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1. Introduction

In this paper we present a cost operator algorithm for solving multistage

factory warehouse location-allocation problems. The decision variables cor-

respond to the warehouse locations and the shipping amounts from the factories

through the warehouses and into the demand centers. The problem is to minimize

the total fixed costs of locating warehouses plus the total variable shipping

cost, subject to possible capacity restrictions at the factories and the ware-

houses, plus the demand requirements at the demand centers.

The algorithm takes advantage of the network structure of the supply

and demand constraints and the submodularity of the objective function. We

use cost operators [22], to facilitate the movement up and down the search

tree. This greatly reduces the amount of time spent solving transportation

subproblems, which frequently comprises up to 90% of the computational burden.

In Section 2 we give a problem formulation and we discuss some of the

more recent research related to the multistage location problem. In Section 3

we point out lower bounds and fathoming rules obtainable from submodular set

functions. In Section 4 we transform the multistage location problem into a

transportation problem format, and we show how cost operators can be used to

generate feasible solutions. Section 5 contains a description of the cost

operator branch and bound algorithm. In Section 6 we give an example, and

in Section 7 we provide extensive computational experience on problems from

the literature plus some multistage problems of our own.

2. Problem Formulation

We describe the location problem to be studied in this paper as well as

similar models which have been presented in the literature. We use the following

notation:
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m

number of factories; I = [l,...,q]

number of warehouses; I * {q+l,..,,m}

number of demand centers

q + t + 1; a • £ + r + 1; j' » [l,... ,<t}, J

fixed cost of opening warehouse i

(factory i toIwarehouse j jeJ'

cost per distance ,

per unit of Remand center j jeJ
shipping from ^ J

-warehouse i to iel
.demand center j jeJ

, .

capacity of factory i

capacity of warehouse i

demand at location j

amount shipped from location i to location j

rl if warehouse i is open
iO otherwise

The multistage or intermediate location problem, which we will call

Problem P, can be formulated as:

Minimize Z(T)

subject to

i€l'UT

E x,
jeJ7UJ

£ x,.
iel'UT iJ

c..x + £ f.y.
1J 1J i€T 1

< 0

iel'

ieT

jeJ

(1)

(2)

(3)

(4)
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S / Xhi " Z x i i = ° i e T <5)

hel h l jej 1 J

x±, > 0 i e l ' U l , jej'UJ (6)

v « * m
yi ^ 0 otherwise v '

Constraints (2) and (3) ensure that the amount shipped out of a factory or a

warehouse should not exceed its capacity. Constraints (4) require that the

demand at each demand center be satisfied. Constraints (5) are the standard

"conservation of flow" constraints which require that the amount shipped into

each warehouse equals the amount shipped out. Constraints (6) and (7) are the

nonnegativity and integrality constraints respectively. The objective in

problem P is to minimize the total transportation costs from shipping plus

the total fixed costs of opening warehouses, while satisfying the customer

demand. When

S. < I d (8)

we say that warehouse i is capacitated since it cannot satisfy all of the

demand by itself. The factories can also be either capacitated or uncapacitated

depending upon the size of A.. Note that in the multistage formulation when

i' 4 0, the total warehouse capacity need not exceed the total demand since

units can also be shipped directly from the factories to the demand centers.

A considerable amount of research has been performed on uncapacitated,

capacitated, and mixed (partly capacitated) location problems. It seems that

each problem which is studied, depending upon the objective function and the

capacity assumption, exhibits its own characteristics and yields a different

algorithmic approach. Thus the literature on the many different location
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problems is enormous. In this section we will discuss recent literature only

for those problems which are closely related to P.

Research on multistage location problems has been limited. Geoffrion

and Graves [12] described and tested an algorithm for solving multistage

multicommodity distribution systems using Benders' decomposition. Ellwin

and Gray [8] described and tested an algorithm for solving single stage

(i' * 0) location problems and proposed, but did not test, an algorithm for

solving multistage problems. Most of the papers in the literature have con-

centrated on the single stage version of P for which i' • 0. This has

been called the simple (capacitated or uncapacitated) warehouse location

problem which we denote by PI. Some of the models which have been studied

impose added configuration constraints on PI which restrict the total

number, and different combinations of warehouses which can be opened. For

example, a constraint frequently used is:

S y, < K (9)

iel x

where K is an upper limit on the total number of warehouses which can be

opened. In the special case where f. » 0 for iel and each warehouse is

uncapacitated, PI with constraint (9) ammended is called the K median

problem. Both heuristic [14] and exact methods [5], [16], [21], have been

proposed for solving the K median problem.

Earlier attempts at solving the uncapacitated PI concentrated upon

the relaxation, Pi', of PI where (7) is replaced by:

0 < y± < 1 i d (10)

(see [6], [7]). The basic idea was to solve PI by imbedding Pi' into an
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implicit enumeration scheme. Since then Pi' has been called the weak linear

programming relaxation of PI. It is termed flweaklf because there is another

linear programming relaxation of PI which has proven to be much stronger than

PI . To describe the latter, we add to problem PI the constraints:

x ± j < min Cs±,dj}yi iel,j€j . (11)

Let us denote by Pi" the problem in which the constraints (11) are added to

PI '. For uncapacitated location problems Pi" is called the strong linear

programming relaxation of PI. (Note that for uncapacitated location problems

min{si,d } « min{®,l} * 1). Pi" is stronger than PI7 in the sense that the

gap between the optimal values of PI and Pi" is normally much smaller than

the gap between the optimal values of PI and PI7. Also, it is often the

case for uncapacitated location problems, that a solution to Pi" will satisfy,

or almost satisfy (7). That is, after solving 'PI" almost all of the fixed

charge variables will be naturally integer. However, even though optimal

solutions to PI tend to be close approximations to an optimal solution for

PI, researchers have attempted to avoid solving PI directly, because it

has an enormous number of constraints (there are mxn constraints of the type

(11)). Schrage [20], has proposed a method for solving linear programs which

handles constraints of the type (11) implicitly, thereby reducing storage

requirements. Still the time required to solve PI by the simplex method

can be excessive and could cause difficulties in an implicit enumeration scheme.

Instead of solving PI ' directly, heuristic methods have been proposed

which find feasible solutions to the dual of PI . To describe these approaches

let us denote by X^. a feasible, and by X_. an optimal solution to problem PI.
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Let Z(X) represent the objective function value for solution X. Also let

D be the dual problem to problem Pi" . Then by duality theory we know that:

z«pi> ̂  z ( xn" } * Z ( V - Z ( V (12)

where X_ is an optimal and X_ a feasible solution to D. Thus a feasible

solution to D provides a valid lower bound on the optimal objective function

value of PI. Subgradient [4] and dual ascent methods [3] , [9] have been used

to find good feasible solutions to D. In the case where PI is uncapacitated

one can easily compute a low cost primal solution to PI after having found the

feasible solution to D. Furthermore it is often the case when Pi is

uncapacitated that the gap, Z(Xpl> -
 zftn)> is v e r v small or even zero,

which makes the additional work to get optimal solutions small. Thus the

relaxation Pi" has been very effective in solving the simple uncapacitated

warehouse location problems.

Several algorithms also exist for solving capacitated location problems.

Akinc and Khumawala [1]> proposed and tested an implicit enumeration algorithm

which uses Pi7 as a relaxation. Ellwin and Gray [8] described and tested

a branch and bound algorithm which uses duality properties of PI and bounds

obtainable from the submodularity of the objective function (1) for fathoming.

Guignard and Spielberg [13] have generalized the dual ascent method of Bilde-

Krarup [3] and Erlenkotter [9] to the capacitated version of PI. They use a

relaxation very similar to Pi" which contains the constraints (11). They

solved some randomly generated problems and found that the zero gap phenomenon

between Z(X_^) and Z(XjJ occurs less frequently with capacitated or mixed

problems, than it does with uncapacitated problems. Other relaxations besides

PI7 and Pi" have also been used to solve PI. Geoffrion and McBride [11]
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have considered a location model for which PI is a special case and have

used a Lagrangian relaxation combined with implicit enumeration to solve it.

Recently Nauss [17] used a Lagrangian relaxation to solve PI with excellent

computational results.

In the following sections we will describe an algorithm for solving P.

The general approach is similar to the one used in [8] to solve PI. We do

not solve a relaxation of P. Instead we make use of some lower bounds obtain-

able from the submodular property of Z, together with some other fathoming

rules, to enumerate explicitly a subset of the solutions to P. The movement

in the search tree from one solution to another is facilitated by applying cost

operators [21] to P. This significantly reduces the amount of effort required

to solve P, since most researchers have found that the majority of the time

involved in solving capacitated location problems is spent solving transportation

subproblems. Ellwin and Gray [8] have tested and shown that in many cases over

90% of the time required to solve a test problem is spent solving transportation

subproblems. In the next section we discuss some lower bounds on the value of Z,

some of which are utilized in the algorithm described in Section 5*

3. Objective Function Lower Bounds

Many of the lower bound properties which we present here have been dis-

cussed in [2] and [10], in the context of the simple uncapacitated location

problem. These lower bounds and their properties are also useful in solving

other kinds of mathematical programming problems.

There are many properties which can be used to define submodular set

functions. For a discussion of them see [18], To define one such function

let Z be a real valued function defined on the finite set of subsets of I.
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For notational convenience we define:

AZB(A) » Z(AUB) - Z(A) AC I, B S I (13)

Then any of the following properties can be used to define a submodular

function:

(i) Z(AUB) + Z ( A H B ) > Z(A) + Z(B) for all subsets A,BCI.

(ii) AZ±(A) < AZt(B) V A C B C I , iel - (14)

(iii) Let {B.,..-,B } be a partition of B-A; then

Z(A) > Z(B) • Z 4Z^ (B - Bk) A ^ B C I . (15)
k

In most expositions property (i) is taken to be the definition of submodularity,

and properties (ii) and (iii) are shown to be equivalent. Details are omitted.

In the context of this paper, Z(A) represents (1). The fact that Z(A)

is submodular was proved in [15]. Note that in P, Z(0) represents the value

of the solution where all of the shipments originate from the factories. When

l' * 0, as in Pi, one must be careful in defining Z(A) if A happens to

be infeasible set of warehouses, i.e., when S S. < Z d • In this case we

i€A X jcJ J

we define a "dummy factory" which is always available to service the demand

centers but at a high shipping cost. This makes Z(A) large enough so that

the value of Z(A) for any infeasible A is at least as large as the value of

any feasible solution. The dummy factory approach preserves the submodularity

of Z and also yields a different value of Z for solutions having different

degrees of infeasibility. As we will see later, this is helpful in deciding

which warehouses to open when we are working with infeasible sets of warehouses.

Properties (14) and (15) can be interpreted as adding or subtracting ware-

houses from a given set A of open warehouses. For example property (14)
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says that the addition of warehouse i to the set A decreases the total

cost by at least as much as the addition of warehouse i to the set B when

A £ B. Thus it is similar to the "decreasing returns to scale" condition in

economics.

Properties (14) and (15) can be used to characterize solutions to P

and to derive lower bounds on the value of any solution to P. The algorithm

to be described in Section 5 searches for sets T C I which have the following

two properties:

(i) AZ±(T) > 0 V i e I-T

(ii) AZ±(T- {i}) < 0 V i e T

Sets T £ I which satisfy (i) and (ii) are such that the addition to T or the

deletion from T of a single facility does not cause Z to decrease. Clearly

.any optimal solution to P satisfies (i) and (ii). In a sense properties (i)

and (ii) characterize the set of all "locally optimal" solutions to P. The

globally optimal solution is the best locally optimal solution, which must be

found by a search process. One of the factors which make it hard to find the

globally optimal solution is that there are many locally optimal solutions which

have nearly optimal objective function values. Thus in any enumeration procedure,

a considerable amount of effort is normally required to eliminate these nearly

optimal solutions from consideration. In a practical sense however, it may

be true that the nearly optimal solutions, say those within 1% of optimality

may indeed be as valuable or "as optimal" to a decision maker as a globally

optimal solution. Given the inaccuracies in the cost data and other environ-

mental and polilical factors which must be taken into consideration, it would be

desirable to have not only an optimal solution to P, but in addition a list of
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solutions which are nearly optimal. We will point out how this may be ac-

complished using the algorithm of Section 5.

In the initialization phase of any location algorithm, two rules can

be applied in order to permanently open or close warehouses.

RULE 1. If AZi(I - Ci}) < 0 for any i € I then the warehouse

i will be open in some optimal solution to P.

To see this suppose that T is an optimal set of warehouses and i i T. By

property (14)

AZt(T) - Z(TU {i}) - Z(T) < bZt(X - [i}) < 0,

thus T U [i] is also an optimal solution.

RULE 2. If AZjL(I*) > 0 for any i e I, where I* is the set

of warehouses opened by application of RULE 1, then warehouse i

will be closed in some optimal solution to Pi.

The justification for RUI£ 2 is similar to that for RULE 1. We will show,

in the next section how the testing of RULE 1 and RULE 2 requires only

the application of two cost operators for each warehouse. In many cases, as

will be seen in Section 7, RULES 1 and 2 can be used to fix open and closed a

large portion of the warehouses in an optimal solution.

Another property of submodular set functions which can be derived from

(14) and (15) is the following: Let U ^ . . . ^ } and {Q1,...,Qt.} be

partitions of A - T such that Q £ A. for each i * l,...,t and some

1,...,r. Then

t

AZn
Qk

for all subsets T satisfying T £ A £ I. The quantity on the right hand side

Z(T) > Z(A) - Z AZA (A-A, ) > Z(A) - 2 AZn (A-Q. ) (16)
k-1 \ k k»l Qk k
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of (15) provides a valid lower bound on the value of Z(T), for any T C I.

Property (6) says when we use a more refined partition of A - T, we get a

weaker lower bound. Suppose we let A = I. Then the most refined partition of

I - T is clearly {{i,},...,U 13 where i e I - T and t- |l - T|.
L t K

Then for this partition (16) yields:

t
Z(T) >Z(I) - I bZ. (I - (i,3) • (17)

k=l \

Among the class of lower bounds (15), (17) is the weakest. Notice that once

Rule 1 has been applied all of the terms on the right hand side of (17) have

been calculated. Thus (17) can be applied at any time after Rule 1 has been

tested without any extra computational effort. A stronger lower bound than (17)

could be obtained with some added computational effort by partitioning I into

sets, A, , of size two and calculating AZ. (I - A, ). We have not yet tested

this idea.

Another fathoming device which provides an upper bound on the maximum

number of warehouses in an optimal solution to P can be obtained as follows:

Let t« Ji - I J. Let f, ,...,£. , k. e I - I , be a nondecreasing ordering
1 * c

of the fixed charges not in I . Define

DV. - AZ. (I - {J.}) - f., j. e I - I* (18)
J i J i i l l

and let DV ,...,DV. be nonincreasing ordering of the DV. . (Note that
Jl h Ji

DV. < 0.) The quantity -DV. , represents the smallest possible incremental
i i

savings on the total shipping cost when warehouse j. is opened. Let Z be

any upper bound on the optimal objective function value for P. Then an upper

bound on the number of

is 11 1 + k where,

*
bound on the number of warehouses in an optimal solution to P (containing I )
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k* t-k* k*+l t-k*-l

Z(D- Z i. + E f• + Z iDV. I <ZU<Z(I) - I f, + Z f. + Z lDV I (19)
U ^ t-1 H 8-1 JS t«I *-l <t 8-1 JS

Note that the first two terms on the right hand side of (19) give the smallest

possible shipping cost, the next term is the smallest sum of k + 1 fixed

charges, and the last term is the smallest possible cost of closing down

t-(k + 1) warehouses. Therefore the right hand side of (19) is a lower bound

on the value of an optimal solution to P containing |I | + k -Hi warehouses.

If this lower bound exceeds ZU then any optimal solution will contain at most

i * t *

11 I + k open warehouses.

In the algorithm of Section 5 we use as fathoming devices bounds obtained

from (17) on the value of an optimal solution, and bounds obtained from (19) on

the number of warehouses in an optimal solution.

4. Use of Cost Operators to Solve Problem P.

Given the choice of a subset T C I, problem P becomes an ordinary

transshipment problem. Rather than resolving this problem each time T changes,

we use the operator theory of parametric programming [22] to change the problem

and derive the new optimal solution simultaneously.

We shall say that cell (i,j) has been fixed out of the basis when a cell

cost operator has been applied to the problem and its solution so that the

cost c . has been driven to 4M, where M is so large that x - 0 in

any optimal solution to the new problem.

We also say that cell (i,j) has been fixed in the basis when a cell

cost operator has been applied to the problem and its solution so that the

cost c. has been driven to -M, where M is so large that x. . « Min(S.,d.)

in any optimal solution to the new problem.
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Figure 1 shows an example of a 2X3X4 multistage location problem.

Rows 1 and 2 correspond to the factories, rows 3, 4, and 5 to the warehouses,

and row 6 represents the dummy factory. Columns 1, 2 and 3 correspond to the

warehouses, columns 4 through 8 to the demand centers, and column 9 is a slack

column. Rows 1 and 2 contain the costs of shipping from the factories to the

warehouses and from the factories directly to the demand centers. Cells (3,1),

(4,2), and (5,3) contain the fixed charge of the corresponding warehouse,

divided by its capacity. In any solution to P, these cells will contain the

unused warehouse capacity. Cells (3,2), (3,3), (4,1), (4,3), (5,1) and (5,2)

cannot be used because of their large costs; in effect these arcs have been

removed from the problem. The cells in rows 3 through 5, and columns 4 through

8, contain the costs of shipping from each of the warehouses to each of the

demand centers plus the proportional fixed charges. Notice that some of the

cells in dummy factory row 6 and slack column 9 contain two costs. This can

be explained in the following manner. To obtain the solution where:

y. • 0 set c. * -M and c • -M
l in m,i-q

y. - 1 set c. « M and c » M
i in m,i-q

(in Figure 1, m « 6, n - 8, q - 2, and i € {3,4,5}).

To see this consider the problem shown in Figure 2. By solving the

transportation problem in Figure 2 we would obtain an optimal solution to P

when T = {2,3}, i.e., when warehouse 1 is closed and warehouses 2 and 3 are

open. Notice that cell (3,8) has a cost of -M, thus in the optimal solution

x~g * S_, which has the effect of closing down warehouse 1. Cell (6,1) has

a cost of -M which causes all of the demand in column 1 to be satisfied by

the dummy factory i.e., x 6 1 • S~. Thus setting c_g « -M and c - - -M



-14-

effectively closes down warehouse 1. On the other hand for warehouse 2,

c, o * M and c.o » M, so that x.Q * x,o * 0. This causes the demand in

column 2 to be satisfied from rows 1, 2, or 4. The shipments from rows 1 and 2

represent units being shipped from factories 1 and 2 to warehouse 2. The

shipment from row 4 in column 2 represents the unused warehouse capacity, and

it is charged at the proportional fixed charge rate. Notice that if cell (4,2)

contains x,9 units then exactly S, - x, - units can be used to ship from

warehouse 2 to the demand centers. This is exactly the amount which is made

available to warehouse 2 from the factories. Thus the conservation of flow

equations (5) have been satisfied. Because a proportional amount of the fixed

charge is assigned to both the used and unused parts of the warehouse capacity,

the total fixed charge is covered in any feasible solution.

Figure 5 contains an optimal solution to the 2x4x5 examples solved in

Section 6. In Figure 5, T • £l,3} so that warehouses 1 and 3 are opened, and

warehouses 2, 4, and 5 are closed* Factory 1 is not used at all so that x, ,Q * 61,

Factory 2 ships 21 units to warehouse 1, 40 units to warehouse 3, and 16 units dir-

ectly to demand center 1. Warehouse 1 ships all 21 of the units it received from

Factory 2 to demand center 3. The remaining unused 4 units of capacity at ware-

house 1 are in cell (3,1) and are charged at the proportional fixed charge rate.

All of the flow for warehouses 2, 4, and 5 is in the last column, and their demand

is satisfied entirely by the dummy factory. Warehouse 3 is used to capacity

shipping 22 units to demand center 2, and 18 units to demand center 4. In this

example each of the demand centers is supplied from a single warehouse. This is

not the case in general.

The idea behind the cost operator approach to solving ?(T) is to open

the warehouses in T and close those in I - T by fixing in or out of the
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basis each of the cells (m,l) through (myl) and (q+1, n) through q-ht, n).

For example the problem P(I), in which all of the warehouses are open, can be

obtained by solving the transportation problem shown in Figure 3. Then to

apply Rule 1 in Section 3 we use two cost operators for each i e I. For

example we would calculate AZ3(I - (3}) « Z(I) - Z(I - [3)) by fixing in

cells (3,8) and (6,1). Doing this would yield a solution to the problem

shown in Figurev2, and permits the evaluation of Rule 1. In general, the

addition of a warehouse to a given set or the deletion of a warehouse from a

given set requires the fixing in or out of two cells. The amount of work needed

to fix two cells in or out using cost operators is much less than the compu-

tational effort of solving a transshipment problem from scratch. Since the

branch and bound search algorithm to be described in the next section requires

the solution of transshipment problems for many sets T, the total computational

effort saved by the fixing in and fixing out procedure is very large.

Also we should mention that in the case where I7 • 0, as in single

stage problems, only one cost operator is needed to open or close a warehouse.

In the single stage formulation columns 1 through K, and rows 1 through 2 are

absent. Thus in order to fix in or out warehouse i we need only apply a

cost operator to cell (i,n).

5. The Cost Operator Algorithm.

To describe the cost operator branch and bound algorithm we use the fol-

lowing notation:

£ * level of the search tree

Q « set of open warehouses

List(£) « list of warehouses which may be opened on level £
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u
Z * current upper bound

X * current best solution.

We begin by setting I • 1, Q - 0 and ZU » Z(0) which is the (high)

cost of supplying all demands from the factories directly. Then Rule 1 (see

Section 3) is applied and we let Q * I . Then for each i e I-Q we apply

the lower bound test (17) by setting T » Q U (i), and checking to see whether

ZU > Z(I) - S AZ, (I - 00). (20)
kel-T

If the right hand side of (20) (which is a lower bound on the value of

Z(Q U {i})) exceeds Z , then warehouse i can be permanently closed. For

each i for which (20) holds true we apply cost operators to calculate AZ.(Q).

If AZ. (Q) > 0 then we permanently close warehouse i. Then we let List(l) be

the set of all i such that AZ.(Q) < 0. (We place the warehouses in List (1)

in order of non-increasing objective function values.) Next we remove the

last warehouse, i, from List (1) and replace Q by Q U (ij. We let ZU * Z(Q),

update X. If List (1) is empty then we stop. Otherwise we calculate k as in

(19). If k « 1 then we stop. Otherwise we replace K» by £ + 1 and

continue to the next level. At each level after the first, we perform the lower

bound test (20) for each warehouse, i, in List (£-1) by letting T • Q U {i}.

If warehouse i passes the test (20) we calculate AZ.(Q). Again we let

List (£) be the set of warehouses such that AZ.(Q) < 0 in nonincreasing order.

If List (£) is not empty we remove i, the last element of List (<t); let

ZU * Z(Q U {i}) and update X- If List (I) is now empty we backtrack by re-

placing If by £-1, removing the last warehouse paced in Q and then continuing

as before. Otherwise we calculate k as in (19). If £ > k we bracktrack
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as just described. Otherwise we replace 4 by 4+1; replace Q by Q U {i},

and continue as before. The algorithm terminates when List (1) has been emptied.

Now we formally state the cost operator multi-stage location-allocation

algorithm

Step (1). (Initialization). Set 4 - 1 ; zU « Z(0). Apply Rule 1. Let Q = I*.

For each i € I-Q apply test (20), letting T - Q U {i}. For each i

which satisfies (20) calculate AZ^Q). Order those i such that

AZ±(Q) < 0 in nonincreasing order and place them in List (1). If

List (1) empty go to Step (5). Otherwise let k be the last warehouse

in List (1). Let ZU - Z(Q U (k}); update X. Remove warehouse k from

List (1). If List (1) is empty go to Step (5). Otherwise go to Step (2).

Step (2). (Bound by k ). Calculate k* as in (19). If 4 > k* go to Step (4).

Otherwise replace 4 by 4+1; replace Q by Q U {k} and go to

Step (3).

Step (3). (Forward branching). For each warehouse i in List (4-1) apply

test (20) letting T « Q U {i}. For each i which satisfies (20)

calculate AZ^Q). List those i such that AZ (Q) < 0 in non-in-

creasing order and place them in List (4). If List (4) is empty go

to Step (4). Otherwise let k be the last warehouse in List (4).

Let ZU s Z(Q U {k}); update X. Remove warehouse k from List (4).

If List (4) is empty go to Step (4). Otherwise go to Step (2).

Step (4). (Backtracking). Replace 4 by 4-1. Remove from Q the last

warehouse placed in Q. If 4 « 1 and List (1) contains only one ware-

house go to Step (5). Otherwise let k be the last warehouse in List (4).



-18-

Remove k from List (£). If List (I) empty go to Step (4). Otherwise

replace Q by Q U {k}; replace £ by lr¥\ and go to Step (3).

Step (5). (Termination) Stop. The current solution X, is optimal.

Notice that each time Step (3) is performed a new list of feasible

solutions to P is available. Many times these solutions have nearly optimal

objective function values and thus they might be worthwhile to save.

*
After calculating I , the cost operator algorithm proceeds to open, one

at a time, those warehouses which cause the largest decrease in the objective

function value. This is continued until at level I, no further decrease in

the objective function value is possible (i.e. List (l>) is empty). Then we move

to the backtracking Step (4). The best feasible solution obtained by the cost

operator algorithm before the first backtracking is called the greedy solution.

We denote by Z the objective function value of the greedy solution. In [18],

a worst case bound on Z was derived for submodular set functions which is,

<

Z(0)- Z |l I + k
(2l)

* *

where Z is the optimal objective function value and k is obtained from (19).

In practice however, the actual percentage error obtained by the greedy solution is

much smaller than the worst case bound. In Section 7 we will see that in most
cases the greedy solution value is within .5 percent of optimality.

Finally we should point out that it would be trivial to "reverse" the

cost operator algorithm so that instead of starting with all of the warehouses

closed, and opening them one at a time, we could start with all of the warehouses

open and close them one at a time. This could be done by defining z'(T) « Z(I-T)
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in (1). Z (T) is also submodular, and results from Section 3 would remain

valid for z'. The reverse algorithm might be better suited to handle problems

where an optimal number of warehouses tends to be close to the total number

of potential warehouse sites.

6. Example.

Figure 4 shows the cost tableau for a 2x4x5 multistage location

problem. Fixed charges for warehouses 1-5 are: 150, 217, 200, 264, and 140.

For an explanation of how the costs in the tableau are calculated, see Figure 1

and Section 4. The diagram in Figure 6 is a 5-dimensional hypercube whose nodes

represent all of the possible open warehouse combinations. The search tree will

be a subgraph of this hypercube. The number above each node is the value of

an optimal solution to P when only those warehouses marked in circle of the

node are open. The number in the parenthesis above a node is the total cost

lower bound for that node obtained by calculating (20).

We illustrate the steps of the algorithm applied to this example.

Step Calculations

(1) Set 4-1, Q«0. ZU = Z(0) = 2107. Applying Rule 1 we get

AZ1(I - {l})»2303 - 2201 « 102; AZ2(I - {2}) * 217 ; AZ3<I - {3}) = 316;

AZ4(I - {4}) « 162; AZ5(I - {5}) -• 140. I* - Q - 0. For each

i e {1,2,3,4,5} apply test (20). None of the lower bounds exceeds the

current upper bound. (See the numbers in parenthesis in Figure 6.) Next

calculate ^ ( 0 ) - 1880 - 2107 * -227; AZ2(0) - -94; AZ3(0) = -123;

AZ4(0) - -136; AZ5(0) = -105. Let List (1) = {2,5,3,4}. Let Q = {l};

ZU = 1880; 4 * 2 ; go to Step (2).
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Step Calculations

(2) Z(I) = 2334; I f . • 1002; the fixed charge ordering is f = 140,
iel x *

fx * 150, f « 200, f2 * 217, f3 = 264. The DV ordering is DV2 - 0,

DV » 0, DV4 « 38, DVL * 42, DV3 = 48. ZU » 1880. Setting k* = 2

we get from (19) 1332 + 290 + 38 < 1880 < 1332 +490 + 0.

Since I * 1 < 2, let I « 2; let Q * {l}; go to Step (3).

(3) For each i € {2,5,4,3} apply test (20) setting T « {l} U {i}. (See

Figure 6.) For each i e {2,5,4,3} calculate AZ^fl}). AZ3({l}) * -118.

AZ4({1}) » 32; AZ5({1}) « 22; AZ2({ll) *-18. Let ZU » 1762.

List (2) * {2}. Go to Step (4).

(2) Setting k* * 2 we get from (19) 1332 + 290 + 38 < 1762 < 1332 + 490 + 0.

Since I » 2 > 2 go to Step (4).

(4) Let I m 1. Remove {l} from Q (now Q = 0). Let k * 4. Let

List (1) « {2,5,3}. Let Q « {4}. Let I » 2; go to Step (3).

(3) For each i € {2,5,3} apply test (2) setting T « {4} U {i}. All

solutions are fathomed (see numbers in parenthesis in Figure 6).

List (2) » 0. Go to Step (4).

(4) Let I - 1. Remove {4} from Q (now Q « 0). Let k » 3. Let

List (1) » {2,5}. Let Q « {3}. Let I * 2. Go to Step (3).

(3) For each i e {2,5} apply test (20) setting T » {3} U {i}. All

solutions are fathomed (see Figure 6). List (2) • 0. Go to Step (4).

(4) Let I » 1. Remove {3} from Q. (now Q » 0). Let k - 5. Let List (1) =

{2}. Let Q - {5}. Let I » 2; Go to Step (3).
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St eP Calculations

(3) For i e {2} apply test (20) setting T = {5} U {i}. The solution

is fathomed (see Figure 6). List (2) « 0. Go to Step (4).

(4) Let 4 - 1 . Go to Step (5).

(5) Stop. Z * 1762 is optimal for warehouses {l,3}. An optimal solution

is shown in Figure 5.

An optimal solution to the example is given in Figure 5 when warehouses

1 and 3 are opened. The greedy solution is optimal and is obtained at the circled

vertex {1,3} in Figure 6. The upper bound on an optimal number of warehouses,

k • 2, was obtained in the first application of Step (2) and thus none of

level three warehouse combinations were examined. In total, 16 of the vertices

in Figure 6 were generated. Six of the vertices on level 2 were fathomed using

(20). The total number of transportation pivots required to solve the sample

problem was 85.

7. Computational Results.

The cost operator algorithm of Section 5 was coded in FORTRAN IV and

the runs were made on a DEC 20 time sharing system. Many of the problems were

run at different times during the day and thus the execution times may vary up

to ten or fifteen percent depending upon the computing load of the machine.

The maximum time alloted for solving any problem was 500 seconds.

All of the problems are derived from the Kuehn and Hamburger data which

was originally presented in [14]. Problem sets I through VII are taken from

Akinc and Khumawala [1], and VIII and IX are taken from Ellwein and Gray [8].
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These are single stage problems of the type PI. Problem sets X through XV

are multistage problems which are solved here for the first time.

Since it is necessary to read several articles to determine how the

problems I through VII were originally created, we will describe them here.

The Kuehn and Hamburger data represents a multistage system with 3 factories,

24 potential warehouse sites, and 50 demand centers located in the continental

United States. Problems I through IV were formed by considering only the first

15 potential warehouse sites (i.e., Atlanta, Boston, through New Orleans as in

[14]). To obtain the shipping costs (c..) from these sites to the 50 demand

centers multiply each distance by $.025/mile unit cost, which is the bulk

shipping rate. The sixteenth warehouse is actually the factory at Indianapolis.

We used the distance from Indianapolis to the 50 demand centers multiplied by

$.0125/mile unit as its shipping cost. The factory at Indianapolis has the

same capacity as the other warehouses and it has a zero fixed charge. The

problems V through VII are set up in a similar fashion except that all 24

potential warehouse sites are used. Problems X through XV are multistage

problems which are also derived from the Kuehn and Hamburger data. All three

factory sites were used. The factories have capacities of 30,000 or 35,000

units. To derive the shipping costs, we multiplied the distances from each

factory to each warehouse by $.0125/mile unit cost, and from each factory to

each demand center by .0375/mile unit cost. To get the shipping costs from the

warehouses to the demand centers, we multiplied the distance by $.0250/mile.

Table 1 contains a description of all of the test problems. Table 2

contains the computational results for the single stage problems and Table 3 for

the multistage problems. The percent error formula used to evaluate the greedy

solution was,
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Z I Z x 100.

G *

where Z is the greedy value and Z is the optimal value. Also included

in Table 2 are the execution times for the same problems solved in [1] and [17].

For test purposes the problem sets I through XV are very interesting be-

cause they contain problems with a wide range of difficulty.

The results for the greedy solution were startling. The largest percent

error incurred was 3.7 (see Table 2, IX), however in general the percent error

was less than .5 percent and the greedy solution was an optimal solution in 32

out of 51 problems.

Another interesting statistic is the number of vertices required to find

the optimal solution as compared to the total number of vertices searched. An

optimal solution is usually located very early in the search process and most

of the effort is typically spent verifying its optimality. This experience is

similar to that found in solving other kinds of integer programming problems.

The set I , which represents the warehouses fixed open in the initializa-

tion phase of the cost operator algorithm, often accounts for as much as 85%

of the total number of open warehouses in an optimal solution. The uncapacitated

problems (sets IV, VII, XII, XV) were very easy to solve as expected. As far

as problem difficulty is concerned, those problems for which an optimal number

of warehouses is approximately one half of the total number of potential ware-

house sites are usually the most difficult. This is probably due to the fact

that the number of possible warehouse combinations, W/o ' w^ e n ^ *-s

even or 1 (. iw?) when K> is odd, is the maximum of the binomial coefficients ( j,
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The CPU times quoted in Tables 2 were obtained by three different sets of

authors and are difficult to compare due to the differences in computers and in

programming efficiency. As far as machine speeds is concerned, the IBM 370/168

is the fastest, followed by the IBM 370/165 and then by the DEC-20. However,

actual speed ratio factors for pairs of the computing machines are virtually

impossible to find. It seems fair to state that the performance of the three

codes shown in the table are not significantly different; we may say they

represent the state of the art of computational results on these problems.

Table 3 exhibits computational results on multistage problems having

3 factories, 24 warehouses, and 50 demand centers. As can be noted, the computa-

tion times are relatively small and exhibit a relatively small variance for

integer programming problems. We again found the performance of the greedy

solution to be even better than for the single stage problems. This is perhaps

due to the fact that the factories have a large total capacity, and they can

ship to customers directly if many of the warehouses are closed down.

8. Conclusions.

We have presented a cost operator algorithm for solving multistage loca-

tion-allocation problems which does not employ problem relaxations as do the

other currently best approaches [1, 17]. Computational results indicate that

this method is competitive with the others. The greedy solutions obtained by

the method are usually extremely close to or are optimal. Also, because the

method computes many near optimal solutions as it solves the problem, these near

optimal solutions can be saved and printed out for use by a manager if he desires.

Computational results on the solution of multistage location problems are presented

here, but we have been unable to find other published results on such problems for

comparison. The performance of our method on these problems, is encouraging.

We wish to thank Professor limit Akinc for supplying the Kuehn-Hamburger

data used in this paper.
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Problem Set # Problems

I

II

III

IV

VI

VII

*
VIII

*
IX

X

XI

XII

XIII

XIV

XV

4

1

Table 1

Test Problems

(q*txr) Sd.

0X16X50 58268

0X16X50 58268

0X16X50 58268

0X16X50

0X25X50

0X25X50

0X25X50

0X15X45

0X15X45

3X24X50

3X24X50

3X24X50

3X24X50

3X24X50

3X24X50

58268

58268

58268

58268

37440

37440

58268

58268

58268

58268

58268

58268

35000

35000

35000

30000

30000

30000

i

5000

10000

15000

58628

5000

15000

58628

1000'
5000/

1500
7500/

5000

15000

58628

5000

15000

58268

7,500/12,500/
17,500/25,000/

17,500

7,500/12,500/
17,500/25,000/

7,500/12,500/
17,500/25,000/

7,500/12,500/
17,500/25,000/

7,500/12,500/
17,500/25,000/

7,500/12,500/
17,500/25,000/

15,0001
40,000/

22,5001
60,000/

7,500/12,500/
17,500/25,000/

7,500/12,500/
17,500/25,000/

7,500/12,500/
17,500/25,000/

7,500/12,500/
17,500/25,000/

7,500/12,500/
17,500/25,000/

7,500/12,500/
17,500/25,000/

Numbers in the brackets r correspond to ranges.



Table 2

Computational Results

Problem
Set

I-l
1-2
1-3
1-4

%
error
Greedy

0
0
0
0

# Vertices
to

find
Optimal

25
21
21
21

Total
#

Vertices

25
21
21
21

IT 1
n
n
n
li

Total
#

Warehouse

13
12
12
12

Total
#

Pivots

163
152
156
156

N & T
(DBC-20)

1.61
1.43
1.46
1.45

A & K
/ IBM \
\370/165/

10.21
9.15
9.26
9.58

Nauss
/ IBM \
X370/168/

7.6
1.5
6.8
10.8

II
III-l
III-2
III-3
III-4
IV-1
IV-2
IV-3
IV-4
V-l
V-2
V-3
V-4
VI-1
VI-2
VI-3
VI-4
VII-1
VII-2
VI I-3
VII-4
VIII
IX

.19
0
0
0
0
0
0
0
0
.47
.72
-
-
.10
0
.19
.15
0
0
.20
.06
0

3.7

58
28
30
51
41
28
27
38
30
254
128
-
-
67
78
982
1299
62
69
104
75
60
92

147
32
37
102
158
31
31
41
30

1303
6278
-
-
360
908
2172
16367
238
408
264
161
804
1304

5
9
7
4
3
9
7
3
3
11
9
-
-
10
6
5
2
10
6
4
2
5
2

8
11
9
7
5
11
9
5
4
17
14
-
-
15
11
8
7
14
11
8
4
11
7

1712
158
217
858
2582
115
149
218
133

11700
96462
-
-
1417
6952
19420
146900

978
2408
1922
1088
6247
9367

6.16
1.02
1.19
3.37
8.36
.96

1.03
1.2
.85

56.7
422.8
500*
500*
10.35
31.8
79.9

495.2
5.5
9.87
6.72
4.05
29.6
41.6

19.68
.23
.43

38.65
34.39
47.5
.44
.30
.15
.23

120*
120*
120*

.75
7.75

120*
120*

.68
1.65
1.34
.46

12.55
4.17

6.6
1.5
1.7
5.3
2.9
-
-
-
-
18.4
18.1
9.1
73.4
2.2
9.2
18.1
27.2
-
-
-
-
1.8
8.1

Computation terminated

- Not available

i
ro
ON
i
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Problem
Set

X-l
X-2
X-3
X-4

Table 3

Computational Results

f vertices
to

Optimal

56
514
277
492

Total
#

Vertices

143
858
680
3627

ill
11
8
6
1

Optimal
#

Warehouses

15
13
11
7

Total
#

Pivots

2414
12287
7411

39084

CPU
Time

(Dec-20)

11.88
61.39
39.15
197.24

XI-1
XI-2
XI-3
XI-4
XII-1
XII-2
XII-3
XII-4
XIII-1
XIII-2
XIII-3
XIII-4
XIV-1
XIV-2
XIV-3
XIV-4
XV-1
XV-2
XV-3
XV-4

0
0
0
0
.02
0
0
0
0
.30
.24
1.7
0
0
0
0
.01
0
0
0

54
71
62
90
66
69
75
81
56
514
277
492
54
71
62
90
73
69
75
81

99
521
184
837
76
352
452
499
145
858
680
3627
100
537
184
838
84
363
454
499

9
5
5
2
9
5
4
3
11
8
6
1
9
5
5
2
9
5
4
2

13
8
8
6
12
8
8
6
14
13
11
7
13
8
8
6
12
8
8
6

1708
7895
2830
14523
2874
6885
8431
10383
2412
12144
7840

41054
2060
8480
3152
14463
3627
7813
9187
11234

8.51
36.09
13.69
66.88
17.69
34.43
41.26
50.1
12.16
62.97
45.44
246.83
12.85
44.7
19.9
75.7
23.8
44.3
49.8
60.53
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