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Abst r act

W describe an algorithmfor the asymmetric traveling sal esnan
problem (TSP) using a new, restricted Lagrangean rel axati on based on the
assi gnment problem (AP). The Lagrange nultipliers are constrained so as
to guarantee the continued optinality of the initial AP solution, thus
elimnating the need for repeatedly solving AP in the process of conputing
multipliers. W give several polynomally bounded procedures for
generating valid inequalities and taking theminto the Lagrangean function
with a positive nultiplier without violating the constraints, so as to
strengthen the current [ower bound. Upper bounds are generated by a fast
heuri sti c whenever possible. Wen the bound-strengthening techniques are
exhausted wi thout matching the upper with the [ ower bound, we branch by
using two different rules, according to the situation: the usual subtour
breaki ng di sjunction, and a new di sjunction based on conditional bounds.
W di scuss conputational experience on 120 randomy generated asymmetric
TSP's with up to 325 cities, the maxinumtime used for any single problem
bei ng 82 seconds. Though the al gorithmdiscussed here is for the asymretric
TSP, the approach can be extended to the symwetric TSP by using the

2-mat ching probleminstead of AP.

University Libraries
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1. Qutline of the Approach

The traveling sal esman problem (TSP), i.e., the problemof finding a
m ni mum cost tour (or hamiltonian circuit) in a directed graph G= (N, A),

can be fornulated as the probl emof mnimzing

(1) Z Z c.jc,.
ieNj«N T
subject to
/L x,=1 |ieN
| JeN
2) |
Z X.-- 1, ] eN
fsN U
(3) Xtj ¢ {0,1}, i.jeN
(4) X is a tour.
For (i,j) eA, C:'I.j is the cost associated with the arc (i,j); for
(i’j)\‘As cij =,

Conditions (3), (4) can be replaced by

(5) Xtj >0, i,jeN

(6) EE**x.»aj, tcQ
1‘NJCN 1J XJ U

wher & (6) is aset of inequalities which, together with (2) and (5),
define the convex hull of all tours in G
If Sand T are node sets, we denote (S, T) = {(i,j) eA| icS, jeT}.
For any problemP, we denote by v(P) the value of (an optiml solution to) P.
Ve describe an.arc preniuni penal ty-based branch and bound method for
solving TSP, which uses
(a) a new Lagrangean relaxation of TSP and a restricted Lagrangean

probl em derived fromit, which has constraints on the multipliers;
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(b) several procedures for generating inequalities which can be taken
into the Lagrangean function with a positive multiplier (premumor penalty),
without violating the constraints or changing the nultipliers generated earlier

(c) a newbranching rule based on disjunctions derived fromconditiona
bounds.

V¥ first outline the method, then discuss its various conponents in
detail.

The assignment problem (1), (2), (5) associated with TSPw !l be
denoted by AP. It is well known that any.integer solution to AP is either
a tour (hamltonian circuit), or a collection of subtours (a union of dis-
joint circuits). The Lagrangean probl emnentioned under (a) is an assign-
ment probl emobtained fromAP by applying prema or penalties to certain
arcs, inaway which is equivalent to taking into the objective function
in a Lagrangean fashion, some of the constraints (6).

Fromthe set of inequalities (6) we extract a subset

(7) Z Z aj,x .2aj, tcTcQ
icNjecN MU v
and call LP the linear program (1), (2), (5), (7). Though the set Qis at |east
exponential in | N|, enpirical evidence as well as theoretical considerations
indicate that there are relatively small subsets T of Q such that the val ue
of the corresponding LP cones very close to (or coincides with) that of TSP
Usi ng Lagrangean relaxation on (7) and denoting by wthe vector of
Lagrange mul tipliers,we obtain the problemL(w, x), equivalent to LP,of
finding w> 0 to maxinmze z(w), where

(1) zZ(wW«'nin z z (¢ - Z wa')x. + Z wa*
icNjeN M teT 2V B geT €V

Z X.--1, 1icN
JON 1]
2 I #ax - L jeN
(5) Xij >0, 1,jeN.

subject to




The Lagrangean rel axation L(w, x) of TSP can be used to generate |ower
bounds on v(TSP). Wile L(w,x) may yield very strong bounds i ndeed,
dependi ng on the choice of the inequalities (6), its solution via, say,
subgradi ent optimzation, requires a considerable conputational effort,
including the solution of the assignment problens associated with every
vector w generated during the procedure. Instead, we consider a restriction
RL(w, x) of the Lagrangean relaxation L(w, x). Let X be an optinal solution to
. AP, i.e., to_the assignnent pr o_bl__e_m_v_vi t_h___cost fqncti on (1). RL(w, Xx) is then
the probl emof finding w> 0 to maximze Z(w) defined by (1'), (2) 7and (5),
subject to

’cij :lfxij>0

(8) Us +y + £ wea
< cij if iij = 0
for some u,v cR™. .
Probl emRL(w, x) has two properties which make it useful towards
solving TSP.
First, any i, ¥ and W satisfying (8 and W> 0 is a feasible solution
to the linear programdual to LP; therefore the objective function val ue

of this dual linear programis a | ower bound on v(LP), hence on v(TSP),

i.e., we have

Proposition 1. If &, ¥ and \7v2_0 satisfy (8), then

(9) _2 85_ + 2 ‘}/ t 2 WaJ<y(TSP).
l.eN ] cN tcT

Second, while X remns an optimal solution to the assignnent problem
with the nodified objective function (17), the changes brought about by

the penal ties/prem a vT/t, tcT, are likely to create new, alternative optina.




Wienever such an alternative optimal solution X to the assignnent problem

(1), (2), (5) turns out to be a tour, it has the follow ng property.

Proposition 2. If % satisfies with equality the inequality (7) indexed

by t for all teT such that W >0, R is an optimal tour,
Proof, % and (0,V,% are feasible solutions to LP and its dual,
respectively. Fromthe definition of X, we have

3, + 9.+ T wa

t-c
173 ger ® 4

i}

whenever kij > 0. This, together with the condition of the Proposition,
means that % and (%,%,%W satisfy the conplenentary slackness conditions.

Thus % is an optimal solution to LP, hence an optinal tour.|]

W start by solving the assignnent problemAP in the free
variables . Next we use several different procedures for generating an
i ncreasing sequence of |ower bounds on v(TSP), by successively identifying
inequalities (7) that

(i) are not satisfied by the current solution X to AP, and

(ii) admt a positive nultiplier w. which, together with the

mul tipliers already assigned, satisfies (8);

and by setting the nultipliers wg each time to the greatest positive
val ue conpatible with (ii). At any given stage, the admssible graph
Go = (N, AQ is the spanning subgraph of G containing those and only

those arcs with zero reduced cost, i.e.,

Ag » [(i,j)«A‘jul,+V]- + 7 Vi jt- c| 9.
teT
When no nore inequalities (7) satisfying conditions (i) and (ii)

can be found, we store the bound given by (9) and try to find a tour in




the admssible graph. If a tour is found which satisfies with equality
all inequalities associated with positive multipliers, it is optinmal for
the given subproblem If a tour is found which violates this condition
for sone inequalities, attenpts are nade at finding new inequalities
which satisfy the condition and admt positive nultipliers. |f successful
these attenpts strengthen the |ower bound, and they may also elinmnate the
inequalities that are slack. In any case, the value of the tour (in the
original costs Cij) prqvides an upper bound on v(TSP), while (9) provides
a lower bound for the current subproblem and we branch. Finally, if no tour is
found in G@, we add arcs to C@ in the order of increasing reduced costs unti
a tour is found in the resulting graph. The cost of this tour again provides
an upper bound on v(TSP), while (9) still provides a |ower bound for the
current subproblem and we branch.
The assignment problenms are solved by the Hungarian nethod, the
sane method is used to recalculate the reduced costs whenever somne u. and
vj have to be changed. The constraints (7) are "subtour-breaki ng™
inequalities and conbi nations of the latter with*sonme of the equations
(2), but they are used here in a novel way. The bounding procedures are all
pol ynom al -tine al gorithns, considerably nore efficient (in terns of inprovenent
obt ai ned versus conputational effort) than earlier approaches (like [3]), as
evidenced by the conputational results of section 5. Searching the adm ssible
graph G for a tour is acconplished by a specialized inplicit enuneration
procedure, with a cut-off rule. Finally, for branching we use two different
rul es, one which derives a disjunction froma conditional bound [1], and one
whi ch breaks up a subtour.
A prelimnary version of our approach, with fewer and |ess sophisticated

boundi ng procedures, was discussed in [2].
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2. Boundi ng Procedures

At any stage of the procedure, the reduced costs

- t
c -cij-u -vj-“?..f %14

ij i
will be defined relative to the subset T' cTof inequalities already
introduced into the function (I7).

W use three types of inequalities (7), and we will denote by T-L, TZ

and T; the correspondi ng subsets of T.

For teT, let O~ StCNand S-t- N\S:. An arc set of the form

(5t v

is called a (directed) cutset.

Cearly,the inequalities
(7a) Z x.. =1, teTl

(i"])«Kt'lJ
are satisfied by every tour, and so are the inequalities
(7b") z Z x..<|S| - 1 teTZ
i«sy jesy Y )
or, to preserve the direction of the inequality,
(7b) - Z Z x.. 21-1]8J, t€T,.
* 2

ieS Jcs, M
For a given set St:’ the "subtour-breaking' inequalities (7a) and (7b)
are equivalent: (7b) can be obtained from (7a) by subtracting the sum of

the equations

Z X,.- 1, itS.,
1o i t

and (7a) can be obtained from (7b) by the reverse operation. Nevertheless,
the presence of inequalities associated with the same set St in both
subsets (7a) and (7b) need not be avoided, since it may enrich the set of dual

vectors (u,v,w satisfying (8) and w> O.




Finally, for any keN, S, © N\ {k} and §t = N\St, the arc sets
= 3 “ = S
K = 5,5, \{kD and &{ =G \{k}ls)

are (directed) cutsets in the subgraph (N\{k}) of G induced by N\ {k }.

Proposition 3. The inequalities

(7¢) x..>1, teT

e 12
(1,3)eK UK,

are satisfied by every tour.

Proof. Every x ¢ {0,1]" that violates (7c) corresponds to a subgraph G’
of G which is either discommected, or contains an articulation point k ;
hence G’ camnot be a tour.||

Actually, more can be said about the family (7¢):

Proposition 4. 1In the presence of the comnstraint set (2), for every

k eN and stcN\{k}, the inequality (7c) is implied by the two subtour-breaking

inequalities associated with the node sets StU {k} and St respectively, i.e., by

(7b)1 - z z X 2 -IS

¢!

ies U{k} jes,ufk}
and
(7b), - ox. 2 1 - Is.l.
]
1cSt jcSt
Proof. The inequality (7c) is the sum of (7b)1, (7b)2 and the
equations
z x,,=1 ieS
’ t
jav 1
T x,.=1, jes '“
ieN 1] €

The components of w associated with the inequalities (7a), (7b), and

(7c) will be denoted by A, p and Vv respectively.




2.1* Bounding Procedure 1 starts by searching for an inequality (7a) which

satisfies conditions (i), (ii) of section 1, i.e., is violated by x and
can be assigned a positive nultiplier wthout making any of the reduced
costs negative. Cearly, these conditions are satisfied for the inequality

(7a) defined by a cutset K;, if and only if
(10) Ki R Ag- 0,

wher e AD is the arc set of the adnissible graph GQ

To find Kt satisfying (10), we choose any node i eNand formits
reachable set R(i) inGg If R(i) » N, there is no cutset (S,é) with i eS,
satisfying (10), so we choose another i eN. If for some i eN, R(i) t N, then

K * *SKk*\V satisfies (10) for S « R(i) » Furthernore,

(11) . \t - m n (;. -

z (| ,J) «Kt LJ
is clearly the largest value that can be assigned to the correspondi ng
mul tiplier wthout maki ng sone reduced costs negative. W thus assign

Xt the above val ue and set

cij - Eij - Xt, (isj) CKt:

i.e., we apply a prem um of Xt to each arc of the cutset Kt:' As a result

of this, the arcs for which the mj.nTmn in (11) is attained, becone

admi ssible, and we add themto Ag thus enlarging the admi ssible graph G
Next , vve extend the reachable set R(i) of node i by using the new

arcs of G and either find R(i) » N, or |ocate another cutset Iﬂ: sati sfying

(10). If R(i) » N, again we choose anot her node.

This procedure ends when R(i) =N Vi cN. At that stage G is

strongly connected, and

KnA™ 0

for all cutsets K» (S5, ScN.




Proposition 5 Bounding Procedure 1 stops after generating at nost

1
2"(h-1)(h+2) cutsets, where h is the nunber of subtours in¥X.

Broof Starting with node i~ belonging to subtour S.l, every cutset adds to GD
an ate which includes into R(i”) a hew subtour. After generating at nost h-1 cut-
sets, RCi~-N. Now starting with node i, belonging to subtour S;t$ and proceedi ng
to find R(i,), again at nost h-1 cutsets can be generated. However, since we now
have i,c R(i”™) and i”e R(i,), the nunber of strong conponents of the current
graph Gy is at nost h-1. Thus, continuing to find R(i:’) for sone node i:1
belonging to a subtour Sz, S*"S"Sj, at nost h-2 cutsets can be generated,
and since the vertices of SI S, and S; now forma strong conponent, the
nunber of strong conponents in the current graph GU is at nmost h-2. Continuing
in the same way, the nunber of cutsets generated by the procedure (until G
becones strongly connéct ed) is at nost

(h-1) + (h-1) + (h-2) + (h-3) + ..+ 1 » F(h-1)(h+2).|]

Since the optimal dual variables u® v-.J associated with X are not

changed by this procedure, and since

E U.+ Z V.- ex » V(AP),
ieN - JeN -
if T, is the index set of the inequalities generated by Bounding Procedure 1, the

l'ower bound obtained for the current subproblemis, fromProposition I,

(12) By » V(AP) + E \t'
tdr,

2.2.  Roundinpg Procedure 2 starts by searching for an inequality (7b) which

is violated by X and adnits a positive penalty w thout changing any of the
Xi t eTr. If S, ...,S are the node sets of the h subtours of X, every
inequality (7b) defined by S;, t - I,...,h, is violated by X; but a positive
penalty ~ can be applied without violating the condition that x.'L.] >0

i nplies C,. » 0, onl y by changi ng the val ues of some u.l and v.J, and only if

ij
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an additional condition is satisfied. This condition can best be expressed
in terns of the assignment tableau used in conjunction with the Hungarian
method. A |ine of the tableau is a rowor a colum, a cell of the tableau
is the intersection of a rowand a colum. Cells correspond to arcs and
are denoted the sanme way.

Let St be the node set of a subtour of )?, | et

A» (i,]) eAg| 1,] eS¢]
and

A, - C(I.J)cA | 5¢; > 0}.

Proposition 6. A positive penalty can be applied to the arcs with

both ends in S.: if and only if there exists a set C of lines such that
(i) every (i,j) CAt': is covered by exactly one line in C
(ii) every (i,j) eAt\A't is covered by at nost one line in C
(iii) no (i,j) cAo\ A, is covered by any line in C
If such a set C exists, and it consists of rowset | and colum set J,

then the LAJ1IMM gpplicable penalty is

(13) Ne - mn c..,
(i,)«Mm Y

wher e

(14) M- (1,3) U (1,5) U (5,9)-

Proof. Sufficiency. Suppose there exists a line set C,  consisting
of rowsets | and colum .sets J, satisfying conditions (i), (ii), (iii).

Then addi ng an anount n > 0 to ¢, for all (i,]) e(St’St)’ as wel |

13

as to all GI&.’- i €1, and all T/j, j cJ, produces a set of reduced

costs E'i.j such that EI:-J' * 0 for all (i,j) eA*, since C* | UJ satisfies (i).

Further, fromproperty (ii) of the set C E"jzo, V (i,j) eA\ AM; and from
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(rii), Z'J_. =Cy = 0, V(i,j) « Aj)N\A;. Thus the only reduced costs
that get dimnished as a result of the above nodification, are those
associated with arcs (i,j) «a for which either (a) nothing is added to
c-:j“- and p, is added to-ui or to '\'/J-5 or (0)_’\ is added to Z.. and

- - bj
to both ur and v”. The two sets of arcs for which («) holds

are (1,8) and (8,J); whereas the arc set for which 0) holds is (I,J).
The union of these three arc sets is Mdefined by (14). Thus a positive
penalty at nost equal to ™ defined by (13) can be applied to the arc set
(S;,St) in the above described manner without producing any negative reduced

costs.

Necessity. Suppose a penalty n > 0 can be applied to the arc set
(S¢, St). Since addingn >0 to Z, V (i,j) e (S, St), produces positive

reduced costs for all (i,j) eA. in order to obtain reduced costs d'?l. =0

for all (i,j) eA", one nust increase by p, the sum"L{ +'\/-1 for all (i,Jj)eA't.

It is easy to see that if this can be done, then it can be done by adding n to

G£ or v,- (but not to both), for every (i .jjeAg, hence there exists a set C of
lines satisfying condition (i) . Further, if (i,j) S A" , then n cannot be added
to both g and v. _without creating c"ij< 0, hence Cnust satisfy (ii). Finally,
if (i») eAg\ A;, then p, cannot be added to either ‘ui or V. without making e!. <0,
hence condition (iii) must also hold. || ’ -

G ven the node set St of a subtour, we have to check whether a set
of lines Csatisfying (i), (ii), (iii) exists. This can be done as foll ows.
First, every-rowi eS; such that (i,j) «Ag for sone j eN\St, and
every colum j «Sg such that (i,j) eAg for sone i eN\ St’ can be rul ed out
as a candidate for entering C Let R and K be the index sets of such

rows and col ums respectively,, and | et

I, = {1eN|(€, DA and je1,

I, = {3eN|(1,)eAf and ier}.




-12-

Since by (i) every cell of A: nust be covered by at least one line in C
C nust contain IJI] J—L. For the same reason, if
(15) Al OROKA
then no positive penalty can be applied to the arc set (St’ Sr.)'

Since by (i) and (ii) every cell of At nust be covered by gt nost one
lineinC, if
(16) Ac fl 1) 03¢ * O,
then again no positive penalty can be applied to the arc set (St’ St)'
Now assune neither (15) nor (16) holds. Then if (ll’Jl) covers A‘t, we set
C= 1, UJ™ and we are done; otherwi se we use the Hungarian algorithmto
conpl ete the search for a cover satisfying (i), (ii), (iii). |If such a
cover exists, the Hungarian algorithmfinds it, and Hl: given by (13) can be
applied as a penalty; otherw se the Hungarian nmethod finds a cover which violates
some of the conditions (i), (ii), (iii), inwhich case no positive penalty can
be appli ed.

If T, is the index set of the inequalities (7b) which adnit positive

penal ties p,t , We have the foll ow ng

Pr nlnnqi tiaon 7

B 1 B 4- "L b
(17) 200 g

is a lower bound on the value of the current subprobl em

Proof, Wienever a penalty M>t; >0 is applied to an arc set (S:'Sr.)
associated with a constraint (7b), the cost function of AP is nodified, and
the val ue of the solution X, hence also the value of a solution to the dual
of AP, the assi gnnent problemw th the nodified costs, is increased by

> appl yi ng penalties u ., the value of an optima
IS+ 1My Thess @Tter applying JT |, penal ti he val ue of i mal

k
solution (0,V) to the dual of AP is
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Z 4, + 1 V.- v(AP) + Z s u,.-
ieN ' jeN ? ter, = ©
Usi ng Proposition 1, and noting that aIU- 1 for tel, and a*O: 1- |st||
for t eTz, we obtain the | ower bound
By - EEfii1.+l-SS*. + E Xt+ E (I-]S])u.
i eN j«N teT, teT, -
-V(AP) + Z \ + 2 n,
teTl t «T,
€2
2. 3. Bounding Procedure 3 searches for inequalities of the form (7c) which

are violated by X and admt a positive nultiplier v_ wthout requiring

changes in the multipliers assigned earlier. This is done by checking for
each node whether it is an articulation point of Go. If node k is an articul a-
tion point, i.e., if the subgraph "N - [ k" of Gy is disconnected, with S

as one of its conponents, then denoting K » (S, ?2:\{k}) and K": » (?t\[k}’st:)

we have

KENAg- 0, KENAG» O,

Thus we can apply a positive premumto the arcs in the pair of

cut sets ¥’§:. , IE* whose value i s

(18) V., » m n Coo
© a.neury

If T3 is the index set of ail those inequalities (7c) found to admt

a positive multiplier, at the end of Bounding Procedure 3 we have (from
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Proposition 1 and (17)) the |ower bound

33-32+ zw

t
tlT3
(19) =Vv(AP)+ I A+ T op+ Z v
teTl tcTz teT5

If at any tine during the Bounding Procedure the current |ower bound
mat ches (or exceeds) the upper bound given by the val ue of the best
avai l able tour, the current subproblem is fathoned and we turn to
anot her node of the search tree. Qherwi se, after obtaining the bound

83 we try to find a tour in Go

2.4. Exanple 1. Consider the 9-city TSP whose cost matrix is shown in Table 1.

1 2 3 4 5 6 7 g Y
1{ x 2 11 15 12 12 U 13
21 8 X 4 12 18 14 12 14 17
3] 6 9 X 15 20 17 13 10 i7
413 15 17 X 5 8 11 15 16
re, i= 5] 10 14 16 3 X 16 12 15 13 Table 1
Al v v 11 9 14 x 3 7 o2
75 7 Ok 2 4 11 x 2 49
8 4 10 1 3 j¢ 10 1B = 4
9f{ 9 5 2 11 8 2 7 7 X

The solution to AP has value 31. The reduced cost natrix [crij is

shown in Table 2 and the solution X is gi ven by x.,« 1 for those (i,])

1]

corresponding to boxes in that matrix, x = 0 otherwise. The corresponding
I

adm ssible graph is shown in Fig. 1.
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i 2 ) (i 5 3

. = s i
blE @i o6 w13 e 0 1y
204 X Ly s 14 00 3 10 1y
3000 3 X 9 o1t 7 11

et ——
4 18 10 12 x ,0r 3 & 10 11

[Eij]= s |7 1 13 icl x 13 9 12 10

6|4 4 8 6 11 X 0, 4 5
703 5 4 o 2 s x o] 6
g8lo 6 3 s 8 & 9 x [o}
917 3 7 9 6 [’H 5 5 X

Bounding procedure 1. Cutset K, = ( {1,2,3}, {4,5,6,7,8,9} admits A

and cutset K, = ( {4,513}, {1,2,3,6,7,8,9} ) admits A

from (12), becomes B1

3.

Table 2

1

The lower bound,

in Table 3 and the corresponding admissible graph in Fig. 2.

1 2 3 4 s & 7 8 9

1 |x o, 6 s 9 6 6 5 7

2|4 x 0] 4 10 6 4 & 9

3 jol 3 x s 10 7 3 0 7

als 7 9 x 6o o 3 7 8
[51=5 [4 8 10 o X 10 6 9 7
6|4 4 8 6 11 x 0 4 5

713 5 4 0o 2 9 X 0 6

8lo & 3 s 8 6 9 X 0

s l7 3 7 9 6 9, s X

Table

4,

=31 +4 + 3 = 38. The new reduced cost matrix is shown




3

A '
4/ / / \
f '\\’9
2 /
; T /

O

Fig 1, Gaph G defined by the AP solution.
LY

3
B
. T /
6
] f

Fig 2. G\: after boundi pg procedure 1.
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Boundi ng procedure 2. The subtours of the AP solution are (1,2,3), (4,5 and
(6,7,8,9). Subtours (1,2,3) and (6,7,8,9) do not admt positive val ues of
AI:' However, inequality (7b) for subtour (4,5) is

- (X45 + Xs54) 2 -1,

and a set C of lines of the matrix of Table 3 satisfying the conditions of
Proposition 6 for this subtour is given by: (row5, colum 5). Fromthis
set C we conpute Pp » 2. FromProposition 7, the |ower bound becones
B, & 38 + 2 = 40.

The new reduced cost matrix [c“] is shown in Table 4, and the correspondi ng

adm ssible graph in Fig. 3.

1 2 3 4 5 6 7 3 9
1{x f0] 6 5 7 6 6 5 7
214 x Q 4 8 6 4 6 9
s(A s x 5 8 7 3 0 7
415 7 9 x 00 o 3 7 3
?Ei].] =5[22 6 8 P X 3 4 7 5 Tabl *»
6|t 4 8 6 9 X .00 4 5
7% 5 4 0 0 9 x i3 6
3]0 6 3 5 6 6 9 x 3
9|7 3 7 9 4 0 5 5 X

Boundi ng procedure 3. Vertex 8 is an articulation point of the adm ssible
graph of Fig. 3. The cutsets corresponding to this articulation point are
Kh = ([1,2,3}, [4,5,6,7,9}) and K = ([4,5,6,7,9}, [1,2,3}). Applying (18) to
Table 4, we obtain Vt=2’ corresponding to elenent (5,1). From (19) the | ower
bound beconmes B,= 40 + 2 = 42. The new reduced cost nmatrix and the correspondi ng

3
adm ssible graph are shown in Table 5 and Fig. 4 respectively.
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I
|
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Hst. 3. G- after boundi ng procedure 2.
L'

Fig. .4 G _after boundipg procedure 3.
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t - T Y B A !
:—-: ?
! X 193 8.3 5 4 4 5 5
214 x i 2 6 4 2 G 7
3j0j 3 x 3 6 5 1 0 5
4 18 B 77 xx IF}p] 0 3 778 8 Table 5
;0= 5 jo 4 6 6] x 8 4 7 5
612 2 6 6 9 x []] 4 s
7 1 3 2 0 0 9 X a 6
0O 6 3 5 6 6 9 X [§
5 1 5 9 4 [0] 5 5 x
3. Einding a Tour and |nproving the Bound
Est abl i shi ng whet her a graph contains a tour (i.e., is hamltonian)

is, fromthe point of view of worst-case analysis, of the same order of
difficulty as finding an optinmal tour. However, for the vast mpjority of

all possible graphs, the first problemis inconparably easier than the second
one. ¥ use a specialized inplicit enuneration procedure, the multi-path
nmethod of [4] , ch. 10, for finding a tour in G if one can be found wi thout

exceeding a given time limt. Let X denote the solution associated with such

a tour. |If % satisfies with equality all inequalities associated with positive
multipliers (i.e., if the tour defined by R crosses exactly once each cutset K , teTy,
E
contains exactly |sj - 1 arcs with both ends in Stfor all sets S, t cTz,
t

and contains exactly one arc of each pair of cutsets, K L K"t’ teT3_) , then

X defines an optinmal tour for the current subproblem and the latter is fat honed.
For exanple, after bounding procedure 3, when G is the graph of Fig. 4,

the following tour is detected in Gg& H(1,2,3,8,9,6,7,4,5,1). This tour

satisfies with equality all four constraints with positive associ ated

Lagrange nultipliers; i.e., Hcontains exactly one arc of each of the cutsets

K~ and K,, contains exactly one arc of the subtour {(5,4), (4,5}, and

contains exactly one arc of the set KM U KA, Thus, His an optimal solution

to the TSP and Bz= 42 is its val ue.
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If an inequality that is slack for X belongs to one of the sets (7a)
or (7b), we attenpt to strengthen the current |ower bound by introducing
sone new inequalities (of the sane type) that are tight for X, and that
admt positive multipliers. |If the attenpt is successful, it may al so
result in the removal of the inequality that is slack for X.

3.1. Bounding Procedure 4. Suppose the inequality (7a) associated with

the cutset Kt is slack for X, i.e., the tour “Hdefined by X intersects K
innore than one arc, and |et I—‘|"'I'Kt - E(ANjN L, ( pj F)}' For every
(ir’jr) eAHdé, let S be a set of nodes containing jr and such that, denoting

S « N\S', the cutset Keg (5',S") contains no other arc of H than (*-,J,)-

Then the inequalities

z X..21, r - 1|,...,p

1,56k,
are all satisfied with equality by X. Since every K.'u_contai ns an arc with
zero reduced cost, nanely the arc (i r’j r) al so contained in Kt’ the above
inequalities do not admt a positive premum unless the prem um X
applied to K, is reduced. |If this is done, however, then a positive
prem um may be applicable to several of the sets K;‘:, and the sumof these
prema my well exceed the amount by which Xt must be reduced, i.e., an

i mprovenent of the |ower bound may be obtained. The conditions under which

this is possible are stated in the next two propositions.

Proposition 8.  The tour Hintersects the cutset Ktr' (8,S") only in

the arc (i,>,)> 'f3* °»ly if the arcs of Hwith both ends in S forma

path whose first node is j -
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Proof. Let ﬂ: (i(l),...,i(n)}, and without loss of generality,
assume d,»J,) * [i(l),i(2)}. Now suppose either S = (j(2)}, or the
arcs of Hwith both ends in S forma path (i(2),... ,i(k)}. Then H
intersects the cutset K* = (87‘8*) inthe single arc [i(l),i(2)] « (i ::j r).
Conversely, suppose S # [j(2)} and the arcs of Hwith both ends in S
either forma path P whose first node is not j(2), or do not forma path. In

the first case, FFTKN = [i(h) ,i(h+l)], where i(h+) is the first aode of P.

In the second, the arcs of Awith both ends in S formk paths P-. ..., P,

1 "k
with k >2: and £rK,, -- CKh". Khj +1)]¢...,[2(1") ,107+1)] + where | (h,+l)
isthe first node of P,, r == 1,... ,k. \'\

Propositron 9. A positive premiumcan be applied to the cutset Ker
(provided that \; is decreased) if and only if
(20) AR VAR VI

If R0 is the set of thoser e{l,...,p} for which (20) holds, the

maxi mum prenmi um applicable to each K., reR, is

(21) X' »mn [\., mn c. .) >0;
C{(1,1)s Ry

provi ded the prem um Xt: applied to Kt is replaced by

> r
(22) . Xt « X: - max X'.
rckR

This replaces the current |ower bound B by

(23) B »B + Z X - max X'.
rcrR rerR -

Proof, A decrease in Xt i ncreases the reduced costs of all arcs

of Kt; hence makes it possible to apply a positive premumto the arcs
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of those, and only those, cutsets Iér sati sfying condition (20) The
maxi mum si ze of the premumon % is xF def i ned by (21), positive for
those r for which (20) holds. The premia X are however applicabl e-only
i f XI: is dimnished by the anount of the largest premumapplied to the
arcs of any cutset K i.e., only if X‘t is replaced by Xt of (22)

(ot herwi se sone of the reduced costs becone negative). |If this is done,

the current |ower bound B is replaced by

B - B+ Z xT+(>Zt-x

)
reR t

which yields (23) after substituting for \.||

Boundi ng Procedure 4 |ooks for cutsets Kt to which a prem uth >0

had been applied and which are intersected by the tour I:|in nore than one
arc. For each arc (ir’jr) of fl that belongs to such a cutset K:, we try
to find a set S of nodes contai ni ng jr and satisfying the conditions

of Propositions 8 and 9; i.e., such that the arcs of Hwith both ends in S
forma path whose first node is jr’ and that the cutset K"r- (S, s
satisfyies (20). As a matter of practicality,we first try |s'j * 2, then

| S| » 3 etc., until either we find a set which satisfies (20) or we find

out that none exists. Taking the candidate sets in this order nmakes sense,
since smaller sets S define smaller cutsets K* over which one takes the
mnimmin (22) to define the prema \".

r . . . .
If no sets S with the desired properties is found, we take anot her

*
r
arc of HDK;. Qherwi se we conpute X , the premumto be applied to the

-~

cutset K, using (22); and then take the next arc of HDKg¢. Wien all arcs

of HHK"have been exam ned, we conpute the new val ue Xg of the premum
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applicable to the arcs of Kt’ as given in (22), and replace Xt by it‘ All

this replaces the reduced costs Eij by

[ - r
iy - A 1,3 eKtr\Kt, reR
' .. =AY + max »® (i,3) eK_NK R
E' - 1j max i,j eKtr t_',re:
ij seR
- ]
C., + max A (1,5) eR_\N (U K.
13 seR t seR ts
\ Eij all other (i,j) eA

and the lower bound B by B’ definmed in (23). If it > 0, the inequality
associated with Kt (which is slack for X) continues to be represented in

-~

the Lagrangean form (1’). If, however, A\, =0, i.e., max AT = A.» then
the inequality corresponding to Kt is removed from r:f’) and we have
succeeded in replacing this constraint, slack for the solution %, with a
set of inequalities that are all tight for %.

1f TI is the index set of those inequalities (7a) that are slack for
X and for which IRI # @, and if we attach a subscript t to the index sets
R associated with each cutset Kt and to the premia kr indexed by R, then
at the end of Bounding Procedure 4 we have the lower bound

r T
(24) BZ|. = 33 + Z+ z AL - z max )\t.

t +
teTl reRt :erl reRt

3.2. Example 2. Consider the reduced cost matrix of Table 6 resulting from
the solution of AP for an 8-city TSP. The value of the AP solution is v(AP)

= 50. The admissible graph is given in Fig. S.
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1 Q 3 4 5 6 7 3

1t x B 5 7 3 7 3

2| 3 «x O 8 4 6 9 5

3] 9 5 -Xx @ 5 7 3 4

[Eij} = 4 H 7 6 X 6 5 6 9
5] 6 4« 5 6 x FH 2 5

6l 7 0 8 9 H| X 6 4

71 8 9 7 6 6 8 X E|

3l 5 4 5 0 8§ 2 E] X

able 6

Appl ying bounding procedure 1 and taking cutset Ki» ([1,2,3,4} {5,6,7,8})

we obtain X~ 3 and hence B]_: 53. The reduced cost matrix [c_.-ﬁ] is shown

in Table 7 and the admissible graph Gin Fig. 6.

1 2 3 4 5 6 7 3
iy x () 5 7 0 4 5 3
21 3 X a 8 1 3 6 2
31 9 5 X ]_3 2 4 0

tciji = VD 7 6 x 3 2 3
506 4 5 6 x [8 2 5
6} 7 0o 5 9 () x 6 4
s 9 7 6 6 8 x iD
3] 5 4 5 0o 8 2 () «x

Boundi ng procedure 1 is conplete and bounding procedures 2 and 3 are

unsuccessful in inproving the bound beyond Bl» 53.




g
/
e
.t
3
i
3 7
4 EERE—T

Fig. 5. Gaph & defined by the AP sol ution.

\

}Li—-K1 (X=3)

Fig. 6.. Qh_after boundi ng procedures 1, 2 and 3.
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A tour H= (1,5,6,2,3,7,8,4,1) is detected in Gy, but H contains
two arcs of the cutset Kl’ and is therefore not necessarily optinal.

Appl yi ng bounding procedure 4 to L, we identify the cutsets K =

1 1,1
([1,2,3,4,5,6], {7.8)) with \J»2, and K » ({1,2,3,4,7,8}, {5,6}) with
\i: 2, while reducing the multiplier associated with cutset K* from

Xy- 3to Xf 1.

The new reduced cost matrix is given in Table 8 and the associ ated

adm ssible graph is shown in Fig 7.

1 2 3 4 5 6 7 8
il x @Bl 5 7 o a4 5 3
2] 3 x E|] 8 1 3 & 2
3] 9 5 X m 2 4 o0 1
£cij] = 4 O 7 6 X 3 2 3 &6 Table 8
5\ 6 4 5 6 x (Q o 3
6] 7 0o 8 o9 E] X 4 2
713 9 7 6 4 6 X a
sl 5 4 5 0 & o0 B X

The lower bound is now inproved from53 to B,q* 53 +2 +2 - 2 * 55,
as given by (24).
Next we turn to the inequalities (7b).
3.3. Bounding Procedure 5  Suppose the inequality (7b) defined by the
node set St is slack for X, i.e.-, the tour 3 contains fewer than |St|-1
arcs of the set (Sc,S:)- Let Cf‘: be the sub_graph of G induced by the arc
set I:|n (St:’st)’ i.e., the graph consisting of those arcs of the tour A
with both ends in St’ and the end-nodes of these arcs. Note that

H(1 (S.fS)ffl~y’« «npty, since it is possible for a tour to contain all




\
1 \
'L— (h-1 ) ‘
K1

Fig. 7. G, after bouading procedure 4.
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nodes in St: wi thout containing any arc with both ends in SJ and when this

is the case, no new inequalities can be derived from S".

Assunme now t hat I:|f) (SAS:) £ 0, and let C1 ,...,C!s be the (connected)
conponents of Gt' For g$Q « O»-»->s}, let Sq and Aq denote the node set
q q
and arc set, respectively, of C . By construction, each C is an open,
(directed) path, with 2 <|S% <|S| - 1 and [A] * Js% - 1; hence x

satisfies with equality each of the inequalities
S ¢ S gx.j <ds9 - i . qcQ
iestjest

or, to put themin the form (7b),

(25) - £ £ X .>_1 - |9
i estjcst 1

, gqcQ .

Since (S%, S (1A ~ 0 ,VqcQ, these inequalities do not adnmt a positive
penal ty (without a change in the dual variables uTv) , unless the
penal ty Mr: associated with St is reduced. |If, however, this can be done,
then each of the inequalities (25) admts a positive penalty and the current
| oner bound may be strengthened. The next proposition states the conditions

for this.

Let Ft be the set of those arcs of 6 having both ends in St’ but not

both ends in the sane set S*, for any qe Q@ i.e., let
F-(S,S) - U (s%359
C t t CICQ

Proposition 10. A penalty i-l_-;:* > 0 can be applied to each of the arc
sets (SY S%, geQ (provided that the penalty u.tis decreased), if and only
if

(26) Fo fl Ag* 0
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If (26) holds, then

* . -
(27) Y, = Mim . .. >0,
(i,j)er!’

*
and the penalty |+ can be applied to each arc set (S% S% provided that the
penalty u> applied to (S;,S;) is replaced by I* - I\Ag . This replaces the

current bound B by

(28) B8 + (]Q - 1)+ %

Proqf. Since (S%S% C(S,S) and (S%S% nAy* 0, VqeQ, a positive
penal ty "t can be applied to any (and all) of the arc sets (S9 S% if and
only if the penalty n, applied to the arc set (S;,S;) can be reduced by the

¥* . . . . . .
sane anount y,; . This, however, is possible if and only if no arc in the

set K. has a zero reduced coat (i.e., condition (26) is satisfied)

and n?’ does not exceed the reduced cost of any arc in Ft . \Wen

these conditions are present, all arc sets (S9% S%, g«Q, can be penalized
by the armount |% specified in (27), provided the penalty Ac on the arc set
(S,S) is replaced by » - jf‘t . The effect of all this on the |ower bound

is to add y,é‘ as many tinmes as the nunber | QI of conponents of Gt’ and to

subt r act JJt* once; i.e., to add to the current bound B the anpunt

(]Q - D*%e |

Boundi ng Procedure 5 takes an inequality (7b) that is slack for £ forns

the associated arc set K. defined above, and checks condition (26). If (26)
is not satisfied, nothi.ng can be done, and the procedure goes to the next
inegxiality that is slack for x. if (26) holds, we calcul ate »’j[ given by (27),
and penal i ze by p,;:* all arc sets (SY S%,geQ, defined by the components of
the graph Gt; whil e replacing the penalty Ysp ON the arcs of (St’ St)’ by

- n* i -
Ivg: D This repl aces the reduced costs ¢ 23 by
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*
Eij = U't » (irj) ‘Ft

Gy 0 (i, ¢A\F, ,

and the current |ower bound B by B" defined by (28). If y,: < At’ t he

inequality (7b) defined by the vertex set S (which is slack for %)

‘continues to be part of the Lagrangean expression (17); if, however,
My = U\, i.e. the penalty associated with the inequality in question

becones zero, then we have succeeded in replacing this inequality in (17
by a set of other constraints that are all tight for < .
Next the procedure goes to another inequality (7b) that is slack for
X. When all such inequalities have been exam ned, |et T7‘ be the index set of
of those anmong themfor which condition (26) was satisfied, and for each
t € Tt, let | Q| be the nunber of components of the graph Gl:' Boundi ng

Procedure 5 then produces the | ower bound

(29 Bs- Bsa+ E +<| QA **, »
teT)

Finally, we turn to the inequalities (7c).

3.4. Bounding Procedure 6, Suppose the inequality (7c) associated

with the articulation point k apd the cutsets KM » (S* S*\ [k}),

K¥ = (?r\{k},St) is slack for x, i.e,, the tour Hdefined by x contains nore than
one arc of the set K"UK":', and let HfI (KNUKM) - 1 (ij™) ..., (iprdp)}. For
every (i, J;)eEn (KAUK"), r_* I,..-,p, we wll specify a node set _

S'CN\ {k} such that,denoting S* » N\S" and K" « (S", 2"\ Ck}), K" « (s'XX}),S"),

the only arc of H contained in K*UK”" is (i, J;).
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Proposition 1X, The only arc of Hcontained in KcrUKtr'S (i r,jr),

if and only if st = S\{k], where S is the node set of one of the two paths
P = {k,...,i;} and P, - £j,,...,k} in R

Proof. Assune st « S\{k], where Sis the node set of Pl or Pi' In
the first case, HOKA - {(i,,J)} and HOKA = 0; in the second, HdK” = 0
and IleK", - {(iy,J)}. In both cases, (i »J;) is the only arc of H cont ai ned
in K__UK. .

Conversely, let (ir,jr’) be the only arc of H contained in K'trUKér.

Then either [(i~j~} * HOKA and HPIKr. - 0, or ((i,,J)} - HOK*, and
A / * r

HfIKtrz 0. Inthke first case, Henters S fromk rather than from sone node
of SAMk}, since Hfl K"r =0; and it exits S exactly once, through Iym
hence S" = S\(k}, where S is the node set of P-l. In the second case, H
exits S through an arc whose front end is k, rather than sone node of
ST\ {k], since Hfl K’\r =0; and it enters S exactly once, through j T:;
hence S - S\{k}, where S is the node set of P.||

Thus, if the node sets S, r » Ip satisfy the conditions of

Proposition 11, then the inequalities

e . Xy 2> 1 r=1,...,p
4 o 1j - ? ’
(i,J)&KtrUKtr
are all satisfied by £ with equality. The next proposition states the
conditions under which a positive prenmiumcan be applied to the sets K;rUK:r.

Proposition 12. A positive premumcan be applied to the arc set

+ o .
KtrUKtr [f and only if

I it
(30) [(R,_VUK/DO\R] N4, = 8.
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If R 0is the set of those re{l,...,p} ,for which (30) holds, the

. . . , L .
maxi mum prem umappl i cabl e t o each K trUK £y reR is

(31) v % omin{v mnc..},

t (U)eK 1J

"o ) )
where K » <K'trUKtr)NJCt; Prowded the F,rem|umvt applied to Kt is

repl aced by

(32) v »v.- max v'.
¢ € reR

This replaces the current [ower bound B by

(33) B » B+ Ev' - max v'.
reR reR

Proof. Anal ogous to the: proof of Proposition 9]|

Boundi ng Procedure 6 |ooks for indices t€£3 for which a positive

prem um Vt has been applied to the arc set KMNUK” , and for which
I:|n(K"UK") » {(i1,j1),...,(ipip}, With p>2. Gven such a t «s

for each re{l,...,p} we use the node set of the path P, = (k,...,i;) inH
after removing fromit node k, to derive an arc set of the form"~, K UK~
defined in Proposition 11. W then check whet her K~ UK” satisfies (30),

and if so, we calculate the prem umv® to be applied to K't ot herw se

r Ker
we nove to the next re(l,...,p}. Wen all arcs of I‘:|n(K"UK") have been

exam ned, we conpute the val ue \7= of the premumapplicable to the arcs

of K_, as given by (32), and replace v

t

e by GI:' Al'l this replaces the

reduced costs c,. by
1]
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. . 7 "
{ cij -V (1,J)e(Ktr\JKtr)\Kt, reR
i - - r S . 1 "
_ ; clj v o+ ::; v (i,J)e(KtrlJKtr)fWKt, reR
c! = i
ij - s .. ’ "
c;y + max v (1,J)€Kt\ U (R g URL)
! seR seR
H
k\ cij all other (i,j)eA

and the lower bound B by B’ defined in (33).

As in the case of Procedures 4 and 5, if Gt = 0, the inequality
associated with Ké\JKé’is removed from the Lagrangean function 1",
otherwise it stays there with the new premium.

Let T; be the index set of those inequalities (7c) that are slack for
% and for which |R| # @, and let us attach a subscript t to the index

set R associated with KéLJKé'and to the premia v’ indexed by R. At the

end of Bounding Procedure 6 we then have the lower bound

r r
34) B, =B, + X Z v, - X max v .
( 6 > terf reR © cer] rer

Naturally, if at any stage of the bounding procedures described above
the lower bound for the current subprobleﬁ matches the upper bound on v(TSP)
given by the value of the best tour at hand, the current subproblem is fathomed.
At this point we may find ourselves in one of two possible situations:

(o) we have found a tour in Gg, and used it to obtain the lower bound Bg

on the value of the current subproblem; or (B) the attempt to find a tour was
unsuccessful, and B3 is the best lower bound we have for the current
subproblem. In case (B), we define G, = (N’Ae)’ with A_ = {(i,j)eAlE;j < e},
where the Eij are the current reduced costs and € is the smallest number

for which we are able to find a tour in Ge within the given time limit. 1In




-30-

either case, we denote by ﬁ the tour at hand, by i¢ the associated

sol ution, by E;j, (i,j)cA the last set of reduced costs, and by B the

| ower bound for the current subproblem (Qbviously eX, where c is the origina
cost vector, is an upper bound on v(TSP), and the best such upper bound at
each stage will be denoted by B*

3.5. Conputational conplexity of the bounding procedures. FEach of the six

boundi ng procedures discussed in sections 2 and 3 is polynomally bounded.
For each of then except for the first one, the nunber of operations required
in the worst case is 0(n3), where n is the nunber of cities. For procedure 1,
this nunber if 0(n4). Sol ving the assignment problemat the start al so
requires at nost O(n% operations

At every nqde of the search tree, the bounding procedures are applied
once (after solving the assignnment problem if necessary) in the order 1,2, 3.
If at that point the node was still not fathoned (i.e., the |ower bound is
still below the current upper bound), an attenpt is made at finding a tour in Gg
Though there is no algorithmguaranteed to acconplish this in polynonmal tine,
we let our inplicit enumeration procedure run only for a fixed anmount of tine,
that is an input paraneter defined as a linear function of n. If a tour is
found, bounding procedures 4,5,6 are applied in that order; otherw se we
br anch.

I n concl usion, the amount of work performed at any gi ven node of the

4
search tree is O(n ) in the worst case.

4. Branching Rul es

Before branching, we attenpt to fix sonme variables by using the

bounds B and B*. Let

Q = {(1,j)eAc,, 2B - B}.
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It is not hard to show (see [1]) that, if the reduced costs :ij are derived
from the same dual solution and Lagrange multipliers as the lower bound B (as
is the case here), then any solution x to TSP such that cx < B*
must satisfy the condition xij = 0, ¥(i,j)er. Hence we set xij =0, (i,j)er
for the current subproblem and its descendants, i.e., we replace A by A\Qo.
Next we describe two branching rules, which we use intermittently.
The first rule derives a disjunction from a conditional bound [1]; the
second rule derives one from a subtour-breaking inequality.
4.1. A disjunction from a conditional bound can be obtained as follows.
Consider a family of sets QkC:A, k=1,...,p, such that c,. > o, ¥(i,j)er,

ij
k=1,...,p. Then if the inequalities

S x 21, k=1,...,p
(1,5)eQ

were added to the constraint set of LP, the lower bound B could be improved
by choosing appropriate multipliers for these inequalities. Further, if
this improved bound (termed conditional, because of the hypothetical nature

of the inequalities) matches the upper bound B*, then every solution better
than the one associated with B* violates at least one of the above inequalities;

i.e., satisfies the disjunction

P
(35) V(x,, =0, ¥(i,j)eQ).
RASTE Qe

To implement this principle, we first remove from the Lagrangean
function (1') all those inequalities (7a) and (7c) that are slack for x
while the associated multiplier V. is positive. 1If T+ is the index set of

these inequalities, this removal amounts to replacing B by

B=B- T w
teTt
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& ,=c .+ S, aw
' ter 1ij
for (i,j)eA

Next, we choose a mnimumcardinality arc set SCH such that

(36) zx?. & .>B - B

d,Des ¥

J

The existence of such SCH would be guaranteed if we renoved from
(1') all inequalities (7) that are slack for X (see [ 1] for a proof).
However, renoving the inequalities (7b) would either produce negative
reduced costs, or would require a recal culation of the ui and Vj' To avoid
this recalculation, we restrict ourselves to the renoval of inequalities
(7a) and (7c), taking the risk of not being able to find a set scH sati sfying
(36). Wenever this happens, we apply the second branching rule, to be

di scussed bel ow.

Gven that (36) holds, let S = {(iJdy),...,(l p,jp)}. VW then
construct a p x |Al 0-1 nmatrix D= (d£j)by setting d£.J * 1 in each colum
(i,j) for as many indices kc{l,...,p} as possible, subject to the conditions
(37) . -1, k-1,...,p

Vk
and
(39 E g < (i
|-L- . SC.., 'y J)eA -
TREAVERSE

These constraints |eave sone freedom for choosing the entries d"j of
1
each colum (i,j)eA which we use to nake the nunber of I's in each row as

close to equal as possible.
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Propositioa 13. Every solution x to TSP such that ex < B* satisfies

the disjunction

(39) k\7(x..:o, V(i.j)e0).

1XJ K

wher e

(40) Q = {(1,1)CA de =1}, kl= ..

f P

Qutline of proof (see [ 1] for details).

If X violates (39), it satisfies

(41 > X..>1

, k-1, ...,p.
(1,3 eQ

Adding (41) to the constraint set of LP and assigning the nultiplier (dual

variabl e) t,

. .to the kth inequality (41), yields the |ower bound
*ilie

" P n
B+|?:..-B+ZZ=é‘b..
fc-1Vk (iJd)esS

>B

where the last inequality follows from (36). Hence ex > B, ||

The disjunction (39) creates p subproblems. 1In the k':!h subprobl em

we have x.:“_.J ¢ 0, (i,j)€Q”d and since (i. li.j'x.) cHI % , the tour Hbeconmes

infeasible for each of the subproblens. On the other hand, the current

solution to AP remains feasible for each of the subprobl ens.

4.2. A disjunction froma subtour breaking ineguality is obtained in the

usual way; i.e., if Sis the arc set of a subtour of the AP solution, then

every solution to TSP satisfies the disjunction:

(42) Vo (x

.- 0and x. . =1, Vt <k-1)
Vk W
(H‘,Jk)cs
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At an arbitrary node of the branch and bound tree, a subset S'c5 of the
arc set S (of the subtour selected for branching) may al ready have been
fixed to be in the solution. In this case set S in disjunction (42) is
replaced by S\'S'. Branching on (42) creates |s\S| subproblenB: For
each of these subproblens, the AP solution to the parent probl em becones
i nf easi bl e.

In choosing the arc set S for the disjunction (42)} it is desirable to
give preference to subtours (of the current AP solution) having either a
m ni mum nunber of arcs (mn |S),or a mni.num nunber of free arcs (mn |s\S |).
In the conputational tests discussed in the next section we used the first
of these two criteria.

As to the two disjunctions (39) and (42), an efficient procedure nust
use themintermttently, since (39) can on occasion be considerably stronger
than (42), while at other times it can be nuch weaker. W tried severa
rules for mxing them and the one actually used in the tests is discussed

in the next section.

S. | mpl enent at i on _and Conput ati onal Experi ence

Qur algorithmwas programred in FORTRAN IV for the CDC 7600 and tested
on a set of 120 randomy generated asymetric TSP's of sizes varying between
50 and 325 cities. Here we discuss sone features of the inplenentation, give
the conputational results, and interpret them

5.1. ke of sparsitv. Unlike in the case of those symmetric TSP s whose
costs are baaed on distances and can therefore be generated whenever needed
fromthe 2n coordinates of the cities, in the case of the asymmetric TSP
one has to explicitly store the costs, whose nunber in case of a conplete graph

is n(n-1). However, our procedure derives both |ower and upper bounds on
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the value of the problemand, as discussed at the begi nning of section 4,
provides a valid criterion for setting to O certain variables. As it will be
di scussed bel ow, the nunber of variables that can be fixed at 0 before the
first branching is usually very high. Therefore at that point we actually
renove fromthe graph all those arcs whose variables can be fixed at O,

and fromthen on we work with a graph (usually quite sparse) represented

by a list of nodes and a list of arcs with their costs. Additional fixing

of variables (at 0 or 1) later in the procedure is handled differently

(see bel ow).

5.2, Solution of the AP's. At every node of the search tree, a subset of

variables is fixed at 0, another subset is fixed at 1, and the current
problemis the one in the free variables. A variable x,l.J is set to 1 by

adding a large nunber M>0 to all ¢ k=1,..., n, kK™~j. Avariable x

i ij

is set to 0 by adding Mto ¢ The reason for not sinply renoving the arc

iy’
fromthe graph, as done before the first branching, is that (a) the variable
and its cost nay be needed | ater on another branch; (b) the transition from
the old AP solution to the one for the new subproblemis easier this way.
Al AP's are solved by the Hungarian algorithmnodified as foll ows:

(i) At every subproblem we start with a solution derived fromthe solution of
the predecessor problem In particular, the growing of an alternating tree
(in search of an augnenting path during the application of the Hungarian
algorithm starts with a matching (i.e., a set of independent zeroes in the
reduced cost matrix) derived fromthe solution to the predecessor of the

current subproblem A single augnenting path is alnost always sufficiéent to

sol ve the current AP.
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(ii) Since the Hungarian algorithmis a dual procedure, it can be termnated
prenmat urel y whenever the val ue of the objective function exceeds the val ue of

the current upper bound.

5.3. Branching and node _selection. The two types of branching di scussed

in section 4 are used intermttently according to the following rule. A
branching of type 1 (based on disjunction (39)) is perforned whenever a set
of arcs SCH S « {(ile) v (ip,jp)}, can be found, such that
(i) ‘inequality (36) is satisfied
(ii) |s|] <~+ 1, where p is the condinality of the smallest subtour in
t he cufrent AP sol ution; and
(iii) at least n/3 variables can be fixed at 0 on each branch
Wienever any of the above conditions is violated, a branching of type 2
(using disjunction (42)) is performed
The node selection rule used in the code is to ehoose a successor of the
current node whenever avail able, and otherwise to select a node k for which

the followi ng evaluation attains its m nimm

. k)=-1
Boo- new- v@ap] - £t

Here B(k) is the lower bound for subproblemk, v(AP) is the value of the
(initial) AP, while s(0) and s(k) are the nunber of subtours in the solutions
to the initial AP and the current one (at node k), respectively. The integer
s(k) is used as a neasure of the "distance" of the AP solution at node k from

an optinal tour.

5.4. Information stored for each subproblem Al subproblens are stored on a

linked list in order of increasing |ower bounds. For each subproblemk the

following information is stored
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- The AP sol uti on.

—.The val ue of the associated bound.

- A pointer to the father node of node k.

- Acode to indicate the type of branching (one of the 2 types described
above) that produced node k.

- The nunber of sons of the father of node k.

- The rank (index) of node k anmong its brothers.

- If the type of branching that produced node k was based on disjunction

(39), we store the arcs inS=f(i,,j_),...,(i ,j )}. [If it was based on
11 PP

disjunction (42), then a pointer gives the subtour in the AP sol ution
corresponding to Sin (42).

- Alist of the operations (in coded and ordered formn) which produced
the current matrix [c}ﬂ fromthe matrix for the predecessor node.
(This is not strictly necessary but speeds up considerably the
backt racki ng process).

5.5. Conput ational results. The above descri bed code was run on the

CDC 7600 to solve 120 randomy generated test probl ens whose associ ated
(directed) graphs are conplete and whose cost coefficients were drawn from

a uniformdistribution of the integers in the range [1, 1000]. The probl ens
belong to 12 cl asses based on size, with n® 50, 75,..., 300, 325, and with
10 problenms in each class. Table 9 sumarizes the results. These results
are quite remarkable, in that the nunber of nodes generated is surprisingly
smal |, and seens to increase only slightly faster than the probl emsize
(nunmber of cities). This is also illustrated on Fig. 8, where the slope

of the curve is only slightly steeper for 200 < n < 325 than for 50 < n < 200.
Note, also, that the maximumtime required to solve any one of the 120

probl ens was 82 seconds.




Table 9. Computational results on random asymmetric TSP's.
Class | n |[lAverage Computing time Percentage of nodes Percentage of time
no. of ||(CDC 7600 seconds) fathomed b spent on
nodes || Average | Maximum BO B1 32 B3 H 4,5,6 BO B1 82 B3 H B4,5,6 Other
1 50 12.3 .20 .88 ||25.2]129.1| 6.9 |10.4 |21.4 7.0 || 5.3 | 15.5] 26.0|15.3 | 1.2 | 20.1 16.6
2 75 26.6 .29 .93 ||1-26.7126.6 |10.3 ]10.1|19.8 6.5 || 5.3 |15.4] 26,9]12.6 | 0.8 | 20.7 18.3
3 100 39.1 1 1.41 |121.8}30.7 | 9.5 |14.9]16.5 6.6 ||4.9 |15.1] 27.8j14.1 | 0.8 ]| 23.1 15.2
4 125 42.7 1.13 2,07 ||19.6 | 34.4 |12.0 |13.8 | 16.5 3.7 ||]4.8 | 16.0] 23.9)17.3 | 1.1 ] 26.1 10.8
5 150 45.7 1.97 3.30 |{19.6 ] 28.5 |15.1 |]12.9|13.3 | 10.6 3.9 | 16.3] 24.8|14.9 | 1.3 | 26.6 12.2
6 175 58.3 4.18 6.68 |]20.1]28.7 |17.4 |13.7 | 15.4 4,7 || 4.6 | 16.9] 28.4]14.8 | 0.9 | 19.3 15.1
7 200 63.4 6.06 19.33 || 14.7| 33.9]|14.9 |17.2 |12.1 7.6 ||4.1 |16.5] 29.7|16.7 | 1.6 ] 19.1 12.3
8 225 84.1 10.44 18.65 || 11.1] 29.6 |22.6 |16.8 | 8.8 ] 11.1 3.8 |16.3] 29.1|16.4 | 1.8 20.1 12.5
9 250 88.5 13.65 17.43 || 12.5] 29.7 | 17.2 |21.9| 9.2 9.5 3.3 | 17.6} 27.7|17.3 | 1.6 20.2 12.3
10 275 || 106.4 21.74 68.86 9.3 25.4120.5)19.3] 8.5 .0 || 2.9 | 18.5}| 27.9|16.5 | 1.9| 18.9 13.4
11 300 || 124.1 38.37 55.15 || 10.7] 28.9]119.1 |23.8} 6.9 ] 10.6 3.1 | 18.9} 29.1j14.1 | 2.1| 20.0 12.7
12 325 || 141.8 49,66 81.57 7.7132.3|18.7|21.6] 7.8 11.9 || 2.6 | 20.1] 30.3{16.0 | 2.1} 17.1 11.8
Notes. n: number of cities
BO:' lower bound obtained by solving the current AP and adding to v(AP) a penalty derived from [Eij]
BI’B2’BB: lower bound obtained by procedures 1,2 and 3, respectively
H: upper bound obtained by finding a tour in G0 satisfying the condition of Proposition 2
34,5,6: lower bound obtained by procedures 4 to 6
Other: branching, node selection, updating, etc.

-85—
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Since the average cost of the various bounding procedures is not

proportional to their useful ness,

we have tested each of the bounding

procedures individually and in subsets to see whether their use pays off.

The outcone of our tests was that using al

efficient than using any subset in any conbination

Anot her renmarkabl e feature of

6 bounding procedures is nore

the approach discussed here is the large

nunber of arcs that can be renmoved fromthe graph (of variables that can be

permanently fixed at 0) at the root

the test discussed at the beginning of section 4.

node of the search tree,

as a result of

This is shown in Table 10.

The fact that such a high proportion of the arcs can be renoved before

branchi ng shows the power of the bounding procedures used in our approach

For a conpari son,

if only the bound obtained fromAP were used,

then the

percentage of variables removed in problemclasses 1, 2 and 3 would be on the

average 87% (and this percentage does not seemto increase with problem size)..

Thus, for problemclass 3, for exanple, our bounding procedures reduce the

nunber of arcs renaining in the graph fromizhe 13% that would be left by the

AP bound, to 2.9%

Table 10. Percent of arcs renoved on the average at the root_ node.
Probl em cl ass 1 2 3 4 5 6 71819 10 | 11 | 12
fres removed (average) m x5 3\ 06.4{97. 1|07, 3}97.5(97. 6|4, 9|J98' 1}98'4 98.3|98.698. 7
In connection with the two branching rules, it is inportant to m x them

j udi ci ously.

variables than rule 2 (disjunction (42)),

Wiile rule 1 (disjunction (39)) often allows one to fix nore

it yields inferior results, since occasionally it

if used as the only branching rule

is very bad. The m xing

strategy used in the above runs (and di scussed under 5.3) has resulted in

rule 1 being used only at

1, or 1 and 2,

with those obtainable by using rule 2 only,

(i.e., 40 of the 120 problens) with branching rule 2 only.

the results.

only).

the upper levels of the search tree (often at

| evel

To conpare the results obtained by using this strategy

we ran 4 of the 12 problemsets

Tabl e 11 conpares
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Table 11. Conparison of branching rul es

d ass a | Average. no. _of nodes i Conputing tine (CDC 7600 sec):
HRule 2 M x of Rule 2 M x of
rules 1 and 2 - rules 1 and 2
1 | 50 10.3 12.3 .29 .20 '
3 100 || 319 39.1 2.10 71 i
5 150 36.8 45,7 4. 60 1.97 !
7 200 49.9 63. 4 11. 68 6. 06

Note that although branching rule 2 tends to produce a smaller nunber
of nodes than the m xed strategy described in section 5.3, it also tends to
require about twice as nuch tine than the latter. This is because the
disjunction (39) (rule 1) creates nodes for which the AP solution at the
father node remains feasible, and for which a |arge nunber of variables can

be fixed at 0 —two features that nmake such nodes easy to fathom

6. The Symmetric Case

Qur algorithmcan of course be applied to symwetric TSP's as it is, but
it would not be efficient for such problens in its present form This is
so because of the well known fact that AP's associated with symetric TSP's
tend to have optimal solutions involving a |arge nunber of subtours of length
two. However, our approach can easily be adapted to the symetric case by
repl aci ng the assignment problemw th the 2-natching problemas the basic
rel axation of the TSP. W are in che process of developing such an al gorithm

for the symmetric TSP.
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violating the constraints, so as to strengthen the current |ower bound.

Upper bounds are generated by a fast heuristic whenever possible. Wen the
bound*strengt heni ng techni ques are exhausted without natching the upper

with the | ower bound, we branch by using two different rules, according to
the situation: the usual subtour breaking disjunction, and a new di sjunction
based on conditional bounds. W discuss conputational experience on 120
randomy generated asymmetric TSP's with up to 325 cities, the maxi mumtine
used for any single problembeing 82 seconds. Though the al gorithmdi scussed
here is for the asymetric TSP, the approach can be extended to the symmetric
TSP by using the 2-nmatching probleminstead of AP.
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