM presents essentially raw data to the input layer of the neural
network, while EFIM employs some form of preprocessing to compute (by analog or digital methods)
selected features derived from the data. DIM is appropriate when there is a high level of ignorance
about the physical system generating the data. EFIM reduces the burden by employing models of the
physical system. This EFIM is comparable to th© way tomans operate in familiar contexts, white
DIM may be comparable to the way humans operate when faced with data in new and confusing
contexts.

DIM
Essentially raw data from a sensor array can be directly applied to the inputs of a neural netwottc
However w ih the direct input method the trained neural network is observed to focus on the absolute
differences among ttie input values in the data. The network is then easily misled: it tends to mate Ms
IdentMcalion based on small and perhaps L e v a n t differences over many units rather than to base I
on fruiy discnminatjng features that are maiifest over a small number of Input units. To minimize
these effects* which am in part concentration dependent preprocessing that normalizes each pattern
Is advantageous.

The number of EMM input writs i t equal to the number of sensing elements. The nurrber of hidden
units is chosen tmpMaty, mugWy optimized by observing the activities of the hidden units in t in
Miried network. The number of output unit Is fust the m w i w erf d M S ^ Irto wl&rfi t t» saiif i is. ^
be : ass *;ec The activity value of each output unt is Irtetproted as the probability of the sample
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Unit (Processor)
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Figure 5. TOPOLOGY OF THREE LAYERED NEURAL NETWORK

For graphic simplicity only a few connections have been depicted;
in fact in the network we use every hidden unit is completely connected to

every input and output unit, a, and Af depict threshold
values for hidden and output units respectively. w» and
VV^depict weights connecting input unit /to hidden unity,

and hidden unit kto output unit /respectively.

being in the corresponding cfass. In our case, a network of seventeen input units, eight hidden units,
and six output units was used to classify ethanoi, methanol, heptane and their binary mixtures over a
range of concentrations. The inputs are the normalized responses of individual sensing elements on
the integrated thick film sensor. One output unit was assigned to eachof the six possible "answers,"
and during training the corresponding output unit was assigned unit output, while the rest were
assigned zero output.

EFIM
The extracted feature input method can be a very powerful technique if one can identify and
precompute, before presentation to the neural net inputs, features similar to those which humans
seem to use to make classification decisions. EFIM is less general than DIM in the sense that it
requires feature identification in advance by a human. As with conventional pattern recognition.
classification with neural nets generally works better if a human selects features lo preoompufe than i
essentially raw data are presented.
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Our experiments have focused on the spatial first derivatives of normalized sensitivity distributions as
EFIM input data. The number of EFIM input units is the number of chosen features, in this case
sixteen spatial first derivatives from seventeen sensors. The number of hidden units is chosen by the
same empirical method used in DIM. The rest of the network, consisting of eight hidden units and six
output units, was the same as in DIM. In a sense, our EFIM approach is to insert a fourth layer
between the original input and hidden layers, this extra hidden layer being prewired to output
differences between adjacent inputs.

Output Classification

The output value or activity of each output unit in our trained network is by definition proportional to
the probability of the sample being in the corresponding class. Since the activity of each output unit
ranges between zero and one, a plausible top level discriminant function pi can be defined as

where oi is the activity of the Ith output unit corresponding to the fk sample class, i indicates a unary
gas species or a specific binary mixture, j is a dummy Index over the same space, and n is the
number of sample classes, /.e.f the total number of unary plus binary samples in the output space. Pi

is essentiaiy the joint probability that the sample is In class i and not in any other class.

Training

Learning by back propagation employs two traversals of the net, one forward and one backward,
each time each input vector In the training set is presented. In the forward pass activity propagates
as usual) from the input units through the hidden layers to generate the output vector, in the

backward pass the emr (the dfecence between the ou^xit vector ami the known truth) is back
propagated through f ie same connections from outpu: iaytr toward input layer. This facilitates
confuting, for each mtwmcMm, the graxieni of the output emr with respect to the weight of the
connection. The weights art then changed so as to reduce the error. In effect teaming works by
gradient descert on m error surface in weight space,

Th« total input to t in! j$ denoted xp is by ctafMtort a weighted aim of the inputs ^ of the units 'in the
pwimis taytr2. With ths nwlghts denoted w^:

;* defined to 'be a sigmoidat furctton
imttoi) of to M ^ kfiA. A salable form

Each um is tatc§m as taping s i

.:
scDe ami

which vwtes bMwNn 0 «t ivgs of x and 1 « togs postlvt erf i L a«J

g o i i : " ^ e .̂3 ^ - ; p
th» f ^ * ^ ssl f m <stJtptJt by tht

fortach
to {h somt sinst

>ec::^in
on tf»

iimi tat



application and context) sufficiently close to the output vector corresponding to the known truth. The
neural net literature analyzes in detail the network configurations and training schemes under which
training data sets can be learned perfectly, and, more importantly, the circumstances under which
data not in the original training set will be correctly classified. Our experiments are oriented toward
demonstrating and categorizing the robustness and generality of the method with real data from real
sensors.

A heuristic measure of performance is provided by extending the hill climbing analogy to a potential
energy function. If there is a fixed, finite set of input-output cases, the total error in the performance
of the network with a particular set of weights can be computed by comparing the actual and desired
output vectors for every case. The total error E is defined as

where c is an index over cases (input-output pairs), j is an index over output units, > c is the actual
state of an output unit, and djc is the state that output unit y^c would be in were it reporting the truth.

The straightforward approach to gradient descent is to change each weight by an amount
proportional to its influence on the error:

Awu = - e i i (1)
lJ any-

where e is an empirically selected constant.

Convergence is more rapid if higher order derivatives are taken into account. The second derivative,
for example, is accounted for by revising equation 1 to

Aw-(n) = -t—(n) + aAw(rt-l)

where n is incremented by 1 for each sweep through the whole set of input-output cases, and a is an
exponential "forgetting- factor between 0 and 1.
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gas/data/id

E
E
E

M
M
M
M

H
H
R
R

E+M
E+M
E+M

MfH
M+H

E+H
E+H
E+H

6.16a
6.16b
6.16c

6.10«
6.10f
6.10g
6.17a

6.14a
6.14b
6.14d
6.14«

6.21a
6.21b
6.21c

6.23a
6.23b

6.22a
6.22b
6.22c

E

97
97
98

0
0
0
0

11
14
12
15

0
0
0

8
14

2
3
3

M

0
0
0

99
98
99
63

3
2
4
3

7
6
6

0
0

0
0
0

H

0
0
0

0
0
0
0

84
82
82
80

0
0
0

0
0

0
0
0

E+M

0
0
0

0
0
0
36

0
0
0
0

92
93
93

0
0

0
0
0

M+H

0
0
0

0
0
0
0

0
0
0
0

0
0
0

91
84

0
62
80

E+H

1
0
0

0
0
0
0

0
0
0
0

0
0
0

0
0

97
34
16

Air

2
3
2

1
2
1
1

2
2
2
2

1
1
1

1
2

1
1
1

%corr<

99
100
100

100
100
100
64

86
84
84
82

93
94
94

92
86

98
35
17

Table 1

Performance under training by DIM (17 input units)

Results
Table 1 shows the rest* of tests on ethanol (E), methane! (M), heptane (H), ami their binary mixtures
generating data of the type iustrated in Figure 4 using the DIM method, i.e., seventeen input units
corresponding to seventeen sensor array elements. The seventeen inputs are re-normalized to a
minimum value of 0 and a maximum value of 1 In each cycle to minimize the effect of stow drifts in
baseline and sensitivity. Identification is by the probablty method outlined in the Ouput
CtassMfcatkM section, wth the modMcation that I the laigerit response (AR/RJ seen among the
seventeen sensors is tess that 0.01 then the sample is classified as air, /.e., in effect classification is
not attempted- Training data are two randomly selected members of the run for each gas, /.«., for
ethanoi two members of the set designated gas E, date 6J6> id a. Table 1 summarizes 1900 data
vector measurements collected &i 19 separate cycles erf 1DG measurements each. The data were
collected on seven separate days during a two week period. Out of 1900 possible classifications*
1606 or 85%' were correct
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0
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0
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0
0
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0
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0
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0
0
0
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0
0
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2
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1
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100
100
100
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89
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99

94
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94
94
95

Table 2

Performance under training by EFIM (16 input units)

Table 2 shows the result of tests on ethanol (E), methanol (M), heptane (H), and their binary mixtures
generating data of the type illustrated in Figure 4 using the EFIM method, i.e., sixteen input units
corresporKling to sixteen spatial first derivatives across the seventeen sensor array elements. The
sixteen inputs are re-normalized to a minimum value of 0 and a maximum value of 1 in each cycle to
minimize the effect of stow drifts in baseline and sensitivity. Identification is by the probability method
outlined in the Ouput Classification section, with the modification that if the largest response (AR/RJ
seen among the seventeen sensors is less that 0.01 then the sample is classified as air, i.e., in effect
classification is not attempted. Training data are two randomly selected members of the run for each
gas, i.e., for ethanol two members of the set designated gas E, date & 16t id a. Table 2 summarizes
1900 data vector measurements collected in 19 separate cycles of 100 measurements each. The
data were collected on seven separate days during a two week period. Out of 1900 possible
classifications, 1814 or 96% were correct.
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gas/data/id E+M M+H E+H Air %correct

E 6.16a
E 6.16b
E 6.16c

M 6.10a
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H 6.14a
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5
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0
0

0
0
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0
0

0
0
0
0
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0
0

0
0

0
0
0

0
0
0

0
0
0
0

0
0
0
0
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0
0

0
0
0

0
0
0

0
0
0
0

0
0
0
0

0
0
0
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0
9
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1
0
0

0
0
0
0

0
0
0
0

0
0
0
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0
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7 6

2
3
2

1
2
1
1

2
2
2
2

1
1
1

1
2

1
1
1
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100

100
100
100
100
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84
85
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94
95
95

88
76

97
87
77

Table 3

Performance under training by DIM + EFIM (33 input units)

Table 3 shows the resut of tests on ethanot (E), methanol (M), heptane (H), and their binary mixtures
generating data of the type Instated in Figure 4 using a combination of the DIM am) EFiM methods,
Le., thirty three input anil's corresponding to the seventeen sensor elements plus their sbcteen spatial
first derivatives. The DIM and EFIM input sets am mdvidii&iy re-fiomiaized to a minimum value of 0
and a maximum value of 1 in each cycle to minimize the effect of slow drifts in baseline and
sensitivity, identification is by the probability method outlined In the Ouput Classification section, with
the modification t int I the largest response {ARfMJ seen among t i e seventeen sensors is less that
0.01 then the sample is dass&eti as air, Le.t in effect duriflcation is not attempted. Training data
are two randomly selected members of the run for each gas, £#„ for ethanci two members of the set
designated gas £ f date & 70, id SL Table 3 summarizes 1 SCO data vector measurements collected It
19 separate cycles erf 100 measurements each.. The data were collected on seven separate days
during a two week period Cut of 1900 possible ctassffintfons, 1747 m 92% were correct.
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Adding additional training data, particularly data selected from cycles on which performance is poor,
improves performance statistics substantially, since the overall "grade point average" in each case
suffers badly from a few extremely poor performances. This is of course in keeping with the well
known result that perceptron-like neural nets are guaranteed to learn their training data perfectly.
However it is observed that it is not only the learning of the new training data that contributes to
improved overall performance: there is general improvement in performance on all data in the cycles
from which the new training data are taken. This illustrates the ability of machines of this type in
some situations to generalize, and to abstract classes from disjoint sets.

A somewhat surprising result is that performance on the set of inputs consisting of the DIM plus the
EFIM data is better than the performance on the DIM data alone, but worse than on the EFIM data
alone: in fact it is just a little better than their average. Understanding whether this effect is of a
general nature or an anomaly of these particular experiments awaits further work.

As a final comment, it is clear were we to define any reasonable method for assigning (in teaching
parlance) "partial credit," effectively to recognize that the classes are not inherently orthogonal, this
statistic would obviously be improved.

Conclusion
An array of identical metal oxide gas sensors, each operated at a different temperature, showed
sufficient differential sensitivity to discriminate among several simple organic vapors and their binary
mixtures. The array was implemented by a spatial temperature gradient along the surface of a single
large area thick film device. A three layer neural network, trained by the back propagation algorithm,
was able automatically to generate the classification scheme. This was true for input of either raw
sensor responses (the direct input method) or of preprocessed sensor responses (the extracted
feature input method) in the form of the spatial derivative of response.

The difference between a multilayer neural network and its antecedents in conventional pattern
recognition with linear discriminants is that the neural network is able to perform recognition tasks on
nonlinearly separable data. The difference between neural network classifiers and classification by
symbol manipulation based artificial intelligence lies in its ability to distinguish subtle quantitative
differences among the input features, and the existence of quantitative cues embedded in the data
which cannot easily be represented symbolically. In situations requiring classification based on
multiple sensor responses, the neural network may be a particularly good choice even in a noisy
environment.
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