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An Analysis of Mixed Finite Element

Approximations for Periodic Acoustic Wave Propagation

G.J. Fix and R.A. Nicolaides^

§1 Introduction. Let P^^P denote the fluid pressure,

velocity, and density. Our starting point is the Eulerian equations

of motion

au .

•g— + (u.grad)u + — grad p = 0 (1.1)

f^ (a-grad)p + YP divu = 0 (1.2)

pp"Y = constant f (1.3)

where y is a ratio of specific heats. The particular case of

interest in this paper is the acoustic disturbance about a mean

flow p Q iu o^p, where the pressure has the form

P = Po + e
irt

P]L , |P1/POI«1- (1.4)

' 'The first author was supported in part by ONR under contract
N00014-76-C-0369. The second author was supported in part by
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Assuming for example the mean flow is uniform and neglecting

quadratic terms we obtain the following:

iru + jgradp - 0 (1.5)

YPQdiv u + irp - 0 (1.6)

These equations are required to hold in the flow region Q with

linear combinations of the pressure and normal velocity being

specified on the boundary T; say

a u* v + Bp= a on T, (1.7)

where v denotes the outer normal.

The goal of this paper is to analyze Galerkin or mixed

variational approximations to the first order system (1.5)-(1.6).

At first glance such an approach may seem to be inferior to a

discretization of (1#5)-(1.7) based on a least squares principle

[1] • The primary reason for this is that in the least squares

approach one can obtain second order accuracy in L~ for both

u and p by using appropriate piecewise linear spaces for each*

Such a combination, however, will be unstable in the Galerkin for-

mulation ([2]-[4]). In the latter one typically uses an appropriate

piecewise linear space for u and a piecewise constant space for

p. The degrees of freedom in the latter are virtually the same as

in the least squares formulation for a comparable grid, yet

yield only first order L2 accuracy in p.

Two somewhat surprising results of the analysis in this paper



offer hope, however, for the utility of the Galerkin approach.

First we show that under suitable conditions one has superconver-

gence in the approximation to the pressure. For example, if

denotes the best I*2 approximation to p in a suitable space of

piecewise constant functions, then we show that the 1^ error

||pu - pL||o in the Galerkin approximation p^ is actually second

order if appropriate linear elements are used for the velocity u.

Second and of equal importance, the errors in the Galerkin

approach do not deteriorate as rapidly when the frequency r

increases. This is of particular importance in underwater acoustics

where

r > > 1

is quite common [5].

This second property is also shared by the standard finite

element formulation where (1.5) is differentiated and combined

with (1.6) to give the Helmholtz equation

Ap + u>p s 0, (1*8)

and the Galerkin method is applied directly to (1.8) . So long

as the coefficients Po'Ho'^o f r o m t^ie m e a n flow are smooth this

approach is possibly preferable; however in many applications these

coefficients come from measurements and are not smooth enough to

be differentiated [1]. In such cases one must deal directly with

a first order system like (1.5)-(1.6).

Previous work on Galerkin approximations has centered on the

Poisson equation



u - grad <p = 0 (1.9)

div u = f. (1.10)

Let V denote the finite dimensional space of velocities and

* the finite dimensional space of pressures. Brezzi [3] showed

that optimal convergence in the norms

Ml* =
will occur provided

sup
'I* (1.12)

holds for a fixed a,0<a<oo, independent of h, where the sup

is taken over all £ in lr. There are a variety of spaces

satisfying this condition including piecewise linear functions on

a suitable grid for the velocities and suitable piecewise constants

for the pressure [6]• Tliis combination gives first order accuracy

in the mesh spacing h in the norms (1.11) • These results are

generalized in Section 3 for the acoustic equations.

In subsequent work ([2] , [4]) on the Poisson equation it was shown

that optimal accuracy in the norms

can be obtained under appropriate conditions. In particular,

one needs the inclusion property

(*)Throughout this paper ||#llr denotes the norm on the Sobolev
space Hr(Q).



(1.14)

as well as a decomposj-tion property. The latter states there

is an a; <Ka<oo, independent of h such that each Xfĉ lr1 can

be written

^Xh + ^i ' ( 1 - 1 5 )

where JSUJSU *** ^ satisfy

.0 ,

In many mixed finite element formulations the analogs of

(1.14)-(1.16) and (1.12) are equivalent ([7]). in this setting

they are not. In fact, one can shew that in this case (1.12) is

equivalent to an inclusion and decomposition property but with dif-

ferent norms in (1.16) [7]. Nevertheless the finite element

spaces which are known to satisfy (1.14) -(1.16) also satisfy

(1.12) and conversely ([4]). In Section 4 we generalize the

error estimates using (1.14)-(1.16) to cover the acoustic equations.

The most important aspect of this analysis is the superconvergence

in the pressure p.



§2 The Galerkin formulation. For simplicity we consider

the boundary value problem

u - grad cp = f in 0 (2.1)

div u + ujtp = g in (1 (2.2)

tpa 0 'on T (2.3)

The mixed variational formulation of this problem is based on

Galerkinrs method and takes the following form. Given fLel^fO)*

gQ€L2(n) find

UQ€V = H(div;n)», <pQ€» = L
2(h) (2*4)

such that

holds for all V€V, $€*• The forms are defined as follows:

a(u,v) = (u,v) = J^ u.v, b(v,«(,) = J^ .Ddiv v (2.7)

c(ep,«) - . J UDtptb <cp,A> = J «0 (2*8)

(*) H(div;O) consists of vefT2(Q) such that div vcL2(Q)



To approxima'te we introduce finite dimensional spaces

»h £ % , Vh c V (2.9)

and seek u^V11, ^ S 1 1 such that (2.5)-(2.6) holds (with U

replaced with u^ and <pQ replaced with tp^) for all vcV

It may happen that (2.1)-(2.3) does not have a unique solu-

tion, a case which arises for example if ID is am eigenvalue of

the homogeneous problem. We explicitly rule this out by assuming that

the adjoint equation (which in this case is the same as (2.1)-(2*3))

is uniquely solvable. More precisely, we assume that for each

pair feH(div,O), §€LO(C1) there us a unique pair vclr, $€& for

which

a(w,£) + b(w,$) = (|,w) (2.11)

(2.12)

holds for all weV, ?eS. Moreover, we assume that the solution

of (2.11)-(2.12) satisfies the standard apriori bound for the

Helmholtz equation

A$ + oj$ - g - div £.

Namely,

!$!l0 + !|J"1 ̂  K^Hgll^ + ll£»0) (2.13)

The constant KQ approaches infinity with \/|u)| .



8

The effect of the frequency to in our analysis will also be seen

in the constant 0 < K, < oo satisfying

|c(q>,$) | ^ Kx |W||olto!|o all *,*€* (2.14)

For the model problem (2.1)-(2.3) we can take K^ = u>. In the

general acoustic equations it will be a more complicated func-

tion of CD but will still approach infinity linearly with a>.

As noted in the introduction the case 0) = 0 has received

considerable attention. We shall use this work to define a mapping

from VXS to ir^S*1 - called the Poisson projector Ph — as fol-

lows. We let

when

h h h£ $> (2.15)

h,?
h) - b(v,?h) (2.16)

holds for all wh€Vh, ?h€5h. That is C^,^} is the mixed finite

element approximation to the Poisson equation generated by {v,i} .

If Brezzi's condition (1.12) holds, then there is a constant

0 < C < oo, depending only on the number a in (1.12) such

that

«*o "
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where

inf {||v - *% + ||div(£ - J>)\\ + \\i - ^\\Q) (2.18)

and where the inf is taken over w°€V, §heSh. (see [3])

Similarly if the inclusion and decomposition properties

(1.14)-(1.16) hold, then

HZ - l « o * caEo<Z>

and

' "* " Mo * ca«V2o> + Eo<^o»' '2-20»

Where

E^) - inf ||£ - wh||0, EQ($) « inf ||S - §
hl|0. (2.21)

said now C depends on the constant a in (1.16) (See! [4]) •

Throughout this paper we shall assume that the spaces V ,

S have the standard approximation properties. More precisely,

we assume that we can approximate in V to order k in the sense

that given

for a fixed constant 0 < CL < oo independent of w and h*

Moreover, we assume (2.22) holds for k replaced with any smaller

kj^,satisfying 1 < k^ « k. Similarly, we assume that for any
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(0)

(2.23)

with this inequality holding for I replaced with any l^ satis-

fying 0 < I £ i. For most spaces satisfying the Brezzi condi-

tion (1.12) or the inclusion condition (1.14) we have t = k - 1,

Observe that if (2.22)-(2*23) hold, then

while

provided

EQ(w) « 0(hk), EQ(?)
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§3 The first error estimates. In this section we assume

that Brezzi's condition (1.12) is valid, and estimate the errors

Bo ~ £h' 'o ~ *h# T h e P r o o f that the discrete system (2.5) -(2.6)

on V x$ has a unique solution JĴ ^̂ u is similar in structure

to the. error analysis so we shall give only the latter • Also

we shall assume that the regularity (2.13) and approximability condi-

tions^ (2.22)-(2.23) hold.

Theorem 7. Let (1.12) hold. Then there is a constant

0 < C < oo depending only on a in (1.12) and to such that

if hC < 1, then

-to- • 2

Moreover, C approaches infinity linearly with (u>| •

Proof. Let

B((u,<p),(v,$)) » a(u,v) + b(v,(p) + b(u,j(>) + c(v,j/)) . (3.2)

Then the defining equations (2.5)-(2.6) give

) , ^ , ^ ) ) (3.3)

for all vheVh, ^ heS h. Let

be given and put
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<3-4>

Subtracting ^((u^j^), (vh?$
h)) from both sides of (3.3) gives

Let us first estimate the left hand side of (3.4), and in

the process make a definite choice for v and $ . The idea

is to choose these functions so that the left hand side becomes

essentially He^Q + ll€fj'o* T o d o t h i s w e f i r s t solve the adjoint

problem (2»11)-(2.12) with data f = e^g = e^. Letting yt «

and ? - € h in (2.11)-(2.12) gives

W o 2 + Wo 2. ' (3'6)

Since B(«,*) is linear in: each variable it follows from (3.5) that
i

- * h ) ) + B((e,e),(v\*h)) (3.7)

We now let fvh,4>h} - Cvh,^h) be the Poisson projection of C^,^)) ,

i.e., (2.15)-(2.16) holds. Thus putting wh = e^, §h = eh in

(2.15)-(2.16) we get .

• • < t e h ' 2 - & > + b < ^ - ^ v € h > + b ^ * - V - ° - <3-8>

Thus
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and so

We treat the second term on the right hand side of (3* 10) in a

similar way. in particular, we let C^J^VJ *» <t^ie Poisson pro-

jection of (uo,cpo). This gives

and so

B((e,€),(^ h)) *c(€,i h). (3.12)

Combining this with (3.10) we obtain

To estimate the first term on the right hand side of (3.13)

we note that (2.14) gives

Our approximation assumption (2.23) gives

The regularity (2.13) of (2.11)-(2.12) can be used to bound

in terms of the data £u*€h a s follows:
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Thus

The second term on the right hand side of (3.13) is treated

in a similar way. in particular,

^O + CA K0 h ) ('

Conibining (3«17)-(3.18) with (3.13) we obtain (3a).

Remark. The linear dependence on |to| ' in the error estimates

is an order of magnitude better than that obtained for the least

squares approximation, where the dependence is quadratic*

The order of accuracy for a fixed u> is not best possible.

For example9 If the standard linear element - piecewise constant

combination is used (i.e., k = 2 and I = 1), then we get only

first order accuracy in ^ and tpQ as in [3] and [6].
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§4 Improved estimates. In this section we assume that the

inclusion and decomposition properties (1.14)-(1.16) hold, and

snow that the L2 errors in x^ are best possible. Moreover,

we show that a superconvergence result holds for the scalar cpo»

The starting point is to prove the latter result for the Poisson

projection, and then using the approach of the previous section

show that it also holds for to £ 0.

Lemma 1. Let {v, ,*, } be the Poisson projection of (v,

defined by (2.15)-(2.16) , and let "^ be the best L2 approxi-

mation to © in S . Then

- *h« (4.1)

Remark, if $ consists of piecewise constant functions,

then the value of "3L is a given triangle T is equal to the

average of t over T. The above estimate states that this func~
2

tion will differ from the Poisson projection by order 0(h ) if

linear elements are used to represent u., or by order 0(h ) if

quadratic elements are used, to cite another popular combination.

Proof. Subtracting

of (2.15) gives

-rh in the right and left hand sides

for all w €lr . We use the inclusion property (1.14) to write



for 2h€^ " In a d d i t i o n> we u s e t h e decomposition property

16

(4.3)

m, we use the decomposition property

(1.15)-(1.16) to write

where

div z^ = 0, al|whllo £ ||div XhlLi^ ii4h**htto { 4 # 5 )

Let w = w. in (4.2) . Then

' *h> • I d i v l&tSKi ~ *hJ = I
a

Also, since ^, is the best L2 approximation

b ( 2 h ^ " *h> = J ( d i v ^ h H * " •-> " ° .• ' (4'7)

(since div W*h€* * ^Y inclusion property) . Thus, using (2.19) and

(4.5), (4.2) becomes

Cancellation of the common factor gives (4.1)•

To apply this result to the case m ̂  0, we retain the approach

of Section 3 except giving an alternate estimate for the term
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,$-) . To treat the latter we note that

A (4'8)
where Cû ĉp̂ ) is the Poisson projector of

denote the best L2 approximation to tpQ in S . Then

o
 + Jn »

Assuming that UD is constant we have

J w(9Q - ^^ = 0, (4.10)

since cpQ - ̂ p. is orthogonal to % * Thus

(4.11)

Estimating the last term on the right of (4.11) as in (3*18) we

obtain the following result.

Theorem 2. Let the inclusion and decomposition properties

(1.14)-(1.16) and assume ID is a constant. There is a 0 < C < co

depending only on a in (1.16) said w such that if Ch < 1, then

feo - 2h«o + K- »hllo " (Tlh)Eo(Ho) • <4

where cp, is the best L2 approximation to cpQ in 3 .
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