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Abstract

A conditional lower bound on the minimand of an integer program is
a number which would be a valid lower bound if the constraint set were
amended by certaia inequalities, also called conditional. 1If such a
conditional lower bound exceeds some known upper bound, then every
solution better than the one corresponding to the upper bound violates at
least one of the conditional inequalities. This yields a valid disjunction,
which can be used to partition the feasible set, or to derive a family of
valid cutting planes. In the case of a set covering problem, these cutting
planes are themselves of the set covering type. The family of valid
inequalities derived from conditional bounds subsumes as a special case
the Bellmore-Ratliff inequalities generated via involutory bases, but is
richer than the latter class and contains considerably stronger members,
where strength is measured by the number of positive coefficients. We
discuss the properties of the family of cuts from conditional bounds, and
give a procedure for generating strong members of the family. Finally, we
outline a class of algorithm based on these cuts. Our approach was
implemented and extensively tested in a computational study whose results
are reported in a companion paper [2]. The algorithm that emerged from the
testing seems capable of solving considerably larger set covering problems

than earlier methods.
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CUTTI NG PLANES FROM CONDI TI ONAL BOUNDS:

A NEW APPRCACH TO SET COVERI NG

by

Egon Bal as

1. Introduction

VW consider the set covering problem

(SO mn {ex | AX > e, x.J:Oor 1, | e N
where A = (a.i} ismn, ee R, e=(1,...,1), ¢ e R, and aij € [0,1},
i eM=fl,...,m, j eN={l,...,n}. Wewll denotebyalanda.J t he

i-th row and j-th colum of A respectively. Wthout loss of generality,
we assune that c.J >0, Vf eN Using established term nology, we call a
vector x satisfying the constraints of (SC) a cover, and the set of indices

j such that x, =1, the support of the cover. A cover is called prine if
J

no proper subset of its support defines a cover.

This problem and its equality-constrained counterpart, the set
partitioning problem are useful mathematical nodels for a great variety
of scheduling and other inportant real world problems, |ike crew scheduling,
truck delivery, tanker routing, information retrieval, fault detection,
stock cutting, offshore drilling platformlocation, etc., and a literature
of considerable size exists on solution nethods for these nodels (see [9]
for a survey of set covering and set partitioning; [7] for a computational

study and conparison of several solution techniques; and [4] for a nore

recent survey of set partitioning, which also contains a bibliography of




applications of both nodels).

In this 'paper we propose a new approach to set covering, based on
the idea of conditional bounds. In section 2 we introduce this concept
for arbitrary mxed integer prograns, and show how it can be used to
derive valid disjunctions. The latter in turn can be used either to
partition the feasible set in the framework of a branch and bound
approach, or to derive a fanily of valid cutting planes. In case
of a set covering problem the cutting planes derived from conditiona
bounds are thenselves of the set covering type. These cuts are diséussed
in section 3, where the Bellnmore-Ratliff inequalities generated from
i nvol utory bases are shown to be a special case of the larger famly of
inequalities defined in this paper. In section 4 we exam ne sone basic
properties of our cutting planes. The fanily of cuts from conditiona
bounds is rather large, and in section 5 we discuss a procedure for
generating "strong™ nmenbers of the famly. Section 6 outlines a class of
algorithnms based on the cutting planes introduced in this paper, and using
heuristics as well as subgradient optimzation rather than the sinplex
net hod. Several versions of this approach were inplenented and tested
conputationally in a joint study of Andrew Ho and the author, that is
summari zed in a conpanion paper [2]. The algorithmthat emerged from
this testing seens capable of solving larger problens in less tine and
nore reliably than earlier methods.

The approach discussed here was first circulated under [1].

2. D sjunctions from Conditi onal Bounds

The central idea of our approach is to derive valid inequalities for
the set covering problemfromconditional bounds. Since this concept is
valid and useful for arbitrary mxed integer prograns, we wll introduce

it in this nore general context.




In solving pure or mxed integer prograns by branch and bound, if
the feasible set is tightly constrained, it is sonetinmes possible to derive
di sjunctions stronger than the usual dichotony on a single variable. On the
ot her hand, the feasible set of any integer programbecones nore or less tightly
constrained after the discovery of a "good" solution (in particular, of an
optimal solution), provided that one restricts it to those solutions bette[
than the current best. Such a "tightly constrained" state of the feasible set

can often be expressed in the formof an inequality rrx <TT , with TT >0 and

d

TT >0, as will be discussed later on. The snaller TT relative to the other
0 0

coefficients 1‘5 , the tighter the inequality. Whenever such an inequality

is at hand, the following result can be used to generate a valid disjunction.

Here we denote disjunction by the synbol V, and the neaning of

k

iylAi = AIVA voo- VAk
is that at least one of the conditions A1" .. ,A,K must hold.

Theorem 1. Let neR*, "oeR,, N = {I,...,n}, and QI-QN’ i = 1,...,p,

1 £P <" There exists veR\: such that
(1) s E vq4 <77, jeN

-\u\
and

P
2) S V. >T,,

if and only if every integer xeR,“that satisfies rrx <TT also satisfies

+ 0
the di sjunction

(3)

<=

(x, = 0, jeQ).

i=1 4

Proof. Let G = (gi3<) be the pXn matrix defined by

r 1 j eQ.
) gt'l- 1 ' |-i1"'1P1
= 0 j eNvA
and let e = (1,..,1) have p conponents. From (1) and (2), G contains as a

submatrix the identity matrix of order p, whose columms are j (i), i=Il,...,p.




From Farkas® Theorem of the Alternative (nonhomogeneous version, see
Duffin [8]), one and only one of the follow ng two systens has a solution

(here T denotes transpose):

L" TT>I<IATT0-V j ev >n \
] &> u I | °)
J, =€ ~ -
x >e \ IJ Gv<m >
- * -5
Vox >0 L*>°J
System 1l is the sanme as (1), (2), and veR*. Thus there exists veR:
satisfying (1) and (2) if and only if system| has no solution, i.e., if and

only if every xeRisnmh that rrx f_TTo, violates at |east one inequality of
. no . . . .

G > e. But an integer xeR* violates the i-th inequality of & > e,

i.e., the inequality

.>1|.

E x
JeQ ®
if and only if it satisfies xj=0, jeca; hence it violates at |east one

inequality of & > e if and only if it satisfies the disjunction (3).]]

Exanple 1. The inequality

9% +8x, 8% +7x, +7x_+6x +6x%x_+5x_+5x% +5x 0+4x

172 73774 775 776 77 7B 9 T 117712 7713 7714 71 e 17

together with the condition x > 0, x.J integer, Vj, inplies the disjunction
(¥ =0, j =1,2,3,45/6,7 V(g =0, j =1,8,9,10,11,12,13,14) v

V(xs- 0, | =23,8,09,10, 15,16, 17).

A
I ndeed, setting Vy = 6, v, = 3 and Vq = 2, we have 6 + 3 + 2 > 10
i.e., (2) holds; and defining the sets Qf i =1, 2, 3, to be those used

in the above disjunction, condition (1) is satisfied. This can easily be

seen fromTable 1, whose rows are the incidence vectors of the sets C&,

+Hix,  +3x . 4#3x_,+3x  +2x  +2x._ < 10




whil e the nunbers on top are the TI',J and those to the right are the v The

colums of the table correspond to the inequalities (1), which for the

9 8 8 7 7 6 65 5 5 4 4 3 3 3 2 2
1111111
1 1111111 3
11 111 1 1 1|2
Table 1.
vector v = (6, 3, 2) are 6 +3 <9, 6 +2<8,..., 2<2 all satisfied.

Remark 1. 1 Theorem 1 remains true if rrx <_'IT0 is replaced by rrx <'IT°

and (2) is replaced by

P
(2hH TV, >
i=1 *
Proof. If the indicated changes are nade in systens | and Il, the
Theoremof the Altenative still holds. ||

One way of obtaining a "tight'! inequality rrx <TT (or rrx <TT ) in
— 0 0

order to derive fromit a conveniently strong disjunction, is as foll ows.
Consi der the m xed integer program

(P m x {cx| Ax>b, x>0, x.J i nteger, | eNL CN],

| et 2y be a known upper bound on the value of (P), and let the vectors

u and s satisfy
(5) u >0, s =c¢c- uUA>0.

Then nmultiplying Ax > b by -u and adding the resulting inequality,

-UAX < -ub, to ex < Zy, yields the inequality sx < Zy - ub, satisfied by

every feasible solution x to (P) such that ex < z Using this, and setting,

v
for i=l,...,p, vi=s, » for some j(i).N, n=s and n™Zy-ub, then applying the

3




"only if™ part of Theorem 1, as nodified by Remark 1.1, we obtain the follow ng..

Corollary 1.2. Let zU be an upper bound on the value of (P), and let u, s

satisfy (5). If there exists SCN* S={j(1),...,j(p)}, 1<p<| N, such that
(6) Es.>z - ub,
jes J n U
then for any collection of sets Q:. c ml,i =1,..., p, such that
(7 Z s .. <s., jeN,
1 oyeyy
every feasible solution x to (P) for which ex < Zy satisfies the disjunction
P .
(3) Mi(xi =0, JeQ-l)-
Note that if p=I, i.e., (3) has a single term then (3) converts to
the condition X'_] = 0, j eQ. Somewhat nore generally, we have

Remark 1.3. Let zy, u and s be as in Corollary 1.2, and define
Q = {jeNsj >z - ub}.

Then every feasible solution x to (P) such that ex < zUsatisfies x.J =0, jer.
Corollary 1.2 has an interpretation (and alternative proof) in terns

of conditional bounds, which yields sone insight and is appealing to

intuition. Consider the pair of dual I|inear prograns
(L) mn [cx] A > b, x > 0}

and

(D max {ubJuA < c, u > 0},

associated with (P).

Clearly, for any u feasible to (D), ub is a |ower bound on the val ue -




of (L), hence of (P). Now suppose the constraint set of (P) (and (L)) is

amended by the system& > e defined by (4). Then (L) and (D becone

(LG) mn {cX|Ax >b, & >e x>0}
and
(DG) max {ub + veJuA + vG<c, u>0, v_>0}

respectively, and ub + ve is a lower bound on the value of (L hence

o
of (Py), the problemobtained from (P) by adding to its constraints & > e.
Now if a vector v can be found that together with G satisfies the constraints
of (DG) and ub + ve > 21y then, since ex > ub + ve, every feasible solution
to (LC_J), hence to (Ig_J~), satisfies ex_> Zy— It follows that every feasible

solution x to (P) such that ex < zy, must violate the constraint set & = e,

hence (as X is integer-constrained for jeNy) nust satisfy the disjunction (3),

If we set v, = Sy(xy’ i=l,...,p, with s defined as in (5), then the above
conditions on v are a paraphrase of (6), (7), and we obtain Corollary 1.2

The inequalities & = e are not part of the problem (P), and the sole
purpose of introducing themis to conclude that if2 they were to hold, that
would inply a lower bound at |east equal to the upper bound z, hence any
solution x better than the one that produced Zy, nust violate at |east one
of them W therefore call these inequalities, as well as the |ower bound
obtained fromthem canditional.

In a broader context, the idea of deriving a valid ("unconditional')
constraint fromone or several conditional constraints may have many

other applications. One of themappears in a recent paper by Kovdcs and

Dienes [10], where a properly chosen inequality is used to derive a bound




fromthe fact that either the inequality or its conplenent nust be satisfied
by any feasible solution.

From Corollary 1.2, a valid disjunction (3) can be derived for the
problem (P) if an upper bound Z*u is known, a feasible solution u to the
dual linear program (D) is at hand, and a subset S of l\i can be found for
which (6) holds. This latter condition is usually easy to satisfy, and
we will have nore to say about this later on. @G ven such a set S, however,
every col l ection of subsets Ql of N.1 that satisfies (7) gives rise to a
valid disjunction (3), and the question arises of choosing one that yields
a disjunction as "strong" a‘s possible, i.e., one with p as snall as
possi bl e, and the sets Qi’ i=l,...,p, as large as possible. Next we
state a sinple heuristic that generates a disjunction (3) with that

obj ective in nind.

1. Choose a mnimal subset S ¢ N such that

E s. >z..- ue,
jeSJ U
and order S - {j(1),...,j(p)} according to decreasing val ues of

S.,.V.

it}

2. Set NJ > s/ d defi i vel

Q1 {jc s > JUI_}\I} and define recursively
"1

=i ! £ sm N P o= _

Qi. Ij"SN|$.J>__S.,J\(1) k_(ll’ \&’g\’r “} > 0i72,..-,p,

wher e gfe.J =1if jeQ, and g".J =0if j"Q-

The sets q., i=l,...,p, then define a valid disjunction (3).
A disjunction (3) can be used either for branching, or for generating
cuts. If used for branching, this disjunction can be strengthened

so as to define a parti, tion of the feasible set; nanely, (3) can be

repl aced by

(39




Note that, by construction of the sets Qi’ sj > sj(i) >0 for jeQi,
i=1,..., p, and thus on all branches except the one corresponding to i = 1,
the lower bound ub given by the dual solution associated with the reduced
cost vector s, can be strengthened immediately after branching, by associating
with each inequality

£ x,>1
jeQp I
the positive multiplier xj(k)' In other words, on the i-th branch (i > 1)
the lower bound ub can be replaced right after branching by ub + sj(1)+"'+sj(i-1)'

The above described branching rule, while often considerably stronger
than the traditional one, can occasionally be a lot weaker. Therefore, the
best way of using it is to judiciously combine it with other branching rules,
according to criteria that make sure it is only used at such nodes of the
search tree where it can be expected to perform relatively well. It is in
this fashion that disjunctions of the type (3) are being successfully used
for branching in our set covering algorithm that also uses them to generate
cutting planes (see the companion paper [2]), and in a restricted
Lagrangean algorithm for the traveling salesman problem [7].

Next we turn to the other use of disjunctions of type (3), namely
for generating cutting planes. In the case of the set covering problem,
these cutting planes turn out to be of the same type as the original

constraints.

3. The Cutting Planes

From now on, we address ourselves to the set covering problem

(SC) min {cx\Ax > e, x; = 0 or 1, jeN}
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introduced in section 1. (Here Ais mXn). W wll denote
N.1={JeN|aij=I}, i eM

Consider the i-th termof a disjunction (3), i.e., x.. =0, jeQ.L.

Clearly, every cover x that satisfies the i-th termof (3), also satisfies

the inequalities
xj > 1, th
jeN\ Q
and hence, for any choice of indices h(i)eM i=l,...,p, every cover that
satisfies (3), also satisfies the disjunction

P
V ( E x.21),

=1 gy &

which is easily seen to inply (for integer x) the inequality Ex.J > 1, with

the summation taken over the union of the sets Nﬁ' ¥} Q':.’ i=l,...,p.
LY

Conbining this reasoning with Corollary 1.2 yields the follow ng.
Theorem 2. Let zU be an upper bound on the value of (SC), and let

u, s satisfy (5). |If there exists a set of colum indices S = (j(1),...,j(p)},

U/ S CN, such that

(8) Es. >2 - ue,
jes’
then for any set of p rowindices h(i)eM i=l,...,p, and any collection of
p subsets Q.l_C_N I=1,...,p, satisfying
(7) E s.c.. <s., jeN
JuU) J

i|jeQ

every cover x such that ex < z satisfies the inequality

(9) _S X. > 1,
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wher e

p
(10) W= "(Nh(i)\Qi).
Remark 2.1 The famly of cuts (9) remains the same if the condition

Q]CN in Theorem 2 is replaced by qqh(l i=l,...,p.

Proof. From (10), the change does not affect the set Wwhich defines
inequality (9).]]

The inequalities (9) are valid cutting planes in the sense of being
satisfied by every cover better than a given one. Further, they are of the
set covering type. Since these properties are the same as those of the
Bel Imore-Ratliff cuts [5] obtained by the use of involutory bases, we next
exanmi ne the relationship between the latter and our inequalities from
conditional bounds. First, we show that the Bellnore-Ratliff inequalities
are a subclass of the class of inequalities (9). Then we show by way of
exanpl e that the subclass in question is a proper one.

TIheorem 3 The Bellnore-Ratliff inequalities [5 are a subclass of
the class defined in Theorem 2.

Proof. Let x be a prine cover, B an involutory basis associated
with X, and c. - coa. the j-th reduced cost, where c_ is the mvector
whose i-th conponent is Coey if the basic variable associated with row i
is (the structural variable) Xy (1Y and 0 if the basic variable associated
with rowi is slack. (Wen B is an involutory basis, the reduced costs
are known to be of this form. Let the colums of B be indexed by I, and
_denote F={jeN cj-cBaJ<O}. The Bellnore-Ratliff cut associated with X and

B is then

(11) I x. > 1.
jeF?
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To obtain this cut via our procedure, set S=1PN, S = (j(1),...,j(p)}.
i.e., let S be the index set of the basic structural variables, and set u = 0O,
s =c. Then u and s satisfy (5), and S satisfies (8) (with equality) for z”cX.
Next let h(i) be the row index associated with basic variable X'j(i)'
and set Q1 = Nhtij\F’ i=l,...,p. It is easy to see that these sets Qi

satisfy (7). Substituting for C* in (10) then yields
Wir ¢

Jl“hmr“‘"'

On the ot her .hand, fromthe definition of Fit follows that j $F inplies

jel\L__,#N. for sone ie{l,...,p}, hence
- P
F< (1';’1“}1(1))
and therefore W= F. Thus (11) is a special case of (9).]

Note that the cutting planes derived by Bowran and Starr [6] via a
vector partial ordering are a special case of the Bellnore-Ratliff
i nequalities, hence they can also be obtained by our procedure.

Next we illustrate by an exanple the fact that the Bellnmore-Ratliff
inequalities are a proper subclass of the class of inequalities (9), and
in sone cases those inequalities (9) that cannot be derived by the Bell nore-
Ratliff procedure are considerably stronger than the ones that can.

Exanple 2. Consider the set covering probl emwhose costs C.J and

coefficient matrix A are shown in Table 2.

The 0-1 vector x whose support is {2, 3,5, 12,13,17} is a cover,
satisfying with equality all the inequalities except for 1 and 8, which
are oversatisfied. The Bellnore-Ratli ff_ procedure generates cuts fromthe
i nvol utory bases that can be associated with X; and it can obtain one cut from

every such basis. The variables X3 X and 45_ can be basic only in rows .
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12 3 4 56 7 8 9 1011 12 13 14 15 16 17 18 19 20
:"j31131223333334445689
1 1 1

2| 1 1 11

3 1 1 1 1
4 1 1 1
5 1 1 11
6 1 11

7 1 11

8 11

9 1 1 11 1
10 1 1 1 1
1 1 1 111

Tabl e 2.

3, 4 and 6 respectively. Since rows 1 and 8 are sl ack, x12 and Xq3 can be

basic only in rows 11 and 10 respectively. Finally, X17 can be basic in

any of the 4 rows 2, 5 7, 9; and accordingly there are 4 involutory bases

5 B7 and Bg,
accordi ng as Xl_/ is basic inrow?2, 5 7 or 9 respectively. The basis B

(after row pernutations) is shown in Table 3. Al variables whose index

that can be associated with X_ W wll denote them by B2 B

2
exceeds 20 are sl acks.

2 3 5 12 13 17 25 27 29 21 28

1 1
1 1
1 1
11 1 T
10 11
O b i
5 ) 1, -1 T
7 1 -1
9 1I -1
1 1e -1
8 1 1 -1

Table 3.




The 4 cutting planes that can be obtained by the Bellnore-Ratliff

procedure, depending on which basis is used, are

Xx + Xg + Xg + X10 + X115 + X315 + X188 + X20 >__1 , from~
x& + X6 + Xg + Xlo + Xl | + Xlg % | ' from 85
X6 + X7 + Xlo + X15 + Xlg + X20 A X ' from 57
X6 + X8 + Xlo + X14 + X18 + X20 x | S from V

On the other hand, using the conditional bound approach, we construct
(by inspection or a heuristic) the dual vector u = (0,1,1,1,1,1,2,0,1,2,2)

whi ch, together with the associated reduced cost vector
s =(2,00,2,00,0,1,1,0,1,1,2,1,1,0,0,2,0,1),

satisfies the condition (5).

The cover x whose support is {2,3,5,12,13,17} yields z, = ex = 14;
and the dual vector u yields the |ower bound ue = 12.

Since z" - ue =2, = (j€N|s.J > 2} = {1,4,18}, and thus (Remark 1.3)
every cover better than X satisfies x1: X, = X-gr — 0. Hence we replace N
by \\{Il,4,18}. Further, to apply Corollary 1.4, we pick the colum indices

j(1) =12, j(2) = 13; for which (8) holds, since § 2 + S35 =5 >2z" - ue.

1
Next we pick the rowindices h(l) =8, h(2) =5, and choose the sets Q1 = [12,13],
Q = (9,111 to obtain Ny 1)\ Q. = {6,19} and \ (,,\ Q, = {10, 16, 19}, hence

W= {6,10,16,19}. In choosing the sets Ql we nake sure that (7) is satisfied,

and apart fromthat try to nake each successive Nh/(i)\Q1 add to Was few

‘'new el enents as possible. W have thus obtained the cut

X6 +X10+X16 +X19 A1l

which has only 4 positive coefficients, whereas each of the involutory

basis cuts has at |east 6.
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The above inequality cuts off X. This is due to the way we chose the
colum indices j(i) and the rowindices h(i), i=l,,..,p, as will be shown
in the next section. If we do not care about cutting off a specified
cover, we can obtain inequalities which are "stronger" in the sense of
having fewer positive coefficients. Thus, for instance, if we choose

j(i) =13, j(2) =9, and h(l) =8, h(2) =5, we can generate the cut

X17 *X19 * *

(by setting (» = [12,13], Q@ = {9,11}); and for j(I) = 13, j (2) = 14,
h(l) =8, h(2) =4, we obtain the cut
x3+x1921

(by choosing Q1 = {12,13} and Q@ = {14, 20}).

4, Sone Properties of Cuts from Conditional Bounds

The famly of cuts defined by Theorem2 is vast, and one is interested
of course in conputationally cheap procedures for generating "strong" nenbers
of this class. In this section We investigate sone properties of the cuts
(9) that will be hel pful toward that goal.

" The first practical question that arises is whether condition (8) can
always be net, and how Since s depends on u, it should not be surprising
that one answer to this question comes in terns of additional conditions on u.

Theorem4. Let the vectors U and ¥ satisfy (5), and let ¥ be a cover

~with support S(X). If

U(AX-e) = 0,
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then (8) holds for S = S(X).

Proof. Consider the pair of dual |inear prograns.

(Ly) mn {cx] X >"e, x.3>"1, jeS(x), x1 =0, jetf\0p}

and
() max (ue + E s.|lua. +s. =c., jeN u >0, s >0}
1 JeS(ﬂ J J J J

OQearly, X is a feasible solution to (L-l), and (U',J) is a feasible
solution to (Dl) . Further, X and (u',¥) satisfy the conplenmentary slackness
conditions O{A&e¢e) and (X.J-l )s.J =0, jeS(Xx), x.Js.J =0, jeMS(X); hence they

are optinmal solutions to (L.l) and (Dl) respectively. Therefore

te4 £ ~S. = €X
jes(x) ’

whi ch together with zu<_ex_proves the statenent. ||

For any cover x, denote
T(x) = {i€Ma'x = I}.

Then as an imredi ate consequence of Theorem 4, we have
Remark 4.1. Let X be a cover, and let (U;¥) satisfy (5). |If T also

satisfies
=0 V 1 eM\T (%)

then (8) holds for S = §(X).
Thus, if an upper bound 2y and vectors u, s satisfying (5) are at hand, .
but condition (8) does not hold, it can be made to hold by successively

setting to O conponents u, of u such that ieMT(X). At worst all such
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components may have to be set to 0; then (8) will hold.

Before turning to other characteristics of the cuts (9), we now
state a basic property of the set covering problem. Let the set covering
polytope P be the convex hull of all integer n-vectors satisfying Ax > e,

x>0, i.e.,
P = conv {xeRn|Ax42 e, x>0, xj integer, jeN}.

We then have the following
Theorem 5. The inequality
(12) r x,>1
jeN J
i
where ieM, defines a facet of P if and only if there exists no keM such

that Nk c Ni, Nk # Ni.
Proof. The '"only if'" part is obvious. To prove the "if" part, we
assume there is no keM such that Nk C Ni’ Nk # Ni’ and we exhibit n linearly
independent integer n-vectors that satisfy Ax > e, x > 0 and for which (1)
holds with equality.
Let lNi‘ = p, and assume w.l.0.g. that Ni is the set of the first p
indices in N. Let y = (1,...,1), yeRn-P, and let e, and fi be the unit

: n- . . . .
vector in RP and R"7P respectively, whose i-th comporrent is 1. Now consider

the p n-vectors (ei, y), i=1l,...,p, and the n-p n-vectors (e,, y+f, ),

1’ i-p
i=p+l1,...,n. Since there is no keM such that NkCNi’ Nk#Ni, each of these
nonnegative integer vectors satisfies Ax > e; and since each one of them
has a single 1 among its first p components, they all satisfy (12) with

equality. Further, the nxn matrix whose rows are these vectors is

- ()
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where for k = p and kK = n - p, Ik is the identity of order k, while Y* is
the kx(n - p) matrix whose entries are all equal to 1; and Eis the (n - p)Xp
matri x whose first colum consists of I's, and whose remaining col ums

consist of 0fs. Now define the matrix

7 = ( P P P )
-E I
n-p
Using the fact that EY =Y , it is easy to see that XZ =1 , i.e.,
-1 p n-p n
Z = X and hence X is nonsingular. This proves that the n vectors

i ntroduced above are linearly independent.]||

In a cut-generating procedure it is inportant to make sure that no cut
is repeated. Next we give a necessary and sufficient condition for a cut
to be ffnew'' Let (SO stand for the set covering problem anmended with all
the cutting planes generated up to sonme point, and |et
(9) Sx. >1

j ew?’
be the next cut generated. W then say that the inequality (9) is ﬁ'éW,
if there is no ieMsuch that N* ¢ W

Remark 5.1. The inequality (9) is newif and only if MWis the
support of a cover for (SC).

Proof. The cut (9) is newif and only if N*gW VieM hence if and
only if NAWO, VieM But this condition holds if and only if N\N\Wis the
support of sone cover. ||

Wiile the condition of Remark 5.1 is straightforward, it is easier to
enbed in a cut generating procedure W_hen paraphrased as foll ows.

Remark 5.1.a. The inequality (9) is newif and only if it cuts off

(is violated by) sone cover of (SC).
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The next Theorem gives conditions on the colum indices j(i) and

row indices h(i) used in generating inequality (9), to guarantee that the

inequality obtained cuts off a specified cover. W will denote
M :[leMa.l.le} , j eN
Theorem6. Let ?.U, u, v, S and Q1’ 1=1,. . . ,p, be as in Theorem 2,
and let j (i) te, 1=1,. .. ,p. Ifx* is a cover such that S¢ S(X) and
(13) h(1)eT(X)nM ), 1=1,...,p,

then the inequality (9) cuts off (is violated by) X.

Proof. Assume S C S(X) and (13) hol ds. Fromh(i)el\él (1) we have

j(i)eN’h('i';” i=l,...,p; and sincej(i)eSf":S(T() inplies -)-i'('l)xz 1, while
h(i)eT(x) inplies |S(x)CNh,(?';'| =1, 1=1,...,p, it follows that
S(X)DNagiy = tj(i)}, i=l,....p.
Further, si ncej(i)te, 1=1,...,p, we have

S(x)N(Neiy\ QY =0, 1-1,....p,

and hence S(x)nw = 0, i.e., the inequality (9) cuts off x|]|

Remark 6.1. Every inequality (9) for which the conditions of Theorem 6

are satisfied, defines a facet of

P* = conv {xeR'| Ax>e, E x.J>_I, x.J integer, jeN}.

P
Proof. Follows from Remark 5.1 and Theorem 5. |
Theorenms 2 and 6 provide rules for generating a sequence of valid

cutting planes that are all distinct, and furthernore, are all facets of
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the current polytope P. This latter property, however, does not inply
that all inequalities generated this way are equally strong. Since all the
inequalities in question have coefficients equal to O or 1 and a right

hand side equal to 1, we will use the nunber of coefficients equal to 1 as
a neasure of their strength (the fewer the | 's, the stronger the inequality)..
Note that sonme facets of the set covering pol ytope nay be nuch weaker than
others, according to this criterion. Thus, for instance, all 5 inequalities
represented by the rows of the matrix A in Table 4 define facets of the

set covering polytope corresponding to A yet inequality 4, with only

two I s, is much stronger than inequality 5, which has ten |fs.

11 1 1 1 1
1 1 11

A=11 1 1 1
1
1111111111

Table 4.

Thus, although they all define facets of the current polytope P*,
the cutting planes obtainable via the rules of Theorem6 are not all
equal ly desirable. The next section discusses a procedure for generating

conveniently strong nenbers of the famly.

5. Cenerating Cuts

The strength of an inequality (9), i.e., the size of the set W
depends on the integer p and the size of the sets “j./-l\\Ql» * 5 1> -->P>
a1y

of Theorem 6. To have p conveniently small, the procedure chooses the set
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ST tj(i)>eetj(p))> corresponding to the p largest reduced costs s.J,
jeS(X), where p is the smallest integer for which (8) is satisfied. Each
row index h(i), i =1,...,p, is of course chosen fromT(Y)nMJ.(i.J, as
prescribed by Theorem 6. Further, in order to have Was snall as possible,

the sequence of row indices h(i) is chosen so as to nake as snall as

; WAW -
possi bl e at each step ke(l,...,p} the set AK, o) wher e V\b 0 and

k
- \\ / * k:]___nl:l
W 12 o V

k 1 h(i)

Si'nce for any S satisfying (8), |s|] =1 inplies (Remark 1.3) that
the variabl e x.J such that S = {j} can be pernanently set to 0, we assume
this has already been done for all such singleton sets, and hence
|S| > 2 for all S satisfying (8).

Let Mand N be the row and colum index sets of the current problem

(SC), let X be a prime cover for (SC), and denote, as before,
SX)= [JeN%.=],  T(X= [ieMma™!}.
Further, let uand s satisfy (5), and assume (8) holds for S = S'A Jj eS(x)‘|s.JX)} “

Cut - Generati ng Procedure

Step 0. Initialize W= 0, S:S+, z=ue, i =1 and go to 1.
L

Step 1. Define

ey Ty Q= el

T A ToL

Choose h(i) such that

Ny, YW= raln I ew

ji)
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(breaking ties arbitrarily), and set

W« WII ON \ o~ 7 *- 7 4 s ...
(L)

| f 7L3_ZJJ, go to step 2. Qtherwi se, let
[%] + ®j(D T (i)
J | sd ot her wi se,
5 - S\li(D 1,
set i - i+l1l, and go to 1.
. Step 2. Add to the constraint set of (SC) the inequality
S x. > 1.
jew 37
In at nost |S+| iterations, this procedure generates an inequality (9)
satisfied by every cover x such that ex < Z. and violated by X | ndeed,
S (initialized as S+) is dimnished at every iteration by one el enent,
hence there are at nost |S+| iterations. Further, since (8) holds for
S = S+, after p < |s+| iterations, (8) holds for the current set S (i.e.,
Z, >%Tq) » anlx we go toStep 2 to ganergte a cut (9). For the sets
Qi = Q”Nh/{\;» i=l,...,P j(i)cQ.l, and (7) is satisfied (by the definition
of Q and s.J at every iteration). Finally, the choice of h(i) guarantees
(13). Thus all requirenents of Theorem6 are net.
A couple of mnor inprovenments are at hand. Choosing the |argest s.J
to define j(i) at every iteration has the purpose of mninizing the size

‘of the set Sin (8). But at the last iteration choosing the |argest s.J

may not be indicated, if a snaller s.J suffices to satisfy (8). Thus a
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better rule for choosing j(i) in Step 1 is to set

.
v, = min iznfj( S, Jm;g [s_.|s1. > z5 - zL}}

and then choose as j (i) one of the indices j eS for which .= Vi
Furthernore, whenever this index is not unique, i.e., |j| > 1, where

J = {jeSlsJ 2Vv,}, the choice of j(i) and h(i) can often be inproved by
first setting Q = {jeN|s.J > Vv,}, next choosing h(i) so as to mnimze

IN,\ QUW over all heT(x)nMJ, wher e
M= U M;
7 Jed !

and then choosing the uni que index tj‘}=JI-N, (i) as j(i).

Exanple 3. Consider the set covering problemof exanple 2 (Table 2),
W th C, = 3 replaced by C, = 1. Then the cover %X whose support is
S(X) = {2,4,13,20} gives Zy = ex = 14, and T(X) = M{l}. The vector u of
example 2 yields the same reduced costs s,J as in that exanple, except for Sy
which nowis 0. The |ower bound ue is 12, and since s.J > 14 - 12 = 2 for

j =1, 18, we set X = Xg T 0, and replace N by N\{I,18}. Condition (8)

i

holds for S = S" = [13,20], since s;, + S

13 2 2.

20 =

Step 0. W=0, S = {13,20}, z* = ue = 12.

Step 1. v =min {l,2) = 1, J = {13,20}, Q = {8,9,11,12,13,14,15,20},
Mj =~3~220 7 "\f°>°}- To choose h(l), we minimize |",\Q| over
heTAfIM ]| = M\{1,3,5}, and find that the minimum is 1, attained for k = 4,8,9.
We arbitrarily choose h(l) = 4, and set W = NL,‘\Q = {3}, z, = 12 + 1 = 13.

The S, remain unchanged except for j = 14,20, the new values for the latter
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being si4 = s,0=0. W set S= {13}, i=2, and go to

Step 1. v, =mn [I,l) =1, J = {13}, Q= {8,9,11,12,13, 15},
MJ = M13: {1,8,10}. To choose h(2), we mnimze |I\{}Q| over
heTWOM] = {8,10}, and find h(2) = 8. W set W= {3}UN\NQ = {3,19},

z. =13+ 1 =14, and since z_ >z , we Qgo to
XJ Ll u

Step 2. W add to (SO the inequality

X, +x19_>__ .

6. A dass of Al gorithns

The cutting planes discussed in this paper can best be used in a
framework that takes naxi num advantage of their properties. To obtain
a cutting plane fromconditional bounds, one needs a feasible solution
(u,s) to the dual of the linear programassociated with (SC). Such a sol u-
tion also provides a lower bound ue on the value of (SC). On the other
hand, the easiest way to nake sure that the cuts that one generates are
all distinct, is to have each inequality cut off sone cover satisfying
all the previously produced inequalities. Thus to obtain a sequence of
distinct cutting planes, one also needs a sequence of covers. Each cover X
in turn, provides an upper bound ex on the value of (SC).

The best approach then seens one that alternates between (a)generating
a cover x for the current problem and (P) generating a dual solution (u,s)
and using it to derive an inequality that cuts off x. In such a procedure,
the val ue of (SC is bounded from above by the sequence of covers obtained

under (a); and bounded from bel ow by the sequence of dual solutions produced
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under (B). The rate of convergence of the algorithm is the rate at
which the gap z -z between the two bounds decreases.

Since every inequality generated in the procedure cuts off at least
one new cover, and since the number of distinct covers is finite, the
procedure outlined above is finite, irrespective of the methods used to
generate the sequence of covers x and dual solutions (u,s). Its
efficiency on the other hand depends crucially on the efficiency of those
methods.

Several versions of the approach outlined above were implemented and
thoroughly tested in a computational study summarized in the companion
paper [2]. The algorithm that emerged as a result of the testing uses
several different heuristics intermittently to generate prime covers, and
produces dual solutions (u,s) both by heuristics and by subgradient

optimization. When the decrease in the gap z, -2 slows down, the

L
algorithm branches, using either a disjunction of the type discussed in

this paper, or a dichotomy derived from other considerations, according

to some measure of comparative strength. The algorithm is particularly well
suited for low density problems, and its performance on set covering problems
taken from the literature compares favorably with earlier methods.

Randomly generated test problems with up to 200 constraints and 2000
variables have been successively run.

For details of the algorithm and results of the computational tests

the reader is referred to [2].
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