NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.



A COST OPERATCR APPROACH TO MULTI STAGE
LOCATI CW ALLOCATI ON

by
Robert V. Nagel hout & Gerald L* Thonpson

DRC- 70- 6- 79
Sept enber 1979

G aduate School of Industrial Adm nistration
Carnegi e-Mel 1 on University
Pittsburgh, PA 15213

This report was prepared as part of the activities of the
Management Sci ences Research Group, Carnegie-Mllon University,
under Contract N00014-75-C-0621 NR 047-048 with the U.S. Ofice
of Naval Research. Reproduction in whole or in part is permtted
for any purpose of the U S. Governnent.




6% ooht
;o
e 7067 f

1. 1ntroduction

In this paper we present a cost operator algorithmfor solving nmultistage
factory warehouse |ocation-allocation problems. The decision variables cor-
respond to the warehouse locations and the shipping amounts fromthe factories
t hrough the mérehouses and into the demand centers. The problemis to minimze
the total fixed costs of |ocating warehouses plus the tétal vari abl e shi ppi ng
cost, subject to possible capacity restrictions at the factories and the ware-
houses, plus the demand requirenents at the denmand centers.

The al gorithmtakes advantage of the network structure of the supply
and denand constraints and the subnodularity of the objective function. W
use cost operators [22], to facilitate the moverment up and down the search
tree. This greatly reduces the anount of tine spent solving transportation
subprobl ens, which frequently conprises up to 90%of the conputational burden.

In Section 2 we give a problemformul ation and we discuss sone of the
nore recent research related to the nultistage location problem In Section 3
we point out |ower bounds and fathonmi ng rul es obtainable from subrmodul ar set
functions. In Section 4 we transformthe nultistage |ocation probleminto a
transportati on problemformat, and we show how cost operators can be used to
generate feasible solutions. Section 5 contains a description of the cost
operator branch and bound algorithm In Section 6 we give an exanple, and
in Section 7 we provide extensive conputational experience on problens from

the literature plus some nultistage problems of our own.

2. Pr obl em For mul at i on

VW describe the location problemto be studied in this paper as well as
simlar nodels which have been presented in the literature. W use the follow ng

not ati on:
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q = number of factories; I’ = {1,...,q}

4 = number of warehouses; I = {q+l,...,m}
r = number of demand centers
m = q+4+1; n=4+r +1; J'={1,...,4}, J={4+,...,n}
fi = fixed cost of opening warehouse i
( {factory i to ieI:
warehouse j jed

cost per distance
cij = per unit of
shipping from

;factory i to ieI’
ldemand center j jeJ

;warehouse i to iel
‘'demand center j jeJ

\
Ai = capacity of factory 1 7
Si = capacity of warehouse i
dj = demand at location j
xij = amount shipped from location i to location j

rl 1if warehouse i 1is open
10 otherwise

The multistage or intermediate location problem, which we will call

Problem P, can be formulated as:

Minimize Z(T) = T z c.,.x,, + T f.y ¢9)
T=I 1e1'UT jeg'ug 1111 gy UH
subject to

T x,, <A iel’ 2)

jeg’ug 1
z x 8.y <0 ieT 3)

jey U i1

Tooxy >d, jeJ %)

ier’UT J
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S / Xhl " z XII = o ieT <5)
hel hl Jej 1J
X., = 0 iel'Ul, jej'UJ (6)
vV « * - == m
Yi A 0 otherw se | v

Constraints (2) and (3) ensure.that the anount shipped out of a factory or a
war ehouse shoul d not exceed its capacity. Constraints (4) require that the
demand at each denand center be satisfied. Constraints (5) are the standard
"conservation of flow' constraints which require that the anount shipped into
each war ehouse equal s the amobunt shipped out. Constraints (6) and (7) are the
nonnegativity and integrality constraints respectively. The objective in
problemP is to mnimze the total transportation costs from shipping plus

the total fixed costs of opening warehouses, while satisfying the custoner

demand. When

Si < -I d. €3)
we say that warehouse i is capacitated since it cannot satisfy all of the

demand by itself. The factories can also be either capacitated or uncapacitated
dependi ng upon the size of Ai' Note that in the multistage formulati on when

i' 40, the total warehouse capacity need not exceed the total demand since
units can also be shipped directly fromthe factories to the demand centers.

A consi derabl e anmount of research has been performed on uncapacitat ed,
capacitated, and mxed (partly capacitated) l|ocation problems. It seens that
each probl emwhich is studied, depending upon the objective function and the
capacity assunption, exhibits its own characteristics and yields a different

algorithmc approach. Thus the literature on the many different |ocation




problems is enornous. In this section we will discuss recent literature only
for those problens which are closely related to P.

Research on nultistage location problems has been limted. Geoffrion
and Gaves [12] described and tested an algorithm for solving multistage
mul ti comrodity distribution systens using Benders' deconposition. EIlwn
and Gay [8] described and tested an algorithmfor solving single stage
(i* * 0) location problens and proposed, but did not test, an algorithmfor
solving multistage problens. Mst of the papers in the literature have con-
centrated on the single stage version of P for which i' ¢« 0. This has
been called the sinple (capacitated or uncapacitated) warehouse |ocation
probl emwhi ch we denote by PI. Some of the nodels which have been studied
i npose added configuration constraints on Pl which restrict the total
nunber, and different conbi nati ons of warehouses which can be opened. For

exanpl e, a constraint frequently used is:

Sy, = K (9

iel X
where K is an upper limt on the total number of warehouses which can be
opened. In the special case where f¥ » 0 for iel and each warehouse is
uncapacitated, Pl with constraint (9) amended is called the K nedian
problem Both heuristic [14] and exact nethods [5], [16], [21], have been
proposed for solving the K nedian problem

Earlier attenpts at solving the uncapacitated Pl concentrated upon

the relaxation, Pi', of Pl where (7) is replaced by:

0<y: <1 id (10)

(see [6], [7]). The basic idea was to solve Pl by inbedding Pi' into an




-5-

inplicit enuneration schene. Since then Pi' has been called the weak |inear

progranming relaxation of PI. It is termed "weak'" because there is another

linear programmng relaxation of Pl which has proven to be nuch stronger than

Pl'. To describe the latter, we add to problem Pl the constraints:

X:j £ mn Cs, dj}yi iel,j€ . (11)

Let us denote by Pi" the problemin which the constraints (11) are added to

Pl '. For uncapacitated |ocation problens Pi" is called the strong |inear

progranming relaxation of PI. (Note that for uncapacitated |ocation probl ens
nin{si,dj} «mn{®I} * 1). Pi" is stronger than PI’ in the sense that the
gap between the optimal values of Pl and Pi" is nornally nuch snaller than
the gap bet ween the optimal values of Pl and PI7. Aso, it is often the
case for uncapacitated |ocation problens, that a solution to Pi" wll satisfy,
or alnmost satisfy (7). That is, after solving 'PlI" alnost all of the fixed
charge variables will be naturally integer. However, even though opti nal
solutions to Pl *tend to be close approxi mations to an optimal solution for
Pl, researchers have attenpted to avoid solving Pl * directly, because it
has an enornous nunber of constraints (there are nxn constraints of the type
(11)). Schrage [20], has proposed a nethod for solving |inear prograns which
handl es constraints of the type (11) inplicitly, thereby reducing storage
requirenents. Still the tinme required to solve PI# by the sinplex nethod
can be excessive and could cause difficulties in an inplicit enuneration schene.
I nstead of solving = directly, heuristic nethods have been proposed
”

which find feasible solutions to the dual of Pl ~ . To describe these approaches

%*
let us denote by Xﬂl a feasible, and by )(_g1 an optinmal solution to problem PI.
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Let Z(X) represent the objective function value for solution X A so let

D be the dual problemto problem Pi" . Then by duality theory we know that:
* * %*
z«pi > A2l 20y 3y 1

wher e X: is an optinal and Xv a feasible solution to D. Thus a feasible
solution to D provides a valid lower bound on the optinal objective function
value of PI. Subgradient [4] and dual ascent nethods [3] , [9] have been used
to find good feasible solutions to D In the case where Pl is uncapacitated
one can easily conpute a low cost primal solution to Pl after having found the
feasible solution to D Furthernmore it is often the case when Pi is
uncapacitated that the gap, Z(>§)|> - it f)> s YerY small or even zero,

v
whi ch makes the additional work to get optimal solutions small. Thus the

relaxation Pi" has been very effective in solving the sinple uncapacitated

war ehouse | ocation probl emns.

Several algorithns also exist for solving capacitated |ocation problens.
Aki nc and Khumawala [1]> proposed and tested an inplicit enureration al gorithm
which uses Pi’ as a relaxation. ElIwin and Gay [8] described and tested
a branch and bound al gorithmwhi ch uses duality properties of Pl and bounds
obt ai nabl e fromthe subrmodul arity of the objective function (1) for fathom ng.
Quignard and Spiel berg [13] have generalized the dual ascent method of Bil de-
Krarup [3] and Erlenkotter [9] to the capacitated version of PlI. They use a
relaxation very simlar to Pi" which contains the constraints (11). They
sol ved some randomy generated problens and found that the zero gap phenomrenon
bet ween Z(X*,") and Z()QJJ occurs less frequently with capacitated or nixed
problens, than it does with uncapacitated problenms. Qher relaxations besides

PI” and Pi" have also been used to solve PI. GCeoffrion and MBride [11]
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have considered a location nodel for which Pl is a special case and have
used a Lagrangi an relaxation conbined with inplicit enuneration to solve it.
Recently Nauss [17] used a Lagrangian relaxation to solve Pl with excellent
conputational results.

In the following sections we will describe an algorithmfor solving P
The general approach is simlar to the one used in [8] to solve PI. W do
not solve a relaxation of P. Instead we make use of sone |ower bounds obtain-
able fromthe subrmodul ar property of Z,  together with some other fathoning
rules, to enunmerate explicitly a subset of the solutions to P. The nmovenent
in the search tree fromone solution to another is facilitated by applying cosf
operators [21] to P. This significantly reduces the anount of effort required
to solve P, since nost researchers have found that the majority of the time
invol ved in solving capacitated location problens is spent solving transportation
subproblems. Ellwin and Gay [8 have tested and shown that in many cases over
90@60f-the time required to solve a test problemis spent solving transportation
subproblenms. In the next section we discuss some |ower bounds on the value of Z

sone of which are utilized in the algorithmdescribed in Section 5*

3. ojective Function Lower Bounds

Many of the lower bound properties which we present here have been dis-
cussed in [2] and [10], in the context of the sinple uncapacitated |ocation
problem These |ower bounds and their properties are also useful in solving
ot her kinds of mathenatical programm ng probl ens.

There are many properties which can be used to define subnodul ar set -
functions. For a discussion of themsee [18], To define one such function

let Z be areal valued function defined on the finite set of subsets of |.
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For notational conveni ence we defi ne:

AZg(A) » Z(AUB) - Z(A) ACI, BSI (13)

Then any of the followi ng properties can be used to define a subnodul ar

function:
(i) Z(AUB) + z(AHB) > Z(A) + Z(B) for all subsets A, BCI.
(ii) AZ.(A) < AZ(B) VACBCI, el - (14)
(iii) Let {B'L"'_’Br} be a partition of B-A then
Z(A > Z(B) - 7 az (B - By A~BCI. (15)
k=1 k

In nmost expositions property (i) is taken to be the definition of subnodularity,
and properties (ii) and (iii) are shown to be equivalent. Details are onitted.
In the context of this paper, Z(A) represents (1). The fact that Z(A)
i s submodul ar was proved in [15]. Note that in P, Z(0) represents the value
of the solution where all of the shipnents originate fromthe factories. Wen
[* * 0, as in Pi, one nust be careful in defining Z(A) if A happens to
be infeasible set of warehouses, i.e., when S S < Z d=~ |In this case we
i€A X jcd ?
we define a "dummy factory" which is always available to service the demand
centers but at a high shipping cost. This makes Z(A) |arge enough so that
the value of Z(A) for any infeasible A is at least as large as the val ue of
any feasible solution. The dummy factory approach preserves the subnodularity
of Z and also yields a different value of Z for solutions having different
degrees of infeasibility. As we will see later, this is helpful in deciding
whi ch war ehouses to open when we are working with infeasible sets of warehouses.
Properties (14) and (15) can be interpreted as adding or subtracting V\are—.

houses froma given set A of open warehouses. For exanple property (14)




says that the addition of warehouse i to the set A decreases the tota
cost by at least as rmuch as the addition of warehouse i to the set B when
A£B Thus it is simlar to the "decreasing returns to scale" condition in
economi cs.

Properties (14) and (15) can be used to characterize solutions to P
and to derive lower bounds on the value of any solution to P. The algorithm
to be described in Section 5 searches for sets TCI which have the follow ng

two properties:

(i) AZ(T) >0 Viel-T

(i) AZ(T-{i}) <0 Vi eT
Sets TE£ 1 which satisfy (i) and (ii) are such that the addition to T or the
deletion from T of a single facility does not cause Z to decrease. d eafly
.any optimal solution to P satisfies (i) and (ii). |In a sense properties (i)
and (ii) characterize the set of all "locally optinmal" solutions to P. The
globally optimal solution is the best locally optimal solution, which nmust be
found by a search process. e of the factors which nake it hard to find the
globally optimal solution is that there are many locally optimal solutions which
have nearly optinal objective function values. Thus in any enumeration procedure
a consi derabl e amount of effort is normally required to elimnate these nearly
optimal solutions fromconsideration. In.a practical sense however, it nay
be true that the nearly optimal solutions, say those within 1%of optinality
nmay indeed be as valuable or "as optinmal" to a decision naker as a globally
optimal solution. @Gven the inaccuracies in the cost data and other environ-
mental and polilical factors which nmust be taken into consideration, it would be

desirable to have not only an optimal solution to P, but in addition a list of
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solutions which are nearly optimal. We will point out how this may be ac-
complished using the algorithm of Section 5.

In the initialization phase of any location algorithm, two rules can
be applied in order to permanently open or close warehouses.

RULE 1. 1If AZi(I - {ih <9 for any i € I then the warehouse

i will be open in some optimal solution to P.
To see this suppose that T is an optimal set of warehouses and i ¢ T. By

property (1l4)
bz, (T) = Z(TU{i}) - z() < 8z, (1 - {ih <o,

thus T U {i} is also an optimal solution.

RULE 2. If Azi(I*)‘Z 0 for any i € I, where I* is the set

of warehouses opened by application of RULE 1, then warehouse i

will be closed in some optimal solution to Pl.
The justification for RULE 2 {is similar to that for RULE 1. We will show,
in the next section how the testing of RULE 1 and RULE 2 requires only
the application of two cost operators for each warehouse. In many cases, as
will be seen in Section 7, RULES 1 and 2 can be used to fix open and closed a
large portion of the warehouses in an optimal solution.

Another property of submodular set functions which can be derived from
(14) and (15) is the following: Let {Al,...,Ar} and {Ql,...,Qt} be
partitions of A - T such that Qi = Aj for each i =1,...,t and some

j=1,...,r. Then

r t
Z(T) >2(A) - T AZ, (A-A)) >2(A) - T AZ_ (A-Q,) (16)
k=1 %% K k=1 % K

for all subsets T satisfying T & A & I. The quantity on the right hand side
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of (15) provides a valid lower bound on the value of Z(T), for any T C.
Property (6) says when we use a nore refined partition of A- T, we get a
weaker |ower bound. Suppose we |et ) A=1. Then the nost refined partition of
| - T isclearly {{i,},...,U 13 where i, el - T and t- || - T]|.

L t K

Then for this partition (16) yields:

. .
Z(T)y 2Z(1) - 1 bZ. (I - (i3 - (17)
k4 \

Among the class of lower bounds (15), (17) is the weakest. Notice that- once
Rule 1 has been applied all of the ternms on the right hand side of (17) have
been cal cul ated. Thus (17) can be applied at any time after Rule 1 has been
tested without any extra conputational effort. A stronger |ower bound than (17)
could be obtained with some added conputational effort by partitioning | into
sets, Ak of size two and cal cul ating A_Z.Ak(l - Ak)' W have not yet tested
this idea.

Anot her fathom ng device which provides an upper bound on the nmaxi mum

nunber of warehouses in an optimal solution to P can be obtained as follows:

. *
Let t« Ji - | J. Let f,x,...,E.‘, k:i. el - 1 , be a nondecreasing ordering
1 * [o}

of the fixed charges not in | . Define

DV. - AZ. (I - {J.}) - f., j. el - 1* (18)

I T o
and | et D\/Jl,...,D\/.h be noni ncreasing ordering of the DVJ_ . (Note that
|
DV. <0.) The quantity -DV. , represents the snallest possible incremnental
i i :
u

savings on the total shipping cost when warehouse j.a is opened. Let Z be

any upper bound on the optinmal objective function value for P. Then an upper

*

BBURE BR tRe AUABEF 8f warehouses in an optimal solution to P (containing | )
is 11 1 +k wher e,
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K* t-k* K* +] t-k*-|
Z(D- Zi. + Efe + ZiDV 1<2%Z(1) - | fu+Z fx + Z 1DV |
ud t-1 H 81 s t«l 4 81 Is

Note that the first two ternms on the right hand side of (19) give the snall est
possi bl e shipping cost, the next termis the smallest sumof k + 1 fixed
charges, and the last termis the snallest possible cost of closing down

t-(k*+ 1) warehouses. Therefore the right hand side of (19) is a |lower bound

on the value of an optimal solution to P containing |[I | + k -H warehouses.
If this lower bound exceeds ZY then any optinal solution will contain at nost
i*ot *

11 I + k open war ehouses.
In the algorithmof Section 5 we use as fathom ng devices bounds obtained
from (17) on the value of an optinal solution, and bounds obtained from (19) on

the nunber of warehouses in an optimal solution.

4. Use of Cost (perators to Solve ProblemP.

G ven the choice of a subset T C I, problem P becones an ordinary
transshi pment problem Rather than resolving this problemeach time T changes,
we use the operator theory of paranetric programmng [22] to change the problem

and derive the new opti.mal sol ution simultaneously.

VW shall say that cell (i,j) has been fixed out of the basis when a cell

cost operator has been applied to the problemand its solution so that the
cost Cij has been driven to 4M where M is so large that Xij -0 in
any optinmal solution to the new probl em

W also say that cell (i,j) has been fixed in the basis when a cell
cost operator has been applied to the problemand its solution so that the

cost a3 has been driven to -M where M is so large that x.J_.J « Mn(Si,dj)

in any optinmal solution to the new probl em
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Figure 1 shows an exanple of a 2X3X4 nultistage |ocation problem
Rows 1 and 2 correspond to the factories, rows 3, 4, and 5 to the warehouses,
and row 6 represents the dummy factory. Colums 1, 2 and 3 correspond to the
war ehouses, colums 4 through 8 to the demand centers, and colum 9 is a slack
colum. Rows 1 and 2 contain the costs of shipping fromthe factories to the
war ehouses and fromthe factories directly to the demand centers. Cells (3,1),
(4,2), and (5,3) contain the fixed charge of the correspondi ng warehouse,
divided by its capacity. In any solution to P, these cells will contain the
unused war ehouse capacity. Cells (3,2), (3,3), (4,1), (4,3), (5/1) and (5,2)
cannot be used because of their large costs; in effect these arcs have been
renoved fromthe problem The cells inrows 3 through 5 and colums 4 through
8, contain the costs of shipping fromeach of the warehouses to each of the
demand centers plus the proportional fixed charges. Notice that sonme of the
cells in dumy factory row 6 and slack colum 9 contain two costs. This can

be explained in the followi ng manner. To obtain the sol ution where:

y, * 0 set ¢. *-Mand c_. ¢ -M
] in mi-q

y. = 1 set ¢. «M and c_ . » M
[ in mi-q

(in Figure 1, m« 6, n- 8 q- 2, and i € {3,4,5}).

To see this consider the problemshown in Figure 2. By solving the
transportation problemin Figure 2 we would obtain an optimiI solution to P
when T = {2,3}, i.e., when warehouse 1 is closed and warehouses 2 and 3 are
open. Notice that cell (3,8 has a cost of -M thus in the optinal solution
ng_* Sﬂ, whi ch has the effect of closing down warehouse 1. Cell (6,1) has

a cost of -M which causes all of the demand in colum 1 to be satisfied by

the dummy factory i.e., Xg1 ® S; Thus setting Cyp « -M and CeL ™ -M
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effectively closes down warehouse 1. On the other hand for warehouse 2,

C,o *M and c., »M so that x.qo* X,, * 0. This causes the demand in
colum 2 to be satisfied fromrows 1, 2, or 4. The shipnents fromrows 1 and 2
represent units being shipped fromfactories 1 and 2 to warehouse 2. The
shipment fromrow 4 in colum 2 represents the unused warehouse capacity, and
it is charged at the proportional fixed charge rate. Notice that if cell (4,2)
contains X

units then exactly Su+' X, units can be used to ship from

Wl w2
war ehouse 2 to the denand centers. This is exactly the amount which is nade
avai l able to warehouse 2 fromthe factories. Thus the conservation of flow
equations (5) have been satisfied. Because a proportional anount of the fixed
charge is assigned to both the used and unused parts of the warehouse capacity,
the total fixed charge is covered in any feasible solution

Figure 5 contains an optimal solution to the 2x4x5 exanples solved in
Section 6. In Figure 5, T £1,3} so that warehouses 1 and 3 are opened, and

war ehouses 2, 4, and 5 are closed* Factory 1 is not used at all so that x * 61,

1,42
Factory 2 ships 21 units to warehouse 1, 40 units to warehouse 3, and 16 units dir-
ectly to demand center 1. Wirehouse 1 ships all 21 of the units it received from
Factory 2 to denand center 3. The remaining unused 4 units of-capacity at ware-
house 1 are in cell (3,1) and are charged at the proportional fixed charge rate.
Al of the flow for warehouses 2, 4, and 5 is in the last colum, and their demand
is satisfied‘entirely by the dummy factory. Warehouse 3 is used to capacity
shipping 22 units to denmand center 2, and 18 units to demand center 4. In this
exanpl e each of the demand centers is supplied froma single warehouse. This is
not the case in general.

The idea behind the cost operator approach to solving ?(T) is to open

the warehouses in T and close those in | - T by fixing in or out of the
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basis each of the cells (ml) through (ml) and (g+l, n) through ght, n).

For exanple the problem P(1), in which all of the warehouses are open, can be
obtai ned by solving the transportation problem shown in Figure 3. Then to
apply Rule 1 in Section 3 we use two cost operators for each i e |I. For
exanpl e we woul d cal cul ate AZg(I - (3}) «zZ(l) - Z(I - [3)) by fixing in

cells (3,8) and (6,1). Doing this would yield a solution to the problem

shown in Figure,2, and permts the evaluation of Rule 1. In general, the
addition of a warehouse to a given set or the deletion of a warehouse froma
given set requires the fixing in or out of two cells. The anmount of work needed
to fix two cells in or out using cost operators is nuch less than the conpu-
tational effort of solving a transshipnent problemfromscratch. Since the
branch and bound search algorithmto be described in the next section requires
the solution of transshipment problenms for nany sets T, the total conputational
effort saved by the fixing in and fixing out procedure is very |arge.

Al 'so we should nention that in the case where |’ « 0, as in single
stage problens, only one cost operator is needed to open or close a warehouse.
In the single stage formulation colums 1 through K, and rows 1 through 2 are
absent. Thus in order to fix in or out warehouse i we need only apply a

cost operator to cell (i,n).

5. The Cost perator Al gorithm

To describe the cost operator branch and bound al gorithmwe use the fol -
| owi ng notati on:

£ * level of the search tree

Q « set of open warehouses

List(£) « list of warehouses which nay be opened on |evel £
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z * current upper bound

X * current best sol ution.

Ve begin by setting | « 1, Q- 0 and Z'» Z(0) which is the (high)
cost of supplying all demands fromthe factories directly. Then Rule 1 (see
Section 3) is applied and we let Q* | . Then for each i e I-Q we apply
the lower bound test (17) by setting T » QU (i), and checking to see whether

z°z27(1) - s AZ (1 - 00). (20)
kel - T
If the right hand side of (20) (which is a |lower bound on the val ue of
Z(QU {i})) exceeds Zu, then warehouse i can be permanently closed. For
each i for which (20) holds true we apply cost operators to calcul ate AZ.I(Q).
| f AZi(Q_> 0 then we permanently cl ose warehouse i. Then we let List(l) be
the set.of all i such that AZ.l(Q) < 0. (W place the warehouses in List (1)

in order of non-increasing objective function values.) Next we renove the

| ast warehouse, i, fromlList (1) and replace Q by QU (ij. W let Zz'* Z2(Q),
update X If List (1) is enpty then we stop. Qherwise we calculate K* as in
(19). If k‘r « 1 then we stop. CQherwise we replace K» by £ + 1 and
continue to the next level. At each level after the first, we performthe |ower
bound test (20) for each warehouse, i, in List (£-1) by letting T e QU {i}.

I f warehouse i passes the test (20) we cal cul ate AZ.L(Q). Again we |et

List (£) be the set of warehouses such that AZi(Q) < 0 in nonincreasing order.
If List (£ is not enpty we remove i, the last element of List (<); let

Z* Z2(QU {i}) and update X- If List (1) is now enpty we backtrack by re-
placing If by £-1, renoving the |ast warehouse paced in Q and then continuing

as before. Qherwise we calculate k as in (19). |If £ >k we bracktrack
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as just described. Qherwise we replace 4 by 4+1; replace Q by QU {i},
and continue as before. The algorithmterm nates when List (1) has been enpti ed.

Now we formally state the cost opergtor multi-stage location-allocation
algorithm

Step (1). (Initialization). Set 4-1; zY« Z(0). Apply Rule 1. Let Q= I*.

For each i € I-Qapply test (20), letting T - QU {i}. For each i
which satisfies (20) calculate AZ"Q). Oder those i such that
AZ.(Q < 0 in nonincreasing order and place themin List (1). |If

List (1) enpty go to Step (5). Qherwise let k be the last warehouse
inlList (1). Let ZzY- Z(QU (k}); update X. Renove warehouse k from

List (1). |If List (1) is enpty go to Step (5). Qherwise go to Step (2).

*
Step (2). (Bound by k ). Calculate k* as in (19). |If 4 >k* go to Step (4).

Q herwi se keplace 4 by 4+1; replace Q by QU {k} and go to

Step (3).

Step (3). (Forward branching). For each warehouse i in List (4-1) apply
test (20) letting T « QU {i}. For each i which satisfies (20)
calculate AZ~Q). List those i such that AZi(Q <0 in non-in-
creasing order and place themin List (4). |If List (4) is enpty go

to Step (4). Qherwise let k be the last warehouse in List (4).
Let ZzY° Z(Q U {k}); update X. Renove warehouse k fromList (4).

If List (4) is enpty go to Step (4). Qherwise go to Step (2).

Step (4). (Backtracking). Replace 4 by 4-1. Renmove from Q the |ast
war ehouse placed in Q If 4 « 1 and List (1) contains only one ware-

house go to Step (5). Qherwise let k be the last warehouse in List (4).




Remove k from List (4). If List (L) empty go to Step (4). Otherwise

replace Q by Q U {k}; replace 4 by 4+l and go to Step (3).

Step (5). (Termination) Stop. The current solution X, is optimal.

Notice that each time Step (3) is performed a new list of feasible
solutions to P 1is available. Many times these solutions have nearly optimal
objective function values and thus they might be worthwhile to save.

After calculating I*, the cost operator algorithm proceeds to open, one
ét a time, those warehouses which cause the largest decrease in the objective
function value. This is contirnued until at level 4, no further decrease in
the objective function value is possible (i.e. List (L) is empty). Then we move
to the backtracking Step (4). The best feasible solution obtained by the cost
operator algorithm before the first backtracking is called the greedy solution.
We denote by ZG the objective function value of the greedy solution. In [18],

a worst case bound on ZG was derived for submodular set functions which is,

G * * k* 1
Z -2z .l_.L_I + - 21)

z(@)- z" 1T*] + &

I

%* *
where 2 is the optimal objective function value and k 1is obtained from (19).

In practice however, the actual percentage error obtained by the greedy solution is
much smaller than the worst case bound. In Section 7 we will see that in most

cases the greedy solution value is within .5 percént of optimality.

Finally we should point out that it would be trivial to ''reverse" the
cost operatorvalgorithm so that instead of starting with all of the warehouses
closed, and opening them one at a time, we could start with all of the warehouses

open and close them one at a time. This could be done by defining Z'(T) = Z(I-T)
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in (1). Z(T) is al so subnmodul ar, and results from Section 3 would remain
valid for z'. The reverse algorithmmght be better suited to handl e probl ens
where an optinal nunber of warehouses tends to be close to the total nunber

of potential warehouse sites.

6. Exanple.

Figure 4 shows the cost tableau for a 2x4x5 mnultistage |ocation
problem Fixed charges for warehouses 1-5 are: 150, 217, 200, 264, and 140.
For an explanation of how the costs in the tableau are calculated, see Figure 1
and Section 4. The diagramin Figure 6 is a 5-dinensional hypercube whose nodes
represent all of the possible open warehouse conbinations. The search tree will
be a subgraph of this hypercube. The nunber above each node is the val ue of
an optinmal solution to P when only those warehouses narked in circle of the
node are open. The nunber in the parenthesis above a node is the total cost
| oner bound for that node obtained by cal culating (20).

VW illustrate the steps of the algorithmapplied to this exanple.

St ep Cal cul ati ons

(1) Set 4-1, Q0. ZY=Z(0) = 2107. Applying Rule 1 we get
AZi(I - {1})»2303 - 2201 « 102; AZ,(| - {2}) * 217; AZs<I - {3}) = 316;
AZ (1 - {4}) « 162; AZs(l - {5}) -+ 140. 1* - Q- 0. For each
i e {1,2,3,4,5} apply test (20). None of the lower bounds exceeds the
current upper bound. (See the nunbers in parenthesis in Figure 6.) Next
calculate ~(0) - 1880 - 2107 * -227;, AZ,(0) - -94; AZ3(0) = -123;
AZ,(0) - -136; AZs(0) =-105. Let List (1) = {2,5,3,4}. Let Q= {l};

ZY = 1880; 4*2; goto Step (2).




(4)
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Cal cul ations

Z(l) = 2334; 1f. » 1002; the fixed charge ordering is f. = 140,
el * *

fy * 150, f& « 200, f, * 217, f3 = 264. The DV ordering is DV, - 0,
DV5 » 0, DV, « 38, DV_ * 42, DVs = 48. ZY» 1880. Setting k* = 2

we get from (19) 1332 + 290 + 38 = 1880 = 1332 +490 + 0.

Since | *1<2 let | «2; let Q* {I}; go to Step (3).

For each i € {2,5,4,3} apply test (20) setting T « {I} U{i}. (See
Figure 6.) For each i e {2,5,4,3} calculate AzZ"fI}). AZy({l}) * -118.

AZ,({1}) » 32; AZs({1}) « 22; AZ,({Il) *-18. Let Z'» 1762.
List (2) * {2}. G to Step (4).

Setting k* * 2 we get from (19) 1332 + 290 + 38 < 1762 < 1332 + 490 + 0.

Since | »2>2 go to Step (4).

Let | m1l Remove {I} from Q (now Q=0). Let k* 4. Let

List (1) « {2,5,3}. Let Q« {4}. Let | » 2; go to Step (3).

For each i € {2,5,3} apply test (2) setting T« {4} U{i}. Al
solutions are fathomed (see nunbers in parenthesis in Figure 6).

List (2) » 0. G to Step (4).

Let | - 1. Renmove {4} from Q (nowQ « 0). Let k » 3. Let

List (1) » {2,5}. Let Q« {3}. Let I *2. GCoto Step (3).

For each i e {2,5} apply test (20) setting T » {3} U{i}. Al
solutions are fathoned (see Figure 6). List (2) « 0. GCo to Step (4).

Let | » 1. Rermove {3} from Q (nowQ» 0). Let k- 5 Let List (1) =

{2}. Let Q- {5}. Let | »2; Goto Step (3).
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SR [ons
(3) For .i e {2} apply test (20) setting T = {5} U {i}. The solution
is fathomed (see Figure 6). List (2) «0. Go to Step (4).

(4) Let 4-1. Go to Step (5).

(5) St op. 7'+ 1762 is optimal for warehouses {l,3}. An optimal solution

is shown in Figure 5.

An optinmal solution to the exanple is given in Figure 5 when warehouses
1 and 3 are opened. The greedy solution is optimal and is obtained at the circled
vertex {1,3} in Figure 6. The upper bound on an optiml nunber of warehouses,
k e+ 2, was obtained in the first application of Step (2) and thus none of
| evel three warehouse conbinations were examned. In total, 16 of the vertices
in Figure 6 were generated. Six of the vertices on level 2 were fathomed using

(20). The total number of transportation pivots required to solve the sanple

probl emwas 85.

7. Conputational Results.

The cost operator algorithmof Section 5 was coded in FORTRAN IV and
the runs were nade on a DEC 20 time sharing system Mny of the problems were
run at different times during the day and thus the execution tinmes may vary up
to ten or fifteen percent- dependi ng upon the computing load of the machine.
The maximum time alloted for solving any problemwas 500 seconds.

Al'l of the problens are derived fromthe Kuehn and Hamburger data which
was oriéi nally presented in [14]. Probl em‘sets | through VI are taken from

Akinc and Khumawala [1], and VIIl and | X are taken fromEl Iwein and Gay [8].
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These are single stage problems of the type PI. Problemsets X through XV
are nultistage problens which are solved here for the first tinme.
Since it is necessary to read several articles to deternine how the
problems | through VII were originally created, we will describe themhere
The Kuehn and Hanmburger data represents a multistage systemwith 3 factories
24 potential warehouse sites, and 50 demand centers located in the continenta
United States. Problens | through IV were formed by considering only the first
15 potential warehouse sites (i.e., Atlanta, Boston, through New Oleans as in
[14]). To obtain the shipping costs (Cij) fromthese sites to the 50 denand
centers multiply each distance by $.025/mle unit cost, which is the bulk
shipping rate. The sixteenth warehouse is actually the factory at |ndianapolis
W used the distance from Indianapolis to the 50 denmand centers nultiplied by
$.0125/mle unit as its shipping cost. The factory at Indianapolis has the
same capacity as the other warehouses and it has a zero fixed charge. The
problens V through VII are set up in a sinilar fashion except that all 24
potential warehouse sites are used. Problens X through XV are multistage
probl enms which are al so derived.fron1the Kuehn and Hanburger data. Al three
factory sites were used. The factories have capacities of 30,000 or 35,000
units. To derive the shipping costs, we multiplied the distances from each
factory to each warehouse by $.0125/nmile unit cost, and fromeach factory to
each denand center by .0375/nile unit cost. To get the shipping costs fromthe
war ehouses to the demand centers, we nultiplied the distance by $.0250/mle.
Table 1 contains a description of all of the test problens. Table 2
contains the conputational results for the single stage problens and Table 3 for
the multistage problens. The percent error forrmula used to evaluate the greedy

sol ution was,
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G %
—£—§ Z—x 100.
pA

G *
where Z is the greedy value and Z is the optinmal value. Al so included

in Table 2 are the execution tines for the sane problens solved in [1] and [17].
For test purposes the problemsets | through XV are very interesting be-
cause they contain problens with a wide range of difficulty.

The results for the greedy solution were startling. The largest percent
error incurred was 3.7 (see Table 2, 1X), however in general the percent error
was less than .5 percent and the greedy solution was an optinal solution in 32
out of 51 problens.

Anot her interesting statistic is the nunber of vertices required to find
the optinal solution as conpared to the total nunber of vertices searched. An
optimal solution is usually | ocat ed very early in the search process and nost
of the effort is typically spent verifying its optimality. This experience is
sinmlar to that found in solving other kinds of integer progranming problens.

The set | , which represents the warehouses fixed open in the initializa-
tion phase of the cost operator algorithm often accounts for as much as 85%
of the total nunber of open warehouses in an optinal solution. The uncapacitated
problens (sets IV, VII, XlI, XV) were very easy to solve as expected. As far
as problemdifficulty Ls concerned, those problens for which an optimal nunber
of warehouses is approximately one half of the total nunber of potential ware-
house sites are usually the nost difficult. This is Prgbgbly due to the fact

. . . » ri
that the number of possible warehouse conbinations, W'S" WAen A %
\

=
even or 10 TW?J when K> is odd, is the maxi numof the binom al coefficients ( ?,
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The CPU tinmes quoted in Tables 2 were obtained by three different sets of
authors and are difficult to conpare due to the differences in conputers and in
programm ng efficiency. As far as nachine speeds is concerned, the |IBM 370/168
is the fastest, followed by the 1BM 370/165 and then by the DEC 20. However
actual speed ratio factors for pairs of the computing machines are virtually
inpossible to find. It seens fair to state that the perfornmance of the three
codes shown in the table are not significantly different; we nmay say they
represent the state of the art of conputational results on these problens.

Tabl e 3 exhibits conputational results on nultistage problenms having
3 factories, 24 warehouses, and 50 denand centers. As can be noted, the conputa-
tion times are relatively snmall and exhibit a relatively small variance for
i nteger programmng problens. W again found the performance of the greedy
solution to be even better than for the single stage problens. This is perhaps
due to the fact that the factories have a large total capacity, and they can

ship to custonmers directly if many of the warehouses are closed down.

8. Concl usions.

W have presented a cost operator algorithm for solving miltistage |oca-
tion-all ocation problens which does not enploy problemrelaxations as do the
other currently best approaches [1, 17]. Conputational results indicate that
this nmethod is conpetitive with the others. The greedy solutions obtained by
the nethod are usually extrenely close to or are optimal. Al so, because the
net hod conputes many near optinal solutions as it solvés the problem these near
optimal solutions can be saved and printed out for use by a manager if he desires.
Conputational results on the solution of nultistage |ocation problens are presented -
here, but we have been unable to find other published results on such problens for
conpari son. The performance of our nethod on these problens, is encouragi ng

VW wi sh to thank Professor limt Akinc for supplying the Kuehn-Hanburger

data used in this paper.
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Table 1

Test Probl ens

Problem Set # Problems (g*txr) Sd.1.
I 4 0X16X50 58268
Il 1 0X16X50 58268
111 A 0X16X50 58268
Y 4 0X16X50 58268
v 4 0X25X50 58268
\Y 4 0X25X50 58268
Vi | 4 0X25X50 58268
*, _
VI 1 0X15X45 37440
*,
I X 1 0X15X45 37440
X 4 3X24X50 58268
X 4 3X24X50 58268
X | 4 3X24X50 58268
X1 4 3X24X50 58268
X'V 4 3X24X50 58268
XV &4 3X24X50 58268

35000

35000

35000

30000

30000

30000

* . .
Nunbers in the brackets I correspond to ranges..

£;

5000

10000

15000

58628

5000

15000

58628

1000
5000/

1500
7500/

5000

15000

58628

5000

15000 -

58268

—

7,500/ 12, 500/
17, 500/ 25, 000/

17,500

7,500/ 12, 500/
17, 500/ 25, 000/

7,500/ 12, 500/
17, 500/ 25, 000/

7,500/ 12, 500/
17, 500/ 25, 000/

7,500/ 12, 500/
17, 500/ 25, 000/

7,500/ 12, 500/
17, 500/ 25, 000/

15,0001
40,000/

22,5001
60, 000/

7,500/ 12, 500/
17, 500/ 25, 000/

7,500/ 12, 500/
17, 500/ 25, 000/

7,500/ 12, 500/
17, 500/ 25, 000/

7,500/ 12, 500/
17, 500/ 25, 000/

7, 500/ 12, 500/
17, 500/ 25, 000/

7,500/ 12, 500/
17, 500/ 25, 000/




Table 2

Computational Results

# Vertices

% to Total Total Total A &K Nauss

Problem error find # * # # N&T ( IBM ) ( IBM
Set Greedy Optimal Vertices lT | warehouse Pivots (DEC-20) 370/165 370/168)

I-1 0 25 25 11 13 163 1.61 10.21 7.6
1-2 0 21 21 11 12 152 1.43 9.15 1.5
I-3 0 21 21 11 12 156 1.46 9.26 6.8
1-4 0 21 21 11 12 156 1.45 9.58 10.8
1 .19 58 147 5 8 1712 6.16 19.68 6.6
ITI-1 0 28 32 9 11 158 1.02 .23 1.5
111-2 0 30 37 7 9 217 1.19 .43 1.7
I1I-3 0 51 102 4 7 858 3.37 38.65 5.3
I111-4 0 41 158 3 5 2582 8.36 34.39 2.9
Iv-1 0 28 31 9 11 115 .96 47.5 -
V-2 0 27 31 7 9 149 1.03 b -
Iv-3 0 38 41 3 5 218 1.2 .30 -
IV-4 0 30 30 3 4 133 .85 .15 -
V-1 47 254 1303 11 17 11700 56.7 .23 18.4
V-2 72 128 6278 9 14 96462 422.8 120% 18.1
V-3 - - - - - - 500% 120%* 9.1
V-4 - - - - - - 500% 120% 713.4
VI-1 .10 67 360 10 15 1417 10.35 .75 2.2
VI-2 0 78 908 6 11 6952 31.8 7.75 9.2
VI-3 .19 982 2172 5 8 19420 79.9 120% 18.1
Vi-4 .15 1299 16367 2 7 146900 495.2 120% 27.2
VIii-1 0 62 238 10 14 978 5.5 .68 -
VIiI-2 0 69 408 6 11 2408 9.87 1.65 -
VII-3 .20 104 264 4 8 1922 6.72 1.34 -
VII-4 .06 75 161 2 4 1088 4.05 .46 -
VIII 0 60 804 5 11 6247 29.6 12.55 1.8
IX 3.7 92 1304 2 7 9367 41.6 4.17 8.1
*

Computation terminated

- Not available

-92-
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Tabl e 3

Conput ati onal ‘Results

% #f vertices Tot al Qpti mal Tot al CPU
Problem error to # . # # Ti me
_Set  Greedy _quiimal  Mertices ||| varehouses Biyots (Dec-20)
X-1 o 56 143 11 15 2414 11. 88
X-2 .30 514 - 858 8 13 12287 61. 39
X-3 .24 277 680 6 11 7411 39.15
X-4 1.6 492 3627 1 7 39084 197. 24
X-1 0 54 99 9 13 1708 8.51
Xl -2 0 71 521 5 8 7895 36. 09
X -3 0 62 184 5 8 2830 13. 69
Xl -4 0 90 837 2 6 14523 66. 88
Xl-1 .02 66 76 9 12 2874 17.69
X1-2 0 69 352 5 8 6885 34.43
X1-3 0 75 452 4 8 8431 41. 26
Xil-4 0 81 499 3 6 10383 50. 1
Xll-1 0 56 145 11 14 2412 12. 16
Xll-2 .30 514 858 8 13 12144 62. 97
X1l-3 .24 277 680 6 11 7840 45. 44
Xill-4 17 492 3627 1 7 41054 246. 83
XIV-1 0 54 100 9 13 2060 12. 85
Xl V-2 0 71 537 5 8 8480 44. 7
Xl V-3 0 62 184 5 8 3152 19.9
Xl V-4 0 90 838 2 6 14463 75.7
XV-1 .01 73 84 9 12 3627 23.8
XV-2 0 69 363 5 8 7813 44. 3
XV-3 0 75 454 4 8 9187 49.8
XV- 4 0 81 499 2 6 11234 60. 53
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Figure 5

Wb D D2 D8 >4 D6
5 9 37 28 33 26 0
6 6 6 5 9 22 27 36 28 0
6 M M M M 17 + 6 16 + 6 10 + 6 16 + 6 X
M 8 M M M1{is + 7 14 + 7 17 + 7 14 + 7 X
M M1 5 M M}t14 +5 13+ 5 19 + 5 11 + 5 X
M{ M| m{1 M 13 + 11| 12 + 12| 11 + 111 13 + 11 X
My M| M 14 + 5 13 + 5 14 + 5 15+ 5 X
X X X X X X X X X 0
24 28 16 22 21 18 211
Figure 4
V8 wi W D D2 D8 ™M b
61
5 9 37 28 33 26 | 61
16
5 9 @ 27 36 28 @ 79
21
M M M 23 22 22 25
M M M| 2 | 2 | 5 | 22 | 31
0 2 8
o | @ ] = (@] |«
M 11 M 24 23 22 24 r@)z 24
2
M M 5 19 18 19 20 28
1 A 8 65
M M L M M M M @ 148
0 24 28 16 22 21 18 211

61
79
25
31
40
24
28

148




-31-

Figure 6
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