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Abstract

The network reliability problem has been well covered in the literature.
The idea of reliability found in most literature consists of defining a
numerical parameter called overall network reliability and then suggesting
methods for computing that parameter for a given network. We take this
analysis one step further by providing an algorithm for determining a
network which will have near maximum reliability under certain given
constraints.

Given n terminals and one central computer, the problem is to construct
a network which links each terminal to the central computer subject to the
following conditions : (1) each link must be economically feasible ; (2) the
minimum number of links should be used ; and (3) the reliability should be
maximized. We argue that the network satisfying condition (2) is a
spanning arborescence of the network defined by condition (1). A definition
for the reliability of an arborescence is given. Since the problem of
maximizing reliability is NP complete, a heuristic algorithm is developed
which provides a good solution for the arborescence having maximum
reliability. Computational experience for networks consisting of up to 900
terminals is given.

1. Introduction

The problem of maximizing the reliability of a communications network has

widespread application especially due to the advent of computer communications

networks. For example, we might be interested in knowing the probability of CMU

being able to communicate with Harvard on the TELENET network, and also the

overall reliability of the TELENET network. We refer to each city on the network as

a node. As mentioned in [26] , conceptually the task of determining the overall

reliability is a simple one. All one must do is

1. Consider each of the possible states of the system (a state is defined by
listing the successful and failed components).

2. Identify which of the states result in successful system operation (i.e
every node in the network is able to communicate with every other node).

3. Add together the probability of occurrence of each successful state.

The final sum is the overall system reliability i.e. the probability of the system

being in successful state. Clearly, this approach is computationally infeasible for

large systems because an n node communication network will have 2n states. In

current literature, several manageable definitions for overall reliability have been

proposed [11, 18]. A comprehensive survey of network reliability problems is given

in [8 ] . Most network reliability problems are. in the worst case, NP-hard [12] .
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Network reliability problems are more difficult than many standard combinatorial

optimization problems because the correctness of a solution to a reliability problem

cannot be verified in polynomial time. However, there are in fact linear and

polynomial time algorithms available for network reliability problems having special

structure.

A probabilistic network consists of a set of nodes and links that fail with some

known joint probability distribution. In addition to a communications network, other

practical examples of a probabilistic network are electric power systems, water

aqueducts and transportation systems. For a probabilistic graph G, reliability models

have been classified as Rooted Problems or Unrooted Problems by Satyanarayna as

follows [41].

Rooted Problems

• Source to Terminal Reliability: Probability that a specified vertex in G can

send communication to another specified vertex. This problem is studied

in [9].

• Source to all terminal (SAT) Reliability: Probability that a specified vertex

in G can send communication to all other vertices.

• Source to K-terminal (SKT) reliability: Probability that a specified vertex in

G can send communication to a set of K specified vertices.

Unrooted Problems

• 2-terminai reliability: Probability that a specified vertex pair in G can

communicate.

• Overall Reliability: Probability that all vertex pairs in G can communicate.

• K-terminal reliability: Probability that among a set of K specified vertices

in G, all vertex pairs can communicate.

The rooted problems are meaningful only for directed graphs. For an undirected

network, each link can communicate both ways, and the three rooted problems are

equivalent to each of the three corresponding unrooted problems.

The most widely studied problem in literature is the source to terminal reliability



for which a review of known methods is given in [30, 39]. The problem that is the

focus of our attention in this chapter is the source to all terminal reliability which is

the same as the overall reliability for an undirected network. This problem was

solved in [40] using the concept of a t-graph which is a fundamentally different

approach from ours. We assume that the final communications network will be an

arborescence and try to find the specific arborescence which will have the maximum

reliability. In [40] it is assumed that the communications network has already been

designed and the objective is only to calculate the overall reliability by decomposing

the network into rooted trees. Combinatorial properties of various definitions of

reliability are discussed in [21, 22, 23]. The other relevant references for the

reliability problem are [31, 34, 37]. An exhaustive bibliography of the literature

published on complex system reliability (i.e. power network, communications network

etc.) evaluation is given in [24, 44].

Note that all terminals of a network G can communicate with each other if and only

if there is at least one spanning tree of G with all its branches operative. This

notion is used in [6] to compute the reliability of a network. One other method

which deserves special mention due to its simplicity is given in [10]. It defines

system success as the case when all terminals of G are able to communicate with

each other and gives an algorithm for finding mutually disjoint success branches.

The reliability expression of each branch can be written directly using a set of rules.

Then the reliability of the whole network is the sum of the reliability of each

success branch. Other papers [1 , 2, 3, 5, 17, 32] interpret network reliability

differently and provide methods for evaluating a different kind of reliability.

Several approaches for evaluating the reliability of a network have been proposed.

Methods relying on the Markov approach [13, 15} suffer from having too many

system states. The network approach [16] requires the explicit manual derivation of

several complex formulae and hence is not suitable for computer application. There

are some algorithms based upon systematic network reduction [19] which apply star

delta type of transformations to the network thereby making the network less

complicated. To reduce the size of a communications network, it is also possible to

define conditions under which a link from a network can be removed without

affecting its overall reliability [38]. Some reasonably fast methods based on fault

tree analysis also exist [29].

C^st benefit analysis is another important facet of the problems in network

reliability. The effect of redundancy in a communications network on maintenance



and outage costs is discussed in [33]. Some authors [25] prefer to use the more

global term quality measure of a network and characterize the quality of a network

by its reliability, maintenance costs, safety and other related attributes.

It is also very important to consider capacity constrained reliability problems.

Network Flow type of problems such as communications system having fixed channel

capacities of its links are considered in [7 ] . If some multiprocessors can connect

only a specified number of terminals then we get the degree constrained problem

which is considered in this paper.

As mentioned earlier, the general reliability problem is NP complete. For this

reason, heuristics play a very important role in the reliability literature. The

literature has many papers discussing the philosophy of reliability heuristics [28] ,

comparisons of heuristics [36] based on speed and accuracy, notion of local

optimality [27] , and details of heuristic algorithms [35, 4 ] .

2. Review of some Concepts and Definitions

Unless otherwise specified, by a graph we mean a connected undirected graph.

These definitions are the same as those given in [43] and have been reproduced here

for the sake of completeness. The proofs for all lemmas and theorems in this

section are given in [42] .

Definition 1: A connected graph which has no cycles is called a tree.

Definition 2: A rooted tree is a tree in which an arbitrary (but fixed) node

is given the name root node. If each edge of a rooted tree is replaced by

a directed arc pointing towards the root node, it is called an arborescence.

Note that there is a unique arborescence corresponding to any rooted tree.

Definition 3: For any graph G = (V,A), the rooted tree T = ( V ^ ^ is called a

spanning rooted tree of G if A is a subset of A. When each edge of the

spanning rooted tree is replaced by an arc directed towards the root node,

we get a spanning arborescence of G.

Definition 4: For a given spanning arborescence of G = (V, A), if i, j € V

and (i,j) G A , then the predecessor node of i is said to be j or symbolically

P("> = j-



One can interpret predecessor of i to be like the "father" of i in the sense of a

family tree.

Definition 5: Nodes i and j are called the end nodes of arc (i,j).

Definition 6: A node i 6 V is said to be a junction node of a rooted tree

T - (VrA Ĵ if it is the end node of at least three arcs belonging to

Definition 7: A node i 6 V is said to be a beginning node if it is the end

node of exactly one arc € A_,

Definition & Let i and j be two nodes of an arborescence T = (V, A ) . If

there is no directed path in T from node i to j or from node j to i, then

the arcs (i,j) and (j,i) are called cross arcs with respect to T. If there is a

directed path from i to j and (i,j) p A then (i,j) is called an up arc.

Definition 9: For each i € V we define the successor set V = {h : p(h) - ih

Thus Y. is the set of nodes which are immediately below i, i.e. the set of

nodes for which i is the predecessor node.

Definition 10: The successor function of i represented by s(i), for i G V is

defined inductively as follows :

l s(h)
h € ¥

In other words, s(i) « 1 + number of nodes in T below i.

Definition 11: The ramification index or Ram of a spanning arborescence

of a communications network is defined as
n

n<n1) TT
Ram = - Z— s(j)

2 j . i
where n+1 is the root node of the arborescence.
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Definition 12: Given an arborescence T = (V,AJ and an arc (i,j) p A, a

unique undirected cycle is formed when (i,j) is added to A_. The node on

this cycle having the largest successor function is called the maxima/ cycle

node created by (i,j).

Theorem 13: For a given incoming arc, the change in ramification index of

a rooted tree depends on the outgoing arc. If the g'th arc between i and

the maximal cycle node created by the incoming arc (\.\) is taken out then

this change in ramification index is given by :

9-1

A R(g) * 2 • zl s(i) - (f - e • 2g - 1) • s(g)
i*1

where

k The maximal cycle node created by (i,j).

e = Number of arcs from node i to node k.

f = Number of arcs from node j to node k.

g * The number of arcs on the directed path in the
arborescence starting at arc(i.j) and ending at the outgoing
arc (ends inclusive).

s(t) » The successor function of the f th node on the path
from node i to node k. t=1 corresponds to node i.

Theorem 14: If an arc (i,j) is to be brought into the solution, then the

outgoing arc which gives the maximum decrease in the ramification index

has the maximal cycle node as one of its end nodes.

3. Statement of the Computer Network Reliability Problem

We construct the graph of a communications network by carrying out the following

steps. Consider each terminal as a node of the graph. Connect two nodes if it is

economically feasible to directly link the corresponding terminals. Now add another

node representing the central computer and connect it to the nodes of ai! terminals

with which it can be directly linked. This gives us a graph which we call a

communications network which is formally defined below.



Definition 15: A Communications Network is the graph G s {V,A} where

V = Set of all terminals = U,2,~.,nh

A ' Set of all permissible links between pairs of terminals
and between the terminal and the central computer.

The reliability of a communications network should be inversely proportional to the

number of terminals rendered inoperative due to the breakdown of one or more links.

The objective is to find a network consisting of minimum number of permissible

links and having maximum reliability in this sense. A connected graph with minimum

number of links directed towards the central computer is an arborescence so that we

will concentrate on finding an arborescence with maximum reliability.

Note that for an arborescence with root node n+1 corresponding to the central

computer, the number of terminals rendered inoperative due to the failure of the link

from terminal j to its predecessor node (Definition 4) is simply equal to s(j)

(Definition 10). Therefore the number of terminals rendered inoperative due to the

breakdown of an "average" link is
n

NOP * - E s ( j ) ] (1)
n ]=i

Theorem 16: The Ram and NOP of an arborescence are inversely related to

each other.

Proof: From Equation (1) and Definition 11 above we can deduce that

n+1 Ram
NOP =

2 n

Hence for a higher ramification index, the value of NOP will be lower so

that the reliability would be higher. •

4. Formal Definition of Network Reliability

Consider a spanning arborescence of the communications network.

Let d(j) • Number of links between terminal j and the central computer.

p = Probability of a particular link being in working condition. It is
assumed that all links have the same probability of working and
that they have independent probabilities of being in working
condition.
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computer.

Theorem 17: The probability that terminal j can communicate with the

central computer is given by

R(j) • p*3 . (2)

Proof: The proof follows from the fact that the probability of each link

operating is independent of the others and there are d(j) links on the path

from terminal j to the central computer. Since each link must be working

in order for the computer and terminal j to communicate. Equation (2) must

hold. •

Definition 1& The reliability Rei of an arborescence having n nodes is

defined as the geometric mean of R(j) for each terminal in the

arborescence, i.e.

TTT 1 1 / n

Re. » t i l p**]
or equivalently,

Hei « p VoJ

Before we prove any properties of Rei we must first prove the following theorem.

Theorem 19: For any arborescence on n nodes, if s(j) is the successor

function of node j as defined in Definition 10 and d(ji is as defined above,

we must have
n n

(4)

Proof: We will prove this assertion by the method of finite induction. The

statement is obvious for an arborescence having two nodes, one of which

is the root node. Now assume that the theorem is true for arborescence

having up to k nodes. Consider an arborescence having k+1 nodes. Delete

an arbitrary beginning node x (see Definition 7). The resulting arborescence

has k nodes for which Equation (4) holds. Now add x back to this

arborescence. The successor function of each node on the path from the

oeginning node zo the root nca-i increases by one sinpi> irg that rhe



increase in the sum of all successor functions is equal to d(x). Thus both

sides of Equation (4) increase by the same amount and the proof is

complete. •

Theorem 20: The reliability Rei of an arborescence is directly related to

the ramification index.

Proof. From Equations (3) and (4) it follows that

Rel

Using the ramification index Definition 11 we can write

T 1 f n<n+1) VI
Rel * exp Uogip) — \ Ramj J

2

(5)
n

which can be rewritten as

Ram
n log(Rel) (6)

2 Hog(p))

Since p < 1 we have log(p) < 0 implying that Ram and Rei are directly

related. . «

We are now ready to prove several useful properties of Rel.

Definition 21: A shortest path arborescence is an arborescence in which there

are the minimum possible number of links between any node and the root

node.

It is well known that the problem of finding the shortest path arborescence can be

solved in polynomial time [20, 14].

Theorem 22: For any communications network, the shortest path spanning

arborescence with the central computer as the root node has the maximum

reliability. •

Proof: According to Equation (3), reliability is maximized when the sum of

all d(j) is minimized. For the shortest path arborescence each individual d(j)

is minimized and therefore it must have the maximum reliability. •
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Corollary 23: For any communications network, the upper bound on the

reliability is p. This upper bound may not be achievable for a general

network.

Proof: The minimum value possible for each d(j) is d(j) = 1 for j=1,...,n and

this is achieved when each terminal is connected directly to the central

computer. In this case from Equation (3) we get that Rel = p. For a

complete graph it is always possible to find an arborescence with Rel * p

but this may not be possible for a general communications network. *

Corollary 24: For any communications network, the lower bound on the

reliability is

(7)

which corresponds to a Hamiltonian Path with the central computer as the

last node on the path.

Proof: For a Hamiltonian Path Ram * 0 [43] so it has the least possible

reliability. According to Definition 11,
n

Z n(n+1)
s(j) = (8)

j *1 2

The assertion follows by substituting Equations (4) and (8) in Equation (3). •

5. Maximizing Reliability Subject to Degree Constraints

Finding the maximum reliability spanning arborescence of a communications network

is an easy problem since all we need to do is to find a shortest path spanning

arborescence. However a more practical problem is to find a spanning arborescence

subject to some kind of degree constraint for each vertex. In real l ife problems the

links coming into a node are connected to a multiplexer located at the node, and the

multiplexer cannot take more than a predetermined number of links. In this section

we discuss the effect the degree constraint has on the general reliability problem.

For simplicity we assume that each terminal or node has the same degree

constraint. However the whole discussion can be easily generalized to different

degree constraint for different terminals.

Definition 25: The degree constraint of each node, denoted by U. is the

:"£/.imurn vv.p.:. •- •;• links :iiut can co:fie ; •.:.; z.v. rerminsi.
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Theorem 26: A nontrivial degree constrained reliability problem must have
1 £ U £ D - 1

max

where D is the maximum degree of any node in the communications
m a x * • •

network.

Proof: If U is less than 1 then there is no solution. If U is D or more
max

then from Theorem 22 in this chapter, the shortest path arborescence is the

optimal answer which cart be found in polynomial time. Note that for U -

1 we get the Hamiltonian Path problem. •

6. Applications to Reliability of Directed Graphs

Most of the concepts of reliability discussed so far are defined for arborescences.

Since we can also find a spanning arborescence for a directed graph, we can extend

the validity of the definitions and theorems to the case of directed g/aphs. In

particular note that Theorem 22 is true for the directed case also. However, for a

directed graph the value of Rei would depend upon which node is chosen as the root

node. Furthermore Rei will have to be interpreted as the probability of every node

being able to communicate with the root node and this wil l not be the same as the

overall reliability of the network.

We consider a special class of directed graphs, the Directed Rectangular Lattice

Graphs (DRLG) [42]. Figure 1 shows a 4 X 4 DRLG . Note that node 1 has been

split into two nodes 1 and 17. For a DRLG we have D - 2 so that from Theorem
max

26 the only nontrivial degree constraint would be U = 1 which corresponds to a

Hamiltonian Path. We now show that the case U s 1 can be solved in polynomial

time. In [42] we had mentioned without proof that for a DRLG a Hamiltonian Path

can be found in polynomial time. Theorem 27 serves as a proof for that statement

also.

Theorem 27: If x (#1) is a beginning node of a spanning arborescence of

a DRLG then there exists an incoming cross arc (x,j) (See Definition 8) which

leads to a new spanning arborescence having one less beginning node and

one less junction node.

Proof: Every node in a DRLG has indegree of either one or two. By

inspection of Figure 1, if (i,j) is the only arc coming into node j then it

must also be the only arc coming out of node i and therefore must also

?!wavs bp •'•? ?^v cp?nning arhorescpnee. Thus everv
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have exactly two arcs coming into it. Since D = 2 , every junction node
max

of any spanning arborescence must have exactly two arcs of the

arborescence coming into it.

In Figure 1 if x is a beginning node then arcs (w,x) and (y,x) are not in the

spanning arborescence so that (y,z) and (w,z) must be in the arborescence

implying that z is a junction node. If we remove (w,z), the arborescence

splits into two distinct parts. Let the part containing node w be called C

and the other part which contains node z be called C .

(a) If x p C , then add (w,x) to connect C and C which gives an

arborescence having one less beginning node and one less junction

node.

(b) If x 6 C , then restore (w,z) and interchange the roles of w and

y. Case (a) now applies.

Corollary 28: If an arborescence of a DRLG has JN junction nodes (and

number of beginning nodes BN = JN+1) then we can construct a Hamiltonian

Path in exactly JN (=BN-1) steps.

7. An Algorithm for Solving the Degree Constrained Network Reliability Problem

When solving a degree constrained reliability problem we first find a shortest path

spanning arborescence of the network. If this arborescence happens to satisfy the

degree constraints also then the problem is solved. However, if no shortest path

spanning arborescence satisfying the degree constraint is found then we pivot to

minimize Ram index until the degree constraint is satisfied for the first time. Note

that if we reach Ram = 0 then we get a Hamiltonian Path which of course satisfies

the most stringent possible degree constraints. Once we f ind a feasible

arborescence we can again start to maximize Ram taking care that no degree

constraint is violated.

The Algorithm

Consider an undirected graph G s (V,A) where V is the set of vertices and A is the

set of edges of G. Denote by T = (V rAj a spanning arborescence of G. Note that A.

is a subset of A.
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Figure 1: A 4 X 4 DRLG with spanning arborescence having darkened edges. A
beginning node x, and corresponding junction z node is labeled.

• Step 0 : Find Shortest Path Arborescence. Find a shortest path arborescence

T using any of the standard methods. If this arborescence satisfies the

degree constraint then STOP — the optimal answer is obtained.

• Step 1 : Calculate the successor function and ramification index of T. Using

Definition 10 calculate s(i) for all i € V. Then from Definition 11 calculate

Ramfl").

• Step 2 : Check the Degree Constraint. If T satisfies the degree constraints

then go to step 6 else go to step 3.

• Step 3 : Find an incoming arc to decrease Ram. For each (undirected) arc

(i,j) 6 A - A calculate using Theorem 13, the maximum possible decrease

in ramification index if that arc is brought into A in the direction from i

to j or from j to i. Let ARam be the maximum decrease ir, ramification

-ode
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thus created Let the new ramification index be Ram = Ram - ARam.
new

• Step 4 : Check possible cases. If

Ram STOP - Ram cannot be decreased further, tf another trial
is desired go back to Step 0 and generate a new,
different spanning arborescence.

If Ram < Ram Go to next step.

• Step 5 : Updating. Let (h,k) be the outgoing arc given by Theorem 14. Let

^ = A + {(e,f)} - {(h,k)}, Ram = Ram . Update the successor functions.
• R0W

If the resulting arborescence satisfies the degree constraints go to the

next step else go to step 3.

• Step 6 : Find an incoming arc to increase Ram. For each (undirected) arc

(i,j) G A - AT and whose introduction to the arborescence does not violate

any degree constraint, calculate the ramification index if that arc is

brought into Ay using Theorem 13 in the direction from i to j or from j

to i. Let Ram be the maximum of these ramification indexes and let
new

(e,f) be the corresponding arc.

• Step 7 : Check the possible cases. If no suitable incoming arc is found then

the current arborescence is a "good" solution. Else go to next step. .

• Step 8 : Perform Pivoting. Bring the cross arc (e,f) having ramification

index Ram into the solution by setting A = A - {(f,k; : (f,k) G A_} U
new T T T

{(e,f)}. Let Ram = Ram . Update the successor function. Go to step 6.
new

8. Interpretation of Computational Results

We coded the algorithm described in Section 7 in FORTRAN and implemented it on

DECSYSTEM-20 at Carnegie-Mellon University. The results obtained are shown in

Figures 2 and 3. In each of these tables the columns have the following

interpretations :

• Column 1 is the number of nodes in the generated graph.

• Column 2 is the maximum possible reliability of any arborescence of the

npnerated graph as cornputed using Equarion (5V a?- ' :^^? -^at 3=0.99.
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Number of Nodes excluding root node = m
Number of Arcs in the Graph « 2 * m * log(m)

All the values are averaged over 4 to 7 problems of each size
The reliabilities were calculated using Equation 22 with p»0.99

Indegree of Every node £ 3

(1)
m

100
200
300
500
700
900

(2)
Max Rel

0.9717
0.9703
0.9693
0.9681
0.9679
0.9664

(3)
Obtained Rel

0.9247
0.9129
0.8972
0.8838
0.8749
0.8641

(4)
Ratio(%)

95.2
94.1
92.6
91.3
90.4
89.4

(5)
# Pivots

122
233
337
573
796

1001

(6)
CPU Seconds

1.3
3.9
7.6
17.9
29.4
42.3

Figure 2: Computational results for maximum indegree * 3

Number of Nodes excluding root node = m
Number of Arcs in the Graph = 2 * m * log(m)

All the values are averaged over 4 to 7 problems of each size
The reliabilities were calculated using Equation 22 with p-0.99

Indegree of Svery node £ 2

(1)
m

100
200
300
500
700
900

(2)
Max Rel

0.9719
0.9702
0.9689
0.9683
0.9667
0.9667

(3)
Obtained Rel

0.9046
0.8875
0.8735
0.8585
0.8359
0.8324

(4)
Ratio(%).

93.0
91.5
90.2
88.7
86.5
86.1

(5)
# Pivots

114
223
348
564
800
1030

(6)
CPU Seconds

0.9
2.9
7.9
15.6
35.0
58.0

Figure 3: Computational results for maximum indegree = 2
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Theorem 22 explains how such an arborescence may be found The value

in Column 2 corresponds to the exact solution.

• Column 3 is the actual reliability found for a spanning arborescence of the

generated graph which satisfies the stated degree constraint. This is a

heuristic solution, since there may exist a spanning arborescence which

also satisfies the degree constraint and has higher reliability.

• Column 4 is the ratio of Columns 3 and 2. This ratio is consistently

better than 86% which indicates that the heuristic solution is a relatively

good one. The ratio decreases for larger problems suggesting that

solutions obtained for larger problems are not as good as those obtained

for smaller ones. As one would expect intuit ively, the ratio is higher

when the degree constraint is more relaxed.

• Columns 5 and 6 give the average number of pivots and the CPU time

taken for each value of m.

There are several interesting observations that can be made concerning the results

given in Figures 2 and 3. Note that it was always possible to obtain a reliability

very close to the maximum possible for the unconstrained problem, while still

satisfying the degree constraints. In all the cases tested the computational times

required were acceptable and vary approximately linearly with the number of nodes.

We <i\d not run problems having a more relaxed degree constraints because clearly

they would have yielded better solutions and run faster. When degree constraint is 1

then we are simply looking for a Hamiltonian Path which has a unique reliability

given by Equation (7), so these were not run either.

If the reliability found in Column 3 of Figures 2 and 3 is deemed to be

unsatisfactory then there are several methods of improving the results. We can

increase the value of p by using better quality links between terminals. Usually this

is possible only due to a technological breakthrough. Or we can add extra links to

the communications network to get a better spanning arborescence. If the network

consists of all possible links then the maximum reliability spanning arborescence will

have reliability p as given by Corollary 23.
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9. Conclusions

The literature on network reliability is extensive and several different definitions for

network reliability have been suggested. We investigated the problem of maximizing

the reliability of a communications network formed when several terminals had to

communicate with one central computer. It was shown that an arborescence with

high ramification index also has a high reliability. We proved that a shortest path

spanning arborescence has the highest possible reliability among all spanning

arborescences for both a directed and an undirected graph.

A heuristic program was developed for finding the maximum reliability of an

arborescence for which the indegree of each node was constrained by an upper

bound. Computational results were obtained which demonstrated that the degree

constrained maximum reliability is an exponential problem in the worst case but is

easy to solve approximately in practice. It was found that the computation time

varies linearly with the number of nodes.
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