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Abstract

We describe an algorithm for the asymmetric traveling salesman

problem (TSP) using a new, restricted Lagrangean relaxation based on the

assignment problem (AP). The Lagrange multipliers are constrained so as

to guarantee the continued optimality of the initial AP solution, thus

eliminating the need for repeatedly solving AP in the process of computing

multipliers. We give several polynomially bounded procedures for

generating valid inequalities and taking them into the Lagrangean function

with a positive multiplier without violating the constraints, so as to

strengthen the current lower bound. Upper bounds are generated by a fast

heuristic whenever possible. When the bound-strengthening techniques are

exhausted without matching the upper with the lower bound, we branch by

using two different rules, according to the situation: the usual subtour

breaking disjunction, and a new disjunction based on conditional bounds.

We discuss computational experience on 120 randomly generated asymmetric

TSP's with up to 325 cities, the maximum time used for any single problem

being 82 seconds. Though the algorithm discussed here is for the asymmetric

TSP, the approach can be extended to the symmetric TSP by using the

2-matching problem instead of AP.
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1. Outline of the Approach

The traveling salesman problem (TSP), i.e., the problem of finding a

minimum-cost tour (or hamiltonian circuit) in a directed graph G = (N,A),

can be formulated as the problem of minimizing

ieN j«N 1J 1J

Z x - 1, j e N
1J

(1) Z Z c_.jc,

subject to

1, i e N
I JeN i J

(2)

(3) x t j c {0,1}, i . j e N

(4) x is a tour.

For (i,j) eA, c.. is the cost associated with the arc (i,j); for

Conditions (3), (4) can be replaced by

(5) x t j > 0, i,j € N

(6) E E * * x > a j , tcQ
jcN 1J XJ U

where (6) is a set of inequalities which, together with (2) and (5),

define the convex hull of all tours in G.

If S and T are node sets, we denote (S,T) = {(i,j) eA | icS, jeT}.

For any problem P, we denote by v(P) the value of (an optimal solution to) P.

We describe an arc premium/penalty-based branch and bound method for

solving TSP, which uses

(a) a new Lagrangean relaxation of TSP and a restricted Lagrangean

problem derived from it, which has constraints on the multipliers;
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(b) several procedures for generating inequalities which can be taken

into the Lagrangean function with a positive multiplier (premium or penalty),

without violating the constraints or changing the multipliers generated earlier;

(c) a new branching rule based on disjunctions derived from conditional

bounds.

We first outline the method, then discuss its various components in

detail.

The assignment problem (1), (2), (5) associated with TSP will be

denoted by AP. It is well known that any.integer solution to AP is either

a tour (hamiltonian circuit), or a collection of sub tours (a union of dis-

joint circuits). The Lagrangean problem mentioned under (a) is an assign-

ment problem obtained from AP by applying premia or penalties to certain

arcs, in a way which is equivalent to taking into the objective function,

in a Lagrangean fashion, some of the constraints (6).

From the set of inequalities (6) we extract a subset

(7) Z Z aj,x > aj, t c T c Q

icN jcN 1J 1J U

and call LP the linear program (1), (2), (5), (7). Though the set Q is at least

exponential in |N|, empirical evidence as well as theoretical considerations

indicate that there are relatively small subsets T of Q such that the value

of the corresponding LP comes very close to (or coincides with) that of TSP.

Using Lagrangean relaxation on (7) and denoting by w the vector of

Lagrange multipliers,we obtain the problem L(w,x), equivalent to LP,of

finding w > 0 to maximize z(w), where

(1') z(w)«'min z z (c - Z w a* )x. + Z w a*
icN jcN 1J tcT Z 1J 1J tcT C U

subject to
z x - i, icN

JCN 1J

(2) ] Z x - 1, j eN

(5) x t j > 0,



-3-

The Lagrangean relaxation L(w,x) of TSP can be used to generate lower

bounds on v(TSP). While L(w,x) may yield very strong bounds indeed,

depending on the choice of the inequalities (6), its solution via, say,

subgradient optimization, requires a considerable computational effort,

including the solution of the assignment problems associated with every

vector w generated during the procedure. Instead, we consider a restriction

RL(w,x) of the Lagrangean relaxation L(w,x). Let x be an optimal solution to

AP, i.e., to the assignment problem with cost function (1). RL(w,x) is then

the problem of finding w > 0 to maximize z(w) defined by (1'), (2) and (5),

subject to

(8) u± + Vj + £ wfca^

for some u,v cR .

Problem RL(w,x) has two properties which make it useful towards

solving TSP.

First, any u, v and w satisfying (8) and w > 0 is a feasible solution

to the linear program dual to LP; therefore the objective function value

of this dual linear program is a lower bound on v(LP), hence on v(TSP),

i.e., we have

Proposition 1. If u, v and w > 0 satisfy (8), then

(9) 2 &. + 2 v + 2 waJ<v(TSP).
ieN jcN J tcT

Second, while x remins an optimal solution to the assignment problem

with the modified objective function (I7 ), the changes brought about by

the penalties/premia wt, tcT, are likely to create new, alternative optima.
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Whenever such an alternative optimal solution x to the assignment problem

(I7), (2), (5) turns out to be a tour, it has the following property.

Proposition 2. If x satisfies with equality the inequality (7) indexed

by t for all t e T such that w > 0, x is an optimal tour.

Proof, x and (u,v,w) are feasible solutions to LP and its dual,

respectively. From the definition of x, we have

whenever x > 0. This, together with the condition of the Proposition,

means that x and (u,v,w) satisfy the complementary slackness conditions.

Thus x is an optimal solution to LP, hence an optimal tour.||

We start by solving the assignment problem AP in the free

variables . Next we use several different procedures for generating an

increasing sequence of lower bounds on v(TSP), by successively identifying

inequalities (7) that

(i) are not satisfied by the current solution x to AP, and

(ii) admit a positive multiplier w which, together with the

multipliers already assigned, satisfies (8);

and by setting the multipliers w each time to the greatest positive

value compatible with (ii). At any given stage, the admissible graph

GQ = (N,AQ) is the spanning subgraph of G containing those and only

those arcs with zero reduced cost, i.e.,

AQ » [(i,j)«A ju.+ Vj + Z V i j ' C l J J -

When no more inequalities (7) satisfying conditions (i) and (ii)

can be found, we store the bound given by (9) and try to find a tour in
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the admissible graph. If a tour is found which satisfies with equality

all inequalities associated with positive multipliers, it is optimal for

the given subproblem. If a tour is found which violates this condition

for some inequalities, attempts are made at finding new inequalities

which satisfy the condition and admit positive multipliers. If successful,

these attempts strengthen the lower bound, and they may also eliminate the

inequalities that are slack. In any case, the value of the tour (in the

original costs c ) provides an upper bound on v(TSP), while (9) provides

a lower bound for the current subproblem; and we branch. Finally, if no tour is

found in GQ, we add arcs to GQ in the order of increasing reduced costs until

a tour is found in the resulting graph. The cost of this tour again provides

an upper bound on v(TSP), while (9) still provides a lower bound for the

current subproblem; and we branch.

The assignment problems are solved by the Hungarian method, the

same method is used to recalculate the reduced costs whenever some u. and

v have to be changed. The constraints (7) are "subtour-breaking11

inequalities and combinations of the latter with*some of the equations

(2), but they are used here in a novel way. The bounding procedures are all

polynomial-time algorithms, considerably more efficient (in terms of improvement

obtained versus computational effort) than earlier approaches (like [3]), as

evidenced by the computational results of section 5. Searching the admissible

graph GQ for a tour is accomplished by a specialized implicit enumeration

procedure, with a cut-off rule. Finally, for branching we use two different

rules, one which derives a disjunction from a conditional bound [1], and one

which breaks up a subtour.

A preliminary version of our approach, with fewer and less sophisticated

bounding procedures, was discussed in [2].
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2. Bounding Procedures

At any stage of the procedure, the reduced costs

will be defined relative to the subset T'cTof inequalities already

introduced into the function (I7).

We use three types of inequalities (7), and we will denote by T-, T~

and T~ the corresponding subsets of T.

For teT, let 0 ^ S CN and S • N\S . An arc set of the form

Kt * (St'V

is called a (directed) cutset.

Clearly,the inequalities

(7a) Z x.. > 1, teT.
(i,J)«Kt

 1J

are satisfied by every tour, and so are the inequalities

(7b7) Z Z x < |St| - 1, teT.

i«st jcst
 1J

or, to preserve the direction of the inequality,

(7b) - Z Z x.. > 1 - |SJ, t€T 9.
ieSt JcSt

 iJ * 2

For a given set S , the "sub tour-breaking11 inequalities (7a) and (7b)

are equivalent: (7b) can be obtained from (7a) by subtracting the sum of

the equations

Z x - 1, itS.,

and (7a) can be obtained from (7b) by the reverse operation. Nevertheless,

the presence of inequalities associated with the same set S in both

subsets (7a) and (7b) need not be avoided, since it may enrich the set of dual

vectors (u,v,w) satisfying (8) and w > 0.
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Finally, for any k«N, St c N\{k} and St » N \ S t , the arc sets

K = (St,St\Ck}) and Kj - (St\{k},St)

are (directed) cutsets in the subgraph < N \ ( k } ) of G induced by N \ [ k }.

Proposition 3. The inequalities

( 7 C )

are satisfied by every tour.

Proof. Every xe(0,l}n that violates (7c) corresponds to a subgraph G '

of G which is either disconnected, or contains an articulation point k ;

hence G/ cannot be a tour.||

Actually, more can be said about the family (7c):

Proposition 4. In the presence of the constraint set (2), for every

keN and S tcN\{k}, the inequality (7c) is implied by the two subtour-breaking

inequalities associated with the node sets S U {k} and S respectively, i.e., by

(7b) X X x > -|sJ
ieStU{k} j«StU[k} 1J

and

(7b)2 - S 2 x > 1 - lst(
2 icS JS LJ

Proof. The inequality (7c) is the sum of (7b)-, (7b)2 and the

equations

X x.. « 1 , ieS t

jcN 1J

X x±1 - 1 , j «S .||
i€N 1J

The components of w associated with the inequalities (7a), (7b), and

(7c) will be denoted by \, p, and v respectively.



-8-

2.1* Bounding Procedure 1 starts by searching for an inequality (7a) which

satisfies conditions (i), (ii) of section 1, i.e., is violated by x and

can be assigned a positive multiplier without making any of the reduced

costs negative. Clearly, these conditions are satisfied for the inequality

(7a) defined by a cutset Kt, if and only if

(10) Kt PI A Q - 0,

where A~ is the arc set of the admissible graph GQ.

To find K satisfying (10), we choose any node i eN and form its

reachable set R(i) in GQ. If R(i) » N, there is no cutset (S,S) with i eS,

satisfying (10), so we choose another i eN. If for some i eN, R(i) t N, then

Kt * * S k * V satisfies (10) for S « R(i) • Furthermore,

(11) \t - min c
Z (i,J)«Kt

 LJ

is clearly the largest value that can be assigned to the corresponding

multiplier without making some reduced costs negative. We thus assign

X the above value and set

i.e., we apply a premium of X to each arc of the cutset K . As a result

of this, the arcs for which the nrj.niTmnn in (11) is attained, become

admissible, and we add them to AQJ thus enlarging the admissible graph GQ.

Next, we extend the reachable set R(i) of node i by using the new

arcs of GQ and either find R(i) » N, or locate another cutset K satisfying

(10). If R(i) » N, again we choose another node.

This procedure ends when R(i) = N, V i cN. At that stage GQ is

strongly connected, and

K n A Q ̂  0

for all cutsets K » (S,S), ScN.
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Proposition 5. Bounding Procedure 1 stops after generating at most

2"(h-l)(h+2) cutsets, where h is the number of subtours in x.

Starting with node i^ belonging to subtour S., every cutset adds to G

an ate which includes into R(i^) a new subtour. After generating at most h-1 cut-

sets, RCi^-N. Now starting with node i2 belonging to subtour S2t$l and proceeding

to find R(i2), again at most h-1 cutsets can be generated. However, since we now

have i2c R(i^) and i^e R(i2), the number of strong components of the current

graph GQ is at most h-1. Thus, continuing to find R(i.) for some node i-

belonging to a subtour S3, S^S^Sj, at most h-2 cutsets can be generated,

and since the vertices of S , S2 and S3 now form a strong component, the

number of strong components in the current graph G- is at most h-2. Continuing

in the same way, the number of cutsets generated by the procedure (until Go

becomes strongly connected) is at most

(h-1) + (h-1) + (h-2) + (h-3) +...+ 1 » j(h-l)(h+2).|]

Since the optimal dual variables u^ v. associated with x are not

changed by this procedure, and since

E u + Z v - ex » v(AP),

if Tx is the index set of the inequalities generated by Bounding Procedure 1, the

lower bound obtained for the current subproblem is, from Proposition 1,

(12) » v(AP) + E \ .
tTtcT,

2-2- Bounding Procedure 2 starts by searching for an inequality (7b) which

is violated by x and admits a positive penalty without changing any of the

Xti t eT^. If S^,...,Sk are the node sets of the h subtours of x, every

inequality (7b) defined by St, t - l,...,h, is violated by x; but a positive

penalty ^ can be applied without violating the condition that x. . > 0

implies c » 0, only by changing the values of some u. and v., and only if
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an additional condition is satisfied. This condition can best be expressed

in terms of the assignment tableau used in conjunction with the Hungarian

method. A line of the tableau is a row or a column, a cell of the tableau

is the intersection of a row and a column. Cells correspond to arcs and

are denoted the same way.

Let S be the node set of a sub tour of x, let

At » C(i,j) eAQ | i,j eSt]

and

A; - C(l.J)cAt |5 t j > 0}.

Proposition 6. A positive penalty can be applied to the arcs with

both ends in S. if and only if there exists a set C of lines such that

(i) every (i,j) cA' is covered by exactly one line in C,

(ii) every (i,j) eA \A' is covered by at most one line in C,

(iii) no (i,j) cA 0\A t is covered by any line in C.

If such a set C exists, and it consists of row set I and column set J,

then the ^ ^ 1 ™ ™ applicable penalty is

(13) n - min c ,
(i,J)«M 1J

where

(14) M - (I,J) U (I,St) U (St,J)-

Proof. Sufficiency. Suppose there exists a line set C, consisting

of row sets I and column sets J, satisfying conditions (i), (ii), (iii).

Then adding an amount n > 0 to c for all (i,j) e (S ,S ), as well

as to all u,, i € I, and all v., j cJ, produces a set of reduced

costs c' . such that c' . * 0 for all (i,j) eA^, since C * IUJ satisfies (i).

Further, from property (ii) of the set C, c^. > 0, V (i,j) eAt\A^; and from
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(iii), Z'L. = c±. = 0, V (i,j) « A0\At. Thus the only reduced costs

that get diminished as a result of the above modification, are those

associated with arcs (i,j) «A for which either (a) nothing is added to

cj,j and p, is added to u± or to vj5 or (0) ̂  is added to Z±. and

to both ut and v^. The two sets of arcs for which («) holds

are (I,§t) and (§t,J); whereas the arc set for which 0) holds is (I,J).

The union of these three arc sets is M defined by (14). Thus a positive

penalty at most equal to ^ defined by (13) can be applied to the arc set

(St,St) in the above described manner without producing any negative reduced

costs.

Necessity. Suppose a penalty n > 0 can be applied to the arc set

(St,St). Since adding n > 0 to Z±y V (i,j) e (St,St), produces positive

reduced costs for all (i,j) eAfc, in order to obtain reduced costs c'. . = 0

for all (i,j) eA^, one must increase by p, the sum u + v for all (i,j)eA'.

It is easy to see that if this can be done, then it can be done by adding n to

u£ or Vj (but not to both), for every (i.jjeA^ hence there exists a set C of

lines satisfying condition (i) . Further, if (i,j) S A ^ , then n cannot be added

to both Ui and v. without creating c' < 0, hence C must satisfy (ii). Finally,

if (i»j) eAQ\At, then p, cannot be added to either u. or v. without making c!. < 0,

hence condition (iii) must also hold.||

Given the node set S of a subtour, we have to check whether a set

of lines C satisfying (i), (ii), (iii) exists. This can be done as follows.

First, every row i eS t such that (i,j) «AQ for some j eN\S , and

every column j «S £ such that (i,j) eAQ for some i eN\S , can be ruled out

as a candidate for entering C. Let R and K be the index sets of such

rows and columns respectively,, and let

Aj and

and
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Since by (i) every cell of A' must be covered by at least one line in C,

C must contain IJJ J-. For the same reason, if

(15) Aj 0 R 0 K ̂

then no positive penalty can be applied to the arc set (S ,S ).

Since by (i) and (ii) every cell of A' must be covered by at most one

line in C, if

(16) Afc fl Ij 0 Jt * 0,

then again no positive penalty can be applied to the arc set (S ,S ).

Now assume neither (15) nor (16) holds. Then if (I ,J ) covers A', we set

C - I1 U J^ and we are done; otherwise we use the Hungarian algorithm to

complete the search for a cover satisfying (i), (ii), (iii). If such a

cover exists, the Hungarian algorithm finds it, and u given by (13) can be

applied as a penalty; otherwise the Hungarian method finds a cover which violates

some of the conditions (i), (ii), (iii), in which case no positive penalty can

be applied.

If T2 is the index set of the inequalities (7b) which admit positive

penalties p, , we have the following

Proposition 7.

(17) B2 ' Bl 4 "

is a lower bound on the value of the current subproblem.

Proof, Whenever a penalty M> > 0 is applied to an arc set (S ,S )

associated with a constraint (7b), the cost function of AP is modified, and

the value of the solution x, hence also the value of a solution to the dual

of AP, the assignment problem with the modified costs, is increased by

l|St'|MV Thus> a f t e r applying JT | penalties u , the value of an optimal

solution (u,v) to the dual of AP is
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Z <i. + I v - v(AP) + Z
ieN jeN J

Using Proposition 1, and noting that a!l • 1 for tel, and a* = 1 - |s |

for t e T-, we obtain the lower bound

2- E fi.+ S *. + E X + E (l-|St|)u.
ieN j«N J teT teT c

B 2 - E fi.+ S
ieN

- v(AP) + Z \ + 2 n
teT t«T2

, .

2.3. Bounding Procedure 3 searches for inequalities of the form (7c) which

are violated by x and admit a positive multiplier v without requiring

changes in the multipliers assigned earlier. This is done by checking for

each node whether it is an articulation point of GQ. If node k is an articula-

tion point, i.e., if the subgraph ^N - [ k ^ of GQ is disconnected, with Sfc

as one of its components, then denoting K^ » (St,?t\{k}) and K" » (? \[k},S )

we have

K£ n A Q - 0, K£ n A Q » 0.

Thus we can apply a positive premium to the arcs in the pair of

cutsets ¥?., K*, whose value is

(18) v. » min c. ..

If T3 is the index set of ail those inequalities (7c) found to admit

a positive multiplier, at the end of Bounding Procedure 3 we have (from
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Proposition 1 and (17)) the lower bound

(19) v(AP)
teT,

Z
teT,

If at any time during the Bounding Procedure the current lower bound

matches (or exceeds) the upper bound given by the value of the best

available tour, the current subproblem is fathomed and we turn to

another node of the search tree. Otherwise, after obtaining the bound

B~ we try to find a tour in GQ.

2.4. Example 1. Consider the 9-city TSP whose cost matrix is shown in Table 1.
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Table 1

The solution to AP has value 31. The reduced cost matrix [c\ .] is

shown in Table 2 and the solution x is given by x. « 1 for those (i,j)

corresponding to boxes in that matrix, x

admissible graph is shown in Fig. 1.

ij
0 otherwise. The corresponding
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Bounding procedure 1. Cutset ^ » ( {1,2,3}, {4,5,6,7,8,9} admits \ - 4,

and cutset K2 • ( {4,5}, {1,2,3,6,7,8,9} ) admits ^ - 3. The lower bound,

from (12), becomes B. « 31 + 4 + 3 » 38. The new reduced cost matrix is shown

in Table 3 and the corresponding admissible graph in Fig. 2.
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Fig 1, Graph G^ defined by the AP solution.

Fig 2. G* after bounding procedure 1.
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Bounding procedure 2. The subtours of the AP solution are (1,2,3), (4,5) and

(6,7,8,9). Subtours (1,2,3) and (6,7,8,9) do not admit positive values of

^ . However, inequality (7b) for subtour (4,5) is

- (x45 + x54) > -1,

and a set C of lines of the matrix of Table 3 satisfying the conditions of

Proposition 6 for this subtour is given by: (row 5, column 5). From this

set C we compute p, » 2. From Proposition 7, the lower bound becomes

B2 =* 38 + 2 = 40.

The new reduced cost matrix [c ] is shown in Table 4, and the corresponding

admissible graph in Fig. 3.
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Bounding procedure 3. Vertex 8 is an articulation point of the admissible

graph of Fig. 3. The cutsets corresponding to this articulation point are

K^ = ([1,2,3}, [4,5,6,7,9}) and K^ = ([4,5,6,7,9}, [1,2,3}). Applying (18) to

Table 4, we obtain v =2, corresponding to element (5,1). From (19) the lower

bound becomes B = 40 + 2 = 42. The new reduced cost matrix and the corresponding

admissible graph are shown in Table 5 and Fig. 4 respectively.



Fist. 3. G~ after bounding procedure 2.

Fig. 4. Gn after bounding procedure 3.
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3. Finding a Tour and Improving the Bound

Establishing whether a graph contains a tour (i.e., is hamiltonian)

is, from the point of view of worst-case analysis, of the same order of

difficulty as finding an optimal tour. However, for the vast majority of

all possible graphs, the first problem is incomparably easier than the second

one. We use a specialized implicit enumeration procedure, the multi-path

method of [4] , ch. 10, for finding a tour in GQ if one can be found without

exceeding a given time limit. Let x denote the solution associated with such

a tour. If x satisfies with equality all inequalities associated with positive

multipliers (i.e., if the tour defined by x crosses exactly once each cutset K ,

contains exactly |sj - 1 arcs with both ends in S for all sets S , t cT ,

and contains exactly one arc of each pair of cutsets, K', K", teT 3), then

x defines an optimal tour for the current subproblem, and the latter is fathomed.

For example, after bounding procedure 3, when GQ is the graph of Fig. 4,

the following tour is detected in GQ: H*(l,2,3,8,9,6,7,4,5,l). This tour

satisfies with equality all four constraints with positive associated

Lagrange multipliers; i.e., H contains exactly one arc of each of the cutsets

Kĵ  and K2, contains exactly one arc of the subtour {(5,4), (4,5)}, and

contains exactly one arc of the set K^ U K1 .̂ Thus, H is an optimal solution

to the TSP and B3= 42 is its value.
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If an inequality that is slack for x belongs to one of the sets (7a)

or (7b), we attempt to strengthen the current lower bound by introducing

some new inequalities (of the same type) that are tight for x, and that

admit positive multipliers. If the attempt is successful, it may also

result in the removal of the inequality that is slack for x.

3.1. Bounding Procedure 4. Suppose the inequality (7a) associated with

the cutset K is slack for x, i.e., the tour H defined by x intersects Kfc

in more than one arc, and let HTKt - £(1^ j^ ,..., (i , j ) }. For every

(i ,j ) e HOK , let Sr be a set of nodes containing j and such that, denoting

Sr • N\Sr, the cutset K - (5T,Sr) contains no other arc of H than (*-rJr)-

Then the inequalities

Z x > 1, r - l,...,p
1J

are all satisfied with equality by x. Since every K. contains an arc with

zero reduced cost, namely the arc (i ,j ) also contained in K , the above

inequalities do not admit a positive premium, unless the premium X

applied to Kt is reduced. If this is done, however, then a positive

premium may be applicable to several of the sets K^, and the sum of these

premia may well exceed the amount by which X must be reduced, i.e., an

improvement of the lower bound may be obtained. The conditions under which

this is possible are stated in the next two propositions.

Proposition 8. The tour H intersects the cutset K • (§r,Sr) only in

the arc (ir>iv)>
 if a«* °»ly if the arcs of H with both ends in Sr form a

path whose first node is j .
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Proof. Let H = (i(l),...,i(n)}, and without loss of generality,

assume d r»J r) * [i(l),i(2)}. Now suppose either Sr = (j(2)}, or the

arcs of H with both ends in Sr form a path (i(2),... ,i(k) }. Then H

intersects the cutset K^ = (S^S*) in the single arc [i(l),i(2)] « (i ,j ).

Conversely, suppose Sr # [j(2)} and the arcs of H with both ends in Sr

either form a path P whose first node is not j(2), or do not form a path. In

the first case, HfTK^ = [i(h) ,i(h+l)], where i(h+l) is the first aode of P.

In the second, the arcs of H with both ends in Sr form k paths P-. ...,P, ,
1 ' k'

with k > 2; and £rKtr --CKh^.Khj+l)] f... ,[1(1^) ,10^+1)] f where l(hr+l)

is the first node of Pr, r =* 1,... ,k. \ \

Proposition 9. A positive premium can be applied to the cutset K

(provided that \t is decreased) if and only if

(20) ^ V n A0 * 0'

If R ̂  0 is the set of those r e {l,...,p} for which (20) holds, the

maximum premium applicable to each K̂ ., reR, is

(21) Xr » min [\., min c. ) > 0;

provided the premium X applied to K is replaced by

(22) . X « X - max Xr.
rcR

This replaces the current lower bound B by

(23) B7 » B + Z Xr - max Xr.
rcR reR

Proof, A decrease in X increases the reduced costs of all arcs

of K ; hence makes it possible to apply a positive premium to the arcs
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of those, and only those, cutsets K satisfying condition (20) The

maximum size of the premium on I^r is X defined by (21), positive for

those r for which (20) holds. The premia XT are however applicable only

if X is diminished by the amount of the largest premium applied to the

arcs of any cutset K^ i.e., only if X. is replaced by X of (22)

(otherwise some of the reduced costs become negative). If this is done,

the current lower bound B is replaced by

B7 - B + Z XT + (X - X )
reR

which yields (23) after substituting for \t.||

Bounding Procedure 4 looks for cutsets K to which a premium X > 0

had been applied and which are intersected by the tour H in more than one

arc. For each arc (i ,j ) of fl that belongs to such a cutset K , we try

to find a set S of nodes containing j and satisfying the conditions

of Propositions 8 and 9; i.e., such that the arcs of H with both ends in Sr

form a path whose first node is j , and that the cutset K^ • (Sr,Sr)

satisfyies (20). As a matter of practicality,we first try |srj * 2, then

|Sr| » 3 etc., until either we find a set which satisfies (20) or we find

out that none exists. Taking the candidate sets in this order makes sense,

since smaller sets Sr define smaller cutsets K^ over which one takes the

minimum in (22) to define the premia \r.

If no sets S with the desired properties is found, we take another

* r
arc of HDK t. Otherwise we compute X , the premium to be applied to the

cutset K r̂, using (22); and then take the next arc of HD K . When all arcs

of HHK^have been examined, we compute the new value X of the premium
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applicable to the arcs of K,., as given in (22), and replace \fc by \ All

this replaces the reduced costs c. . by

: i j - *• ( i . j ) eK \ K . , r e R

c ^ - A. + max A. ( x , j ) e K (IK , r e R
scR ^ c

c + max X8 (i,j) « K \ ( U Kts)
_ S«R C seR tS

^ cij all other (i,j) eA

and the lower bound B by B' defined in (23). If \ft > o, the inequality

associated with Kfc (which is slack for x) continues to be represented in

the Lagrangean form (I7). If, however, \ - 0, i.e., max \r - X , then
reR t

the inequality corresponding to K,. is removed from (I7) and we have

succeeded in replacing this constraint, slack for the solution x, with a

set of inequalities that are all tight for x.

If Xl is the index set of those inequalities (7a) that are slack for

x and for which |R| ̂  0, and if we attach a subscript t to the index sets

R associated with each cutset Kt and to the premia X
r indexed by R, then

at the end of Bounding Procedure 4 we have the lower bound

(24) B 4 - B3 + £ Z X* - Z max \*

3.2. Example 2. Consider the reduced cost matrix of Table 6 resulting from

the solution of AP for an 8-city TSP. The value of the AP solution is v(AP)

• 50. The admissible graph is given in Fig. 5.
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Table 6

Applying bounding procedure 1 and taking cutset Kj» ([1,2,3,4} {5,6,7,8})

we obtain X.̂ - 3 and hence B = 53. The reduced cost matrix [c. .] is shown

in Table 7 and the admissible graph GQ in Fig. 6.
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Bounding procedure 1 is complete and bounding procedures 2 and 3 are

unsuccessful in improving the bound beyond B » 53.



Fig. 5. Graph GQ defined by the AP solution.

\

t V

f

(X=3)

Fig. 6. G after bounding procedures 1, 2 and 3.
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A tour H = (1,5,6,2,3,7,8,4,1) is detected in GQ, but H contains

two arcs of the cutset K-, and is therefore not necessarily optimal.

Applying bounding procedure 4 to L, we identify the cutsets K . =

([1,2,3,4,5,6], {7,8}) with \J»2, and K 2» ({1,2,3,4,7,8}, {5,6}) with
2
\ = 2, while reducing the multiplier associated with cutset K^ from

Xx- 3 to Xf 1.

The new reduced cost matrix is given in Table 8 and the associated

admissible graph is shown in Fig 7.
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The lower bound is now improved from 53 to B, * 53 + 2 + 2 - 2 * 55,

as given by (24).

Next we turn to the inequalities (7b).

3.3. Bounding Procedure 5. Suppose the inequality (7b) defined by the

node set S is slack for x, i.e.-, the tour 3 contains fewer than |S |-1

arcs of the set (S ,S )• Let G be the subgraph of G induced by the arc

set H n (S ,S ), i.e., the graph consisting of those arcs of the tour H

with both ends in S , and the end-nodes of these arcs. Note that

H (1 (stf
S
t) ffl^y

 b« «npty, since it is possible for a tour to contain all



Fig. 7. Gn after bouading procedure 4.
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nodes in S without containing any arc with both ends in StJ and when this

is the case, no new inequalities can be derived from S^.

Assume now that H f) (S^S ) £ 0, and let C ,...,C be the (connected)

components of G . For q$Q « 0»-»->s}, let S and A denote the node set

q q

and arc set, respectively, of C . By construction, each C is an open

(directed) path, with 2 < |Sq| < |St| - 1 and |A
q| * Jsq| - 1; hence x

satisfies with equality each of the inequalities

S q S qx.j < |sq! - i . qcQ

i e Sq j e Sq 1J

or, to put them in the form (7b),

(25) - £ £ x > 1 - |Sq| , qcQ .
i e Sq j c Sq 1J

Since (Sq,Sq)(lAo ^ 0 ,VqcQ , these inequalities do not admit a positive

penalty (without a change in the dual variables u,v) , unless the

penalty M* associated with S is reduced. If, however, this can be done,

then each of the inequalities (25) admits a positive penalty and the current

lower bound may be strengthened. The next proposition states the conditions

for this.

Let F be the set of those arcs of 6 having both ends in S , but not

both ends in the same set Sq , for any q e Q; i.e., let

F - (S.,S ) - U (Sq,Sq) .
C t t qcQ

Proposition 10. A penalty i±* > 0 can be applied to each of the arc

sets (Sq,Sq), qeQ (provided that the penalty u is decreased), if and only

if

(26) Ft fl AQ * 0 .
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If (26) holds, then

(27) u = min c. . > 0 ,= min c. .
(i,j)eF t

l J

and the penalty |±t can be applied to each arc set (S
q,Sq) provided that the

penalty u>t applied to (St,St) is replaced by l*t - M»* . This replaces the

current bound B by

(28) B B + (|Q| - 1)* .

Proof. Since (Sq,Sq) C (St,St) and (S
q,Sq) n AQ * 0 , Vq €Q , a positive

penalty ^* can be applied to any (and all) of the arc sets (Sq,Sq) if and

only if the penalty nfc applied to the arc set (St,St) can be reduced by the

same amount y,t . This, however, is possible if and only if no arc in the

set Ffc has a zero reduced coat (i.e., condition (26) is satisfied)

*
and nt does not exceed the reduced cost of any arc in F . When

these conditions are present, all arc sets (Sq,Sq), q«Q , can be penalized

by the amount |±* specified in (27), provided the penalty ^ on the arc set

(St,St) is replaced by ^ - j±* . The effect of all this on the lower bound

is to add y,* as many times as the number |Q| of components of G , and to

subtract JJ,* once; i.e., to add to the current bound B the amount

(|Q| - D * * • II

Bounding Procedure 5 takes an inequality (7b) that is slack for £, forms

the associated arc set Ffc defined above, and checks condition (26). If (26)

is not satisfied, nothing can be done, and the procedure goes to the next

ineqxiality that is slack for x. if (26) holds, we calculate »* given by (27),
t

and penalize by p,* all arc sets (Sq,Sq),qeQ, defined by the components of

the graph G ; while replacing the penalty y, on the arcs of (S ,S ), by

M» - n* . This replaces the reduced costs c . . by
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c

and the current lower bound B by B" defined by (28). If y, < ̂  the

inequality (7b) defined by the vertex set St (which is slack for x)

continues to be part of the Lagrangean expression (I7); if, however,

M»t - U^, i.e. the penalty associated with the inequality in question

becomes zero, then we have succeeded in replacing this inequality in (I7)

by a set of other constraints that are all tight for x .

Next the procedure goes to another inequality (7b) that is slack for

x. When all such inequalities have been examined, let T- be the index set of

of those among them for which condition (26) was satisfied, and for each

t € T2, let |Qt| be the number of components of the graph G . Bounding

Procedure 5 then produces the lower bound

(29) B - B4 + E +<|QJ-Ol** •

teTj .

Finally, we turn to the inequalities (7c).

3.4. Bounding Procedure 6, Suppose the inequality (7c) associated

with the articulation point k and the cutsets K^ » (S^ S^ \ [k}),

Ky/= (? \{k},S ) is slack for x, i.e., the tour H defined by x contains more than

one arc of the set K^UK", and let H fl (K^ U K^ ) - l(i r j^) ,..., (ipf Jp) }. For

every (ir,Jr)e£n (K^UK^), r * l,..-,p, we will specify a node set

SrCN\{k} such that,denoting S* » N\Sr and K^ « (Sr,?r\Ck}), K^r « (s'XCk}) ,S
r),

the only arc of H contained in K ^ U K ^ is (ir,Jr).
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Proposition IX, The only arc of H contained in K' U K " is (i ,j ),

if and only if S = S\{k], where S is the node set of one of the two paths

Px = {k,...,ir} and P2 - £jr,...,k} in H.

Proof. Assume S « S\{k], where S is the node set of P- or P-. In

the first case, H O K ^ - {(ir,Jr)} and H O K ^ = 0; in the second, H d K ^ = 0

and HHK^ r - {(ir,Jr)}. In both cases, (ir»Jr) is the only arc of H contained

Conversely, let (i ,j_) be the only arc of H contained in K' U K " .

Then either [(i^j^} * H O K ^ and HPIK^. - 0, or ((ir,Jr)} - HOK^, and

^ / * r

HflK = 0. In the first case, H enters S from k rather than from some node

of S^Mk}, since HflK^ = 0 ; and it exits Sr exactly once, through iy;

hence Sr = S\(k}, where S is the node set of P-. In the second case, H

exits Sr through an arc whose front end is k, rather than some node of

ST\{k], since HflK^ = 0; and it enters Sr exactly once, through j ;

hence Sr - S\{k}, where S is the node set of P2.||

Thus, if the node sets Sr, r » l,...,p, satisfy the conditions of

Proposition 11, then the inequalities

are all satisfied by x with equality. The next proposition states the

conditions under which a positive premium can be applied to the sets K

Proposition 12. A positive premium can be applied to the arc set

Ktr U Ktr lf and ° n l y if

(30)
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If R ̂  0 is the set of those re{l,...,p} ,for which (30) holds, the

maximum premium applicable to each K' U K ' , reR, is

(31) vr * min{v min c },
t (U)eK 1J

where K » <Ktr
 UKtr)NjCt; P r o v i d e d t h e P r e m i u m v

t applied to Kt is

replaced by

(32) v » v - max v .
C C reR

This replaces the current lower bound B by

(33) B ' » B + E vr - max vr.
reR reR

Proof. Analogous to the proof of Proposition 9.||

Bounding Procedure 6 looks for indices t€£~ for which a positive

premium v has been applied to the arc set K^UK^ , and for which

Hn(K^UK^) » {(i1,j1),...,(ip,jp)}, with p > 2. Given such a t « 3 >

for each re{l,...,p} we use the node set of the path Pr = (k,...,ir) in H,

after removing from it node k, to derive an arc set of the form K ^ r U K ^

defined in Proposition 11. We then check whether K ^ U K ^ satisfies (30),

and if so, we calculate the premium v to be applied to K' UK''; otherwise

we move to the next re(l,...,p}. When all arcs of Hn(K^UK^) have been

examined, we compute the value v of the premium applicable to the arcs

of K , as given by (32), and replace v by G . All this replaces the

reduced costs c.. by
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c' =
i j

-

c .

c .

C .

r
- V

- v r +

. + max
seR

max v
S€R

s
V

., reR
Ui. V.JL L.

(i,3)«(Kt
/
rUKt'

f
r) nKt, reR

(i,3)«Kt\ U (^sUK^s)
seR

all other (i,j)eA

and the lower bound B by B7 defined in (33).

As in the case of Procedures 4 and 5, if v = 0, the inequality

associated with K'UK''is removed from the Lagrangean function (I7),

otherwise it stays there with the new premium.

Let T^ be the index set of those inequalities (7c) that are slack for

x and for which |R| # 0, and let us attach a subscript t to the index

set R associated with K' U K7/ and to the premia vr indexed by R. At the

end of Bounding Procedure 6 we then have the lower bound

(34) B - B + I Z s>\ - £ max vr.
tex^ rcRt t « 3 rtRt

Naturally, if at any stage of the bounding procedures described above

the lower bound for the current subproblem matches the upper bound on v(TSP)

given by the value of the best tour at hand, the current subproblem is fathomed.

At this point we may find ourselves in one of two possible situations:

(a) w e have found a tour in GQ, and used it to obtain the lower bound B$

on the value of t^e current subproblem; or (P) the attempt to find a tour was

unsuccessful, and B^ is the best lower bound we have for the current

subproblem. In case (j3) , we define G » (N,A ), with A » ((i, j)eAJc\ . < e},

where the cT. . are the current reduced costs and e is the smallest number

for which we are able to find a tour in G within the given time limit. In
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either case, we denote by H the tour at hand, by ic the associated

solution, by c\., (i,j)cA, the last set of reduced costs, and by B the

lower bound for the current subproblem. Obviously ex, where c is the original

cost vector, is an upper bound on v(TSP), and the best such upper bound at

each stage will be denoted by B*.

3.5. Computational complexity of the bounding procedures. Each of the six

bounding procedures discussed in sections 2 and 3 is polynomially bounded.

For each of then except for the first one, the number of operations required

in the worst case is 0(n ), where n is the number of cities. For procedure 1,

4
this number if 0(n ). Solving the assignment problem at the start also

3
requires at most 0(n ) operations.

At every node of the search tree, the bounding procedures are applied

once (after solving the assignment problem, if necessary) in the order 1,2,3.

If at that point the node was still not fathomed (i.e., the lower bound is

still below the current upper bound), an attempt is made at finding a tour in GQ.

Though there is no algorithm guaranteed to accomplish this in polynomial time,

we let our implicit enumeration procedure run only for a fixed amount of time,

that is an input parameter defined as a linear function of n. If a tour is

found, bounding procedures 4,5,6 are applied in that order; otherwise we

branch.

In conclusion, the amount of work performed at any given node of the

4
search tree is 0(n ) in the worst case.

4. Branching Rules

Before branching, we attempt to fix some variables by using the

bounds B and B*. Let

j)€A|c,. > B * - B}.
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It is not hard to show (see [1]) that, if the reduced costs c. . are derived

from the same dual solution and Lagrange multipliers as the lower bound B (as

is the case here), then any solution x to TSP such that ex < B*

must satisfy the condition x. . = 0 , ¥(i,j)eQQ. Hence we set x » 0, (i,j)€Qn

for the current subproblem and its descendants, i.e., we replace A by AX*}-.

Next we describe two branching rules, which we use intermittently.

The first rule derives a disjunction from a conditional bound [1]; the

second rule derives one from a subtour-breaking inequality.

4.1. A disjunction from a conditional bound can be obtained as follows.

Consider a family of sets Q^ CA, k • l,...,p, such that cf > 0, ¥(i,j)e(X ,

k • l,...,p. Then if the inequalities

(^ X« , ^ 1» , K ^ .L , • « . , p

were added to the constraint set of LP, the lower bound B could be improved

by choosing appropriate multipliers for these inequalities. Further, if

this improved bound (termed conditional, because of the hypothetical nature

of the inequalities) matches the upper bound B*, then every solution better

than the one associated with B* violates at least one of the above inequalities;

i.e., satisfies the disjunction

(35) V (x.. =» 0, ¥<ifj)ea).
fc-1 1J

To implement this principle, we first remove from the Lagrangean

function (l') all those inequalities (7a) and (7c) that are slack for x

while the associated multiplier w is positive. If T is the index set of

these inequalities, this removal amounts to replacing B by

B - B - E w
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and c.. by

- t
= c. . + S , a w

for (i,j)eA.

Next, we choose a minimum-cardinality arc set SCH such that

(36) Zx? c > B* - B.
S J

The existence of such SCH would be guaranteed if we removed from

(l') all inequalities (7) that are slack for x (see [ 1] for a proof).

However, removing the inequalities (7b) would either produce negative

reduced costs, or would require a recalculation of the u. and v.. To avoid

this recalculation, we restrict ourselves to the removal of inequalities

(7a) and (7c), taking the risk of not being able to find a set SCH satisfying

(36). Whenever this happens, we apply the second branching rule, to be

discussed below.

Given that (36) holds, let S = {(i1,J1),...,(l ,j )}. We then

(i,j) for as many indices kc{l,...,p} as possible, subject to the conditions

construct a p x |A| 0-1 matrix D = (d£ )by setting d£. * 1 in each column

(37) d£ - 1 , k - l,...,p
Vk

and

(38) E dj c <c , (i,J)eA .
fc-1 2 V k LJ

These constraints leave some freedom for choosing the entries d^ of

each column (i,j)eA, which we use to make the number of l's in each row as

close to equal as possible.
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Propositioa 13. Every solution x to TSP such that ex < B* satisfies

the disjunction

(39) V (x = 0, V(i,j)eQ),
k-1 XJ K

where

(40) )cA|dJ 1} , k l , . . . f P .

Outline of proof (see [ 1 ] for details). If x violates (39), it satisfies

(41) > x > 1 , k-l,...,p.

Adding (41) to the constraint set of LP and assigning the multiplier (dual

variable) c. . to the k inequality (41), yields the lower bound

B + I c - B + Z Z = c .
fc-1 Vk (iJ)eS J

> B*

where the last inequality follows from (36). Hence ex > B*,||

The disjunction (39) creates p subproblems. In the k subproblem

we have x. . • 0, (i,j)€Q, , and since (i. , j. ) cHfl Q, , the tour H becomes

infeasible for each of the subproblems. On the other hand, the current

solution to AP remains feasible for each of the subproblems.

4.2. A disjunction from a subtour breaking inequality is obtained in the

usual way; i.e., if S is the arc set of a subtour of the AP solution, then

every solution to TSP satisfies the disjunction:

(42) \ / ( x. . - 0 and x = 1 , Vt < k-1)V Vk W
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At an arbitrary node of the branch and bound tree, a subset Sfc5 of the

arc set S (of the sub tour selected for branching) may already have been

fixed to be in the solution. In this case set S in disjunction (42) is

replaced by S\S'. Branching on (42) creates |s\Sf| subproblems- For

each of these subproblems, the AP solution to the parent problem becomes

infeasible.

In choosing the arc set S for the disjunction (42), it is desirable to

give preference to subtours (of the current AP solution) having either a

minimum number of arcs (min |S|),or a minimum number of free arcs (min |s\Sv |).

In the computational tests discussed in the next section we used the first

of these two criteria.

As to the two disjunctions (39) and (42), an efficient procedure must

use them intermittently, since (39) can on occasion be considerably stronger

than (42), while at other times it can be much weaker. We tried several

rules for mixing them, and the one actually used in the tests is discussed

in the next section.

S. Implementation and Computational Experience.

Our algorithm was programmed in FORTRAN IV for the CDC 7600 and tested

on a set of 120 randomly generated asymmetric TSP's of sizes varying between

50 and 325 cities. Here we discuss some features of the implementation, give

the computational results, and interpret them.

5.1. Use of sparsity. Unlike in the case of those symmetric TSP's whose

costs are baaed on distances and can therefore be generated whenever needed

from the 2n coordinates of the cities, in the case of the asymmetric TSP

one has to explicitly store the costs, whose number in case of a complete graph

is n(n-l). However, our procedure derives both lower and upper bounds on
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the value of the problem and, as discussed at the beginning of section 4,

provides a valid criterion for setting to 0 certain variables. As it will be

discussed below, the number of variables that can be fixed at 0 before the

first branching is usually very high. Therefore at that point we actually

remove from the graph all those arcs whose variables can be fixed at 0,

and from then on we work with a graph (usually quite sparse) represented

by a list of nodes and a list of arcs with their costs. Additional fixing

of variables (at 0 or 1) later in the procedure is handled differently

(see below).

5.2, Solution of the AP's. At every node of the search tree, a subset of

variables is fixed at 0, another subset is fixed at 1, and the current

problem is the one in the free variables. A variable x,. is set to 1 by

adding a large number M > 0 to all c . , k - 1,..., n, k ^ j. A variable x

is set to 0 by adding M to c . The reason for not simply removing the arc

from the graph, as done before the first branching, is that (a) the variable

and its cost may be needed later on another branch; (b) the transition from

the old AP solution to the one for the new subproblem is easier this way.

All AP's are solved by the Hungarian algorithm modified as follows:

(i) At every subproblem, we start with a solution derived from the solution of

the predecessor problem. In particular, the growing of an alternating tree

(in search of an augmenting path during the application of the Hungarian

algorithm) starts with a matching (i.e., a set of independent zeroes in the

reduced cost matrix) derived from the solution to the predecessor of the

current subproblem. A single augmenting path is almost always sufficient to

solve the current AP.
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(ii) Since the Hungarian algorithm is a dual procedure, it can be terminated

prematurely whenever the value of the objective function exceeds the value of

the current upper bound.

5.3. Branching and node selection. The two types of branching discussed

in section 4 are used intermittently according to the following rule. A

branching of type 1 (based on disjunction (39)) is performed whenever a set

of arcs SCH, S « {(i.Jj) ,..., (i ,j )}, can be found, such that

(i) inequality (36) is satisfied;

(ii) |s| < ̂  + 1, where p is the condinality of the smallest subtour in

the current AP solution; and

(iii) at least n/3 variables can be fixed at 0 on each branch.

Whenever any of the above conditions is violated, a branching of type 2

(using disjunction (42)) is performed.

The node selection rule used in the code is to ehoose a successor of the

current node whenever available, and otherwise to select a node k for which

the following evaluation attains its minimum:

Boo-new -

Here B(k) is the lower bound for subproblem k, v(AP) is the value of the

(initial) AP, while s(0) and s(k) are the number of subtours in the solutions

to the initial AP and the current one (at node k), respectively. The integer

s(k) is used as a measure of the "distance" of the AP solution at node k from

an optimal tour.

5.4. Information stored for each subproblem. All subproblems are stored on a

linked list in order of increasing lower bounds. For each subproblem k the

following information is stored:
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- The AP solution.

- The value of the associated bound.

- A pointer to the father node of node k.

- A code to indicate the type of branching (one of the 2 types described

above) that produced node k.

- The number of sons of the father of node k.

- The rank (index) of node k among its brothers.

- If the type of branching that produced node k was based on disjunction

(39), we store the arcs in S = f(i,,j_),...,(i ,j )}. If it was based on
1 1 p p

disjunction (42), then a pointer gives the subtour in the AP solution

corresponding to S in (42).

- A list of the operations (in coded and ordered form) which produced

the current matrix [c..] from the matrix for the predecessor node.

(This is not strictly necessary but speeds up considerably the

backtracking process).

5.5. Computational results. The above described code was run on the

CDC 7600 to solve 120 randomly generated test problems whose associated

(directed) graphs are complete and whose cost coefficients were drawn from

a uniform distribution of the integers in the range [1, 1000]. The problems

belong to 12 classes based on size, with n s 50, 75,..., 300, 325, and with

10 problems in each class. Table 9 summarizes the results. These results

are quite remarkable, in that the number of nodes generated is surprisingly

small, and seems to increase only slightly faster than the problem size

(number of cities). This is also illustrated on Fig. 8, where the slope

of the curve is only slightly steeper for 200 < n < 325 than for 50 < n < 200.

Note, also, that the maximum time required to solve any one of the 120

problems was 82 seconds.



Table 9. Computational results on random asymmetric TSP's.

Class

1

2

3

4
5

6

7

8

9

10

11

12

n

50

75

100

125

150

175

200

225

250

275

300

325

Average
no. of
nodes

12.3

26.6

39.1

42.7

45.7

58.3

63.4

84.1

88.5

106.4

124.1

141.8

Computing time
(CDC 7600 seconds)
Average

.20

.29

.71

1.13

1.97

4.18

6.06

10.44

13.65

21.74

38.37

49.66

Maximum

.88

.93

1.41

2.07

3.30

6.68

19.33

18.65

17.43

68.86

55.15

81.57

Bo

25.2

26.7

21.8

19.6

19.6

20.1

14.7

11.1

12.5

9.3

10.7

7.7

Percentage of
fathomed b

Bl

29.1

26.6

30.7

34.4

28.5

28.7

33.9

29.6

29.7

25.4

28.9

32.3

B2

6.9

10.3

9.5

12.0

15.1

17.4

14.9

22.6

17.2

20.5

19.1

18.7

B3

10.4

10.1

14.9

13.8

12.9

13.7

17.2

16.8

21.9

19.3

23.8

21.6

nodes
y
H

21.4

19.8

16.5

16.5

13.3

15.4

12.1

8.8

9.2

8.5

6.9

7.8

B4,5,6

7.0

6.5

6.6

3.7

10.6

4.7

7.6

11.1

9.5

7.0

10.6

11.9

Bo

5.3

5.3

4.9

4.8

3.9

4.6

4.1

3.8

3.3

2.9

3.1

2.6

Bl

15.5

15.4

15.1

16.0

16.3

16.9

16.5

16.3

17.6

18.5

18.9

20.1

Percentage
spent

B2

26.0

26.9

27.8

23.9

24.8

28.4

29.7

29.1

27.7

27.9

29.1

30.3

B3

15.3

12.6

14.1

17.3

14.9

14.8

16.7

16.4

17.3

16.5

14.1

16.0

of time
on
H

1.2

0.8

0.8

1.1

1.3

0.9

1.6

1.8

1.6

1.9

2.1

2.1

B4,5,6

20.1

20.7

23.1

26.1

26.6

19.3

19.1

20.1

20.2

18.9

20.0

17.1

Other

16.6

18.3

15.2

10.8

12.2

15.1

12.3

12.5

12.3

13.4

12.7

11.8

00
I

Notes, n: number of cities

B • lower bound obtained by solving the current AP and adding to v(AP) a penalty derived from ["c ]

B1>B2'B3: l o w e r bound obtained by procedures 1,2 and 3, respectively

H: upper bound obtained by finding a tour ln G satisfying the condition of Proposition 2

B, - • lower bound obtained by procedures 4 to 6

Other: branching, node selection, updating, etc.



•I?
Fig. 8. Number of nodes in the search tree 33 a function of problem size (a)
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Since the average cost of the various bounding procedures is not

proportional to their usefulness, we have tested each of the bounding

procedures individually and in subsets to see whether their use pays off.

The outcome of our tests was that using all 6 bounding procedures is more

efficient than using any subset in any combination.

Another remarkable feature of the approach discussed here is the large

number of arcs that can be removed from the graph (of variables that can be

permanently fixed at 0) at the root node of the search tree, as a result of

the test discussed at the beginning of section 4. This is shown in Table 10.

The fact that such a high proportion of the arcs can be removed before

branching shows the power of the bounding procedures used in our approach.

For a comparison, if only the bound obtained from AP were used, then the

percentage of variables removed in problem classes 1, 2 and 3 would be on the

average 87% (and this percentage does not seem to increase with problem size).

Thus, for problem class 3, for example, our bounding procedures reduce the

number of arcs remaining in the graph from izhe 13% that would be left by the

AP bound, to 2.9%.

Table 10. Percent of arcs removed on the average at the root node.

Problem class

Arcs removed (average) nr .nrt
Total arcs A 1 0°

1

95.3

2

96.4

3

97.1

4

97.3

5

97.5

6

97.6

7 1 8 1 9
| 1

97.9|98.1!98.4

10

98.3

11

98.6

12

98.7

In connection with the two branching rules, it is important to mix them

judiciously. While rule 1 (disjunction (39)) often allows one to fix more

variables than rule 2 (disjunction (42)), if used as the only branching rule

it yields inferior results, since occasionally it is very bad. The mixing

strategy used in the above runs (and discussed under 5.3) has resulted in

rule 1 being used only at the upper levels of the search tree (often at level

1, or 1 and 2, only). To compare the results obtained by using this strategy

with those obtainable by using rule 2 only, we ran 4 of the 12 problem sets

(i.e., 40 of the 120 problems) with branching rule 2 only. Table 11 compares

the results.
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Table 11. Comparison of branching rules

Class

1

3

5

7

a

50

100

150

200

Average
Rule 2

10.3

31.9

36.8

49.9

.no. of nodes
Mix of

rules 1 and 2

12.3

39.1

45.7

63.4

i Computing time (CDC 7600 sec):
Rule 2

.29

2.10

4.60

11.68

Mix of
rules 1 and 2

i

.20

.71

1.97

6.06

Note that although branching rule 2 tends to produce a smaller number

of nodes than the mixed strategy described in section 5.3, it also tends to

require about twice as much time than the latter. This is because the

disjunction (39) (rule 1) creates nodes for which the AP solution at the

father node remains feasible, and for which a large number of variables can

be fixed at 0 — two features that make such nodes easy to fathom.

6. The Symmetric Case

Our algorithm can of course be applied to symmetric TSP1s as it is, but

it would not be efficient for such problems in its present form. This is

so because of the well known fact that APfs associated with symmetric TSP's

tend to have optimal solutions involving a large number of subtours of length

two. However, our approach can easily be adapted to the symmetric case by

replacing the assignment problem with the 2-matching problem as the basic

relaxation of the TSP. We are in che process of developing such an algorithm

for the symmetric TSP.
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