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Abstract

This report presents a new way to control the tip position of single-link flexible arms when friction
is present in the joint. In order to minimize the influence of the nonlinear components of this friction,
the control scheme is composed of two nested loops: an inner loop that controls the motor position, and
an outer loop that controls the tip position.

It is demonstrated that proper design of the inner loop of this control scheme eliminates the effects
of friction in controlling the tip position, and may significantly simplify the design of the tip position
controller.

Three control schemes are proposed for the outer loop. All of them are based on an hybrid feedforward-
feedback control scheme. The first and second schemes use only tip position feedback while the third
one uses sensing of positions at several points of the beam.

Performances of the three schemes are compared under the following disturbances: a) motor position
perturbations, b) unmodelled dynamics, and c) changes in the payload.

Experimental results are presented for the two arms described in the Part I; the three tip position
control schemes are compared in both arms; and, finally, conclusions are drawn.






1. Introduction

Very little effort has been devoted to the control of flexible arms when static and dynamic frictions
are present in the joints, in spite of this being common in practice, as was mentioned in the General
Introduction (see the first report of this serie of three). The effects of friction are especially important in
lightweight flexible arms, or in flexible arms moving at low speeds and accelerations.

In this second report, control of single-link flexible arms with friction in the joint is studied. A general
control scheme is proposed in Section 2 to compensate for it. Existing methods to control flexible arms
[1-6] are based on explicit control of the tip position. In these schemes, the controller generates a control
signal, which is the current (after being properly amplified), for the DC motor that drives the arm. We
propose here a new method which is based on the simultaneous control of the joint motor position and
tip position, and the implementation of two nested closed loops: an inner loop that controls the motor
position and another outer loop that controls the tip position. In our scheme, the tip position is controlled
by using the motor position instead of the current as control signal. Friction is compensated in our scheme
by using controllers of high gains in the inner loop. It is demonstrated that this can be done even in the
case in which the arm is non-minimum phase.

Section 3 describes the design of the inner loop controller. Compensation of Coulomb friction and
the coupling torque between the motor and the beam is carried out. It is stated that, in many cases, the
dynamics of the motor position control loop is negligible compared to the dynamics of the beam (second
submodel in Section 2 of Part I). This allows us to simplify the design of the outer loop. Section 4
presents the experimental results obtained when closing the inner loop in the cases of two lumped-mass
flexible arms that we have built in our laboratory: a single-mass arm, and a two-mass arm (they were
described in Part I). Because the first arm is minimum phase and the second non-minimum phase, all the
possible cases of single-link flexible arm control are included in our experiments.

The outer control loop is described in Section 5. Three control schemes for the tip position are
proposed in this report: two schemes based on classical frequency domain techniques, and a third scheme
based on state-space methods. All three schemes combine a feedforward term with a feedback controller.
It is shown that, with this hybrid feedforward-feedback scheme, high position accuracy may be achieved
for the tip of a flexible arm. The feedforward term is designed to drive the motor in such a way that the
tip of the arm approximately follows the desired trajectory. The closed-loop controller compensates for
the deviations of the tip from the nominal trajectory. If the feedforward term is properly designed, these
errors are small, allowing us to use simple controllers. The feedback control law is implemented in the
two first schemes by sensing the tip position. The feedback law of the third scheme uses sensing of the
position in several intermediate points of the arm. The second method exploits a special feature that the
general control scheme proposed here exhibits: the first (lowest) natural frequency of the beam, which is
the dominant one, may be easily cancelled by closing a positive feedback loop of the tip position.

Are presented in Section 6 experimental results of tip position control, that were obtained applying
the three methods to our two flexible arms. Performances of the three schemes are compared in Section
7 under the following disturbances: a) motor position perturbations, b) unmodelled dynamics, and c)
changes in the payload are present.

Finally, conclusions are drawn in Section 8.



2. General Control Scheme

2.1. Description

As it was mentioned in the introduction, there are many applications in which the friction must be
taken into account when controlling a flexible arm. Only when friction torque is much smaller than beam
torque, can it be ignored. This happens in cases such as very large flexible structures, or direct-drive
arms designed for minimum friction.

Several methods have been proposed to minimize the effects of friction in the control of DC motors,
that can be directly applied to the control of rigid arms. The simplest method is to use a high-gain linear
feedback. This is based on the property that the robustness of a closed loop system to perturbations and
changes in its parameters is improved when the open loop gain is increased (Kuo [7]). This has been
used by Wu and Paul [8], for example. The main limitation of this method when applied to rigid arms
is that the nonlinearities will dominate any linear compensation for small errors tending to give small
permanent errors in the positioning. More significant limitation appears when this is applied to control of
flexible arms, which are typically non-minimum phase systems. This means that a high-gain tip position
loop leads to system instability (this is consequence of having the system zeros in the righ half-plane).
Consequently, this method is unsuitable for flexible arms.

Another method for compensating friction is the use of force sensors and the mechanization of a
feedback loop around the motor torque. Examples are Handlykken and Tumer [9], and Cannon and
Schmitz [1] (the latter is an application to flexible arms). Finally, other methods are based on the use of
a calculated compensation term which is added to the current of the motor in order toO compensate the
friction torque. Examples are Walrath [10] that used a model of the friction in order to predict its value,
and more recently Canudas et al. [11] that used a parameter identification procedure (a recursive least
squares algorithm) in order to obtain this term.

In this section we propose a new simple control scheme to reduce the effects of the friction. This
scheme is based on a modification of the classical high gain position closed loop procedure, in order to
allow its application to flexible arms. This method does not need extra sensors (to measure the torque of
the motor) and allows much simpler calculations than other compensation methods. Our control scheme
also incorporates a constant feedforward term in order to remove the remaining steady state errors because
of the Coulomb friction. This method practically eliminated friction nonlinearities in our flexible arms.

In order to reduce the effects of the friction, the basic control scheme of Figure 1 is proposed. This
scheme has two variables: motor and tip positions: 6,, and 6, respectively (using the nomenclature defined
in Figure 1 of Part I). These two variables are controlled by two nested closed loops, and two different
controllers (R(s) and a(s)) are used, each one being designed separately according to different criteria. In
Figure 1, m(s) is the motor open-loop transfer function between the current and the angle of the motor. It
is easy to show that m(s) always has all its poles and zeros in the left half-plane. The open-loop transfer
function of the flexible beam g,(s) relates the angle of the tip of the beam to the angle of the motor.
&a(s) has all its poles in the left half-plane but may have (for arms with more than one vibrational mode)
some zeros in the right half-plane (non-minimum phase system). F(s) is an open-loop term designed in
conjunction with R(s).

Existing control schemes for flexible arms basically generate a current for the DC motor as function
of the tip position error and/or its derivatives. If we try to compensate for friction in these schemes,
by increasing the gains of the controller, the closed-loop system becomes unstable because of the right
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half-plane zeros of g,(s). But in our proposed scheme, because m(s) is minimum phase, the gains for the
inner loop can be arbitrarily increased (using an appropiate controller a(s)) without making the system
unstable. So, intuitively, the high gain inner loop that controls the motor position makes the system
insensitive to the friction and, then, a second outer loop may be designed to control the tip position. This-
second loop cannot have a high gain because g,(s) is non-minimum phase, but now it does not matter
because the friction effects have been nearly removed by having closed first the high gain inner loop.

2.2. Feedback compensation (sensitivity analysis)

The previous ideas justify intuitively the interest of using our control scheme. This subsection gives
analytical proof of it (Rattan et al. [12]). The analysis carried out here is quite straightforward and will
give a quantitative idea of how much the robustness to friction is increased by using our nested multiple
loop scheme. In order to do this comparison, a typical control scheme like the one shown in Figure 2 will
be used (Cannon [1], a.e.). The sensitivity characteristics of this system will be taken as representative
of the existing methods because they are based on controlling the tip position using only a controller that
generates a command for the current of the DC motor. So the sensitivities of all them are of the same
order of magnitude. Two comparative analyses will be carried out: one checking the signal-to-noise ratio
(considering that the Coulomb friction is the noise), the other checking the sensitivity to variations in the
dy