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ABSTRACT

A new worst case design procedure is described. This method employs

Powell's new constrained optimization procedure and is at least superlinearly

convergent. A novel function splitting scheme is described to avoid

singularity problems inherent in some previously reported methods.

I. Introduction

In this paper we describe a new mini-max based method for solving

both the fixed and variable tolerance worst case problems. While this

method is similar to the technique proposed recently by Madsen and Schjaer-

Jacobsen [1], it is at least superlinearly if not quadratically convergent

even for the non regular2case. Furthermore, the present method solves the

variable tolerance problem directly rather than as a double iteration as

given in [1].

1 This research was sponsored in part by NSF Grant ENG 77 - 20895.

2 We are using the term regular and singular as defined for a minr-max problem in
[21, i.e., a minimax problem is singular if the rank oT the Jacobian of the
active constraint at the solution is less than n, the dimension of the space.
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The fixed tolerance problem can be stated as follows. Given the

tolerance t find the nominal point x* such that the largest value of the

constraints f.(x), i=l, 2,. . .m is minimized. Formally we can state this

problem as

«

min

x y t

(1)

where R = {y|x.-t. _< y. _< x.4-t.} is the tolerance region. By

introducing an auxiliary variable, this mini-max problem can be transformed

into the constrained optimization problem.

min y

subject to

Y _> max f j (y)

Y e Rt

j = 1, 2, . . ., m. (2)

In order to solve (2) (which we do using Powell's new procedure

discussed in the next section) we must solve, for each function f.(y), j=l,2,...,m,

the worst case problem.

max f (y)

y e Rt

Solution of the worst case problem is not easy and is discussed in Section II.
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In the variable tolerance case the objective is to find the largest

tolerances as well as the nominal design point which results in 100% yield

for a feasibility region defined by the constraints

f. (x) <_ c j = 1, 2, . • ., m.

This problem can be stated as the constrained optimization problem

max y

subject to

max f (y) < c
(3)

j = 1, 2, . . . , m

V

where

V = {y'Xi " Yti - yi - Xi + Yti}

which is similar to (2) (note max y is the same as min -y) and can be

solved using the same procedure described in Sections II and III.

An example of the new algorithm is given in Section IV.

II. Powell's Method

Consider the problem

min <J>(x) (4)

subject to

c±(x) = 0, i = 1, 2, . . .,m

where <J> and c^ are twice differentiable, real valued functions. The Kuhn-

Tucker conditions for the solution of (4) are
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m
Vf(x*)-£ A±* V c±(x*) = 0

c±(x*) =0 i - 1, 2, . . . . m

If the set of equations (5) were to be solved using Newton's method

we would iteratively solve the equations.

(5)

m

T

7cm
T(xk)

k+1 k.A kx = x +Ax

= A +AA

-Vci(x
k) Ax

(6)

Powell approximates the second derivative of the Lagrangian
m

L(x,A) = f(x)-X A c (x )
i«l

with a positive definite matrix B that is updated at each step using

a BFGS formula, and the step can be smaller than Ax in order to

guarantee global convergence [5]. Also instead of solving (6)

equivalent quadratic problem is solved.
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T
VfT(x )Axk + 1/2 Axk BAxk

K.

t.

T k
VCro (x >

= 0

(7)

This problem yields the same solution as (6) and the same A!s, if B is

the exact Hessian of the Lagrangian, and provides an obvious way to handle

non-equality constraints, that are just append to the set of constraints

after linearization.

Observe that if near the solution the rank of the Jacobian of the

constraints in (6) is n, the last m rows of the matrix can be used to

obtain the solution, avoiding the computation of the Hessian. Because

we are using Newtons method we still have 2 order convergence. This

fact is why the Madsen and Schjaer-Jacobsen algorithm [1] can, in the

regular case, provide a second order rate of convergence without

computation of second derivatives [3]. But more important is the

observation that we should try to introduce the largest number of possible

constraints in order to improve the rate of convergence of the method.

This observation is the motivation behind the concept of function splitting

which is introduced in the next section.

Note that as with any Quasi-Newton optimization method at least

superlinear convergence should be expected [6J.
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III. The Worst Case Problem

As was pointed in Section 1, in order to solve (2) we have to solve

the worst case subproblera

max fj

y c Rt (8)

for each j = 1, 2, . . ., m. In general this problem is difficult to solve,

and some restrictions need to be made on the f.. In the following development

we will assume that the f. are such that the solution of (8) is always

found at one vertex of R . Even with this simplification, we cannot use

Powell's method directly because the constraints in (2) are not smooth.

A small variation of the centers of the tolerance region can cause a

change of the worst case vertex, or the maximum value can be achieved at

more than one vertex simultaneousely. To solve this problem at each iteration

we not only compute the worst case vertex but also introduce new inequalities

corresponding to the vertices that have been active in one of the n

previous iterations. As was mentioned in Section II, introduction of new

constraints can only help the rate of convergence of the algorithm. In the

example of Figure 1, where m = 1, at the first iteration we would have

only one constraint corresponding to vertex V2, but in all subsequent

iterations we would always have 2 inequalities, for vertex V~ and V~.

Geometrically it can be seen that it prevents the algorithm from bouncing

around the 45° degree line. In general, any function could be split into

n+1 constraints,but as will be seen in the examples this situation is very

unlikely.

Another way of looking to the algorithm is as follows. Let R (x)

represent the set of vertices of the tolerance region corresponding to a
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nominal value x. Under the assumptions made above, (2) can be recast as

nin y

j =

i =

y i

1,

1,

e R
V

. . •

. . .

(x)

• , m

, 2 n

(7)

Notice that the number of constraints would be mx2 making the

computation prohibitive for large values of n. The proposed method is basically

a scheme to pick out those constraints which are good candidates to be active.

IV. Examples

Consider as a first example the fixed tolerance problem (1) with one

constraint

f(x) = .505x1
2 + .505x2

2 - -99x^2

with the tolerances t = (0.1, 0.1). The level cuts are elongated ellipses

and the minimum of f(x) is obtained at JC = (0.,0.) Note that since we have

one constraint and two variables (i.e., m=l and n=2) this problem is

singular even with constraint splitting. Starting with the point x = (2,A)

and Y=l> the algorithm took 13 iterations to converge to the solution x = (0,0)

requiring 66 function evaluations and 55 gradients,

The variable tolerance problem, with c= 0.1 with the same starting

point that took 12 iterations to converge to the solution x = (0,0), r = 2.236

requiring 63 functions evaluations and 51 gradients.
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When solving the subproblem max f,(y) we had a problem whenever
yeRt

x =x9. The algorithm we use to find y is based upon gradient information.

The gradient at the center of R is computed and we take the vertex

pointed by the signs of this gradient. If the signs of the gradient are

the same at this vertex a maximum was found, otherwise we take the vertex

pointed by the new gradient and the procedure is repeated. If x^x^

it can easily be checked that the maximum found is a local maximum. It was

decided that before taking a vertex given by this procedure as the worst

case point, we always check the function values at the worst vertices in

the last n iterations. Notice that no extra function evaluations are

required because the function at these vertices need to be computed

anyway due to the splitting mechanism.

For comparison we tried the above algorithm to solve example 1 of

[1]- Both fixed tolerance problem and variable tolerance problem took only

5 iterations to converge to the solution . For functions f ~ and f~ only one vertex

becomes active. For function f-.,2 vertices are active at the solution.
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