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ABSTRACT
A new wor st case design procedure is described. This nmethod enpl oys
Powel | ' s new constrai ned optimzation procedure and is at |east superlinearly
convergent. A novel function splitting scheme is described to avoid

singularity problenms inherent in some previously reported nethods.

l. I ntroduction

In this paper we describe a new mni-max based nmethod for solving
both the fixed and variable tol erance worst case problens. VWhile this
method is simlar to the technique proposed recently by thsen-and_Schjaer-
Jacobsen [1], it is at least superlinearly if not quadratically convergent
even for the non regul ar’case. Furthernore, the present method solves the
variable tolerance problemdirectly rather than as a double iteration as
given in [1].

' This research was sponsored in part by NSF Gant ENG 77 - 20895

2 W are using the termregular and singular as defined for a minr-nax problem jn
[21, i.e., a minimax problemis singular if the rank oT the Jacobian of the
active constraint at the solution is less than n, the dinension of the space.

University Libraries
Carnegie Meifon University
Pittsburgh, Pennsylvania 15213




- 2* .

The fixed tolerance problem can be stated as follows. Gven the

tolerance t find the nom nal point x* such that the largest value of the

constraints f.l(x), i=l, 2,. . .m is mnimzed. Formally we can state this
probl em as
«
m n max C3(y)
X y £ _Rt
i = 1, 2 me (1)

wher e th {y|x.it.1__§ Yy =< xi4-t1.} is the tolerance region. By
introducing an auxiliary variable, this mni-max problemcan be transforned

into the constrained optim zation problem

subject to
Y > max fj (y)

Y e R

In order to solve (2) (which we do using Powell's new procedure

di scussed in the next section) we nust solve, for each function f.J(y), =2,

the worst case problem

max fj(y)

y e R

Solution of the worst case problemis not easy and is discussed in Section I1I.
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In the variable tolerance case the objective is to find the |argest
tol erances as well as the nominal design point which results in 100%yield

for a feasibility region defined by the constraints

This problem can be stated as the constrained optinization problem

max y
subject to

max f (y) <c

wher e
V = {yl Xl " Ytl _ §| % + Y[l}

which is simlar to (2) (note max y is the same as mn -y) and can be

solved using the same procedure described in Sections Il and |11

An exanple of the new algorithmis given in Section IV.

[1. Powell's Method

Consi der the problem

mn <X (4)
subject to
co(x) =0, i =1, 2, . . .,m

where & and c” are twice differentiable, real valued functions. The Kuhn-

-Tucker conditions for the solution of (4) are
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c:(x*) =0 i- 1, 2, .... m (5)

If the set of equations (5) were to be solved using Newton's nethod

we would iteratively solve the equations.

sz(xk)—-g]kivzc-i(xk) -Vei (x9) .. .-ch(xk) Axk —Vf(xk)+):)\chi(xk)
i .
ve T (x) | =1 e,
7¢.7(x¥) sk - o (x)
Jv 4 L " _.

Powel | approxi mates the second derivative of the Lagrangi an
m _
L(x,A) = f(x)-X A,c (x)
i« t
with a positive definite matrix B that is updated at each step using
a BFGS formula, and the step can be snmaller than Ax in order to

guar antee gl obal convergence [5]. Also instead of solving (6) the

equi val ent quadratic problemis solved.




-
win VfT(xK)Axk + 1/2 Ax* BAxX

— r. _—
g.t. | Ve ]_T(xk)_1 &xk + cl(xk) =0
T k k
Go (x> cm(x ) (7)

This problemyields the sanme solution as (6) and the sane A's, if Bis
the exact Hessian of the Lagrangi an, and provides an obvious way to handl e
non-equal ity constraints, that are just append to the_set of constraints
after linearization.

bserve that if near the solution the rank of the Jacobian of the
constraints in (6) is n, the last mrows of the matrix can be used to
obtain the solution, avoiding the conputation of the Hessian. Because
we are using Newtons nethod we still have an order convergence. This
fact is why the Madsen and Schjaer-Jacobsen algorithm [1] can, in the
regul ar case, provide a second order rate of convergence w thout
conput ation of second derivatives [3]. But nore inportant is the
observation that we should try to introduce the |argest nunber of possible:
constraints in order to inprove the rate of convergence of the nethod.
This observation is the notivation behind the concept of function splitting

which is introduced in the next section

Note that as with any Quasi-Newton optimzation nethod at - | east

superlinear convergence should be expected [6J.




[11. The Worst Case Probl em

As was pointed in Section 1, in order to solve (2) we have to solve

the worst case subproblera

nax f%(y)
y ¢ R ' (8)
for eachj =1, 2, . . ., m In general this problemis difficult to solve,
and sone restrictions need to be made on the fj. In the follow ng devel opnent

we will assume that the f.J are such that the solution of (8) is always

found at one vertex of Rt. Even with this sinplification, we cannot use
Powel I's method directly because the constraints in (2) are not snooth

A small variation of the centers of the tolerance region can cause a

change of the worst case vertex, or the maximmvalue can be achieved at

more than one vertex sinmultaneousely. To-solve this'problenlat each iteration
we not only conpute the worst case vertex but al so introduce new inequalities
corresponding to the vertices that have been active in one of the n

previous iterations. As was nmentioned in Section Il, introduction of new
constraints can only help the rate of convergence of the algorithm In the
exanple of Figure 1, where m= 1, at the first iteration we would have

only one constraint corresponding to vertex V2, but in all subsequent
iterations we would always have 2 inequalities, for vertex VZ and V;
CGeonetrically it can be seen that it prevents the algorithn1fron1bouncing
around the 45° degree line. In general, any function could be split into

n+l constraints,but as will be seen in the exanples this situation is very

unlikely.

Anot her way of |ooking to the algorithmis as follows. Let Rv(x)

represent the set of vertices of the tolerance region corresponding to a




-6 -

nominal value x. Under the assumptions made above, (2) can be recast as

nin vy

s.t. Yz_ fj(yi)

y; € R () )

Notice that the number of constraints would be mx2" haking the
computation prohibitive for large values of n. The proposed method is basically

a scheme to pick out those constraints which are good candidates to be active.

IV. Examples
Consider as a first example the fixed tolerance problem (1) with one
constraint

f(x) = .505xl2 + .505x22 - .99x1x2

with the tolerances t = (0.1, 0.1). The level cuts are elongated ellipses
and the minimum of f(x) is obtained at x = (0.,0.) Note that since we have
one constraint .and two variables (i.e., m=1 and n=2) this problem is
singular even with constraint splitting. Starting with the point x = (2,4)

and y=1, the algorithm took 13 iterations to converge to the solution x = (0,0)

requiring 66 function evaluations and 55 gradients,

The variable tolerance problem, with c¢= 0.1 with the same starting
point that took 12 iterations to converge to the solution x = (0,0), r = 2.236

requiring 63 functions evaluations and 51 gradients.




When sol ving the subprobl em max fi(y) we had a probl em whenever
yeR

X1=Xg. The algorithmwe use to find y is based upon gradient information.
The gradient at the center of Rg is conputed and we take the vertex

pointed by the signs of this gradient. |If the signs of the gradient are
the same at this vertex a maxi numwas found, otherw se we take the vertex
poi nted by the new gradient and the procedure is repeated. |If x~x%

it can easily be checked that the maxi num found is a |ocal maxi mrum It was
deci ded that before taking a vertex given by this procedure as the worst
case point, we always check the function values at the worst vertices in
the last n iterations. Notice that no extra function evaluations are

requi red because the function at thesé vertices need to be conputed

anyway due to the splitting mechani sm

For conparison we tried the above algorithmto solve exanple 1 of
[1]- Both fixed tol erance problem and vari abl e tol erance problem took only
5 iterations to converge to the solution. For functions ff and f; only one vertex

becones acti ve. For function f1,2 vertices are active at the solution
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FIG. | EXAMPLE1 ( t=.1,.1)
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FIG. 2 EXAMPLE 1 (c=.1)
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FIG. 3 EXAMPLE 2 (f.1.1)
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FIG. 4 EXAMPLE 2 (t-1.5)




