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81 Introduction. Let PAMP denote the fluid pressure,

velocity, and density. Qur starting point is the Eul erian equations-

of notion
- ay 1
it o~ -~ o]
= *d—+ (u.grad)u + —gradp =0 (1.1)
+ _
fA (a-grad)p + YPdivu =0 (1.2
pp"" = constant (1.3)

where y is a ratio of specific heats. The particular case of
interest in this paper is the acoustic disturbance about a nean
flow poi o™, where the pressure has the form

P=P, +e 'y | P1/ Pol «1- (1. 4)
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Assum ng for exanple the nean flow is uniformand neglecting

quadratic terns we obtain the follow ng:
iry‘+]1g'radp - 0 (1.5)
) - S

. YPdiv y + irp-0 . | (1. 6)

- These equati ons are requir_ed to hold in the flow regi on Q wth

linear conbi'nations of the pressure and normal velocity being

speci fied on thé boundary T; say
auy+ Bp=a on T, (1.7

wher e v denotes the outer nornal.

The goal of this paper is to analyze Gal erkin or nixed

variati onalméppr oximations to the first order system (1.5)-(1.6).

At first glance such an approach may seemto be inferior to a

di scréti zation of (1#5)'-(1. 7) based on a |east squares principle

[1] » The primary reason for this is that in the |east squares
approach one can obtai n second order accuracy in L: f_or bot h

u and p by using appropriate piecew se |inear spaces for each*
Such a conbi nation, however, will be unstable in the Glerkin for-
mul ation ([ 2] -.[4]). Inthe latter one typically uses an -appropriate
pi ecew se |inear space for u and a pi ecew se constant space for '
p. The degrees of freedorﬁin the latter arevirtually the same as
in the least squares fornmulation. for a conparable grid, yet

yield only first order L, accuracy in p.

Two sonmewhat surprising results of the analysis in this paper




of fer hope, however, for the utility of the Gal erkin approach
First we show that under suitable conditions one has superconver-
gence in the approximation to the pressure. For exanplé, i f ﬁh
denotes the best 1*, approximation to p in-a sui tabl e space of
pi ecew se constant - functions, then we showthat the 1" error
lIpg - ?ﬁllo in the Galerkin approxi mtion p* is actually second
order .if appropriate linear elements are used for the velocity u.

Second and of equal inportance, the errors in the Glerkin
approach do not deteriorate as rapidly when the frequency r
increases. This is of particular inportance in underwater acoustics
wher e

r>>1

s quite common {5]. |
This second property is also shared by the standard fihite
el enment formulation where (1.5 is differentiated and conbi ned

with (1.6) to give the Hel mholtz equation
Ap + bp s O, (1*8)

and the Gal erkin nethqd'is_applied directly.to (1.8) . 'So | ong
as the coefficients Po Ho'~o fremtaiemean gy are snooth this
approach is possibly preferable; however in many applications these
coefficients cone fron1neé$urenents and are not -snooth enough to
be differentiated [1]. In such cases one nust deal directly with
a first order systemlike (1.5)-(1.6).

Previous work on Gal érkin approxi nations has centered on the

Poi sson equati on




u-grade =0 (1.9)
div u = £. (1.10)

Let Uh denote the finite dimensional space of velocities and

h

8" the finite dimensional space of pressures. Brezzi [3] showed

that optimal convergence in the norms

lellg = lsil, | lglly = Clgh? + llaiv g)2)H/2 ) (1.11)
will occur provided
> all#llg a1l wes® O (1.12)

holds for a fixed a,0<acm, independent of h, where the sup
is taken over all ¥ in lrh There are a variety of spaces
satisfying this condition including piecewise linear functions on
a suitable grid for the velocities and suitable piecewise constants
for the pressure [6]. .“.rhis combination gives first order accuracy
in the mesh spacin§ h in the norms (1.11). These results are
generalized in Section 3 for the acoustic equations.

In subsequent work ([2],[4]) on the Poisson equation it was shown

that optimal accuracy in the norms

L PP 1418 (1.13)

can be obtained under appropriate conditions. In particular,

one needs the inclusion property

(*)Throughout this paper !l°||r denotes the norm on the Scobolev
space HY(Q).




L (1.14)
as well as a decompog-tion property. The latter states there

is an a; <Ka<oo, independent of h such that each Xfc’\lr11 can

. be written

Ih Axh + A (1.15)

where JsuIsy ek A ~satisfy
divg =0 , ally,hllo < Naiv Zh“-l . | (1.16)

I n many m xed finite element formulations the anal ogs of
(1.14)-(1.16) and (1.12) are equivalent ([7]). 1in this setting
they are not. In fact, one can shewthat in this ‘case '(1-. 12) is
equi val ent to an inclusion and deconposi tion property but w t h dif-
- ferent norms in -(1. 16) .[7]. Nevertheless the finite el ement
spaces‘ whi ch are known to satisfy (1.14) -(1.16) also satisfy
(1.12) and conversely ([4]). |In Section 4 we generali zé t he
error estimates using (1.14)-(1.16) to cover the acoustic equations.
The nost inportant aspect of this analysis is the superconvergence

in the pressure p.




§2 The Galerkin formulation. FPor simplicity we consider

the boundary value problem

u-grad 9 = 5 in O (2.1)
div u+wp=g in o] (2.2)
=0 on T ' (2.3)

The mixed variational formulation of this problem is based on
Galerkin's method and takes the following form. Given goeLz(b),

goeLz(ﬂ) find

eV = H(divi@)*, g.e8 = L7(@) (2.4)

such that
a(u,,¥) + b(¥,9,) = (£,,¥) (2.5)
b(uy,8) + clog,$) = <g,.b> e

holds for all veV, pe3. The forms are defined as follows:

a@® = @ =[ zy vee =] wivy @D

c(p,¥P) =.IQ wepd <w,b> = fn o (2.8)

(*) H(div:Ql) consists of xgﬂ;(n) such that div zeLz(n).




To approxi ma'te we introduce finite di mensional épaceS'
SNE %, VoV ' (2.9)

and seek UMV, AS'! such that (2.5)-(2.6) holds (with U,
replaced with ur and <q rep'l aced with tp”) for all ‘\./.CVh,
tesh. '

It may happen that (2.1)-(2.3) does not have a uni que sol u-
tion, a case which arises for exanple if ID is ameigenval ue of
t he honmogeneous problem W explicitly rule this out by assum ng that
the adjoint equation (which in this case is the sanme as (2. 1)'_-(2*3))
I's uniquely solvable. More precisely, we assunme that for each

A _
pair feHdiv,O, 8L4{Cl) there us a unique pair dir, $€& for
whi ch ' '

a(wE) +b(w$) = (0 | (2.11)
b(ﬁ,g) + (e, = <GI,¢>' | | (2.12)

holds for all weV, ?eS. Mreover, we assune that the solution
of (2.11)-(2.12) satisfies the standard apriori bound for the
Hel nhol t z equati on '

A$+q'$- 9 - div £
Nanel y,
Ao + 1[I A KAHGY T A + 11 ) (2.13)

The constant Ko approaches infinity with \/|u)| .
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The effect of the frequency to in our analysis wll also be seen
in the constant 0 < K, < 00 sati sfying
Ic(, ) | ™ K [W]dtol], all *, *€* | (2.14)

For the nodel problem (2.1)-(2.3) we can take K* = v Inthe

general : acoustic.cequations it will be a nmore conplicated func-

tion of CD but will still approach infinity linearly with a.

As noted in the introduction the case 0) = 0 has recei ved-
consi derabl e attention. W shall use this work to define a nmapping
from VXS to ir~St! - called the Poisson projector -P" —as fol-

| ows. We |et

— o $d) - LD

when .
2l %) + DG py) = alE, )+ big> (2.15)
b, 2" - b(Y, 2" - (2. 16)

holds for all w'€Vv" -?"€5". That is C~, "} is the nixed finite
el ement approxi mation to the Poisson equati on generated by {\zlﬁ .
If Brezzi's condition (1.12) holds, then there is a constant

0 < Cu < 00, depending oniy on the nunber a in (1.12) such

t hat

I8 - Splly + latved - 80 Ny + Son Bl Sc e &b, @an




where
(3,8 = inf {|}- *% + ||div(E - >\ + \i - M) (2.18)

and where the inf is taken over '\/\f€V, ghes". (see [3])
| SSmlarly if the'_ _i-ncl usi on ‘and 'dec‘orrposi tion properties
(1.14)-(1.16) hold, then

et  eas

and

T g om N * Ca«vz8> +E0</\0»|' | 12 20»

VWher e

EY) - inf |IE - Wilo E$) «inf [IS- &0 '(2.éi)

sad now Ca. depends on the constant a in (1.16) -(See! [4]) .
Throughout this paper we shall assume that the spac_és Vh,

Sh have the standard approxinmation properties. Mre precisely,

we assune that we can approximate in VB to order k in the sense

t hat given 3(-:?(0)
inf (fw - ¥+ bl - ¥™;3 S il (2.22)

for a fixed constant 0O < Ck < oo independent of w and h*
Mor eover, we assune (2.22) holds for k replaced with any smaller

ki~ satisfying 1 < k” k. Si mlarly, we assune that for any




10
ger’ (0)
inf {fg - ¥7) ) & c,nel, (2.23)
with this inequality holding for | replacedmith any [~ satis-
fying 0O < |1 £i. For nost spaces satisfying the Brezzi condi-

tion (1.12) or the i ncl usi on condi tion (1.14) we have t =k -1,

Cbserve that if (2.22)-(2*23) hold, then
B, (2,8 = o™ 1) + o(n®)
whi |l e
Ey) « 0(hY),  Ed?) = o(r)

provi ded wer(n), geﬁL(Q).
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83 The first error estimates. In this section we assune

that Brezzi's condition (1.12) is valid, and estimate the errors
Bo ~ £h' 'o0 ~ *h* The proof that the discrete system (2.5) -(2.6)
on VB%s® has a unique solution JMAu - is simlar in structure
to the. error analysis so we shall g{Ve only the latteres Also

we shal |l assune that the regularity (2.13) and approxinability condi-.
tionsh (2.22)-(2:23) hold.

Theorem7. Let (1.12) hold. Then there is a constant
0 <C<o00 dependingonly on a in (1.12) and to such that
if hC< 1, then

100 2nllo * Vog - wplly S (TERI B (Gor o) (3.1)
L . 3/2
Moreover, C approaches infinity linearly with (u .
Proof. Let
B(( <p), (¥, $)) » a(iw) +b(\a(p) +B(ud(>) +c(wif)) . (3.2)
Then the defining equations (2.5)-(2.6) give
| b h |
B((ghmh),(x,ﬁ }) = B((EO’¢O) , M N)) (3.3)
for all vPheV", APMesh Let
(8, 8y, JerPxa™

be given and put
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&=, - ﬁh, - &=u, - ﬁh (5.4)
Gh=°h-$h’ e=°0-ah . (3.5)

Subtracting +B((uy5%y);(y%8")) from both sides of. (3.3) gives
B((gysep)» (25 9)) = Blig,e), (™). (3.5)

Let us first estimate the left hand side of (3.4), and in

h

the process make a definite choice for v and ¢h. The idea

is to choose these functions so that the left hand side becomes
essentially “shﬂg + “ehﬂg. To do this we first solve the adjoint
problem (2.11)-(2.12) with data £= enh’9 = €p- Letting ¥ = &n
and & = €4 in (2.11)-(2.12) gives

B((e,ep) 5 (§,8)) = llgg 2 + lley )12 L (3.6)

Since B(+,°) is linear in each variable it follows from (3.5) that

legh2 + Ney 12 = Bl(g e, @ - 278 - 3™ + Bl(e,0), P8™) (3.7

We now let {xr,bh} = {ﬁh’$h] be the Poisson projection of’{ﬁh,ﬁ)),_
i.e., (2.15)-(2.16) holds. .Thus putting W' = e gh _ e, in
(2.15)-(2.16) we get T

a((shyﬁ - gh) + b(& - ﬁh,eh) + b(sh,$ - ﬁh) = 0, '(3.3)
Thus

B((gprep)» @ - 8.8 - ) = et f - B, (3.9)
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and so

lenlta + “eh“o - c(eh,¢ - %h) + Blge), B8 . (.10

We treat the second term on the r.ight hand side. of (3.10) in a
similar way. In particular, we let {u.h,q;h] be the Poisson pro-

jection of [uo ,qO} ‘This gives

ae,8) + ble.d) + b0 =0, (3.11)
and so
B((e,€), (v ,th)) = C(e,ﬁh)- , 4 (3.12)

Combining this with (3.10) we obtain

leg 2 + ey 12 = cley .8 - By + cte,by) " (3.13)

To estimate the first term on the right hand side of (3.13)
we note that (2.14) ines |

'c(ehxa = gh) ' < Kl\\eh“o“g - $h“0' : (3.14)
our approximai:ion assu;nption (2.23) gix’res
18 - 8.0, S c,b 1l (3.15)

The regularity (2.13) of (2.11)-(2.12) can be used to bound ﬁ

in terms of the data enh€n 28 follows:

Bl € o lelly + Neplly) (3.16)
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- Thus

loepr® - ) | S KR Cuhlle, ll, + lepty) ||¢sh|‘|0 (3.17)

The second termon the right hand side of (3.13) is treated

_|naS|mIar vvay in particular,
lete, ) | £ Rollelly (48 - $, 0, + n%no

< K]_“G'“OAO + CaKph) (v ‘eh“O + “-%h“()) . (-3.18)
Goni bining (3«17)-(3.18) with (3.13) we obtain ( Ba):

3/2 i the error estirmates

Remark. The |inear dependence on |tqd
Is an order of nmagnitude better than that. obtained for the |east .
squar es approxination,'mhere t he dependence is quadratfc*"

The order of accUracy for a fixed u> is not best possible.
For exanpleg If the standard linear elenent - piecew se constant
conbination is used (i.e., k=2 and | = 1), then we get only

first order accuracy in ~ and tp, as in [3] and [6]. .
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84 Inproved estinmates. In this section we assune that the

i ncl usi on and deconposition properties (1.14)-(1.16) -hold, and
snow that the L, errors in x* are best possible. Moreover,
we show t hat a superconver gence result holds for the scalar cp»
The starting point is to prove the latter result for the Poisson
projection, and then using the approach of the previous section

show that it also holds for to £ 0.

A A . . . )
Lenma 1. Let {\'{m, n} be the Poi sson projection of (23]
defined by (2.15)-(2.16) , and let "~ be the best L, approxi-

mation to @ in Sh. Then
— By Theo S (e E, () (4.1)

Remark, if $h consi sts of piecew se constant f'uncti‘ons,
t hen fhe val ue of 3?; is agiventriangle T is equal to the
aver age of tA over T. The above estimate states that this func~
tionw Il differ fromthe Poisson projection by order O(h?') | f
linear elenments are used to represent y,. or by order O( h‘?’) i f

n
guadratic elements are used, to cite another popul ar conbinati on.

Proof . Subtracting 'Jh ~in the right and left hand sides
of (2.15) gives

b8, - Ty = ag™E - &) + b™d - ) (4.2)

for all \_/_\'/hélrh. V¢ use the inclusion property (1.14) towite
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bo-F=aivy, (4.3)
for _2h€Ah v Inadditiofy WeUESé "ttheedonpPaBOS| bhorprbb_@pelyty
(1.15)-(1.16) towite ' '
In™ .;‘!h + Zn’ zhszhelrh, | | . (4.4)
wher e | |
div z* = ), alnllo £ ||div XhILiA ii4,**htto {4#5)

Let WP =w. in (4.2). Then

Bl by, * > I 9V I&tSKi “SR T By -t @e)

Al so, since /-\n Is the best L, qpproxi mati on
b(zh/\ " ;}15:\](éjivl\-hH9—< n .__> noo o 1 _ (4!7)

(since div V'yh“:*h* AY inclusion property) . Thus, using (2.19) and -
" (4.5), (4.2) becones | |

18, - T2 = aw,8 - 8 S g 18 - S,
$ oG, - Byl € B @

Cancel | ati on of the common factor gives (4.1)e _
To apply this result to the case m” 0, we retain the approach

of Section 3 except giving an alternate estinmate for the term
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c(e,$ﬁ) . Totreat the latter we note that

c(e,3h) = rn oo, - QIA’ : (4 8

wher e CQ""&:)") I's the Poi sson proj eqt or of [Eo,wo}. Let ;h -
denote the best L, approximationto tpp in Sh._

: =+ — _ |
cte,ﬁh) = Io"("o - wh)g-n » G, - 808,  (4.9)

Then

Assum ng that UD is constant we have

Ja W(9y - M = 0, (410
- h
since cpp - " is orthogonal to % * Thus _
— lete, 8013 &, lley, - Wl i8y 0, - (4.11)

Estimating the last termon the right of (4.11) as in (3*18) we

obtain the follow ng result.

Theorem 2. Let the inclusion and deconposition properties .
(1.14)-(1.16) and assune ID is a constant. Thereisa 0<C<co

depending only on a in (1.16) sad w suchthat if Ch < 1, then

feo - 2h«o " K- »hllo " ¥TI h'%0( Ho) ¢ 12)

wher e @, Is the best L, approximation to. cp 1In 3]‘.
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