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AUCTI ONS AND MARKET GAMES

by
Gerald L. Thonpson

1. | NTRCDUCTI CN

Sorre sinple narket ganmes were briefly treated in their nmonunental work
by John von Neumann and Gskar Morgenstern [10]. These remained as intriguing
speci al cases until Shapley [12] showed that an interesting class of narket
ganes could al so be sol ved as assi gnment probl ens, which constitute a speci al
kind of linear program Later, Shapley and Shubik [13] characterized the core
of the assignnent gane.

Froman entirely different point of viewthe ideas of auctions and
bi ddi ng began in economc theory with the fanous horse auction of Bohn-Baverk [ 3],
whi ch Shapl ey and Shubik later [13] identified as an assignnent narket gane.
Vickery [21], [22] discussed the idea of price setting in a sealed bid auction
by the bid of the second hi ghest bidder, which can also be called a Dutch
auction, and showed that it was pareto optial for the buyers. Mre recently
other auction results were givenin [1, 8, 11, 14, 17]. Barr and Shaftel [2]
showed that Vickery's work coul d. be extended to several buyers and sellers and
different kinds of goods by using an assignment nodel. The author [19] re-
marked that the Barr-Shaftel nodel was real ly an assignnent nmarket game being

sol ved for a special core point, the buyer surplus point. In [18] the author

ext ended assi gnment market games to transportation market games and gave a
constructive method for conputing all the extrene points of their cores. He

al so discussed in [19] ways that nmarket game theory could be applied to the
solution of practical auctioning problens by using the recently obtained i mense

i nprovenents in speed of solving assignment and transportation problens [4, 7, 15].r
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In [20] the author used the economic ideas of dutch auctions to devise a
new and extremely efficient algorithm for solving assignment problems.

In the present paper a number of new results relating both to the cores
of market games and to the corresponding auction applications. The first re-~
sult has to do with the effect on the core of adding or dropping sellers and
buyers. In [20] the author éave a recursive method for solving assigmment
problems which proceeds by starting with all the buyers and one dummy seller,
and then adding sellers one by one. At all times a buyér surplus solutiom is
maintained. In this process the sellers prices go down or stay the same and
the buyers surpluses go up or stay the same. The same holds true if buyers
are dropped and the reverse holds true if sellers are dropped or buyers are
added. These results are of interest if one is considering dymamic auctioms
of indivisible goods.

The second result characterizes the maximum number of extreme points of
the core as the binomial coefficient 2n by n. This is a huge number for
large n since it increases exponentially. Several other core results are
also demonstrated such as: a.dominant diagonal cost matrix has the maximum
size core; a game with positive bids always has a core with an even number of
extreme points; and the core of a primal nondegenerate transportation game has
a core with exactly two extreme points.

Finally, in the last section, the graphs of the skeletons of several
market games are drawn to show how they vary in size and in numbers of extreme

points. Some remarks on auctions and fair division problems are also given.

-

2. NOTATION FOR MARKET GAMES

We use the same notation as [18], but summarize it here for completeness.
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V¢ denote the Index set of the sellers by

I (1,2,....n (1)

and denote the index set of the buyers by

We assune that seller id has

a. > 0 ' (3)

units of a good to sell, and that buyer jeJ wants to buy
by >0 (4)
units of the good. W let

4 L° (5)

be the bid of buyer j for one unit of seller i"

s goods. The nonnegativity
requirement in (5) means that seller i can dispose of his goods wthout
charge in case no one bids a positive anount for it.

V¢ nmake the same econonic assunptiqns as do Shapley and Shubik [13]

intheir treatment of the assignment nmarket game, namely:

(a) UWility is identified with noney

(b) Side payments are permtted

(c) The objects of trade are indivisible

(d) Supply and demand functions are inflexible

The remarks they make about these assunptions are pertinent here and wil |

not be repeated.
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As In the assignnent gane {13], the only profitable coalitions are
those contai ni ng sone buyers and some sellers. A so, because of assunption (5)
and the side paynment condition (b), the only inportant coalitionis the all-
player coalition S« | UJ. W shall concentrate on evaluating v(S) for this
coalitiononly, since it is the only inportant coalition in the gane.

Let xﬁ be the nunber of units i sells to j. The value v(I UJ)
is obtained by solving the |inear program

Maxi.m.ze Z Z X.. C..
iel jeJ B %

Subj ect to (6)

The nonnegativity requirenent on X neans that the exchange of property

i3
is fromseller i to buyer j. The nmaxim zation objective in (6) means
that we seek a set of transactions which naximzes the total gain of the
coalition I1UJ of all sellers and buyers (see Shapley and Shubik [13]).

| f bJ 21 for jeld the problemis called a sen -assignment narket

gane. If, in addition, & * 1 for iel the problemis called an assignnent
mar ket gane. .
The dual linear programmng problemto (6) is easily witten as
Mnimze 2 a. u. + Z b, v.
iel X * jeJ 7 3
Subj ect to (7
M+v1icij for iel, jed

ug =20 for el

vy 20 for jeld




-5-
.

where u, and vy are the dual variables associated with the first and
second constraints in (6), respectively.

The core of the market game (i.e., the set of undominated inputations)
is the set of all solutions to the dual problem (7). This was argued in [13]
for the assignnent case, and the sane result holds here. Because of the non-
negativity conditions (3), (4), (5) and well-known |inear pfogranning results,
the core is a bounded convex pol yhedral set.

VW can turn (6) into the classical transportation problemof |inear
progranming by adding a dummy seller {nrfl} and dummy buyer {xri-1}  giving

extended seller and buyer index sets
it -1 U{Bi-3 (8)
Ji»JU {xt-l . (9)
Ve define the bids of these dummy players to be
cC., - -0 for jel (10)

S5 o+l - 0 for el (11)
and note that (10) can be interpreted as a "free gift" option for the buyers
and (11) can be interpreted as a "free disposal'! option for the sellers. To
determne the anmount sold by the dummy seller and the amount bought by the

dummy buyer, we first define

S - |Z' a, (12)
€l

T - l2\] bj (13)
] €

and then define




a = 3IT -5+ (T~ 9] (14)
b .. -M\S-T +(S-T)] | (15)
nt+x L

as the anount sold by the dummy seller and the amount purchased by dumy
purchaser, respectively. It is easy to see that at |east one (and possibly

bot h) of I and bmr.JE is 0. In any case we retai.n both dummy players
in the transportation problemfor reasons that will becone clear |ater.
V¢ now use the above definitions to state a transportation problem

fromwhich the solution to (6) can be obtained.

Maxi m ze E, E‘x&,J Ciﬁ

1el’ 1eJ

Subject to ' (16)
Z, *, -a fo I
je '
T x,, =h for jej

The dual problemto (16) is
Mnimze E a u + E Db v

Subj ect to (17)

Clearly the only difference between (7) and (17) is the nonnegativity require-
ments on the dual variables which are present in (7) but mssing in (17).
In [18] it was shown that the set of nonnegative solutions to (17)

is non-enpty and bounded. Hence we inpose the nonnegativity constraints
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Ui LO for iel N V4 JlO for jsJ’ - (18)

on the solutions to (17), and now (17) and (18) together are identical to

(7).

Wien the market game is an auction the interpretation of the uiTs are
the selling prices received by the sellers for their goods and the vjfs are
the buyer surpluses attained by the sellers. For elaboration of these inter-

pretations, see [12], [13], and [ 19].

3. PREM QUS RESULTS

This section will summarize, wthout giving proofs, results previously
obt ai ned concerning the structure of the core; see [18, 19, 20].

For purposes of sinplicity let us assune that the solution to the prinal
problem (16) is unique. This solution gives away of exchanging the goods that
maxi mzes the total value of all goods exchanged. As noted above the core
of the gane is. the set of all nonnegative dual solutions to (17) and (18)e
To give economc interpretations to the core solutions we nmake the foll ow ng
defini tions.

DEFINTION 1. The core of the narket gane (6) is the set of all non-
negative solutions to its dual problem (7); i.e., the core is the set of all
solutions to (17) and (18). W denote the core.by C» (C(U, V)) where
QU is the set of rowdual solutions U which we call the seller core,
and (V) is the set of colum dual solutions V which we call the buyer core.

REMMRK 1. It can easily be shown that the core is non-enpty. From
standard 1x***** programmng theory we knowthe core is a bounded convex pol y-
hedral set having a finite nunber of extrene points. Later (Theorem4 ) we will

characterize the maxi numnunber of such extrene points.




*

DEFINITION 2. Gven a nmarket gane the feximmn sellor swplds- Uy
for seller 1 is given by

O Miytimn o (19)
' UecCy
The pfIHmm seller surplus u.. is defined by replacing the word Maximm
* *
by the word Mnimumin (19). The vectors u and u® wth commponents us
and u,. are the oMMdbka and windimim seller surplus vectors*

*

DEFINITION 3. Gven a market gane the wesd-ru bayrer— strptues- vy for
buyer j is given by

v - Maximum v, . | (20)
® Vc COO?®

The iAftifdffll buver _surplus ey is defined by replacing the Maxi.num by the

word Mnimimin (20). The vectors v and V. with conponents v, and Vg
* 1

are the maxi numand imed$mB buyer surplus vectors.

*

THEOREM 1. Gven a market game (6), the vector pairs (u, v*) and

(a) are in the core;

(b) are the furthest distance apart of any two vectors in the core;

(c) individually and collectively maximze, or mnim.ze, buyer or

sel I er surpluses.

For a proof see [13] or [19].

Theorem 1 charact eri_zes the two "end points" of the core. The next
t heorem shows how these two distingui shed core solutions can be cal cul ated
by making use of well-known perturbation techni.ques for the transportation
probl ent

Vi define two kinds of perturbation (FI) and (F2), by the followng

transformtions, where the arrow "*" means "is replaced by":
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ai g ai for Ulg Vi + ne
[
(PI) bj *by+e for 3eJ, b b,
1
w
where 0 < e < ICES)

oot * A HK e for ieI, am+ *am-l-l

(P2) J b, +b, for jeJ, by *b , tme

> where 0< e ~ 2(a1ri-l) ’

As shown in Dantzig [6] either of these perturbations, when
applied to a transportation problem gives a primal non-degenerate problem
Srinivasan and Thonpson [16] showed that, given integer rimdata, the
primal solution X(e) to the perturbed problem when scientifically rounded,
yields an opti.mal. integer-primal. solution T(X(e)) to the original problem

THEOREM 2. Let (6) be a market game with integer rimdata and let (16)
and (17) be the corresponding transportation problenm we assune (for con-
venience) the latter is dual non-degenerate

(A The dual solutions to (16), (17) after applying-perturbation (Pl)
give the core vector pair (u, v™).

(B) The dual solutions to (16), (17) after applying perturbation (P2)
give the core vector pair (u”, v*).

For a proof see [ 18].

The conputational inportance of Theorem2 is |mrediately obvious. For
by solving just two transportation problems it is possible to find the two
di stingui shed extrene points of the core (u*, vA) and  (u®, v*). By using

one of the current transportation codes [1, 5 9] this conputation can be made
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in a fewseconds or mnutes, even for problens having hundreds of buyers and
sellers. Since the core tends to be long and thinwith the other points in
the core usually lying quite close to the line segnent between these two
extreme points, finding themalready gives a very good idea of what the core
is like.

In [18] the author gave an algorithmfor finding all the (finite nunber
of) extrene points of the core of a transporation market game. The algorithm
consisted of shifting cells that ship zero in the optimal basis according to
certain rules which were described there.

In the case of assignnent problens every basic optinmal solution to (16) and
(17) bhas exactly 2n+l basis cells of which n ship 1, and n+l ship O.
e of these cells that ship 0 is always the cell (n+l,n+l). Hence, there
are alvways 11 (other) .cells_that .ship.zero -and \which awe di-sti-but-ad aRBRe
the tifl rqus of the assigooent tableau. W will make use of this fact in

the proof of Theorem 4.

4. NEWRESULTS FOR OCRES CF ASSI GNMENT MARKET GAMES

V¢ present here sone new results concerning the structure of cores of
assi gnnent narket ganes- nly sketches of the proofs of these results will be
gi ven because nany of the technical details are contai.ned in other papers by
the author and are too long to be included here.

The first theorem conpares the solutions of two assignment market games
both solved at either the buyer surplus or seller surplus points and whi ch have
different nunbers of sellers or buyers. W assunme supplies and denands have
been changed according to (12)-(15) to make sol utions possibl e.

THECGREM 3. (A If we maintai n tiwiiom buyer surplus solutions while
addi ng sellers or dropping buyers then seller prices are non-increasing and

buyer surplus are non-decreasing.
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(B If we maintain maxi numsell er suplus solutions while addi ng buyers
or dropping sellers then seller prices are non-decreasing and buyer surpl uses
axe non- decr easi ng.

Proof. (A Reference [20] gives an algorithmfor assignment problens

which starts with all the buyers and only one dumny sell er and- proceeds by addi ng
the real sell érs one by one whil e maintai ning a nmaxi.mum buyer surpl us sol ution.
It was shown there that seller prices are non-increasing and buyer surpl uses
are non-decreasing. The proof for the case of dropping buyers requires the
devel opnent of a simlar algorithm and will not be given here. The proofs
of the statenents in (B) are simlar.

The results given in Theorem 3 agree with our economc intuition that
having nore buyers is better for the sellers and having nore sellers is better
for the buyers.

THEGREM 4. The maxi numnunber extrene points in the core of an assign-

_ Fon \
nent narket gane is Kn'\].

Proof. As remarked at the end of the preceeding section, every basic
optimal . solution assigns n cells that ship zero to the n+l rows of the
assignnent tableau. This is a special case of the Eherenfest nodel for 1-dl nen-
sional distribution of gas nol ecules, and is al so a special kind of the conbina-
torial problemof counting the nunber of ways of _putti ng r balls into n boxes
discussed on p. 121 of [9]. According to the result given there, the nunber of
ways of putting n balls in n+l boxes is (2:)

It is easy to show that

e (2) e

so that the onif ™m nunber of core points for an nxn assignnent narket game

i ncreases exponentially with n. As renmarked in [13], it is unlikely that all
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all the core points for general assignment games will be conputed except for
small. values of n.
V¢ next show that for every n there is an assignment gane having a

maximal size core. For this purpose we define a matrix A wth entries

-t

where a is a positive integer. Then the assignment game with cost matrix
C-an' ~d + A ] (22)

where | is the nxn identify matrix, will be called a dom nant diagonal natrix«

As an exanple let a» 2 and n» 3; then

32 8 4
C 8 20 2 (23)
4 2 17

Notice that C is constructed so that.the entries on the nmain diagonal are
large. By applying the algorithmgiven in [18] it is possible to show that
the fol l owing theorem hol ds.

THECREM 5. The nxn assignment matrix game whose bid matrix is the
dom nant diagonal matrix of (22) has a core with the ogyfimi nunber of extrene
points given in Theorem 4*

THEOREM 6. Let C be the bid matrix of an assignment gane: if C> 0,
i.e., C4q >0 for all 1 and j, then the core of the game has an even nunber
of extreme points.

Proof. Let (u,v) be an extreme point of the core of the assignnent

game. Then either there is an 1 such that u, * 0 or there is aj such that
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vy MO (or else it is easy to showthat (u,v) is not an extrene point of

the core.) Suppose the forner, that there is an i wth ui- 0. Then,
si nce

vj-ni-bvj_::_cijzbo
for all i and | it follows that vj>0 for all i. Let W»Man.

Then the pair (u', v*) where

T % + 1 _
ug * U w and V:i»v.‘: w

is also an extrenme core point. Since (u,v) “and (v',v') are distinct

extreme core points which are uniquely related, it follows that the core ex-

treme points can be paired together so that there are an even nunber of them
The result in Theorem 6 can be used to inprove the algorithmin [1]].

THEOREM 7.  (A) The core of the n n assignment game with bid matrix

C- 1, where | is the nxn identity matrix, has 2" extreme points.
(B) The core of the game C* | + aE, where E has entries ej_j » 1
ML
for all i and |, has 2 - 2 extrene points.

Proof. (A) Let wu be any binary vector, that is, a vector whose

conponents are 0 or 1, (except u S 0), and let v be the conplenentary
mrJL

VEoRUy B ookl 118w, ) &0h dtr e E8FLABSER dP Phe’mar ket Yare, THEN 1t

Qearly, there are 2" binary vectors u, hence that nunber of core points.
(B) Except for the maxi.mum buyer surplus and Tralrfuim sel | er surpl us

poi nts, each extrene point (u,v) of the gane | splits into two extrene points

for the gane | + aE when we either add a to all the conponents of the u

vector or else add. a to all the conponents of the v vector. Hence there

are 2(2"-2) +2* 2"*1_.2 extrene points in the core of the gane | + aE.
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By considering the structure of the basis of an optimal basic sol ution
of an n*n assignnent game it is easy to prove the follow ng theorem
THECREM 8. If C is the bid matrix of a positive n*n assignnent
mar ket game and either
(i) Cij Y for i,j «Il,...,n, that is, if the sellers goods
are equally attractive to all buyers, or
(i) Cij . cj for kij » 1,...,n, that is, if the buyers have
i dentical tastes,
or both, then the core of the gane has exactly two extrene points.
5. NEWRESULTS FOR CORES OF TRANSPCRTATI ON MARKET GAMES
W present some newresults on the structure of the core of a transporta-
tion market gane. W find that the size of the core varies directly with the
anount of primal degeneracy of the problem being snallest (2 points) for a

non- degenerate transportati on game and largest for a sem -assignnent gare.

DEFINTION 4. A proper subnarket of a transportation nmarket game con-

sists of "subsets of sellers, Ii £ 1, and buyers, IJ_- cJ, wth at |east one
of Il or ‘]l bei ng proper subsets (of | or J, respectively) such that
the sellers in Ll can exactly satisfy the demands of the buyers in Jl. A

prinal., non-degenerate transportation market gane is one whi ch has no proper

subnar ket s.

Note that an assignnent nmarket gane is maxinmally primal degenerate, since
any set of k sellers can satisfy any set of k buyers. A so, an nxn seni-
assi gnnent probl_em has a proper subrarkets for each seller, say seller i, who

can exactly satisfy the needs of any subset having exactly a,, buyers
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THECREM 9. A pri.mal. non-degenerate positive transportati on market geme
has a core contai.ning exactly two extremne points.

Proof. S.nce the gane is positive, it has an even nunber of extremne
poi nts by Theorem 6, hence its core has at |east two extrene points. The
algorithmgiven in [18] showed that extrene points of the core were obtained
fromother extreme points by "shifting zeros." However, it ié easy to see that
a zero X':l.j value inplies that there is a proper submarket. Hence if the core
of the game had nore than two extreme points, the game nust have at |east one
proper subrarket, contrary to hypot heses*

THECREM 10. Suppose nxn, and C is an nfn positive transportation

e\
mar ket game; then the nmaxi.num nunber of extrene points in its core is {2: J;

this certainly occurs in the case of a seni-assignnent nmarket gane.

Proof. As renmarked above any seni-assignment narket gane has many sub-
nmarkets since seller i can satisfy the needs of any subset of a* buyers.
It follows that in any primal solution there are m zero values of x”, hence
by the same argument as given in Theorem4 there are at nost Cz:} extreme
poi nts of the core.

DEFINTION 5. By the fair division point of a transportation market

gane we shall nean the inputation

(U)o peries b (ur, v

where u”®, u*, v~, and v* were characterized i n Theorem 1.

The following theoremis obvious fromTheorem 1 and Definition 5.

THECREM U.  The fair division Inputation (uf,vf) has the foll ow ng
property: the amount received by each buyer and each seller is exactly half way
bet ween the pasHmm anount and the ML 'ZEU™ anpunt he can receive in any feasible

i nput ati on.
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Because of the property given in Theorem1l, it is likely that the fair

division inputation could be useful in solving practical allocation problens.

6. AN AUCTI ON APPLI CATI ON

Use of transportation market games to sol ve auction nodel s was suggest ed
by the author in [19]. W explainit in terns of the house buyi ng exanpl e of
Shapley and Shubik [ ]¢ In that exanple it is assumed that there are 3
sellers, each of whomhas a house to sell, and three buyers, whose eval uati ons
are shown in Figure 1.

Shapl ey and Shubik derived fromthese eval ‘uations t he assi gnnent narket

gane shown in Figure 2. The entries in the assignnent gane are

A
Cij » Max[ e S+ 0]

wher e e.:l is the evaluation of buyer j and S, is the evaluation of seller
i. Note that the O in the lower right hand corner of Figure 2 came fromthe
fact that ez » 17,000 and s3 » 19,000 so that e; - sz » -2,000 and so

Cj.j « 0 fromthe above rule.

Figure lists all the extreme points of the core, a graph of which is
shown in Figure 4. Note the fair division point, and observe that at (uf,vf)
all buyers and sellers get positive surpluses, and also that the selling
prices are exactly hal.f way between their naxi.mum and mninum val ues.

Because of the ease of conputing the buyer and seller surplus points,
and hence of the fair division point, the use of this nethod to solve |large

auction probl ens having hundreds of buyers and sellers is very practical.

7. QUALI TATI VE RENARKS ON OCRE Sl ZE;  EXAMPLES.

The results of this paper showthat the size of the core of a market gane,
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as measured by the number of extreme points, depends on two things: first,

the degree of primal degeneracy of the problem, the core size being greatest

for assignment problems and least for transportation problems having no sub-
markets; second, on the degree of divergence of tastes of the buyers, the core
size being greatest when tastes are most divergent and least when they are identi-
cal. A complete explanation of this variation would require further investiga-
tion.

The reader may wish to get more of an idea as to what cores of market
games look like. In Figure 5 all the qualitatively differemt cores for 2x2
assignment market games are sketched. Note that the possible numbers of extreme
points are 2, 3, 4, 5, and 6. Also several selected examples of cores for 3x3
assignment games are sketched. Im addition a 3x3 core having the maximal

size (20) is shown in Referemce [18].




-18-

Buyer's Eval uations
Houses Eval uati on Buyer 1 Buyer 2 Buyer 3
Seller 1 $18, 000 $23, 000 $26, 000 $20, 000
Seller 2 15, 000 22, 000 24, 000 21, 000
Seller 3 19, 000 21, 000 22, 000 17, 000

" Fi gure 1. Shapl ey- Shubi k House Auctioni ng Exanpl e.

5 8 2 1
7 9 6 1
2 1 0 1
1 1 1

Figure 2. Derived Assignment Gane..




-19-

Buyer &el |l er
Core Extrene Sur pl uses Selling Prices Sur pl uses
Poi nt 1 2 3 1 2 3 1 2 3
*
1 1 0 23 21 20 5 6 1
2 2 3 0 23 21 19 5 6 0
3 1 4 O 2 21 20 4 6 1
4 2 5 0 21 21 19 3 6 0
S 2 4 1 2 20 19 4 5 0
6* 2 5 1 21 gO 19 3 5 0
Fai r D vision Point % 4 -;— 22 L|iii¢1921- 4 5.;: %

Fi gure 3.

Extreme points of the core for the Shapl ey- Shubik
exanple. Point 1is the seller surplus point, and
6 is the buyer surplus point. The fair division
point is the average of these two.

(uysv )

Figure 4. Core for House Auction..
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L. e
3
5 6
Figure 5. Al the qualitatively different cores

for a 2x2 assi gnnent gare.
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Figure 6. Sel ected Gores for 3x3 assi gnnent
games. Apicture of a 3x3 core
having 20 extrene poi nts appears
"in"reference [ 18].
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