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Abstract

We report on the implementation and computational testing of
several versions of a set covering algorithm, based on the family of
cutting planes from conditional bounds discussed in the companion
paper [2]. The algorithm uses a set of heuristics to find prime covers,
another set of heuristics to find feasible solutions to the dual linear
program which are needed to generate cuts, and subgradient optimization
to find lower bounds. It also uses implicit enumeration with some new
branching rules. Each of the ingredients was implemented and tested in
several versions. The variant of the algorithm that emerged as best
was run on 55 randomly generated test problems (20 of them from the
literature), with up to 200 constraints and 2000 variables. The results
show the algorithm to be more reliable and efficient than earlier

procedures on large, sparse set covering problems.
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SET OOVER NG ALGORI THVB USI NG CUTTI NG PLANES,
HEURI STI CS, AND SUBGRADI ENT CPTI M ZATI O\
A COVPUTATI ONAL  STUDY
by

Egoa Bal as and Andrew Ho

1. Introduction: Cutting Planes from Conditional Bounds.

In this paper we report on the inplenentation and conputationa
testing of an algorithm or rather a class of algorithns, based on the
cutting planes fromconditional bounds introduced in [1], and al so
using as ingredients several heuristics for finding feasible prim
and dual solutions, subgradient optimzation of a Lagrangean function
and inplicit enuneration with sone new branching rul es.

The famly of cutting planes fromconditional bounds is briefly
described in this section; a nore detailed discussiqn of the properties
of these cuts is to be found in the conpanion paper [2]. In section 2
we describe the general features of the al gorithmwhose versions we
i npl enented and tested. Sections 3-7 discuss each of the ingredients
of our procedure, wth conparisons of various versions based on conputationa
testing. Finally, section 8 summarizes our conputational experience with
the algorithmas a whole. Wile the discussion focuses on a particul ar
i nstance of the algorithms in the class considered, nanmely the one that
energed as the nost successful fromour conputati onal experinents, we

al so discuss possible variations wherever it seens useful.

As one can see fromthe conputational results presented in section 8,
the algorithmdiscussed here is a reliable and efficient tool for solving
| arge, sparse set covering problens of the kind that frequently occur in

practice. Wth a tinme linmt of 10 m nutes on the DEC 20/ 50, we have sol ved




all but one of a set of 50 randonly generated set covering problens with
up to 200 constraints, 2000 variables, and 8000 nonzero nmatrix entries (here
"sol ving™ means finding an optimal solution and proving its optimlity) ,

never generating a branch and bound tree with nore than 50 nodes. W

know of no other approach with conparable performance. For problens
that are too large to be solved within a reasonable ‘time limt, the
procedure usually finds good feasible solutions, with a bound on the

distance fromthe optinum (for the one unsol ved problem this bound

was 2.370). W also tested the algorithmon a set of 57, density probl ens,

but as density increases, the performance of the algorithmtends to decline.

W consider the set covering problem

(SO mn Cox| Axe, xe{0,1}%

where A = (a':.j) isanmXn 0-1 matrix, and e * (1,.,.,1) has mconponents.

Let ai and a.J denote the i-th row and the j-th colum. of A and |et

M={l,...,m, N=*{I,...,n}. W& denote

M = UeMa "1}, jeN N .= {jeN aJM1}, ieM.
VW will also use the pair of dual |inear prograns
(L) mn (cx| Ax>e, x>0}
and
(D max (ueJuA<c, u>0},

associated with (SC).

A vector xe{0,1}? satisfying Ax>e is called a ¢over, and S(x)

its support. A cover whose support is mininal, is prine. For a cover X,

we denote T(x) = {ieH[aix-l}.

The theory underlying the famly of cutting planes from conditional

{jeN x,=1}



bounds can be summarized as follows (for proofs of these statenents
and further elaboration see the conpanion paper [2]).
Let Zy be sonme known upper bound on the value of (SC), and let u be

any feasible solution to (D), with s=c-uA, such that the condition

(D Jé % > Zy-ue
is satisfied for some SQ, S = (j(I),...,j(p)}. Further, let qf i*l,...,p,

be any collection of subsets of N satisfying

P
(2) L s £s8;. , JeN.
ilj‘Qi j(L) j
Then every cover x such that cx<&.lI satisfies the disjunction
P .
(3) V (x*0, jeQ).
i=1
Further, for any choice of indices h(i)eM i=l, ,p, the disjunction

(3) inplies the inequality

(4) ZxN>1
jeW
wher e
W B(N \Q,)
{=1 )y i
Finally, if j(i)eC&, i=l,...,p, and if X is a cover such that
SCS(X) and h(i)eTbOflw(rp i*l,..,,p, then the inequality (4) cuts off ¥

and defines a facet of

P* = {xeRJAx>e, S x.>l|

xX>, X. integer, |¢N}.
oW 3 J.

Using the above results, one can generate a sequence of cutting planes

that are all distinct fromeach other, by generating a sequence of covers




x and feasible solutions u to (D). The covers x provi de upper bounds,
while the vectors u provide |ower bounds on the value of (SC). Since
every inequality generated cuts off a cover satisfying all previously
generated inequalities, and the nunber of distinct covers is finite,
the procedure ends in a finite nunber of iterations, with an optima

cover at hand.

2. Qutline of the A gorithm

The algorithmalternates between two sets of heuristics, one of
which finds a "good" prime cover x for the current problemand a
(possi bly inmproved) upper bound, while the other generates a feasible
solution to (D satisfying (1) for S=S(x), and fromit a cutting plane
that cuts off x, as well as a (possibly inproved) |ower bound. Wenever
a disjunction (3) is obtained with p=l, all the variables indexed by Qa
are set to 0. The second set of heuristics is periodically supplenented
by subgradient optimzation to obtain sharper |ower bounds. Though this
procedure in itself nust find an optinmal cover in a finite nunber of
iterations, for large problens this nmay take too many cuts. Therefore,
as soon as the rate of inprovenent in the bounds decreases beyond a

certain value, the algorithmbranches.

A schematic flowhart of the algorithmis given in figure 1. PR NMAL
designates the set of heuristics used for finding prine covers (feasible
primal solutions), DUAL the heuristics used for finding feasible dua
solutions. TEST is the routine for fixing variables at 0. CUT generates
a cutting plane violated by the current cover. SGBAD uses subgradi ent
optimzation in an attenpt to find an inproved dual solution and | ower

bound. BRANCH is the branching routine, which breaks up the current
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probleminto a nunber of subproblens, while SELECT chooses a new

subproblem to be processed.

The four decision boxes of the flowhart can be described as foll ows.

Let Zy and 2y be the current upper and |ower bound, respectively, on the
val ue of (SC).

1. |If zl‘_z_z.u, the current subproblemis fathomed (1.1). |If
z™ < Z)) and sone variable belonging to the last prime cover has been
fixed at 0, a new cover needs to be found (1.2). Qherwise, a cut is
generated (1.3).

2. After adding a cut, the algorithmreturns to PRRMAL (2.1) unless

the iteration counter is a nultiple of & in which case (2.2) it uses

subgradient optimzation in an attenpt to inprove upon z_. On the
Li

basis of some experinmentation, we set |M/10 <ct X |M/20,

3. If zZLSzV the current subproblemis fathomed (3.1). If
zp¢ < ZY but the gap z¥ - A has decreased by at least s>0 during the
last O iterations, we continue the iterative process (3.2). Qherw se,
we branch (3.3). Again, follow ng sone nunerical experinments, we use
e =05and 3 =4a, with <* as defined in 2.

4. |If there are no active subproblens, the algorithmstops: the
cover associated with zUis optinmal (4.1). Qherwise, it applies the
iterative procedure to the sel ected subproblem (4.2).

In the next five sections we discuss each of the ingredients of the
algorithmin sonme detail on the basis of conputational testing of several
versions. After that we report on our conputational experience with the

al gorithmas a whol e.

3. Primal Heuristics.

The heuristics we use to generate prime covers are of the "greedy"”




type, in that they construct a cover by a sequence of steps, each of
whi ch consists of the selection of a variable x.J that minimzes a
certain function f of the coefficients of x.J. They differ in the
function f used to evaluate the variables. If k.J denot es the nunber
of positive coefficients of x.J in those rows of the current constraint

set not yet covered, the general formof the evaluation function is

£(e,,k,),
i3
Since it is conmputationally cheaper to consider only a subset of
variables at a tine and since every row nmust be covered anyhow, i.e., the

cover to be constructed nust contain at l|least one of the variables
having positive coefficient in any given row, we restrict the choice
at each step to the set of variables having a positive coefficient in
sone specified rowi*eM Denoting by R the set of rows not yet covered
and by S the support of the cover to be constructed, the basic procedure
that we use can be stated as foll ows.

Step 0. Set R-M S+ 0, t =1, and go to 1.

Step 1. If R- 0, go to 2.

O herwi se, let kj = [l\éfIRJ, choose i*eR and choose j(t) such that

f(cj(:)’ kj(t)) = j:iNn f(cj,kj).
i
w
Set R~ R\ Wy, S - SUEj(t)}, t -t+1, and go to 1.

Step 2. Consider the elements igS in order, and if S\{i} is the
support of a cover, set S- S\(i}. Wen all icS have been consi dered,

S defines a prine cover.

As to the choice of i in Step 1, the criterion that suggests itself

I -mnJNJ.
||j\'|* i eR Ll

is




Rather than implement this choice rule directly, which would be
costly, we approximate it by ordering once and for all the rows of the
initial coefficient matrix A according to decreasing ‘Ni" and always

choosing i, as the last element of the ordered set R. Since the cuts

*
generated in the procedure also tend to have a decreasing number of 1l's,
i.e., later cuts tend to have fewer 1l's than earlier cuts, this rule
comes sufficiently close to choosing the row with the minimum number of 1's.
If the set Ni* in step 1 is replaced by N, i.e., the choice is not
restricted to a certain row, and step 2 is removed, i.e., the procedure
is allowed to stop whenever a cover is obtained, whether prime or not,
then the above procedure with f(cj,kj) = cj/kj is the greedy heuristic
shown by Chvdtal [3] to have the following property: if zopt is the value
of (SC) and 2 eu is the value of a solution found by the heuristic, then
d
zheu/zopt s o %

j=1

where

d = max \M.l,

jeN J

and this bound is best possible. From a practical point of view this
bound is very poor, and it can be shown [7] that there is no better bound
for any function f used in the above procedure. However, proving this
statement requires the construction of examples for which the worst case
bound is attained, and every function f requires a different example. This
suggests as a practical remedy against the poor worst-case performance of
the heuristic, the intermittent use of several functions f rather than a
single one. This idea has been implemented and tested with reasonably

good results. The following five functioms f(cj,kj) were considered:




i c. ; ii / ; i ¢ /logjkj ; iv c V1 NS
()J()SE()JQJJ()JG‘BJ

(v) cj/I%I nkj . Incases (iii) and (iv), Iogzk.J is to be replaced
by 1 when kj » 1; and in case (v) In kj is to be replaced by 1 when

k. - 1 or 2.
J

Using (i) amounts to sinply choosing the | owest-cost variable at
each step. Criterion (ii) mninizes the unit cost of covering an uncovered
row The functions (iii), (iv) and (v) select the sane variable as
function (ii) whenever c3 T 1, VjeN but otherwise (iii) assigns less
weight, while (v) assigns nmore and (iv) even nore weight to the nunber
kd of rows covered, versus the cost cJl.

The five functions were tested on a set of 13 randomy generated
problens with 100 € m< 200, 100 < n < 1000, and 2%density. Though none
of them emerged as uniformy dominating any of the others in terns of
the quality of the solutions obtained, (iii) scored best and (ii) second
best, in the sense that of the 13 problens, (iii) gave the best solution
in 6 cases, (ii) in 5 cases. As to the other functions, the best solution
was found by (i) and (v) in 3 cases each, and by (iv) in 2 cases (the sum
of these nunbers exceeds 13, since often nore than one function gave a
best solution). Table 1 shows the %deviation fromthe opti mum of the
solution found by each function for each problem The nunbers in the
first colum are those under which the problens are listed in section 8,
where they are also described in nore detail. The best solution found
by any of the 5 functions never deviated from the opti numby nore than 10. 8%

The above described procedure can be anended so as to produce, at
little extra cost, nore than one cover, the best of which can then be
retained. This is done as follows. W first use the above heuristic to
find a cover. Then we consider the variables in the order of their
inclusion into the cover, and renove fromthe cover all those that have a

positive coefficient in at |east one oversatisfied constraint. Next we
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Table 1. Deviation fromoptinmum (in % of the values found by primal heuristics.
Probl em data Function used with heuristic

éNo. m n C.1 cj/kj c_.]/Iogzk:| cj/kjlogzkj c]/kjlnkj
2.2 200 413 5.4 5.0 6.2 16. 3 5.2
23 | 200 | 300 { 31| 88 10.0 141 13.0
2.4 200 500 | 11.4 } 11.7 2.3 14.5 14.5
3.1 100 100 16 0.5 16 0.5 0.5
3.2 100 | 200 | 6.9 3.5 7.6 7.6 6.9
3.3 100 300 3.7 16. 4 3.1 12.0 16. 4
3.4 100 400 | 16.2 6.5 10.3 9.1 9.7
35 100 } 500 | 11.7 | 28.2 10.8 31.1 28.8
3.6 100 600 6.4 | 17.6 4.9 23.1 18.7
3.7 100 700 4.7 8.0 6.7 13.7 11.5
I3.8 100 | 800 | 4.6 2.4 35 2.4 2.4
|39 | 100 | 900 | 7.3 {159 7.3 9.2 6.4
i3.10 100 | 1000 6.8 15 15 15 15

conpl ete the cover again using the heuristic. W continue in this fashion

until either a cover is generated which does not oversatisfy any of

the constraints, or the nunber of covers generated is some specified

i nteger a

To find the nost desirable value for a, we have applied

this procedure with 0«10 to each of the above described 13 probl ens,

with each of the 5 functions discussed. Sonewhat surprisingly, we

found that of the 13 X 5 = 65 cases, the best of the 10 covers generated

was the first one in 22 instances, the second one in 34 instances, the

third one in 8 instances, and in 1 instance it was the fifth one. In

ot her words, only once was there an inprovenent after the third cover

was found,

and this in spite of the fact that the best cover found was

not optimal in any of the 65 cases.

Consequently, we set 0*3, and use function (iii) for the first cover

a different function ((i) or (ii)) for the second cover, and again a
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different function for the third cover. This way the procedure

is still conputationally cheap, and yields considerably better results
than the version that produces only one cover. W call this procedure
PR MAL 1.

The general algorithmdiscussed in section 1 at times fixes
variables at 0. Wenever some variable belonging to the current cover
gets fixed at 0, we have to generate a new cover. Rather than starting
from scratch, in such situations we start with the partial cover at hand,
and conplete the cover by using the procedure discussed above. This
version of the heuristic we call PRI NAL 2.

When the dual heuristics to be discussed in the next section produce
a vector (u,s) such that (1) does not hold for SS*g(x), where x is the
current cover, either the dual solution u nust be weakened (see the next
section), or else the cover x nust be replaced by another one, say X,
such that (1) is satisfied for S=S(X). PR MAL 3 was designed to
acconplish this:starting with the cover at hand. It introduces into
the cover additional variables Xj such that s f<), in order of increasing
values of f (as defined in (iii)), and renoves variables in order of
i ncreasi ng val ues of s.J so as to keep the cover prime. Wile it is not
guaranteed to succeed, the percentage of failure is sufficiently low to
justify the use of PRMAL 3. Wen it fails, the dual solution u must be

weakened as explained in the next section.

Whenever a new cut is generated, the last cover satisfies all the
constraints except for the newy added one. Since it is rmuch cheaper to
obtain a new cover fromthe old one than to construct a new one from
scratch, a special heuristic was inplemented for this purpose. PRNAL 4

adds to the current cover a nunber c¢ of variables with positive coefficients




-12-

in the cut just generated, chosen in order of increasing % and then
renoves fromthe cover redundant variables so as to nake it prine.
Conput ati onal experinents with c=l,...,5 have shown c=2 to give the
best results.

Finally, every time we apply the subgradient nethod to obtain an
i nproved |ower bound, we also generate a new cover by using the reduced
costs s;1 produced by that procedure. This is done by subroutine PR MAL 5,
by setting x.J =1if s. =0, )3 * 0 otherwise. The resulting vector either
is a cover, or elseif rowi is uncovered, then Sj >0, V eNi, and vari abl e u.l
can be increased to uzy + mn s.. This creates at |east one new reduced cost s,
equal to O, and for each such k ve set X’u = 1. W proceed this way
until every row is covered, after which we nmake sure the cover is prime, like
in Step 2 of PRMAL 1. PR MAL 5 produces consistently better covers
(hence better upper bounds) than any of the other 4 procedures; but

obtaining the reduced costs by subgradient optimzation is many times nore

expensive than producing themby the dual heuristics, as will be discussed bel ow

VWi le the conditions for using PRMAL 2, 3 and 5 have been spelled
out, the choice between PRRMAL 1 and 4 seens open at this point. PRINAL 4
is conputationally cheaper, but it often produces a cover that differs
very little fromthe previous one. PRIMAL 1 is nore expensive, but
yields a genuinely new cover. W follow the strategy of using PRIMAL 1
to obtain the first cover, then using PR MAL 4, except for every 9-th
iteration, when we again use PRMAL 1. As to the value of 0, conputational
experiments have led us to start with 9=1 and then set 9 «- mn {9+1, 7}.
In other words, at the beginning we return to PRMAL 1 nore frequently,

then at regular intervals of, say, 7 iterations.

3. Dual Heuristics.

The purpose of the dual heuristics is to find, at a |ow conputational
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cost, a feasible solution to the dual linear program (D) associated with
the current problem wth as high an objective function value (Iower bound
on the value of (D), hence of (SC)), as possible. In addition, the dual
solution u and its associ ated reduced cost vector s=c-uA have to satisfy
condition (1) for S=S(x), where x is the current cover. Again, we use

a procedure of the "greedy" type, which considers the variables in some
prescribed order and assigns to each one the maxi numval ue that can be
assigned without violating some constraint or changing some earlier value
assignment. Since it is known (see [2], Theorem4) that for a feasible solution
uto (D), the vector s « ¢ - uA satisfies (1) for S«S(x) if u satisfies
u(Ax-c) =0, in considering the variables u.l priority is given to ieT(x),
where T(x) = {ieMaix =1}. Denoting by R the index set of the dual
variabl es (rows) not yet assigned a value (ordered in accordance with M),

the basic procedure is as follows.
Step 0. Set Re MTT(x), s=c, t«l, and go to 1.

Step 1, If R=0, goto 2. COherwise, let | ¢ R choose i(t)

such that

N = min IN,|,
%y ey | = mta 1|

and | et
Ye) T mn s..
j“Ni.(z:)
Then set
s {81 T Yy t(t)
J
sj ch\Ni(t),

R- REi(t)}, t -t +1, and go to 1.
Step 2. If Step 2 is entered for the first time, set R«-MT(x) and
goto 1. Oherwise, stop: uis a feasible solution to (D).

Restricting the choice of i(t) to a subset I of Rhas the sole
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purpose of nsaking this choice conputationally less costly, at the
risk of sacrificing some quality. Since the rows of the original nmatrix
A are ordered according to decreasing |h£( and the cuts generated al so
tend to have progressively fewer I's, we define I as the union of (i)
the last elenment of MfIR where h6 is the row index set of the original constraint
matrix, and (ii) the last A elenments of R where X=mn {|R, V‘|""4}*
This makes sure that the choice rarely —if at all -- msses the m nimum
of (r&| over all i«R This pkocedure we call DUAL 1.
A feasible solution to the current (D remains feasible after adding
a newcut to (SC), i.e., a newcolum to the constraint set of (D), but
usual |y ceases to be feasible if the new variable is assigned a positive
value. On the other hand, if the newvariable is set to 0, the solution
remai ns unchanged. Furthernore, if a new solution is generated from
scratch by the same heuristic, it is often identical to the previous one.
DUAL 2 is a version of the heuristic that starts with the infeasible
solution obtained fromthe last feasible solution u by assigning a val ue
of 1 to the new variable associated with the last cut. This guarantees
that the dual solution to be obtained will differ fromall the previous
ones. Next the renaining variables are considered in a certain order, and
set to O (or, in the case of the last variable, to the nmaxi mumall owabl e
val ue), until the solution becormes feasible. The order in which the
vari abl es ui are considered is that of decreasing nunber of positive
coefficients in constraints of (D that are violated, with priority given
to variabl es ui corresponding to primal constraints that are oversatisfied
by the current cover.
Finally, a vector (u,s) generated by DUAL 1 or DUAL 2 may viol ate

condition (1) for S=S(x), where x is the current cover. |In such cases the
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algorithmgoes to PRRIMAL 3, in an attenpt to find a new cover X such

that (1) holds for S=S(X). Though our conputational experience has been

that PRIMAL 3 seldomfails to find such a cover, failure does sonetinmes

occur. In such cases we use DUAL 3 to nodify the solution u, while

weakening it as little as possible, so as to satisfy (1). DUAL 3

considers the variables u., ieM T(x), in decreasing order of JH PSCx)!, and

successively reduces their value until (1) is satisfied for S=S(x). Since

this latter condition always holds when all u { ietf\T(x), are set to O,

the procedure always ends with a solution having the required property.
Wi le DUAL 3 is used under clearly defined circunstances, DUAL 1 and

DUAL 2 can be used intermttently. DUAL 2 is conputationally

cheaper than DUAL 1 and guarantees a new solution, but DUAL 1 is

nore likely to produce an inproved |ower bound. W start with DUAL 1

and then use DUAL 2, except for every ~-th iteration, when we again use

DUAL 1. Based on sone conputational experinentation, we set {j,%«

4, Subgradient Optimzation,

VWi le the dual heuristics provide reasonably good feasible solutions
to (D at a low conputational cost, a sharper |ower bound could of course
be obtained by solving to optimality the |linear program (D). After
sufficient cuts have been added to the constraint set of (SC), the value
of the current problem (D nay exceed ZU’ thus bringing the procedure to
én end. However, the conputational effort involved in solving (D by the
sinplex nethod is considerable, and increases at |east quadratically with
the nunber of cuts added to the constraint set of (SC). On the other hand,
one can use subgradient optimzation to find an optimal or near-optimal

solution to (D at a conputational cost that seens to increase only linearly
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with the nunber of cuts added. This is what we are doing periodically

in order to generate |ower bounds stronger than those obtained by the dua
heuristics. Though the subgradi ent nethod consistently produces a stronger
bound than the heuristics, the cuts derived from the dual sol ution obtained
this way tend to be weaker than those derived fromthe heuristically
generated dual solutions. This is so because the reduced costs obtained

by the subgradient method do not usually satisfy (1), and the dual solution u
(together with the bound ue) has to be weakened in order to get (1) satisfied.

The subgradient method that we use is a specialization of the

general procedure discussed, for instance, in [6] or [5] . W wish to find
or approxi mate

max mn L(x,u) * ex + ue - UAX,

ueF xeG
where F and G are suitable relaxations (supersets) of the feasible sets

qf (D and (L) respectively, i.e.,

F 3 {uyuA<c O=<u <T;: Vi}
and

G=> {Xx]A&x >e, 0 s_x.J <1 Vj},
wher e ﬁi = mn ¢, Vi .

During every subgradient iteration, given the current vector u , we
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solve the problem
. k
(6) min L(x,u ),
xeG

and if x(uk) denotes an optimal solution to (6), we put dk =e - Ax(uk),

k+1 _ k k
u —PF(u +tkd).

Here the direction vector dk is a subgradient of L(x,u) at u = uk, the

scalsr tk is the step length, while PF(g) is the projection of the
vector g on F. The step length is of the form

Me (zU - L(x(uk),uk))

t:k = k“2

lla

where 0 < lk < 2 and the double bars denmote the Euclidean norm; and if
we take the relaxation of the feasible set of (D) to be F = {u|O<u<d},
then the projection of g=uk+tkdk on F is

if 8 >u

% 1
PF(gi) = < 8 if0< 3, <1
0

i-="1
if 8 < 0.

We tried two different relaxations G of the feasible set of (L).

The first one,
o .
G, {xer" |0 <% < 1, jeN},

makes the solution of (6) trivial: the optimum is attained at

=0 if uka. <e,

K kd 3
x,(u) < e(0,1] if ua, = ¢,
] k 3 i
(=1 if ua, > ¢,

iTd

k
For jeN such that u aj = cj, where any xje[O,I] is optimal, we have tried

to set xj =0, 1/2 and 1, and xj = 1 gave on the average slightly better
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results; so this is what we use.

For the second relaxation, we choose a (maxi mal) subset Mc M such

t hat lean»01 Vi. kel\_/l itfc, and define

£ x._ >1, ieM
jen, J
6, = [ xzer® T d,x, >d
2 \ jen 3350
0<x, <1, N
(. =7 = I
where
| - 1if u un-
¢ i €M
_l ot herw se
and do = |M\M|. .

The idea of using the inequalities defined by a famly of disjoint
subset s N':. cN ieM is borrowed fromJ. Et cheberry [4] . The extra
inequality that we add, which is the sumof the remaining inequalities
of Ax > e, usually nmakes GZ consi derably nore constrai ned.

Wile G is a tighter relaxation than G-L, it is also one for which
solving (6) is considerably nmore expensive. W therefore restrict ourselves,
when usi ng Gi, to approximating the optinumof (6) by a fast heuristic.

In this version, the subgradient procedure using G is about 1.2-1.3

times nore tine consumng than the one using G_L, but it also tends to be
nore reliable and to occasionally produce a slightly better bound. A

conmpari son on 5 randonmy generated 200 x 2000 problens (wth 8000 nonzero
matrix entries) showed the version using G2 to generate 0.61 times the

nunber of nodes (of the search tree) generated by the version using Gl’
and to require 0.85 tines the amount of total time required by the latter.
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Currently the main version of our algorithmuses Q.

VW have tested various strategies for choosing the value of the
par anet er \k in the definition of the step length t,K, and ended up with
setting \k * 2 at the start, and then dividing the current \k by 1/2 whenever
there is no inprovenment in the value of the Lagrangean for 7 consecutive

iterations of SGRAD.

To start the subgradient optimzation procedure, one needs an initia
sol ution uo. V¢ use for this purpose the vector u obtained fron the dua
heuristics when we apply SGRAD the first time to a problem then at subsequent

applications of SGRAD we use as up

the dual solution obtained in the |ast
application of SGRAD, which is usually considerably better than the one
obtained fromthe dual heuristics. The quality of the starting solution
apparently nakes a great difference in the conputational effort involved in
SGRAD:  the first application of SGRAD takes about 6 tines the computationa
effort required by subsequent applications to the same problem (anended with
cuts).

As to the overall useful ness of the subgradient method in our
algorithm our experience has been that though it is conputationally nore
expensive than the dual heuristics by 1 and often 2 orders of nagnitude,
subgradi ent optim zati on neverthel ess pays off. n the one hand, it
produces consistently better |ower bounds than the heuristics, by a
margin that tends to i ncrease with probl em size; on the other, it
provides a set of reduced costs that can be used by PRMAL 5 to generate
consistently better covers, and hence better upper bounds, than the other
primal heuristics. These findings are illustrated in Table 2. The
problens listed there are all randomy generated, 2% density set

covering problens, described in nore detail in section 8.
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Table 2. Improvement in bounds (in %) due to SGRAD and PRIMAL 5.
Probl em dat a | nprovenent (7.)
SGRAD
Lower bound Upper bound iterations
No. m n SCGRAD PRIMAL 5 to obtain
versus ver sus | ower
DUAL 1 PRI MAL 1 bound
2.2 200 413 8.18 1.84 172
2.3 200 300 3.37 3.02 119
2.4 200 500 11. 27 4.04 78
31 100 100 1.21 1.53 41
3.2 100 200 1.57 3.69 23
3.3 100 300 4.90 3.05 82
3.4 100 400 6.07 9.30 80
3.5 100 500 0.61 9.08 44
3.6 100 600 7.39 3.65 178
3.7 100 700 9.35 3.63 139
3.8 100 800 15. 13 3.15 164
3.9 100 900 2.87 6. 77 263
3.10 100 | 1000 6. 58 2.11 93
51 200 | 2000 13. 82 8.90 93
52 200 i 2000 15. 98 0 176
53 200 | 2000 15. 90 6. 22 96
54 200 | 2000 14. 95 0.78 148
5.5 200 i 2000 15. 90 6.19 97
56 200 | 2000 12. 38 5.31 99
57 200 | 2000 19.18 0.97 146
5.8 200 | 2000 16. 25 7.89 183
59 200 | 2000 8.74 3.37 123
5.10 200 | 2000 12. 29 6. 03 92
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Table 3. Average time per application of DUAL 1 or 2 and SGRAD

| DUAL 1 or 2 SGRAD
.No, of Tot al 1 Aver age No. of ! Total Aver age
i times time* ! tine tines | time** e time
used* spent ! for one used* spent . for one
y application i application
1,638 207.4 0. 127 181 623. 3 3.44

* Total for all 23 problens of Table 2

** DEC 20/50 seconds

Tabl e 4. Cutting plane algorithmw th and wi t hout SGRAD

Probl em dat a Wt hout SGBAD Wth SGRAD*
No. mi{ n |No. of | Time*~ No. of | Time**
cuts cuts
11 [15] 32 3 0.30 -0 0.73
12 {30} 30 12 0.58 0 0.77
13 30 | 40 14 0.77 18 1.28
1.4 |30 | 50 28 1. 44 10 1.57
15 (30 60 115 9.44 0 0.76
16 |30 60 77 4.75 29 2.00
17 30 { 70 >438 >120. 00 0 1.27 .
18 30 70 >480 >120. 00 0 0. 87
1.9 30| 80 211 23.35 0 1.12
1.10 { 30 | 80 47 3.40 6 1.23
1.11 } 30 | 90 >406 >120. 00 72 6. 60
1.12 1 30 | 90 >496 >120. 00 0 ; 1.16 _

* SGRAD applied at first and every 10-th iteration

** DEC 20/50 seconds
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Tabl e 3 shows the average tine needed for one application of
the heuristic DUAL 1 or 2, and one application of SGRAD, with the
averages taken over all applications to all of the 23 probl ens of
Table 2. The conparison shows SGRAD to be about 27 times (3.44:0.127 = 27)
as time consunming as DUAL 1 or 2. The factor 27 isy,. however, an average:
as nentioned earlier, the first application of SGRAD to a problemis
about 6 times as expensive as subsequent applications to the sane
problem (with added inequalities); in particular, the first application
of SGRAD requires about 100 times nore tinme than an application of
DUAL 1 or 2, while subsequent applications to amended versions of the
same problemrequire on the average 15 tinmes as nuch time as DUAL 1 or 2.
Finally, to support our contention that in spite of these great
time differences the use of SGRAD pays off, we show in Table 4 the
outcome of the cutting plane procedure with and w thout SGRAD, on a
set of 12 set covering problens taken fromthe literature and descri bed
in section 8 These problens, all of which except for 1.1 have unit
costs, were particularly hard for the cutting plane al gorithmwithout

SGRAD, which failed to solve 4 of themwithin a tine limt of 2 m nutes.

6. Fixing Variables and Cenerating Cuts.

Every time a new solution u to (D is obtained either by one of the
heuristics or by subgradient optimzation, the algorithmsearches for
vari abl es x.:I such that s;1 >z" - ue, and fixes themat 0, renoving the
correspondi ng indices fromN

Intuitively, one would be inclined to think that this feature of
the al gorithm becomes operative only after many iterations, when the

gap zrrzg, has been narrowed down considerably. This, however, was not the
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case on the randomy generated problems that we solved. Substantial

nunbers of variables were usually fixed at 0 quite early in the procedure,
and by the tine the first branching occurred, the nunmber of variables |eft
was al most always close to the nunber mof initial constraints, as can be

seen from the data of section 8.

To generate a cut, the algorithmuses a subroutine that inplenents
the procedure discussed in [2]. Let x be the current cover, S(x) and T(x)
defined as above, and Zy the current upper bound.

Step 0. Set W= 0, S=£jeS(x)|s.J)}, y =ue, t =1, and go to 1.

Step 1. Let

Ve =min {mx s., mn {s.]|s. 2% - w1,
t JeS J jeS J J u'l_l'

J=[ieSIs =y} Qe {ieNs 2y}, N - UM
| ed
Choose i (t) such that
| N e AQUY icTEn;()ner | ltl,\QOW
and let (j(t)} = Jf THyq).
The.n set W- WI(N )\ Q, y- vy + s.J(t). [f y>z" go to 2
O herwise set S - S\[j(t)},

- (0T g

sJ ot her wi se,

t « t+1 andgoto 1

Step 2. Add to (SC the inequality

Zx, >1
jeu
This procedure termnates after a number of iterations equal to the

nunber of jeS(x) such that sj >0, with an inequality satisfied by every
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cover better than the one associated with Zp and violated by the |ast

cover x. Typically, the cuts tend to becone successively stronger during
the procedure, the last few cuts often having just one or two |'s. The

total number of cuts required to solve a m x n problemincreases with both
mand n. For the randomy generated sparse problens solved in our experi ment
the nunber of cuts needed was typically less than 3mor n/3, as can be

seen fromthe results of section 8 This of course refers to the nunber

of cuts required when the cuts are used within the franmework of our
algorithmin the class discussed here, which also uses inplicit enuneration.
The cuts by thensel ves, w thout branching (but with .periodic use of SGRAD)
were able to solve all of the 20 test problens fromthe literature that we
could obtain, and all but one of the 10 test problens with m= 100 and

100 < n £ 1000 that we generated, as shown in section 8. As to the |arger
probl ens, six of the ten 200 x 1000 problens and four of the ten-200 x 2000
probl ens were solved by cutting planes only, w thout branching (see section 8

for details).

7.  Branching and Node Sel ection.

As nentioned in section 2, we branch whenever the gap z v 24,
decreases by less than e » 0.5 during a sequence of 4a iterations, where or
is the frequency of applying SGRAD (every a-th iteration). The actual
rule we use is slightly nore sophisticated: if for 3aiterations the
decrease in Z.U S is less than e® 0.5, then we branch at the first

iteration where the current (say the k-th) dual solution u gives a bound

greater than a weighted sumof the earlier bounds, nanely where

Ky 1 o
e > |£’|(;)k ld e
i-1
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If this requirement is not met for any of the next y iterationms,
and the decrease in the gap is still less than € = 0.5, then (i.e;, after
a total of 4y iterations) we branch.

We use two branching rules intermittently. The first one is
based on a disjunction (3), which is strenghened to (7) when used for
branching, so as to partition the feasible set:

P
) Vv (x,=0, jeQ, ; T x, >1, k=1,...,i-1)
1=1 1 17 jeq 3
k

The sets Qi for the disjunction (7) are constructed by a procedure
similar to Step 1 of the cut generating routine. The use of the same
criterion (of minimizing Nh(i)\Qi) as in the cut generating routine is
motivated by the attempt to guarantee that each subproblem created by the
branching will have at least one inequality with as few 1's as possible.

The second branching rule is a variation of the one proposed by
J. Etcheberry [4]. We choose two row indices i,keM, such that i is the
last element in the ordered set M, and k # i, with

I | = uhr%:#gluhmd’

and then branch on the disjunction

8 .=0, jeN, v x. >1).
(8) (xJ jeN, NN, ) (jeNz j2 )
1M
Whenever |Niﬂng| = 1, which is usually the case, the second term
ik’
branching dichotomy (xj=0)v(xj=1). However, a comparison of the rule based on

becomes xj=1, where {j}=N fN. , and (8) becomes a special case of the usual

(8) with the usual branching dichotomy combined with a choice rule for the
branching variable different from the one used here, has shown (8) to

be on the average considerably better.
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The choice between rule 1 (using the disjunction (7)) and rule 2
(using the disjunction (8)) is dictated by the followi ng considerations.
Since none of the two rules doninates the other, i.e., at certain nodes it
may be nore advantageous to use rule 1, whereas at other nodes (of the
same search tree) rule 2 may be preferable, we introduce a nmeasure of
relative efficiency of rule 1 (as conpared to the usual dichotony), and then
choose rule 1 whenever it neets the efficiency requirements. Wth the

traditional dichotony, the k-th level of the (binary) search tree contains
k k

2 nodes, with k variables fixed at each node, i.e., a total of k2 variables
fixed. In other words, in order to fix f = k2 variables by generating a
breadth-first search tree, one has to break up the feasible set into p=2
subsets. Substituting for k in the expression for f, we find that with the
usual dichotony, breaking up the feasible set into p subsets (all on the

sane |level of the search tree) makes it possible to fix a total of f - plog.-z
vari ables. Therefore, in order to use branching rule 1, i.e., the

di sjunction (7), which breaks up the feasible set into p subsets, we

require tha%

(i) 1] QF ><PR°gzp,

i.e., that the nunmber of variables fixed on all branches be greater than

cp times p|0%—p. As to the value of the parameter ¢y after some experinentation
we found that cp < 1 inplies that disjunction (7) will be preferred to (8)
about 2/3 of the t{ne, while cp_> 3 inplies the opposite. A judicious

mx of the two rules requires 1 <cp< 3. The current version of the

al gorithmuses cp = 1.

Besides condition (i), we have also found it useful to require that (ii)
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there be at nost one singleton anmong the sets Q v i=l,...,p, and that (iii) p
not exceed a specified constant, which we usually set to 8  Wenever
conditions (i), (ii) and (iii) are net, we use disjunction (7); otherw se
we use di sjunction (8).

Qur node selection rule is LIFG i.e., whenever available, we choose
one of the nodes created by the last branching. Wen rule 1 is used, we
choose the p nodes created by disjunction (7) in order of decreasing |C&|
and when rule 2 is used, we choose first the node defined by x.;o, jehl{hLK,
then the other. Wen a node is fathoned, we first |ook for an unfathoned
brot her node, and if none is available, we go to the father node.

Table 5 contains information concerning our branching rules. The
problens listed are all those anong the 200 X 1000 and 200 x 2000, 2%density
problens, (i.e., among the problens in sets 4 and 5), whose sol ution
required branching. The criterion for choosing the branching rule was
the one described above, with cp = 1. For each problem the table gives
the nunmber of branchings according to rule 1 and rule 2. Further, each
branching according to rule 1 is described by a sequence of nunbers in
par ant heses; where the length of the sequence is the nunber of branches
created, and each nunber in the sequence is the nunber of variables fixed
at 0 on the correspondi ng branch. Thus, for solving problem4.4 (wth
m= 200, n » 1000, density 2%, the code branched 3 tines, using each tine
rule 1 (disjunction (7)). The first branching created 5 new nodes
(subproblens), with 58 variables fixed at 0 on the first branch, 53 on the
second, 44 on the third, etc.

A typical search tree is illustrated in Fig. 22 it is the one
corresponding to problem5.1. The synbol(f}neans a branching based on
rule 2. The nunbers on the arcs stand for the variables fixed by branching

rule 1. At node 0, the algorithmgenerates 30 cuts, then branches according
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Table 5. Information on the use of the two branchipg rules

I Probl em data I No. of branchings |il No. of variables fixed on each branch, o
- according to i for every branching according to

. No. m a . Rule'l Rule 2 1 Rule 1

134 | 20 1000 3 0 (58,53, 44,15,6), (15,7,5), (15,65, 4) s
l 3.6 | 200 , 1000 6 1 (20,10,8,7,6,1), (24,12,10,9,5,3,1),
| l (7,5,2,2), (14,4,2,1), (16,14,11,4,4), (6,1) :
; i |
13.8 | 200 | 1000 2 2 (26,13,7,5,2,2), (8,7,1) |
| i
139 200 | 1000 6 5 (40,21, 10,9, 8,4,2), (18,15,10,3,2,1), f

| (14,13, 13,13, 2) | (ié,4,2), (25,1), (10,3, 1)

4.1 | 200 | 2000 5 3 (42,24,1), (15,14,14,9,3,3,2, 1),
(32,24,19,9,2), (8,6,2), (16,8,3,3)

4.4 | 200 | 2000 9 3 (35, 33, 33, 27, 6), (50,26, 3,2), (40,6,5,2,1),
(16, 10,5, 4,1), (20, 16,10,5,1), (41,12,9,5,3)
(7,7,6,2,1), (21,4,2), (30,16,5,3,2)

4.7 | 200 | 2000 2 4 (5,1), (36,11,5,5)

148§ 200 | 2000 4 2 (35,9,3,3,2,1), (23,8,8,3,2), (9,4,4,2)

(20,13,9,5,3,3,3,2)

1;4.9 200 | 2000 1 0 (44, 20,17, 10,3, 2)

to rule 2, creating 2 new nodes. Prior to branching, the upper and | ower
bounds are zU:,256 and zL=250. 58 respectively, and there are 204 vari abl es,
i.e., 1796 variables have been fixed at 0. Next the algorithmselects node 2,
generates another 30 cuts, inmproves the [ower bound to zt=250.83, and fixes
another 9 variables before branching, leaving 195. This tinme the branching
is according to rule 1, and 3 new nodes are created, with 1, 24 and 42 new
variables fixed at nodes 3, 4 and 5 respectively. Node 5 is chosen next, etc.

8. Conputational Experience wth
the Algorithmas a \Wole.

% have tested the algorithmas a whole on 6 sets of problens, that




we now describe. The problens are labelled with two nunbers separated

by a dot. The first nunber is the set to which the probl embel ongs, the
second one distinguishes the problens within the same set. Thus 2.3 is the
third problemin set 2.

Sets 1 and 2, containing 12 and 8 problens respectively, are from
Sal kin and Koncal [9], who account for their origin as follows. Problem11.1
was obtained fromC E Lenke, problem 1,8 fromI|BMBuffalo, and the
remaining problems in set 1 fromA M GCeoffrion. Al the problens in
set 1, except for 1.1, have unit costs. They all have randomy generated
coefficient matrices with 7% density.

Problem2.1 is attributed by Salkin and Koncal [9] to Arerican Airlines,
problens 2.6 and 2.7 to IéNINeMIYork, while the remaining problens in set 2
were randomy generated by H M Salkin. The problenms in set 2 have coefficient
matri ces whose density varies between 2%and 11% and randomy generated costs
in the range [0, 99].

Sets 3, 4, 5 contain 10 problens each, randomy generated by the second
author, with coefficient matrices of 2%density, subject to the requiremnent
that every colum has at |east one, and every row at |east two, nhonzero
entries. The costs are randonly generated fromthe range [1, 100].

Finally, set 6 contains 5 problens, also randomy generated by the
second author subject to the same conditions, with costs fromthe sane range,
but with coefficient natrices of 5% density.

Tabl e 6 conpares the perfornmance of our algorithmw th two other
procedures, that of Sal kin and Koncal [9], and of Lenke, Salkin and Soi el berg
[8], on the 20 Sal ki n-Koncal problens (sets 1 and 2). The procedure used by

Sal kin and Koncal is Gonory's all integer cutting plane algorithm while the
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Tabl e 6. Conpari son of algorithns on 20 problens fromthe literature

Profcil emdat a Sal ki n- Lenke- Al gorithmof section 2
: Koncal [9] Sal ki n- (wi thout branching)
j ND. m n Ti me* Spi el berg [8] No. of TI me* **
Ti me** cuts Total | SGRAD
[.1 15 32 0.51 2.7 0 0.73 | 0.46
123§ 30 0.41 5.3 0 0.77 | 0.46
13| 30 { 40 0.78 19.7 18 1.28 | 0.63
14 3] 50 16. 33 21.6 10 1.57 | 1.01
i
1.5 { 30 | 60 2.47 N 0O | 0.76 { 0.36
} 18.0
116 | 30 | 60 10. 07 29 1 2.00]| 0.9
i1.7 | 30 | 70 5. 66 . o ! 1271 0.94
i \ 20. 4 i
|1.8 | 30 { 70 468 |J 0 | 0.87 ] 0.39
; ;=
'1.9 | 30 | 80 5.99 ] 31. 2+ 0 | 112 0.73
| 1.10) 30 | 80 | 6.83 . 6 | 1.23| 0.73
'1.11{ 30| 90 16. 99 i 06 0 i 116 0.79
|1.12{ 30 { 90 19.16 72 i 660 1.76
1201 {104 | 133 5.70 424.0 22 | 803! 461
| 2.2 {200 | 413 26.71 625.9 6 ; 12.00| 7.10
2.3 1200 | 300 15. 90 461. 3 0 : 610 4.12
2.4 (200 | 500 22.70 803.5 0  6.23] 3.74
,2.54 50 | 450 >120. 00 144.5 0 : 206 1.24
i ! :
2.6 |36 | 455 - 18. 64 35.5 {0 : 176 | 0.55
2.7 | 46 | 683 117.85 56. 9 10 ' 594 3.3
2.8 | 50 | 905 117.87 | 670. 0 0 | 512/ 3.34

* UNl VAC 1108 seconds (about the sane speed as DEC 20/50)
| BM 360/ 50 seconds (4-5 tinmes slower than DEC 20/50)
DEC 20/ 50 seconds

+ Average tine for the two problens of the sane size

+= Tine limt exceeded




-31-

algorithmof Lenke, Salkin and Spielberg is a specialized inplicit
enuneration procedure, with an inbedded linear program Qur algorithm
sol ved each of these problens w thout branching, and on the l|arger problens
of set 2 its performance was an order of magnitude better than that of the
other two procedures. Note that about 1/2 of the total tine (in sone
cases nore, in others less than 1/2) més spent on SGRAD. The nunber of
times the subgradient procedure was used can be cal cul ated by dividing the
nunber of cuts by 10, and adding 1 to the result. The rest of the tine
was spent on primal and dual heuristics and cut generation

Note also that 7 of the 12 problens in set 1, and 5 of the 8 problens
in set 2, did not require any cuts. This does not necessarily inply that
.the l'inear programming, relaxation of (SC) had an integer solution in these
cases, but it does inply that the gap between the |inear programm ng
optinumand the integer optinumwas less that 1. This small gap apparently
did not nmake nost of these problens easy for the other two procedures, as
evidenced by their performance on problens 1.11, 2.3, 2.4, 2.5 2.7 and 2.8.
Qur procedure, however, can take advantage of the snall gap due to the use
of the primal heuristics.

Table 7 shows the performance of our algorithm still without
branching, on the 10 randomy generated problems of set 3. Note that
6 of these problens did not require cuts. As to the remaining 4 problens,
one of them (3.5) required only 4 cuts, while the other three required
| arge nunbers of cuts and one of them (3.8) was actually not solved w thin
the tine lint of 5 mnutes. Had we used the full algorithm (wth branching)
on these 3 problems, the nunber of cuts and the time needed would in all

i keli hood have been smaller. However, we ran the full version of the
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Table 7. Algorithm of section 2 without branching

2 Problem data No. of Time*

‘No. | m | n | cuts Total | SGRAD
3.1 | 100 100 0 121 | 0.57
3.2 | 100 ; 200 0 1.26 | 0.48
3.3 | 100 | 300 0 3.04 | 1.85
3.4 | 100 | 400 0 3.22 | 2.13
3.5 | 100 | 500 4 3.95 | 1.51
3.6 | 100 | 600 | 146 42.61 | 19.03
3.7 | 100 | 700 | 59 24.03 | 14.38
3.8| 100 | 800 | 682 | >300.00 | 65.06
3.9 | 100 | 900 0 13.27 | 11.18
3.10 | 100 | 1000 0 8.30 | 6.00

* DEC 20/50 seconds
** Time limit exceeded

algorithm only on problem 3.8, with the outcome that the problem was solved
in 92.24 seconds, with a search tree of 30 nodes and a total of 362 cuts.

Table 8 describes the performance of our algorithm (in its complete version)
on the 20 randomly generated test problems of sets 4 and 5. It shows the value
zopt of the optimum; the upper and lower bounds, as well as the number of
variables left, before the algorithm first branched; the number of nodes and
cuts, and, finally, the total time and the time spent on subgradient optimization.
Six out of the 10 problems in set 4, and 4 out of the 10 problems in set 5, did
not require any branching. Of those problems that did not require branching,

4 in set 4 and 2 in set 5 did not require cuts either. These 6 problems had a
gap of less than 1 between the linear programming optimum and the integer

optimum, and for some of them the linear programming optimum may actually be

integer (since we don't use the simplex method, we do not necessarily discover

this when we solve a problem).
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Table 8. Conplete algorithm on 2% density problens
(m= 200; n = 1000 for set 4, n = 2000 for set 5)
No. b Before first branching No. of ' No. of | Ti ne*
. upu 2 7 No. of nodes { cuts [ Total | SGRAD
i . variabl es in |
! left | search =-.
| tree |
4.1 429 429 | 429 0 l 1 20 31. 88 24. 04
4.2 512 512 512 0 1 0 18. 62 13.54
4.3 516 516 516 0 1 22 26. 02 16. 29
4.4 494 507 | 493.77 243 13 119 81. 28 50. 34
I‘ 4.5 512 512 | 512 0 1 0 13. 33 8.40
4.6 560 572 556. 83 258 31 580 316.22 | 179.28
U7 140 | 430 | 430 0 1 0 19.59 | 14.11
| 4.8 492§ 492 | 478.78 99 14 274 167.15 | 110.52
j; 4.9 641 648 | 636.57 224 37 686 416.46 | 215.41
1 4.10 514 514 | 514 0 1 0 22.34 ; 16.50
} 51 253 256 250. 58 204 30 473 327. 89 E 181. 20
5. 2*%* 3077 | 315 299. 32 408 51++ 625 >600. 00 206. 81
' 5.3 226 226' | 226 0 1 .0 26. 87 15. 83
! 54 242 247 240. 29 258 49 765 393.22 - 133.47
55 211 211 211 0 1 15 38.73 24.31
5.6 213 213 213 0 1 10 32.71 19. 47
5.7 293 296 291. 02 173 15 298 248. 65 152. 62
5.8 288 288 286. 09 125 28 413 241. 42 : 108. 72
59 279 281 276. 21 181 ‘ 7 118 140. 61 94. 60
5.10 265 265 265 0 | 1 0 25. 89 n 15. 38
. DEC 20/50 seconds
** Time limt exceeded
+ Best solution found before exceeding time [imt
-H 51 nodes generated, of which 30 fathonmed
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As to the renaining problens in sets 4 and 5, they were solved with
a reasonabl e conmputational effort, in terms of the nunber of nodes in the
search tree (never nore than 50), the nunber of cutting planes (severa
hundred at nost) , as well as in terns of conputing tine (between about 20
seconds and 7 mi nutes), except for problem5.2, which could not be solved
within the tine limt of 10 minutes. The best solution found for this
problem with a value of 307, is at nost 2.33%worse than the optinum
since <299.32> is the lower bound found before the first branching occurred.

From Tabl e 8 one can see again that the subgradient procedure in
nost cases takes up between 1/2 and 2/3 of the conputational effort. The
time needed to solve a problem strongly depends on the nunber of variables
left before one has - to branch: there is a high positive correlation
between this nunber, and the nunber of nodes in the search tree. There is
an even hi gher correlation, of course, between the nunber of nodes.in the
search tree and the total tine needed to solve the problem n the other
hand, cuts are cheap to generate, and the nunmber of cuts affects the tota
time mainly through the fact that after every a cuts the subgradient procedure
is applied (which in turnis costly). This can be seen, for instance, by
looking at the 4 problens in set 5 that required no branching. Problens 5.3
and 5.10, which required no cuts either, took 26-27 seconds to be sol ved
Problens 5.6 and 5.5, which required 10 and 15 cuts respectively, required
only 33 and 39 seconds respectively, i.e., about-1.24-1.45 times the tine
required for problens 5.3 and 5.10. The reason for this is that the
subgradi ent procedure was applied once to each of problens 5.3 and 5. 10,
and twice to each of problens 5.6 and 5.5 The reason the conputational

effort increased less than twice for the second pair of problens, is that
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probl em as discussed in section 5.

As can be seen from the above conputationa

discussed here is a reasonably reliable, efficient too

sparse set covering problens,

to problens that are too hard to be sol ved exactly.

of the famly of cuts fromconditiona

As problemdensity increases,

as wel |

the strength of the cuts di m nishes,

experi ence,

time to a

the al gorithm

for solving |arge,

as for finding good approxinate sol utions

However,

the strength

bounds strongly depends on sparsity.

and so

does the efficiency of this algorithm at least in its versions that we have

test

ed. For

relatively snal

wi t h sonewhat hi gher density,

probl em si zes,

the al gorithmcan cope well

as illustrated by problemsets 1 (7/0 density)

and 2 (2% - 11%density), on which it clearly outperformed the other two

procedures that had been tried on those problens.
this is unlikely to be the case.

per formance declines with probl emdensity,

To see how fast the algorithms

But for |arger problens,

we have run the code on a set

of 5 randomy generated 200 X 1000 problenms with 5« density (problemset 6).

The results are shown in Table 9.

Table 9. Conplete algorithmon 5%density probl ens
(m« 200, n = 1000)

|hb. | Best ! Before first | No. of nodes No. of Ti me* ’
i z br anchi ng in search tree cuts
! Y No. of CGene- Fat hored Tot al SGRAD :
| «D z, vari abl es| rated |
] | ef t
.17 | 141 | 143 | 132.07 | 189 143 116 2160 | >1800 | 842
l6.2* | 149 | 157 | 139.83 | 244 173 153 2412 | >1800 | 920 !
6.3 | 145 | 145 | 139.60 { 117 163 163 2481 1548 | 787
6.4 | 131 | 135 | 128.05 | 147 21 21 275 194 | 106 1
. | ;
i6.5" i 161 | 173 | 152.52 | 278 161 140 2425 | >1800 | 884 !

*

+

DEC 20/ 50 seconds

Time limt

exceeded
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Two of the 5 problens were solved within the 30 ninutes tine linit. .
By no neans acci dent dIIy, these two happen to be the problens with the snall est
nunbers of variables left before branching. For the renaining 3 problens,
the best solution found is guaranteed to be within 6% 6.4%and 5.2%
respectively, of the optinum though it could of course be much cl oser.
Though the al gorithm exceeded the time |limt before finishing 3 of the
five problens, fromthe data of Table 6 (ratio of fathoned versus unfathoned
nodes, ratio between nunbers of variables left before branching for the
unsol ved and the solved problens), it seens that all the problens coul d
be solved by a not too drastic extension of the tine linit. |In general,
the data of Tables 7, 8 and 9 show a certain reliability of the procedure
on randomy generated problens: the results are not wildly erratic, as it
so often happens with integer programmng al goriihrrs.

It is possible that a different version of our approach, that woul d
generate a larger nunber of cuts but retain only the stronger ones, and
rely nmore heavily on branching froma disjunction (7), would be nore
successful on higher density problens. It is also possible, even highly
probable, that a different backtracking rule, that would lead to earlier
processing of the nodes with the best |ower bounds, would provide a con-
siderably better bound on the quality of the solution obtained when the
procedure stops prenmaturely because of the time limt. These ideas, however,

have not yet been tested.
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