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AUCTIONS AND MARKET GAMES

by

Gerald L. Thompson

1. INTRODUCTION

Some simple market games were briefly treated in their monumental work

by John von Neumann and Oskar Morgenstern [10]. These remained as intriguing

special cases until Shapley [12] showed that an interesting class of market

games could also be solved as assignment problems, which constitute a special

kind of linear program. Later, Shapley and Shubik [13] characterized the core

of the assignment game.

From an entirely different point of view the ideas of auctions and

bidding began in economic theory with the famous horse auction of Bohn-Baverk [3],

which Shapley and Shubik later [13] identified as an assignment market game.

Vickery [21], [22] discussed the idea of price setting in a sealed bid auction

by the bid of the second highest bidder, which can also be called a Dutch

auction, and showed that it was pareto optimal for the buyers. More recently

other auction results were given in [1, 8, 11, 14, 17]. Barr and Shaftel [2]

showed that Vickeryfs work could be extended to several buyers and sellers and

different kinds of goods by using an assignment model. The author [19] re-

marked that the Barr-Shaf tel model was really an assignment market game being

solved for a special core point, the buyer surplus point. In [18] the author

extended assignment market games to transportation market games and gave a

constructive method for computing all the extreme points of their cores. He

also discussed in [19] ways that market game theory could be applied to the

solution of practical auctioning problems by using the recently obtained immense

improvements in speed of solving assignment and transportation problems [4, 7, 15].
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In [20] the author used the economic ideas of dutch auctions to devise a

new and extremely efficient algorithm for solving assignment problems.

In the present paper a number of new results relating both to the cores

of market games and to the corresponding auction applications. The first re-

sult has to do with the effect on the core of adding or dropping sellers and

buyers. In [20] the author gave a recursive method for solving assignment

problems which proceeds by starting with all the buyers and one dummy seller,

and then adding sellers one by one. At all times a buyer surplus solution is

maintained. In this process the sellers prices go down or stay the same and

the buyers surpluses go up or stay the same. The same holds true if buyers

are dropped and the reverse holds true if sellers are dropped or buyers are

added. These results are of interest if one is considering dynamic auctions

of indivisible goods.

The second result characterizes the maximum number of extreme points of

the core as the binomial coefficient 2n by n. This is a huge number for

large n since it increases exponentially. Several other core results are

also demonstrated such as: a dominant diagonal cost matrix has the Tnayfrmim

size core; a game with positive bids always has a core with an even number of

extreme points; and the core of a primal nondegenerate transportation game has

a core with exactly two extreme points.

Finally, in the last section, the graphs of the skeletons of several

market games are drawn to show how they vary in size and in numbers of extreme

points. Some remarks on auctions and fair division problems are also given.

2. NOTATION FOR MARKET GAMES

We use the same notation as [13], but summarize it here for completeness.

University Libraries
Carnegie Mellon University
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We denote the Index set of the sellers by

I - {1,2,...,m} (1)

and denote the index set of the buyers by

J - {1,2,...,n}. (2)

We assume that seller id has

a± > 0 (3)

units of a good to sell, and that buyer jeJ wants to buy

bi > 0 (4)

units of the good. We let

*±i L ° (5)

be the bid of buyer j for one unit of seller ivs goods. The nonnegativity

requirement in (5) means that seller i can dispose of his goods without

charge in case no one bids a positive amount for it.

We make the same economic assumptions as do Shapley and Shubik [13]

in their treatment of the assignment market game, namely:

(a) Utility is identified with money

(b) Side payments are permitted

(c) The objects of trade are indivisible

(d) Supply and demand functions are inflexible.

The remarks they make about these assumptions are pertinent here and will

not be repeated.
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As In the assignment game {13], the only profitable coalitions are

those containing some buyers and some sellers. Also, because of assumption (5)

and the side payment condition (b), the only important coalition is the all-

player coalition S • I U J. We shall concentrate on evaluating v(S) for this

coalition only, since it is the only important coalition in the game.

Let x., be the number of units i sells to j. The value v(I U J)

is obtained by solving the linear program:

Maximize Z Z x.. c.
iel jeJ 1J X3

Subject to (6)

1 *ii - ai
jeJ X3 x

Z Xi1 - biiel X3 3

x . > 0 .

The nonnegativity requirement on x . means that the exchange of property

is from seller i to buyer j. The maximization objective in (6) means

that we seek a set of transactions which maximizes the total gain of the

coalition IU J of all sellers and buyers (see Shapley and Shubik [13]).

If b. a 1 for jeJ the problem is called a semi-assignment market

game. If, in addition, a. * 1 for iel the problem is called an assignment

market game..

The dual linear programming problem to (6) is easily written as

Minimize 2 a. u. + Z b, v.
iel X * jeJ J 3

Subject to (7)

M^ + v >̂  c for iel, jeJ

u. > 0 for iel

v > 0 for jeJ
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where u. and v are the dual variables associated with the first and

second constraints in (6), respectively.

The core of the market game (i.e., the set of undominated imputations)

is the set of all solutions to the dual problem (7). This was argued in [13]

for the assignment case, and the same result holds here. Because of the non-

negativity conditions (3), (4), (5) and well-known linear programming results,

the core is a bounded convex polyhedral set.

We can turn (6) into the classical transportation problem of linear

programming by adding a dummy seller {nrfl} and dummy buyer {xri-1} giving

extended seller and buyer index sets

i' - I U {Bri-1} (8)

J ; » J U {xrt-1} . (9)

We define the bids of these dummy players to be

c., . - 0 for jeJ (10)

- 0 for iel (11)

and note that (10) can be interpreted as a "free gift" option for the buyers

and (11) can be interpreted as a "free disposal'1 option for the sellers. To

determine the amount sold by the dummy seller and the amount bought by the

dummy buyer, we first define

S - Z a, (12)
lei

T - 2 b. (13)
jeJ J

and then define
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b .. -h\S - T| + (S - T)] (15)
n+x L

as the amount sold by the dummy seller and the amount purchased by dummy

purchaser, respectively. It is easy to see that at least one (and possibly

both) of a ,- and b ., is 0. In any case we retain both dummy players
ffi-rl nrrJL

in the transportation problem for reasons that will become clear later.

We now use the above definitions to state a transportation problem

from which the solution to (6) can be obtained.

Maximize E E xf, c.t

Subject to (16)

Zy *„ - a± for „! '

b4 for j e j '

The dual problem to (16) is

Minimize E a. u. + E b
i i j

Subject to (17)

for iel',u ± + v >̂ c

Clearly the only difference between (7) and (17) is the nonnegativity require-

ments on the dual variables which are present in (7) but missing in (17).

In [18] it was shown that the set of nonnegative solutions to (17)

is non-empty and bounded. Hence we impose the nonnegativity constraints
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ui L ° for ieI ' ^ V4 1 ° for

on the solutions to (17), and now (17) and (18) together are identical to

(7).

When the market game is an auction the interpretation of the u T s are

the selling prices received by the sellers for their goods and the v fs are

the buyer surpluses attained by the sellers. For elaboration of these inter-

pretations, see [12], [13], and [19].

3. PREVIOUS RESULTS

This section will summarize, without giving proofs, results previously

obtained concerning the structure of the core; see [18, 19, 20].

For purposes of simplicity let us assume that the solution to the primal

problem (16) is unique. This solution gives a way of exchanging the goods that

maximizes the total value of all goods exchanged. As noted above the core

of the game is the set of all nonnegative dual solutions to (17) and (18)•

To give economic interpretations to the core solutions we make the following

definitions.

DEFINITION 1. The core of the market game (6) is the set of all non-

negative solutions to its dual problem (7); i.e., the core is the set of all

solutions to (17) and (18). We denote the core.by C » (C(U), C(V)) where

C(U) is the set of row dual solutions U which we call the seller core,

and C(V) is the set of column dual solutions V which we call the buyer core.

REMARK 1. It can easily be shown that the core is non-empty. From

standard 1****** programming theory we know the core is a bounded convex poly-

hedral set having a finite number of extreme points. Later (Theorem 4 ) we will

characterize the maximum number of such extreme points.
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*
DEFINITION 2. Given a market game the maximum seller surplus u.

for seller i is given by

U. * Mflyfimnn U. . (19)
1 U e C(U) *

The nrfTHimim seller surplus u. is defined by replacing the word Maximum
* *

by the word Minimum in (19). The vectors u and u^ with commponents u.

and u. . are the nMMrti»i«n and wfn-fimim s e l l e r surplus vectors*
* i

*
DEFINITION 3. Given a market game the maximum buyer surplus v. for

buyer j is given by

v* - Maximum v . (20)
3 V c COO 3.

The î-fti-fm̂ffli buyer surplus v_ is defined by replacing the Maximum by the

word Minimum in (20). The vectors v and v. w

are the maximum and iwi'n'fimnB buyer surplus vectors.

word Minimum in (20). The vectors v and v. with components v4 and v.
* j

*
THEOREM 1. Given a market game (6), the vector pairs (u , v^) and

(a) are in the core;

(b) are the furthest distance apart of any two vectors in the core;

(c) individually and collectively maximize, or minimize, buyer or

seller surpluses.

For a proof see [13] or [19].

Theorem 1 characterizes the two "end points" of the core. The next

theorem shows how these two distinguished core solutions can be calculated

by making use of well-known perturbation techniques for the transportation

problem*

We define two kinds of perturbation (Fl) and (F2), by the following

transformations, where the arrow "-*•" means "is replaced by":
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ai "* ai for U1* V i + ne

+ e f or

1w where 0 < e <

• «t * a i H

> where 0

K e

for

< e

for

1

(P2) \

2(ari-l)

As shown in Dantzig [6] either of these perturbations, when

applied to a transportation problem, gives a primal non-degenerate problem.

Srinivasan and Thompson [16] showed that, given integer rim data, the

primal solution X(e) to the perturbed problem, when scientifically rounded,

yields an optimal integer primal solution T(X(e)) to the original problem.

THEOREM 2. Let (6) be a market game with integer rim data and let (16)

and (17) be the corresponding transportation problem; we assume (for con-

venience) the latter is dual non-degenerate.

(A) The dual solutions to (16), (17) after applying perturbation (PI)

give the core vector pair (u , v^).

(B) The dual solutions to (16), (17) after applying perturbation (P2)

give the core vector pair (u^, v ).

For a proof see [ 18].

The computational importance of Theorem 2 is Immediately obvious. For

by solving just two transportation problems it is possible to find the two

distinguished extreme points of the core (u , v^) and (u^, v ). By using

one of the current transportation codes [1, 5, 9] this computation can be made
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in a few seconds or minutes, even for problems having hundreds of buyers and

sellers. Since the core tends to be long and thin with the other points in

the core usually lying quite close to the line segment between these two

extreme points, finding them already gives a very good idea of what the core

is like.

In [18] the author gave an algorithm for finding all the (finite number

of) extreme points of the core of a transporation market game. The algorithm

consisted of shifting cells that ship zero in the optimal basis according to

certain rules which were described there.

In the case of assignment problems every basic optimal solution to (16) and

(17) has exactly 2n+l basis cells of which n ship 1, and n+1 ship 0.

One of these cells that ship 0 is always the cell (n+l,n+l). Hence, there

are always 11 (other) cells that ship zero and which are distributed among

the ttfl rows o£ the assignment tableau. We will make use of this fact in

the proof of Theorem 4.

4. NEW RESULTS FOR CORES OF ASSIGNMENT MARKET GAMES

We present here some new results concerning the structure of cores of

assignment market games- Only sketches of the proofs of these results will be

given because many of the technical details are contained in other papers by

the author and are too long to be included here.

The first theorem compares the solutions of two assignment market games

both solved at either the buyer surplus or seller surplus points and which have

different numbers of sellers or buyers. We assume supplies and demands have

been changed according to (12)-(15) to make solutions possible.

THEOREM 3. (A) If we maintain tiwriimm buyer surplus solutions while

adding sellers or dropping buyers then seller prices are non-increasing and

buyer surplus are non-decreasing.
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(B) If we maintain maximum seller suplus solutions while adding buyers

or dropping sellers then seller prices are non-decreasing and buyer surpluses

axe non-decreasing.

Proof. (A) Reference [20] gives an algorithm for assignment problems

which starts with all the buyers and only one dummy seller and proceeds by adding

the real sellers one by one while maintaining a maximum buyer surplus solution.

It was shown there that seller prices are non-increasing and buyer surpluses

are non-decreasing. The proof for the case of dropping buyers requires the

development of a similar algorithm, and will not be given here. The proofs

of the statements in (B) are similar.

The results given in Theorem 3 agree with our economic intuition that

having more buyers is better for the sellers and having more sellers is better

for the buyers.

THEOREM 4. The maximum number extreme points in the core of an assign-

ment market game is ( J.

Proof. As remarked at the end of the preceeding section, every basic

optimal solution assigns n cells that ship zero to the n+1 rows of the

assignment tableau. This is a special case of the Eherenfest model for 1-dlmen-

sional distribution of gas molecules, and is also a special kind of the combina-

torial problem of counting the number of ways of putting r balls into n boxes

discussed on p. 121 of [9]. According to the result given there, the number of

ways of putting n balls in n+1 boxes is

It is easy to show that

so that the nmrf™im number of core points for an nxn assignment market game

increases exponentially with n. As remarked in [13], it is unlikely that all
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all the core points for general assignment games will be computed except for

small values of n.

We next show that for every n there is an assignment game having a

size core. For this purpose we define a matrix A with entries

2 <21)

where a is a positive integer. Then the assignment game with cost matrix

C-a^'^d + A) (22)

where I is the nxn identify matrix, will be called a dominant diagonal matrix«

As an example let a » 2 and n » 3; then

C - 8 20 2 (23)

Notice that C is constructed so that the entries on the main diagonal are

large. By applying the algorithm given in [18] it is possible to show that

the following theorem holds.

THEOREM 5. The nxn assignment matrix game whose bid matrix is the

dominant diagonal matrix of (22) has a core with the mgyfimti number of extreme

points given in Theorem 4*

THEOREM 6. Let C be the bid matrix of an assignment game: if C > 0,

i.e., c.. > 0 for all 1 and j, then the core of the game has an even number

of extreme points.

Proof. Let (u,v) be an extreme point of the core of the assignment

game. Then either there is an 1 such that u. • 0 or there is a j such that
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v. m 0 (or else it is easy to show that (u,v) is not an extreme point of

the core.) Suppose the former, that there is an i with u - 0. Then,

since

for all i and j it follows that v > 0 for all i. Let w » Min v .

Then the pair (u ', v *) where

u' * u. + w and v' » v. - w

is also an extreme core point. Since (u,v) and (v',v') are distinct

extreme core points which are uniquely related, it follows that the core ex-

treme points can be paired together so that there are an even number of them.

The result in Theorem 6 can be used to improve the algorithm in [1]].

THEOREM 7. (A) The core of the n n assignment game with bid matrix

C - I, where I is the nxn identity matrix, has 2n extreme points.

(B) The core of the game C * I + aE, where E has entries e » 1

TVfT.

for all i and j, has 2 - 2 extreme points.

Proof. (A) Let u be any binary vector, that is, a vector whose

components are 0 or 1, (except u . - * 0 ) , and let v be the complementary
nrrJL

vector that is, with the 0fs and lfs interchanged (and v .- * 0 ) . Then it
is easy to check that (u,v) is an extreme core point of the market game.

Clearly, there are 2n binary vectors u, hence that number of core points.

(B) Except for the maximum buyer surplus and TnaTrfunim seller surplus

points, each extreme point (u,v) of the game I splits into two extreme points

for the game I + aE when we either add a to all the components of the u

vector or else add. a to all the components of the v vector. Hence there

are 2(2n-2) + 2 * 2n*1 -2 extreme points in the core of the game I + aE.
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By considering the structure of the basis of an optimal basic solution

of an n*n assignment game it is easy to prove the following theorem.

THEOREM 8. If C is the bid matrix of a positive n*n assignment

market game and either

(i) c. • c. for i,j • l,...,n, that is, if the sellers goods

are equally attractive to all buyers, or

(ii) c.. • c. for kfj » 1,...,n, that is, if the buyers have

identical tastes,

or both, then the core of the game has exactly two extreme points.

5. NEW RESULTS FOR CORES OF TRANSPORTATION MARKET GAMES

We present some new results on the structure of the core of a transporta-

tion market game. We find that the size of the core varies directly with the

amount of primal degeneracy of the problem, being smallest (2 points) for a

non-degenerate transportation game and largest for a semi-assignment game.

DEFINITION 4. A^ proper submarket of a transportation market game con-

sists of subsets of sellers, I- £ I, and buyers, L cJ, with at least one

of I- or J- being proper subsets (of I or J, respectively) such that

the sellers in L. can exactly satisfy the demands of the buyers in J.. A

primal, non-degenerate transportation market game is one which has no proper

submarkets.

Note that an assignment market game is maximally primal degenerate, since

any set of k sellers can satisfy any set of k buyers. Also, an mxn semi-

assignment problem has a proper submarkets for each seller, say seller i, who

can exactly satisfy the needs of any subset having exactly a, buyers •
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THEOREM 9. A primal non-degenerate positive transportation market geme

has a core containing exactly two extreme points.

Proof. Since the game is positive, it has an even number of extreme

points by Theorem 6, hence its core has at least two extreme points. The

algorithm given in [18] showed that extreme points of the core were obtained

from other extreme points by "shifting zeros." However, it is easy to see that

a zero x.. value implies that there is a proper submarket. Hence if the core

of the game had more than two extreme points, the game must have at least one

proper submarket, contrary to hypotheses*

THEOREM 10. Suppose m<n, and C is an m*n positive transportation

market game; then the maximum number of extreme points in its core is f J;

this certainly occurs in the case of a semi-assignment market game.

Proof. As remarked above any semi-assignment market game has many sub-

markets since seller i can satisfy the needs of any subset of a^ buyers.

It follows that in any primal solution there are m zero values of x^, hence

by the same argument as given in Theorem 4 there are at most ( J extreme

points of the core.

DEFINITION 5. By the fair division point of a transportation market

game we shall mean the imputation

(uffv
f) « I [<**.•*> + (u*,v*)]

where u^, u , v^, and v were characterized in Theorem 1.

The following theorem is obvious from Theorem 1 and Definition 5.

THEOREM U. The fair division Imputation (u ,v ) has the following

property: the amount received by each buyer and each seller is exactly half way

between the ma-sHimim amount and the Mrl'iT*iimm amount he can receive in any feasible

imputation.
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Because of the property given in Theorem 11, it is likely that the fair

division imputation could be useful in solving practical allocation problems.

6. AN AUCTION APPLICATION

Use of transportation market games to solve auction models was suggested

by the author in [19]. We explain it in terms of the house buying example of

Shapley and Shubik [ ]• In that example it is assumed that there are 3

sellers, each of whom has a house to sell, and three buyers, whose evaluations

are shown in Figure 1.

Shapley and Shubik derived from these evaluations the assignment market

game shown in Figure 2. The entries in the assignment game are

c » Max[e^ - s±f 0]

where e. is the evaluation of buyer j and s. is the evaluation of seller

i. Note that the 0 in the lower right hand corner of Figure 2 came from the

fact that e3 » 17,000 and s3 » 19,000 so that e3 - s3 » -2,000 and so

c.. « 0 from the above rule.

Figure lists all the extreme points of the core, a graph of which is

shown in Figure 4. Note the fair division point, and observe that at (u ,v )

all buyers and sellers get positive surpluses, and also that the selling

prices are exactly half way between their maximum and minimum values.

Because of the ease of computing the buyer and seller surplus points,

and hence of the fair division point, the use of this method to solve large

auction problems having hundreds of buyers and sellers is very practical.

7. QUALITATIVE REMARKS ON CORE SIZE; EXAMPLES.

The results of this paper show that the size of the core of a market game,
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as measured by the number of extreme points, depends on two things: first,

the degree of primal degeneracy of the problem, the core size being greatest

for assignment problems and least for transportation problems having no sub-

markets; second, on the degree of divergence of tastes of the buyers, the core

size being greatest when tastes are most divergent and least when they are identi-

cal. A complete explanation of this variation would require further investiga-

tion*

The reader may wish to get more of an idea as to what cores of market

games look like. In Figure 5 all the qualitatively different cores for 2x2

assignment market games are sketched. Note that the possible numbers of extreme

points are 2, 3, 4, 5, and 6. Also several selected examples of cores for 3x3

assignment games are sketched. In addition a 3x3 core having the maximal

size (20) is shown in Reference [18].
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Houses

Seller 1

Seller 2

Seller 3

Evaluation

$18,000

15,000

19,000

Buyer 1

$23,000

22,000

21,000

Buyer's Evaluations
Buyer 2

$26,000

24,000

22,000

Buyer 3

$20,000

21,000

17,000

Figure 1. Shapley-Shubik House Auctioning Example.

5

7

2

8

9

1

2

6

0

1

1

1

Figure 2. Derived Assignment Game.
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Core Extreme
Point

*

2
3
4
5
6*

Fair Division Point

Buyer
Surpluses
1

1
2
1
2
2
2

3
2

2

3
3
4
5
4
5

4

3

0
0
0
0
1
1

1
2

Selling
1

23
23
22
21
22
21

22

2

21
21
21
21
20
20

2i

Prices
3

20
19
20
19
19
19

f 1 9 2

<Seller
Surpluses
1

5
5
4
3
4
3

4

2

6
6
6
6
5
5

3

1
0
1
0
0
0

1
2

Figure 3. Extreme points of the core for the Shapley- Shubik
example. Point 1 is the seller surplus point, and
6 is the buyer surplus point. The fair division
point is the average of these two.

Figure 4. Core for House Auction.
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Figure 5. All the qualitatively different cores

for a 2x2 assignment game.
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14

Figure 6. Selected Cores for 3x3 assignment
games. A picture of a 3x3 core
having 20 extreme points appears
"in"reference [18].
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