
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.



CUTTING PLANES FROM CONDITIONAL BOUNDS:

A NEW APPROACH TO SET COVERING

b y

Egon B a l a s

DRC-70-3-79

September 1979

Graduate School of Industrial Administration
Carnegie-Mellon University
Pittsburgh, PA 15213

This report was prepared as part of the activities of the
Management Sciences Research Group, Carnegie-Mellon University,
under Grant MCS76-12026 A02 of the National Science Foundation
and Contract N0014-75-C-0621 NR 047-048 with the U.S. Office of
Naval Research. Reproduction in whole or in part is permitted
for any purpose of the U.S. Government.



Abstract

A conditional lower bound on the minimand of an integer program is

a number which would be a valid lower bound if the constraint set were

amended by certain inequalities, also called conditional. If such a

conditional lower bound exceeds some known upper bound, then every

solution better than the one corresponding to the upper bound violates at

least one of the conditional inequalities. This yields a valid disjunction,

which can be used to partition the feasible set, or to derive a family of

valid cutting planes. In the case of a set covering problem, these cutting

planes are themselves of the set covering type. The family of valid

inequalities derived from conditional bounds subsumes as a special case

the Bellmore-Ratliff inequalities generated via involutory bases, but is

richer than the latter class and contains considerably stronger members,

where strength is measured by the number of positive coefficients. We

discuss the properties of the family of cuts from conditional bounds, and

give a procedure for generating strong members of the family. Finally, we

outline a class of algorithm based on these cuts. Our approach was

implemented and extensively tested in a computational study whose results

are reported in a companion paper [2]. The algorithm that emerged from the

testing seems capable of solving considerably larger set covering problems

than earlier methods.

University Libraries
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CUTTING PLANES FROM CONDITIONAL BOUNDS:

A NEW APPROACH TO SET COVERING

by

Egon Balas

1. Introduction

We consider the set covering problem

(SC) min {ex | Ax > e, x. = 0 or 1, j e N}

where A = (a..) is mXn, e e Rm, e = (1,...,1), c e Rn, and a#. € [0,1},

i e M = fl,. . .,m}, j e N = {l,...,n}. We will denote by a1 and a. the

i-th row and j-th column of A, respectively. Without loss of generality,

we assume that c. > 0, Vj e N. Using established terminology, we call a

vector x satisfying the constraints of (SC) a cover, and the set of indices

j such that x. = 1 , the support of the cover. A cover is called prime if
j

no proper subset of its support defines a cover.

This problem, and its equality-constrained counterpart, the set

partitioning problem, are useful mathematical models for a great variety

of scheduling and other important real world problems, like crew scheduling,

truck delivery, tanker routing, information retrieval, fault detection,

stock cutting, offshore drilling platform location, etc., and a literature

of considerable size exists on solution methods for these models (see [9]

for a survey of set covering and set partitioning; [7] for a computational

study and comparison of several solution techniques; and [4] for a more

recent survey of set partitioning, which also contains a bibliography of
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applications of both models).

In this 'paper we propose a new approach to set covering, based on

the idea of conditional bounds. In section 2 we introduce this concept

for arbitrary mixed integer programs, and show how it can be used to

derive valid disjunctions. The latter in turn can be used either to

partition the feasible set in the framework of a branch and bound

approach, or to derive a family of valid cutting planes. In case

of a set covering problem, the cutting planes derived from conditional

bounds are themselves of the set covering type. These cuts are discussed

in section 3, where the Bellmore-Ratliff inequalities generated from

involutory bases are shown to be a special case of the larger family of

inequalities defined in this paper. In section 4 we examine some basic

properties of our cutting planes. The family of cuts from conditional

bounds is rather large, and in section 5 we discuss a procedure for

generating "strong11 members of the family. Section 6 outlines a class of

algorithms based on the cutting planes introduced in this paper, and using

heuristics as well as subgradient optimization rather than the simplex

method. Several versions of this approach were implemented and tested

computationally in a joint study of Andrew Ho and the author, that is

summarized in a companion paper [2]. The algorithm that emerged from

this testing seems capable of solving larger problems in less time and

more reliably than earlier methods.

The approach discussed here was first circulated under [1].

2. Disjunctions from Conditional Bounds

The central idea of our approach is to derive valid inequalities for

the set covering problem from conditional bounds. Since this concept is

valid and useful for arbitrary mixed integer programs, we will introduce

it in this more general context.
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In solving pure or mixed integer programs by branch and bound, if

the feasible set is tightly constrained, it is sometimes possible to derive

disjunctions stronger than the usual dichotomy on a single variable. On the

other hand, the feasible set of any integer program becomes more or less tightly

constrained after the discovery of a "good" solution (in particular, of an

optimal solution), provided that one restricts it to those solutions better

than the current best. Such a "tightly constrained" state of the feasible set

can often be expressed in the form of an inequality rrx < TT , with TT > 0 and

TT > 0, as will be discussed later on. The smaller TT relative to the other
0 o

coefficients TT., the tighter the inequality. Whenever such an inequality

is at hand, the following result can be used to generate a valid disjunction.

Here we denote disjunction by the symbol V, and the meaning of
k
V A. = A V A v. - . V A,

i = 1 i 1 i k

is tha t at l e a s t one of the c o n d i t i o n s A , . . . ,A, must h o l d .

Theorem 1. Let neR^, TT
QeR+, N = { l , . . . , n } , and Q. c N, i = 1 , . . . , p ,

1 £ P < n- There e x i s t s veR\_ such that

(1) § E v4 < TT., jeN

and
-\u\

P
(2) S V. > TT ,

i = l X

if and only if every integer xeR, that satisfies rrx < TT also satisfies
+ — o

the disjunction

P
(3) V (x, = 0, jeQ,).

Proof. Let G = (gi«) be the pXn matrix defined by

r 1 jeQ

g t 1 - 1 x l-i,...,P,
J 0 jeNV^

and let e = (1,..,1) have p components. From (1) and (2), G contains as a

submatrix the identity matrix of order p, whose columns are j (i), i = l,...,p.
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From Farkas1 Theorem of the Alternative (nonhomogeneous version, see

Duffin [8]), one and only one of the following two systems has a solution

(here T denotes transpose):

/"TTX^TT-V

( " ° ]
/ ev > n \
I ° )

Gx > e \ II J GTv < TT >

V. x >0 J L * > ° J

]
I j Gx > e \ II

System II is the same as (1), (2), and veR^. Thus there exists veR^

satisfying (1) and (2) if and only if system I has no solution, i.e., if and

only if every xeR such that rrx < TT , violates at least one inequality of

Gx > e. But an integer xeR, violates the i-th inequality of Gx > e,

i.e., the inequality

E x > 1,
JeQ. 3

if and only if it satisfies x.=0, jeQ.; hence it violates at least one

inequality of Gx > e if and only if it satisfies the disjunction (3).||

Example 1. The inequality

< 10,

together with the condition x > 0, x. integer, V j, implies the disjunction

(Xj = 0, j = 1,2,3,4,5,6,7) V (Xj = 0, j = 1,8,9,10,11,12,13,14) v

V (x - 0, j = 2,3,8,9,10,15,16,17).

Indeed, setting v = 6, v2 = 3 and v = 2, we have 6 + 3 + 2 > 10,

i.e., (2) holds; and defining the sets Q., i = 1, 2, 3, to be those used

in the above disjunction, condition (1) is satisfied. This can easily be

seen from Table 1, whose rows are the incidence vectors of the sets Q.,
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while the numbers on top are the TT, and those to the right are the v. . The

columns of the table correspond to the inequalities (1), which for the

9

1

1

8

1

1

8
1

1

7
1

7
1

6
1

6

1

5

1

1

5

1

1

5

1

1

4

1

4

1

3

1

3

1

3

1

2

1

2

1

Table 1.

vector v = (6, 3, 2) are 6 + 3 < 9, 6 + 2 < 8,..., 2 < 2, all satisfied.

Remark 1. 1 Theorem 1 remains true if rrx < TT is replaced by rrx < TT

and (2) is replaced by

P
(21) T v, > TT .

Proof. If the indicated changes are made in systems I and II, the

Theorem of the Altenative still holds. ||

One way of obtaining a "tight'1 inequality rrx < TT (or rrx < TT ) in

— o o

order to derive from it a conveniently strong disjunction, is as follows.

Consider the mixed integer program

(P) mix {cx|Ax>b, x>0, x. integer, j eN. C N],

let z be a known upper bound on the value of (P), and let the vectors

u and s satisfy

(5) u > 0, s = c - uA > 0.

Then multiplying Ax > b by -u and adding the resulting inequality,

-uAx < -ub, to ex < Zy, yields the inequality sx < z - ub, satisfied by

every feasible solution x to (P) such that ex < z . Using this, and setting,

for i=l,...,p, vt=s ^ for some j(i)eN, n=s and n^Zy-ub, then applying the
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"only if11 part of Theorem 1, as modified by Remark 1.1, we obtain the following.

Corollary 1.2. Let z be an upper bound on the value of (P), and let u, s

satisfy (5). If there exists SCN^ S={j(1),...,j(p)}, l<p<|N1|, such that

(6) E s > z - ub,
jeS J " U

then for any collection of sets Q. c m i = 1,..., p, such that

(7) Z s ( . < s ,

every feasible solution x to (P) for which ex < z , satisfies the disjunction

P
(3) ±V1(xi = 0, jeQ.).

Note that if p=l, i.e., (3) has a single term, then (3) converts to

the condition x. = 0, j eQ1. Somewhat more generally, we have

Remark 1.3. Let zy, u and s be as in Corollary 1.2, and define

Qo = {jeN1|sj > Zu - ub}.

Then every feasible solution x to (P) such that ex < z satisfies x. = 0 , jeQ .

Corollary 1.2 has an interpretation (and alternative proof) in terms

of conditional bounds, which yields some insight and is appealing to

intuition. Consider the pair of dual linear programs

(L) min [cx|Ax > b, x > 0}

and

(D) max {ub|uA < c, u > 0},

associated with (P).

Clearly, for any u feasible to (D), ub is a lower bound on the value
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of (L), hence of (P). Now suppose the constraint set of (P) (and (L)) is

amended by the system Gx > e defined by (4). Then (L) and (D) become

(L_) min {cx|Ax > b, Gx > e, x > 0}

and

(D ) max {ub + ve|uA + vG < c, u > 0, v > 0}

respectively, and ub + ve is a lower bound on the value of (L ), hence

of (Pr), the problem obtained from (P) by adding to its constraints Gx > e.

Now if a vector v can be found that together with G satisfies the constraints

of (D_) and ub + ve > z , then, since ex > ub + ve, every feasible solution
G U

to (L_), hence to (P~), satisfies ex > z._. It follows that every feasible
CJ CJ U

solution x to (P) such that ex < z , must violate the constraint set Gx > e,

hence (as x. is integer-constrained for jeN ) must satisfy the disjunction (3),

If we set v. = s...., i=l,...,p, with s defined as in (5), then the above

conditions on v are a paraphrase of (6), (7), and we obtain Corollary 1.2.

The inequalities Gx > e are not part of the problem (P), and the sole

purpose of introducing them is to conclude that if̂  they were to hold, that

would imply a lower bound at least equal to the upper bound z.,, hence any

solution x better than the one that produced Zy, must violate at least one

of them. We therefore call these inequalities, as well as the lower bound

obtained from them, conditional.

In a broader context, the idea of deriving a valid ("unconditional11)

constraint from one or several conditional constraints may have many

other applications. One of them appears in a recent paper by Kovacs and

Dienes [10], where a properly chosen inequality is used to derive a bound
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from the fact that either the inequality or its complement must be satisfied

by any feasible solution.

From Corollary 1.2, a valid disjunction (3) can be derived for the

problem (P) if an upper bound z*, is known, a feasible solution u to the

dual linear program (D) is at hand, and a subset S of N can be found for

which (6) holds. This latter condition is usually easy to satisfy, and

we will have more to say about this later on. Given such a set S, however,

every collection of subsets Q. of N. that satisfies (7) gives rise to a

valid disjunction (3), and the question arises of choosing one that yields

a disjunction as "strong" as possible, i.e., one with p as small as

possible, and the sets Q., i=l,...,p, as large as possible. Next we

state a simple heuristic that generates a disjunction (3) with that

objective in mind.

1. Choose a minimal subset S c N such that

E s > z - ue,
jeS J U

and order S - {j(1),...,j(p)} according to decreasing values of s.,.v.

2. Set Q = {jcNJs. > S./IN} and define recursively

Q. = ijsNIs. > s.,.v + £ s m (ir^&ir ' \ > i=2,..-,p,

where gfe. = 1 if jeQk, and g^. = 0 if j^Qk-

The sets q±, i=l,...,p, then define a valid disjunction (3).

A disjunction (3) can be used either for branching, or for generating

cuts. If used for branching, this disjunction can be strengthened

so as to define a parti, tion of the feasible set; namely, (3) can be

replaced by

(31) v (Xj = 0, jeQ.; £ Xj > 1, k - 1,..., i - 1).
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Note that, by construction of the sets Q. , s. > s-/-\ > 0 for jeQ.,

i = 1,..., p, and thus on all branches except the one corresponding to i = 1,

the lower bound ub given by the dual solution associated with the reduced

cost vector s, can be strengthened immediately after branching, by associating

with each inequality

Z x. > 1

the positive multiplier x.f. .. In other words, on the i-th branch (i > 1)

the lower bound ub can be replaced right after branching by ub -H s. .-.+. # ,+s

The above described branching rule, while often considerably stronger

than the traditional one, can occasionally be a lot weaker. Therefore, the

best way of using it is to judiciously combine it with other branching rules,

according to criteria that make sure it is only used at such nodes of the

search tree where it can be expected to perform relatively well. It is in

this fashion that disjunctions of the type (3) are being successfully used

for branching in our set covering algorithm that also uses them to generate

cutting planes (see the companion paper [2]), and in a restricted

Lagrangean algorithm for the traveling salesman problem [7].

Next we turn to the other use of disjunctions of type (3), namely

for generating cutting planes. In the case of the set covering problem,

these cutting planes turn out to be of the same type as the original

constraints.

3. The Cutting Planes

From now on, we address ourselves to the set covering problem

(SC) min {CX|AX > e, X. = 0 or 1, j
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introduced in section 1. (Here A is m X n). We will denote

N. = {jeN|a.. = l}, ieM.

Consider the i-th term of a disjunction (3), i.e., x. = 0, jeQ..

Clearly, every cover x that satisfies the i-th term of (3), also satisfies

the inequalities

jeNh\Q.
> 1, h€M

and hence, for any choice of indices h(i)eM, i=l,...,p, every cover that

satisfies (3), also satisfies the disjunction

P
V ( E x > 1),
1=1 J X '

which is easily seen to imply (for integer x) the inequality Ex. > 1, with

the summation taken over the union of the sets N(.v\Q., i=l,...,p.

Combining this reasoning with Corollary 1.2 yields the following.

Theorem 2. Let z be an upper bound on the value of (SC), and let

u, s satisfy (5). If there exists a set of column indices S = (j(1),...,j(p)},

U / S C N , such that

(8) E s . > Zy - ue,
jeS J

then for any set of p row indices h(i)eM, i=l,...,p, and any collection of

p subsets Q.CN, 1-1,...,p, satisfying

(7) E s ( < s jeN,
i|jeQ. J U ) J

every cover x such that ex < z satisfies the inequality
u

(9) S x. > 1,
jeW J
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where

(10) W = ^

Remark 2.1 The family of cuts (9) remains the same if the condition

Q.CN in Theorem 2 is replaced by Q.Qt,.., i=l,...,p.
l i"- n(i;

Proof. From (10), the change does not affect the set W which defines

inequality (9).||

The inequalities (9) are valid cutting planes in the sense of being

satisfied by every cover better than a given one. Further, they are of the

set covering type. Since these properties are the same as those of the

Bellmore-Ratliff cuts [5] obtained by the use of involutory bases, we next

examine the relationship between the latter and our inequalities from

conditional bounds. First, we show that the Bellmore-Ratliff inequalities

are a subclass of the class of inequalities (9). Then we show by way of

example that the subclass in question is a proper one.

Theorem 3. The Bellmore-Ratliff inequalities [5] are a subclass of

the class defined in Theorem 2.

Proof. Let x be a prime cover, B an involutory basis associated

with x, and c. - coa. the j-th reduced cost, where c_ is the m-vector

whose i-th component is c...., if the basic variable associated with row i

is (the structural variable) x.,.v, and 0 if the basic variable associated

with row i is slack. (When B is an involutory basis, the reduced costs

are known to be of this form). Let the columns of B be indexed by I, and

denote F = {jeN|c.-c a,<0}. The Bellmore-Ratliff cut associated with x and

B is then

(11) I x. > 1.
jeF J
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To obtain this cut via our procedure, set S = IPN, S = (j(1),...,j(p)},

i.e., let S be the index set of the basic structural variables, and set u = 0,

s = c. Then u and s satisfy (5), and S satisfies (8) (with equality) for z^cx.

Next let h(i) be the row index associated with basic variable x.,.. ,

and set Q. = N ...\F, i=l,...,p. It is easy to see that these sets Q

satisfy (7). Substituting for C^ in (10) then yields

w " j
On the other hand, from the definition of F it follows that j $F implies

jeN. /#N for some ie{l,...,p}, hence

and therefore W = F. Thus (11) is a special case of (9).J|

Note that the cutting planes derived by Bowman and Starr [6] via a

vector partial ordering are a special case of the Bellmore-Ratliff

inequalities, hence they can also be obtained by our procedure.

Next we illustrate by an example the fact that the Bellmore-Ratliff

inequalities are a proper subclass of the class of inequalities (9), and

in some cases those inequalities (9) that cannot be derived by the Bellmore-

Ratliff procedure are considerably stronger than the ones that can.

Example 2. Consider the set covering problem whose costs c. and

coefficient matrix A are shown in Table 2.

The 0-1 vector x whose support is {2,3,5,12,13,17} is a cover,

satisfying with equality all the inequalities except for 1 and 8, which

are oversatisfied. The Bellmore-Ratliff procedure generates cuts from the

involutory bases that can be associated with x, and it can obtain one cut from

every such basis. The variables x~, x, and 4_ can be basic only in rows



-13-

"j

1

2

3

4

5

6

7

8

9

10

11

1 2 3

3 1 1

1

1

1

4

3

1

5

1

1

6 7

2 2

1

1

1

8

3

1

1

9

3

1

1

10

3

1

1

11

3

1

1

12

3

1

1

13

3

1

1

1

14

4

1

1

1

15

4

1

1

16

4

1

1

1

17

5

1

1

1

1

1

18

6

1

1

1

1

19

8

1

1

1

1

1

1

20

9

1

1

1

1

1

1

1

Table 2.

3, 4 and 6 respectively. Since rows 1 and 8 are slack, x and x 3 can be

basic only in rows 11 and 10 respectively. Finally, x can be basic in

any of the 4 rows 2, 5, 7, 9; and accordingly there are 4 involutory bases

that can be associated with x. We will denote them by B , B , B and B ,

according as x - is basic in row 2, 5, 7 or 9 respectively. The basis B

(after row permutations) is shown in Table 3. All variables whose index

exceeds 20 are slacks.

3

4

6

11

10

2

5

7

9

1

8

2

1

3

1

5

1

12

1

—

1

13

1

1

1

17

1
1

1
I

1
f
1

1

1 •

1

25

-1

27

-1

29

-1

21

-1

28

-

-1

Table 3.
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The 4 cutting planes that can be obtained by the Bellmore-Ratliff

procedure, depending on which basis is used, are

xx + x6 + x9 + x 1 Q + x 1 5 + x16 + x 1 8 + x 2 Q > 1 , from ^

X6 + X9 + X10 + Xll + X19 * l ' f r ° m B5

X6 + X7 + X10 + X15 + X19 + X20 ^ X ' f r ° m B7

X6 + X8 + X10 + X14 + X18 + X20 * l > f r ° m V

On the other hand, using the conditional bound approach, we construct

(by inspection or a heuristic) the dual vector u = (0,1,1,1,1,1,2,0,1,2,2)

which, together with the associated reduced cost vector

s = (2,0,0,2,0,0,0,1,1,0,1,1,1,1,1,0,0,2,0,1),

satisfies the condition (5).

The cover x whose support is {2,3,5,12,13,17} yields zy = ex = 14;

and the dual vector u yields the lower bound ue = 12.

Since z^ - ue = 2, QQ = (j €N|s. > 2} = {l,4,18}, and thus (Remark 1.3)

every cover better than x satisfies x-= x, = x-R - 0. Hence we replace N

by N\{l,4,18}. Further, to apply Corollary 1.4, we pick the column indices

j(l) = 12, j(2) = 13; for which (8) holds, since s 2 + s 3 = s > z^ - ue.

Next we pick the row indices h(l) = 8, h(2) = 5, and choose the sets Q = [12,13],

Q2 = (9,111 to obtain N h ( l )\Q 1 = {6,19} and \ ( 2 ) \ Q 2 = {10,16,19}, hence

W = {6,10,16,19}. In choosing the sets Q. we make sure that (7) is satisfied,

and apart from that try to make each successive N /.. \Q. add to W as few

new elements as possible. We have thus obtained the cut

X6 + x10 + X16 + X19 ^ 1

which has only 4 positive coefficients, whereas each of the involutory

basis cuts has at least 6.
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The above inequality cuts off x. This is due to the way we chose the

column indices j(i) and the row indices h(i), i=l,,..,p, as will be shown

in the next section. If we do not care about cutting off a specified

cover, we can obtain inequalities which are "stronger" in the sense of

having fewer positive coefficients. Thus, for instance, if we choose

j(i) = 13, j(2) = 9, and h(l) = 8, h(2) = 5, we can generate the cut

X17 + X19 * *

(by setting (^ = [12,13], Q2 = {9,11}); and for j(l) = 13, j (2) = 14,

h(l) = 8, h(2) = 4, we obtain the cut

(by choosing Q = {12,13} and Q2 = {14,20}).

4. Some Properties of Cuts from Conditional Bounds

The family of cuts defined by Theorem 2 is vast, and one is interested

of course in computationally cheap procedures for generating "strong" members

of this class. In this section we investigate some properties of the cuts

(9) that will be helpful toward that goal.

The first practical question that arises is whether condition (8) can

always be met, and how. Since s depends on u, it should not be surprising

that one answer to this question comes in terms of additional conditions on u.

Theorem 4. Let the vectors u and ¥ satisfy (5), and let x be a cover

with support S(x). If

u(Ax-e) = 0,
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then (8) holds for S = S(x).

Proof. Consider the pair of dual linear programs.

(Lx) min {cx|Ax > e, x. > 1, jeS(x), x. > 0, jetf\S0E)}

and

(D ) max (ue + E s.|ua. + s. = c., jeN; u > 0, s > 0} .
1 jeS(x) J J J J

Clearly, x is a feasible solution to (L-), and (u",J) is a feasible

solution to (D ) . Further, x and (u",¥) satisfy the complementary slackness

conditions u(Ax~-e) and (x.-l)s. = 0, jeS(x), x.s. = 0, jeN\S(x); hence they

are optimal solutions to (L.) and (D.) respectively. Therefore

ue 4- £ ~s. = ex
jeS(x) J

which together with z < ex proves the statement. ||

For any cover x, denote

T(x) = {i€M|aLx = l}.

Then as an immediate consequence of Theorem 4, we have

Remark 4.1. Let x be a cover, and let (u,¥) satisfy (5). If u also

satisfies

TL = 0, V

then (8) holds for S = S(x).

Thus, if an upper bound z and vectors u, s satisfying (5) are at hand,

but condition (8) does not hold, it can be made to hold by successively

setting to 0 components u. of u such that ieM\T(x). At worst all such
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components may have to be set to 0; then (8) will hold.

Before turning to other characteristics of the cuts (9), we now

state a basic property of the set covering problem. Let the set covering

polytope P be the convex hull of all integer n-vectors satisfying Ax > e,

x > 0, i.e. ,

P = conv {xeR |Ax > e, x > 0, x. integer, jeN}.

We then have the following

Theorem 5. The inequality

(12) I x. > 1
jeN. J

where ieM, defines a facet of P if and only if there exists no keM such

thatNkcV \'h-

Proof. The "only If11 part is obvious. To prove the "if" part, we

assume there is no keM such that N c N., N + N., and we exhibit n linearly

independent integer n-vectors that satisfy Ax > e, x > 0 and for which (1)

holds with equality.

Let |Ni| = p, and assume w.l.o.g. that N. is the set of the first p

indices in N. Let y = (1,...,1), yeRn~P, and let e. and f. be the unit

vector in RP and R P respectively, whose i-th component is 1. Now consider

the p n-vectors (e., y), i=l,...,p, and the n-p n-vectors (e,, y+f. ),

i=p+l,...,n. Since there is no keM such that N.QJ N ^N , each of these

nonnegative integer vectors satisfies Ax > e; and since each one of them

has a single 1 among its first p components, they all satisfy (12) with

equality. Further, the nXn matrix whose rows are these vectors is

/ I YX -
I + Y
n-p n-p
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where for k = p and k = n - p, I. is the identity of order k, while Y^ is

the kx(n - p) matrix whose entries are all equal to 1; and E is the (n - p)Xp

matrix whose first column consists of lfs, and whose remaining columns

consist of 0fs. Now define the matrix

/ I + Y -Y
Z = ( P P P

-E I
n-p

Using the fact that EY = Y , it is easy to see that XZ = I , i.e.,
p n-p n

Z = X and hence X is nonsingular. This proves that the n vectors

introduced above are linearly independent.||

In a cut-generating procedure it is important to make sure that no cut

is repeated. Next we give a necessary and sufficient condition for a cut

to be ffnew.!l Let (SC) stand for the set covering problem amended with all

the cutting planes generated up to some point, and let

(9) S x. > 1

jeW J

be the next cut generated. We then say that the inequality (9) is new,

if there is no ieM such that N. c W.

Remark 5.1. The inequality (9) is new if and only if N\W is the

support of a cover for (SC).

Proof. The cut (9) is new if and only if N.gW, VieM; hence if and

only if NAW^0, VieM. But this condition holds if and only if N\W is the

support of some cover.||

While the condition of Remark 5.1 is straightforward, it is easier to

embed in a cut generating procedure when paraphrased as follows.

Remark 5.l.a. The inequality (9) is new if and only if it cuts off

(is violated by) some cover of (SC).
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The next Theorem gives conditions on the column indices j(i) and

row indices h(i) used in generating inequality (9), to guarantee that the

inequality obtained cuts off a specified cover. We will denote

Mj = [ieM|a.. = 1} , jeN.

Theorem 6. Let ?. , u, v, S and Q. ,1=1,. . . ,p, be as in Theorem 2,

and let j (i) eQ. , 1=1,. . . ,p. If x* is a cover such that S c S(x) and

(13) h(l)eT(x)nMj(i), 1=1,...,p,

then the inequality (9) cuts off (is violated by) x.

Proof. Assume S C S(x) and (13) holds. From h(i)eM.( we have

j(i)eN, ..., i = l,...,p; and since j(i)eS<=S(x) implies x.,.x= 1, while
h(i; -" j (1)

h(i)eT(x) implies |S(x)ON ,.x| = 1, 1=1,...,p, it follows that

S(x)DNh(i) = tj(i)}, i=l,...,p.

Further, since j(i)eQ., 1=1,...,p, we have

S(x)n(Nh(i)\Q.) = 0, 1-1,...,p,

and hence S(x)nw = 0, i.e., the inequality (9) cuts off x.||

Remark 6.1. Every inequality (9) for which the conditions of Theorem 6

are satisfied, defines a facet of

P* = conv {xeRn|Ax>e, E x.>l, x. integer, jeN}.

Proof. Follows from Remark 5.1 and Theorem 5.||

Theorems 2 and 6 provide rules for generating a sequence of valid

cutting planes that are all distinct, and furthermore, are all facets of
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the current polytope P*. This latter property, however, does not imply

that all inequalities generated this way are equally strong. Since all the

inequalities in question have coefficients equal to 0 or 1 and a right

hand side equal to 1, we will use the number of coefficients equal to 1 as

a measure of their strength (the fewer the lfs, the stronger the inequality).

Note that some facets of the set covering polytope may be much weaker than

others, according to this criterion. Thus, for instance, all 5 inequalities

represented by the rows of the matrix A in Table 4 define facets of the

set covering polytope corresponding to A, yet inequality 4, with only

two lfs, is much stronger than inequality 5, which has ten lfs.

A =

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Table 4.

Thus, although they all define facets of the current polytope P*,

the cutting planes obtainable via the rules of Theorem 6 are not all

equally desirable. The next section discusses a procedure for generating

conveniently strong members of the family.

5. Generating Cuts

The strength of an inequality (9), i.e., the size of the set W,

depends on the integer p and the size of the sets Nj./-\\Q-» * = 1>--->P>

of Theorem 6. To have p conveniently small, the procedure chooses the set
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s = tj(i)>•••tj(p))> corresponding to the p largest reduced costs s.,

jeS(x), where p is the smallest integer for which (8) is satisfied. Each

row index h(i), i = l,...,p, is of course chosen from T(x)nM ., as

prescribed by Theorem 6. Further, in order to have W as small as possible,

the sequence of row indices h(i) is chosen so as to make as small as

possible at each step ke(l,...,p} the set WA W, -,, where W = 0 and

V * k = 1'--"p-
Since for any S satisfying (8), |s| = 1 implies (Remark 1.3) that

the variable x. such that S = {j} can be permanently set to 0, we assume

this has already been done for all such singleton sets, and hence

|S| > 2 for all S satisfying (8).

Let M and N be the row and column index sets of the current problem

(SC), let x be a prime cover for (SC), and denote, as before,

S(x)= [jeN|x.=l], T(X)= [ieMJa1^!}.

Further, let u and s satisfy (5), and assume (8) holds for S = S+A [j eS (x) |s .X)} .

Cut-Generating Procedure

Step 0. Initialize W = 0, S = S , z=ue, i = 1 and go to 1.

L

Step 1. Define

Choose h(i) such that

|N , \QLW| = rain |N,\QUW|
h(l) h O O n ' h
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(breaking ties arbitrarily), and set

W «- W II CN \0^ 7 *- 7 4- s

If 7 > ZJJ, go to step 2. Otherwise, let

/ S j • Sj(D J€QnNb(i)
Si " I
J s. otherwise,

set i - i+1, and go to 1.

Step 2. Add to the constraint set of (SC) the inequality

S x. > 1.

In at most |S | iterations, this procedure generates an inequality (9)

satisfied by every cover x such that ex < z and violated by x. Indeed,

S (initialized as S ) is diminished at every iteration by one element,

hence there are at most |S | iterations. Further, since (8) holds for

S = S , after p < |s | iterations, (8) holds for the current set S (i.e.,

Z
T -

 ZTT) »
 an(* we S° to S t eP 2 to generate a cut (9). For the sets

Q = QnN
h/i\» i=l,...,P, j(i)cQ., and (7) is satisfied (by the definition

of Q and s. at every iteration). Finally, the choice of h(i) guarantees

(13). Thus all requirements of Theorem 6 are met.

A couple of minor improvements are at hand. Choosing the largest s.

to define j(i) at every iteration has the purpose of minimizing the size

of the set S in (8). But at the last iteration choosing the largest s.

may not be indicated, if a smaller s. suffices to satisfy (8). Thus a
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better rule for choosing j ( i ) in Step 1 is to set

v. = min {max s. , min [ s . | s . > z« - z }r
eS

and then choose as j (i) one of the indices j eS for which s. = v. .

Furthermore, whenever this index is not unique, i.e., |j| > 1, where

J = {jeS|s. > v.}, the choice of j(i) and h(i) can often be improved by

first setting Q = {jeN|s. > v.}, next choosing h(i) so as to minimize

|N \QUW| over all heT(x)nM , where

M = U M.;
J JeJ J

and then choosing the unique index tj}=JHN, ... as j(i).

Example 3. Consider the set covering problem of example 2 (Table 2),

with c, = 3 replaced by c, = 1. Then the cover x whose support is

S(x) = {2,4,13,20} gives Zy = ex = 14, and T(x) = M\{l}. The vector u of

example 2 yields the same reduced costs s, as in that example, except for s,,

which now is 0. The lower bound ue is 12, and since s. > 14 - 12 = 2 for

j = 1, 18, we set x. = x-g = 0, and replace N by N\{l,18}. Condition (8)

holds for S = S+ = [13,20], since s + s > 2.

Step 0. W = 0, S = {13,20}, z^ = ue = 12.

Step 1. vx = min { l , 2 j = 1, J = {13,20}, Q = {8 ,9 ,11 ,12 ,13 ,14 ,15 ,20} ,

Mj = ^ 3 ^ 2 0 = M \ f 3 > 5 } - To choose h ( l ) , we minimize | N
H \Q| over

heT^flMj = M\{1 ,3 ,5} , and find that the minimum is 1, attained for k = 4 , 8 , 9 .

We arb i trar i ly choose h ( l ) = 4, and set W = N,\Q = {3} , z = 12 + 1 = 13.

The s. remain unchanged except for j = 14,20, the new values for the l a t t e r



-24-

being s l 4 = s 2 Q = 0. We set S = {13}, i=2, and go to

Step 1. v2 = min [l,l) = 1, J = {13}, Q = {8,9,11,12,13,15},

M = M = {1,8,10}. To choose h(2), we minimize |N\Q| over

heTWOMj = {8,10}, and find h(2) = 8. We set W = {3}U(Ng\Q) = {3,19},

z = 13 + 1 = 14, and since z > z , we go to
XJ LI U

Step 2. We add to (SC) the inequality

6. A Class of Algorithms

The cutting planes discussed in this paper can best be used in a

framework that takes maximum advantage of their properties. To obtain

a cutting plane from conditional bounds, one needs a feasible solution

(u,s) to the dual of the linear program associated with (SC). Such a solu-

tion also provides a lower bound ue on the value of (SC). On the other

hand, the easiest way to make sure that the cuts that one generates are

all distinct, is to have each inequality cut off some cover satisfying

all the previously produced inequalities. Thus to obtain a sequence of

distinct cutting planes, one also needs a sequence of covers. Each cover x

in turn, provides an upper bound ex on the value of (SC).

The best approach then seems one that alternates between (a)generating

a cover x for the current problem, and (P) generating a dual solution (u,s)

and using it to derive an inequality that cuts off x. In such a procedure,

the value of (SC) is bounded from above by the sequence of covers obtained

under (a); and bounded from below by the sequence of dual solutions produced



-25-

under (f3) . The rate of convergence of the algorithm is the rate at

which the gap z - z_ between the two bounds decreases.
U Li

Since every inequality generated in the procedure cuts off at least

one new cover, and since the number of distinct covers is finite, the

procedure outlined above is finite, irrespective of the methods used to

generate the sequence of covers x and dual solutions (u,s). Its

efficiency on the other hand depends crucially on the efficiency of those

methods.

Several versions of the approach outlined above were implemented and

thoroughly tested in a computational study summarised in the companion

paper [2]. The algorithm that emerged as a result of the testing uses

several different heuristics intermittently to generate prime covers, and

produces dual solutions (u,s) both by heuristics and by subgradient

optimization. When the decrease in the gap z - z slows down, the
U Li

algorithm branches, using either a disjunction of the type discussed in

this paper, or a dichotomy derived from other considerations, according

to some measure of comparative strength. The algorithm is particularly well

suited for low density problems, and its performance on set covering problems

taken from the literature compares favorably with earlier methods.

Randomly generated test problems with up to 200 constraints and 2000

variables have been successively run.

For details of the algorithm and results of the computational tests

the reader is referred to [2].
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