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A SINGLE SOURCE TRANSPORTATION ALGORITHM

by

Robert V. Nagelhout and Gerald L. Thompson
Carnegie-Mellon University

ABSTRACT

A single source transportation problem is an ordinary transportation

problem with the additional requirement that the entire demand at each
demand location be supplied from a single supply location. It is a special
case of Ross and Soland's generalized assignment problem. Such problems
occur frequently in applications. This paper gives two heuristic solution
methods and a branch and bound algorithm for solving single source trans-
portation problems. A discussion of the branching rules, variable fixing
rules, and the computation of weak lower bounds is given. Computational
experience with the solution of randomly generated problems having up to

40,000 integer variables is reported.

1. INTRODUCTION

In this paper we consider ordinary transportation problems with the
additional restriction that each demand must be entirely supplied from a
single source. It is therefore a special kind of generalized assignment
problem in the sense of Ross and Soland [5].

There are many applications in which such requirements are made on
the solution. For instance, the supplying of supermarket orders from a
network of central warehouses frequently has this restriction. In military
applications it is common to require thet all troops going on the same

mission leave from the same staging area. When a group of computers is used
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to fill a set of conputation demands, the common requirenment is that all
conputation on each single job be perforned entirely by a single conputer [1].
Many facility location nmodels contain a single source requirenent on the

shi pment of goods from the opened facilities to the demand |ocations [6].
Single source transportation problens are also related to a large class of
"loading' ' or "packing" type problens where we attenpt to assign a set of

wei ght ed obj ects to boxes or bins which have wei ght capacities [2 ].

In [ 3] De Maio and Roveda formul ated a probl emwhich is a special
version of the generalized assignment problem stated |ater by Ross and
Soland [ 5] . Srinivasan and Thonmpson [ 7] showed how to transformDe Maio
and Roveda's probleminto a single source transportation problem They
proposed solving the latter using a branch and bound cost operator algorithm
whi ch used the ordinary transportation problemas a relaxation of the single
source problem

In the present paper we describe and give conputational results for two
heuristic solution nethods and a cost operator algorithmwhich is sinlar to
the algorithmdescribed in [ 7] . The present algorithmdiffers fromthat in
[ 71 in the followi ng respects: (a) We have replaced the "row uni que”
solution concept in [ 7] by our "single source" solution concept, see section 5;
(b) Different variable selection and branching rules are used. (c) Wak
| oner bounds are calculated and are used in fathomng as well as for variable
selection. (d) A non-basic variable fixing rule has been added.

In section 6 conputational results fromthe solution of problens ranging
in size from5 x 10 to 100 by 400 are presented. Al of these problens were
generated randomy using the method described in Ross and Soland [5]. A
di scussion is given concerning the way that problemdifficulty depends on the

setting of paraneters in the Ross and Sol and probl em generator.




2. STATEMENT OF THE PROBLEM

In the single source transportation problemwe consider a set of

sources | ={I,...,n} each having capacities a., > 0; a set of uses (or
users) J ={l,...,n} each having known demands b.J > 0; and a set of
costs C'1'_1 of supplying use j fromsource i. The problemis to assign
sources to uses so that: (i) the total amount shipped fromeach source does

not exceed its capacity; (ii) each use is supplied by exactly one source;
and (iii) the total cost Z of the assignment is mnimzed.
W shall assume, as a necessary but not sufficient condition, for

feasibility that

Il a > Z b. - (D)
iel * jed 1
i.e., that supply exceeds or equals demand. Defining j' = J U {n-flj,
C. . =0 for iel, b =1 a - Z b and letting x.. be the
1>ntHl nHL : X - 3 g 13
i d jed
anount shipped from i to j, we can wite the single source transportation
probl em as:
Mnimze Z= | £ c. . X. . (2)
iel jeg Y
Subj ect to
Il x. . =a for iel (3)
jel LI 1
Il x. . =b. for jeld’ (4)
iel LJ J
X. . >0 for iel, jeld’ (5)
X. . =0 or b, for jed 6
1] ; j (6)
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The problemdefined by (2)-(5) is an ordinary transportation problem
which we will call problemP. W denote by P’ the problemin (2.)-(6).
W will say that problem P is the transportation relaxation of problem P’
REMARK: In the case where all of the denands, b'_‘l jed, are equal,
P’ can be transformed into an equi val ent (sem -assi gnnent) problem P*,

having integral supplies and all denands equal to one. This can be done by

making the following transformations: et b.J =b for all jed
c?. =c¢c. . Xb iel jej' (7)
i ij J v
aj = d. i sl (8)
wher e at:diXb+ki 0—<ki<b (9)
b;.* -1 jed (10)
* *
n+l .)'_' - n ’ ab
icl

The reader can verify that by nmaking the transformations (7) - (11) the

resulting single source transportation problem P, is equivalent to the
original problem P, in the sense that X is a solutionto P if and

+*
only if x' =bX is a solution to p'. The significance of transforming P’

into p'.'h is that p:. is a transportation problemwith integral supplies and
unit demands. Such probl ens are known as sem -assignment problenms. Thus due

to the well known uninodularity property of the basis nmatrix for a transporta-
tion problem we know that the solutions to the transportation relaxation of P*
will either be 0 or 1 and therefore will satisfy the single source require-
ment autonatically without any special search algorithm In this paper we con-

sider the case of unequal denands.
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DEFINITION 1. By a single source basic solution to the transportation

problem P we nean a feasible basic solution with the property that for each
jsj there is a rOM/inde* i =1i(j) such that x.]_.__I = bj; in other words a
solution in which each demand is conmpl etely supplied by a single source.

In [ 7] the idea of row unique solutions were introduced, which are a

special kind of single-source solutions. A row unique basic solution to

problem P is a basic feasible solution with the property that for each jel

there exists a unique row i = i(j) such that Xilj is the only basic
variable in colum j. For a nondegenerate transportation problem these two
concepts are identical. |In the case of (primal) degenerate problens, it is

necessary to use the single-source solution concept instead of the row unique
concept. We will elaborate on this point fn Section 5. Since many of our
probl ens are degenerate we concentrate on the forner concept here:

Any single source solution to the transportation problem P gives rise
to a feasible solution to problem p'. In Section 4 we describe a branch and
bound al gorithmwhi ch sol ves P’ by finding single-source solutions to a series
of transportation problemrel axati ons of P'. Each of these rel axed probl ens
differs from P by having the cost of sone of the cells set equal to -rrM or -M
(where M stands for a nunmber much larger than the absolute value of any cost)
in order that those cells are forced into or out of the basic solution for the

correspondi ng rel axed problem

3. HEURI STI C SCOLUTI ON METHCDS
In order to reduce the size of the search tree in the branch and

bound search process we devel oped two heuristic solution methods that al nost




invariably find feasible solutions to P’ in a short tine. The snallest
val ue of the objective function for such heuristic solutions is used as an
initial upper bound in the branch and bound algorithm In many cases these
heuristic nmethods actually find an optimal solution, as will be discussed in
Section 6 where data from problemsolutions is given.

The two heuristic solution nethods we used differ only in the order
i n which uses (colums) were selected to be assigned to sources (rows). The
first nethod ‘cal culates "regrets® sinmilar to those of the VAMstarting
solution nethod [ 4] for transportation problens; the second method selects

uses in the order of non-increasing demand sizes.

To describe the regret heuristic let c¢c. . be the kth snallest
JkJ
cost incolum j. Define Reg(j), the regret for use j to be
Reg(j) = (c, . - c.. .)b, (12)

The first use to be assigned to a source is one whose regret is largest. Once

it has been assigned (in a nmanner to be discussed in the next paragraph), it

is renoved fromthe set U of unassigned uses, new regrets are calcul ated

as necessary, and a second use with largest regret is chosen to be assigned, etc..
Gven that use j is to be assigned, we first construct a set S.J

of sources to which it can be assigned, according to the follow ng rule:
. = Usl . - C, < 13
SJ Usl | ci, cJlj <a} (13)

wher e <]j is a paranmeter chosen by sone rule such as

a =c.. -c. . (14)




In other words Sd consists of the indices of all sources whose costs in
colum | differ fromthe snallest cost in colum | by an anount |ess than
or equal to Cj Then one of the indices isS.J is chosen randomy to be

the actual source to supply demand bj'

The reasons for the random choice anong indices in the set S.. are:
first, with a specific choice rule it is quite easy to make early choices which
lead to infeasible solutions; and second, with the randomchoice rule we can
repeat the heuristic choice rule several times and retain the smallest cost
solution found

In order to state the regret heuristic nore precisely we first define

the notation to be used.

U = set of unassigned uses

Z = the cost of current solution (or partial solution)

S. = set of éll sources ksl such that c¢. . - ¢c. . <a..

Cj = a paranmeter whose size deternines the nunber of elenents
in Sj' (In some problenms it nay be desirable to have

aj change as nmore steps are taken in the algorithm)

(H) Regret _heuristic.

(1) (Initialization) Let U=J, Z =0. For each j€U find

i1t j2, and j 3. Set ?. - C - c. M.

(2) (Check feasibility) If c¢c. . =M for sone jeU go to (8).
El se go to (3).
(3) (Choose the use having the largest regret). Choose jsU such

that Reg(j) = (c. -

. c. .)b. is a maxinm
NN JiJd
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(4) (Determne the choice set.) Calculate S.J which is defined in (12).
(5) (Sel ect a source.) Choose isS.J at random Make the followi ng
repl acenents:
Uby U- []]

Zby Z+c. .b.
ijJ

a bya - b,

(6) If U=0go to (9). Else goto (7).
(7) (Update the costs.) Fo{ all hsU if b, >a. set ¢c. =M
Find the two lowest cost cells c.- ,, & h,i . in each cérumn.
run run
CGCoto?2.
(8) Qurrent solution is infeasible. St op
(9) Feasi bl e solution found. Stop

The second heuristic, which we call the "largest demand heuristic,"
is identical to the regret heuristic except that in step (3), instead of
choosing at each step the use with the next |argest regret, we choose the use with
the next largest demand. Thus in the |argest demand heuristic (H2), step 3
is replaced by:

(3") (Choose the next use.) Let jsU be the index of an unassigned

use whose demand, b.J, is largest.

Since step (3) requires nore effort in the regret heuristic than in the
| argest demand heuristic we find, as expected, th=t the regret heuristic uses
nore CPU tinme.. However, neither of the heuristics requires very nuch tinme.
For example, five runs of the regret heuristic on a 75 x 200 problemrequires
about 4 seconds of CPU tine (DEC 20 conputer).

The regret heuristic, being the "greedier" heuristic, tends to generate

| oner cost feasible solutions than the |argest demand heuristic. The |argest
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demand heuristic was designed to find good feasible solutions in the case

when the regret heuristic failed to find any solution. In all of our compu-
tational experience this phenomenon occurred only once; yet it may be more
frequent in problems with a different data structure. We might add at this
point that neither of the heuristics can be guaranteed to find a feasible

" solution to a given problem. It can be easily verified that the problem of
finding a feasible solution to P’ is NP complete. Finding a feasible
solution to P’ is equivalent to determining whether one can find a partition,
S

Sm, of a set of integers {b .,bn} (the demands) such that the

10 1

sum of the elements in Si equals a; (the supply) for i =1,...,m.

The latter problem is known to be NP complete. Thus it is probably necessary
to carry out a partial enumeration of assignments such as is done in the

method of section 4, in order to guarantee the finding of a feasible solution

7 . . .
to P, when such a solution in fact exists.

4. THE COST OPERATOR ALGORITHM

We now describe a branch and bound algorithm which uses cost operators
in the sense of Srinivasan and Thompson [ 8]. The basic idea in the algorithm
is that the solution of problem P’ is obtained by solving a sequence of

yeee, P until we have found a problem,

related transportation problems P, Pl c

such that the optimal transportation solution to P is also an

say P Kk

K’
optimal single source solution to P'. Each successive transportation problem
differs from its predecessor in that certain costs have been changed from
their original values to either -M or +M. When we drive a cost to -M
we will say we have "fixed in' the corresponding cell, and when we drive it to

+M we will say that we have ''fixed out" the cell. We now give more precise

definitions.
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We shall say that cell (i,j) has been fixed out of the basis when a
cost operator has been applied to the problem so that cij becomes equal to +M,

where M is so large that Xij = 0 for all optimal solutions to the new problem.

The operation of freeing a cell (i,j) which has been fixed out is the applica-
tion of a cell operator to drive cij back to its original value.
We shall say that cell (i,j) has been fixed in the basis when
(a) a cost operator has been applied to the problem so that
the cost cij becomes equal to -M, where M is so large
that xij = bj in any optimal solution to the new problem;
(b) a. has been replaced by a, - b.;

i i ]

(c) for any k such that b > a

K we fix cell (i,k) out of the

i
basis, since source i cannot supply the demand at k.
By freeing a cell (i,j) which has been fixed in we mean to undo the actions
listed above, so that the costs and rims go back to their previous values.
In (4) - (D) below we describe the various steps of the algorithm.

The algorithm is stated in detail in (E) and a simple example is worked in (F).

(A) Tree Search Rules

The branch and bound algorithm which we are going to describe is of the
LIFO (last in first out) or depth first variety. The method starts by first
solving the problem P. If its solution satisfies the single source property
we are finished. If not, we apply a nonbasic variable fixing rule, to be
described later, which fixes some of the nombasic variables at zero. Next
a cell is selected by one of the cell selection rules given later, and the cell
is fixed in the basis. This procedure is continued until either (a) a single
source solution is obtained or (b) the objective function value of the new

problem exceeds the current upper bound. 1In case (a) we compare the solution
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with the current best single source solution and update the latter and the
current upper bound if the current solution is better. |In either case we back-
track by freeing the last cell fixed in. Then (using the LIFO rule) we choose
the last cell fixed in and consider it for fixing out. |If the objective
function value of the current relaxation plus a weak |lower bound (to be
described | ater) exceeds the current upper bound, then we continue backtrack-
ing. Qherwise the cell is fixed out and the search process continues deeper
in the search tree. A nore precise description will be given later in this
section

(B) Nonbasic Variable Fixing Rule

At the initial node of the search tree the transportation problem P
is solved. If the solution to P is not a single source solution then it
is possible to examine the nonbasic variables in the solution to P in order

to fix some of themat zero. Let Z , Z be the objective function val ue of
P u

and the current upper bound respectively. Let u* and v3 be opti mal dual

variabl es associated with the current basic solution to P. For any nonbasic

variable (i,j), isl, jed, if
(G|] ' (ui+Vj )}*bj /\Zun Zp_ (i5)
then we can set Xi} = 0 for the renainder of the procedure. This is true

since if a nonbasic variable Xij were to becone positive then it can only
assune the val ue bj’ in which case the left hand side of (15) represents
the m ni mum anount by which the objective function value of P will increase
if we were to require that x.lj = pj. Thus if this anmount exceeds the current
gap between the upper bound and the transportation relaxation then we can be
sure that Xi} will not be positive in any single source solution to p'.

Actually this variable fixing test could be repeated at any node of the search
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tree, in which case %: woul d be replaced by the objective function val ue of
the current relaxation. However, the conputational cost of doing so would

probably exceed the benefit.

It is interesting to note that the left hand side of (15) increases

as the demand, bj, increases. Intuitively this seens plausible since forcing

a larger anpunt of demand into a single cell causes nore of a restriction on

the problem In other words the constraint Xij > b. becones stronger as by
= ] 3

increases. W have found that the variable fixing rule (15) wll set to zero
as many as 95%of the nonbasic variables. \When solving problems in which 60%
or nmore of the nonbasic variables are fixed to 0 by the variable fixing rule,
it would probably be worthwhile to use a code which takes advantage of the
sparse structure of the resulting transportation problem W have not so far
used such a sparse code in our studies.

(O Weak Lower Bounds

The algorithmthat we have inplenented is essentially a linear pro-
granmi ng based inplicit enumeration scheme. At any node of the search tree
we have solved a relaxation of problem p' where a variable, Xij’ is
either fixed at zero, fixed at bj’ or free to assume any val ue between
zero and b}. If the objective function value of the current problem ZC,
does not exceed the current upper bound, Zu, and its solution is not single

source, then we choose one of the free variables, say xij’ and we create

two new problens. In one of the new problenms we require that Xij =0 and in
the other problemwe require that XEJ = bj' Let us denote their objective
function val ues by Z0 and Zb respectively. By calculating weak | ower

bounds we can determine the m ni num anounts by which Zc nmust increase if we

require that x . =0 or Xx.. :b.J. Thus for any free variable x.., we can
ij ij I
calculate a weak lower bound WB« in the x.. =0 direction and WB. in
0 i D

the x.. = b. direction where,
i J
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2, <2 *WLBqg =Zq (16)
or

Z <Z +WB, <Z . (17)

c~ C b— b

Wha we hope to find is that either

Z +WLB, > Z (18)
c 00— u
or
Z +WB >Z (19)
C D — U
or both. In case (18) ((19)) we can fathomthe search tree in a particular

direction without having to cal cul ate Zﬁ (”2 * O course there is a cost-
benefit tradeoff involved here since sone conputational effort is required
to calculate the weak | ower bounds. Thus the real question is whether the
extra information obtained fromcal culating the weak | ower bounds is worth
the added conputational effort. W have found that in alnost all of the
tests which we have perfornmed the weak |ower bounds have proven to be cost
effective. The weak |lower bounds are useful not only for fathom ng nodes
in the search tree, but for choosing a "good! variable for branching. W

wi Il describe the branching rules which we have selected in the next section.

W now descri be how the weak |ower bounds are cal cul ated. Suppose that

at a given search tree node we wi sh to calculate a weak | ower bound, WLBO,
in the direction Xij =0. This is done by applying a positive cell cost

oper at or 50:5 to the cell (i,j) which determ nes the maxi num anount, u,+, by whi ch
the cost in cell (i,j) can be increased while maintaining optimality in the cur-

rent basis. This is called the positive basis preserving cell cost operator, and
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is described in [ 8]. At this point cell (i,j) contains sone flow, X..
1]

bet ween zero and b.J and the weak |ower bound W.B, is,

W.Bp = W Xi 5 (20)

W.B, is a lower bound on amount by which the objéctive function value of the

current relaxation will increase if we branch in the direction x =0.
i
For a proof see [ 9] .
In a sinilar but slightly nmore difficult nanner we can cal cul ate a weak

lover bound, WBP, in the direction where x*J = bJd. In this case we apply a

negative cost cell operator 5ctJ to cell (i,j) which determ nes the maxi mum

anount, u , by which the cost in cell (i,j) can be decreased before the
current basis becones non-optimal. If the cost in cell (i,j) is changed to
cld where

C'ij - :t-J -y (21)
then some nonbasic cell, say (p,q), wll have a reduced cost, ¢ - (u +v ),
of zero. If cell (p,q) is added to the basis then a unique "cycle™ or "loop" is

formed in the current basis tree. Fromthis cycle we can deternmine a cell (e, f)
whi ch woul d | eave the basis, and the amount A, by which the flow along this
cycle would change if cell (p,q) were brought into and cell (e, f) were renoved

fromthe basis. The valid weak |ower bound W.B, is (see [9])
D

WB, - n"A (22)
D

Notice that MLBb is nore difficult to obtain than V\LBlH since in the former
case we nust find the mnimum giver anmount, A, along the cycle created by

an inconng nonbasic cell.
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The effectiveness of the weak |ower bounds depends for the nost
part on how cl ose the current upper bound, Zu, is to the value of the
current relaxation, Z ¢ Iil 4 . Z is small then (18) and (19) provide
strong fathom ng devices. Thus the ability of the heuristics to generate
| ow cost feasible solutions is a crucial factor in the perfornance of
the branch and bound algorithm Another inportant factor is the branching or

cell selection rules which we describe next.

(D Cell Selection (Branching) Rules

VW have tested several of nany possible cell selection rules and have
subsequently reduced our choices to two rules. These rules utilize both the
regret concept and one of the weak |ower bounds, WLBG, di scussed earlier
In order to describe these rules we first define the following quantities at

any step of the tree search:

F = the set of colums containing nore than one basic cell having
positive flow

U = the set o{.colunns containing no fixed in cells

B+ = the set of basic cells having positive flow

W_BG1 =the weak | ower bound in direction x.J_.J =0 for cell (i,j).

Using this notation we describe two branching rules:
(1) BG(basic cell) regret rule

a) Colum selection - choose jeF such that Reg(j) > Reg (k)

for all keF, that is, choose a colum having |argest regret.,

b) Row selection - find the two smallest cost cells (i,fj),

(i2,j) s 5- and choose cell (i,j) where i :i.L i f
W.B,. >WDB, , and otherwise i =i« that is, of the
OII OI2 2

two smallest cost cells in colum | which have positive

flows, pick the cell whose weak [ ower bound is |argest.
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2) G (Ceneral) regret rule
a) Lolum selection - Choose jsU such that Reg(j) > Reg(k)
for all keU (This rule is the same as (1) (a).)
b) Row selection - find the two smallest cost cells (i’fj)’
(i2,j) el and choose (i,j) where i = i1 i f

MLBQ >WLB,. , and i =i otherwise; that is, of
1 -12 2

the two snallest cost cells in colum j, pick the cell

whose weak |ower bound is |argest.

It is clear that by using the Gregret rule there are nore cells to choose
than by using the BGregret rule. Also the BGregret rule only considers
cells (i,j) whose flow x.,. satisfies 0 <x.. <b.; wewll call this

1] 1} J
& fractional flow, in agreenent with the usual integer progranmm ng ternmn nology.

On the other hand, the Gregret rule nay select a cell whose flowis bj’ i.e.

an integral flow.

In most integer programmng algorithns the cell selection criteria is
limted to a choice anong fractional flow variables. The reason is that if a
non-constrained variable is "naturally" integer then it would seemto be un-
productive (i.e., would increase the size of the search tree) to explicitly
restrict the variable to be integer by branching on it. However, it is
pl ausi bl e that sonme of the variables which are naturally integer in the optinal

solution to P mght also have the same integer values in an optimal solution

to p'. Hence it might be worthwhile to restrict these variables to their
respective integer values in hopes that the size of the search tree will wulti-
mately be reduced. |In line with this reasoning we have found through conputa-

tional experience (section 6) that in some cases the size of the search tree
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is smaller when using the Gregret rule for branching rather than the
BC-regret rule. The Grule usually produces a snaller (in nunber of nodes)
search tree than the BGrule when the relaxation, P, has a solution which

is not very close to being integer. That is when P contains only a few
fractional flowcells, the BGrule concentrates on the non-integral (i.e., the
non single source) portion of the relaxation, and in doing so it is usually
capabl e of performng a quick partial enuneration. However, when the problens

are "tight," that is Ha. - Z b. is small, and there are several
iel *t jsl

fractional variables, it is often better to fix sone of the variables (say those
variables in colums having a large regret) into the basis even if they are not
fractional. This avoids the possibility of these variables becomng fractional
as we nove deeper into the search tree. This is acconplished by using the G
regret rule. dearly fixing non-fractional flow variables is not always the
best alternative. However, we have noticed dranatic diff_erences in the per-
formance of the algorithmbetween the BGrule and the Grule on sone of the
nore difficult problens which we have generated. For exanple on a particul ar

5 x 50 test problem (i.e., m=5 n =50) the search tree using the BGrule
had 13, 814 nodes whereas the search tree using the Grule had only 356 nodes.

In our experience the BGrule usually yields a search tree with fewer nodes than
does the Grule; however, the BGrule is not invariably better than the Grule.

(B) Statement of the Algorithm

Before we state the algorithmwe define some notations:

£ = level of the tree

Z = the transportation probl emobjective function value at level K
X = the transporation problem solution at level K

U = the set of colums containing no cells which are fixed in
T{L) = (i,j)~ if cell (i,j) is fixed in at level I, and = (i,j)"*

cell (i,j) is fixed out at level K
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The Single Source Cost Operator Algorithm

(1) (Heuristics) Run the regret and the largest demand heuristics to
get an upper bound, Zu. If neither gives a feasible solution then
set Zu =x

(2) (Initialize) Let U =J; 4 =0. Solve P. If Zo > Zu -1 go
to (10). Otherwise go to (3).

(3) (vVariable fixing) For all non-basic cells (i,j), if
(cij - (ui + vj)) * bj 2z, - Zo - 1 then let °i; = M otherwise
go to (4).

(4) (Cell Selection) Use either the BC-regret rule or the G-regret
rule to choose a cell (i,j) upon which to branch. Save WLBO..

(5) (Fix in cell) Replace 2 by Z2+41. Let T{) = G,i)". F;x in cell
(i,i). If Z, > (zu - 1) go to (6). Otherwise if X, is single
source, save XL; let Zu =25 g0 to (6). Otherwise replace U by
U - {j} and go to (4).

(6) (Free after fixing in) Free cell (i,j); replace 4 by 24-1;
go to (7).

(7) (Check WLB) 1If 2, +WLB, > Zu go to (9). Otherwise go to (8).

(8) (Fix out cell) Replace &lby 4+1. Let T(M) = (i,j)+. Fix out
cell (i,j). 1If ;& > (Zu - 1) go to (9). Otherwise if XL is
single source, save Xé; let Zu = ;L; go to (9). Otherwise go to (4).

(9) (Free after fixing out) Replace 4 by 4-1. If 1 = 0 then go to (10).
Otherwise free cell (i,j). If TM) = (i,j)+ go to (9). Otherwise
go to (8).

(10) Stop. The current solution, if there is one, is optimal. Otherwise
there is no feasible solution to the problem.

Example

Consider the problem given in Figure 1. Using the algorithm just

described we will indicate the various steps involved in finding an optimal

single source solution to this problem.
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Description of the Qperation

Application of the regret heuristic with a.J =1 for

all jcJ yields Zu: 391.
U={1,2,3,4,5}; | =0; The solutionto P is given
infigure 2(a) Zo= 279.7.

Apply the non-basic variable fixing rule and set

€13 724 7 43 7 44 =W

(using the BC regret rule) F = {2} i.l: 1; i;_)-:z.

W.By = 141 x 16 = 22.6; WBg = 109 x 2 = 2.18.
1 2

Choose cell (1,2).
let €12 - -M ¢ =M cis =M | =1 T(I) = (1,2)".
Xy

Let ¢y - .39, Ch = 2, c”N = 5,19, | = 0.

is a single source solution. See figure 2(b). Save Xlo
279.7 + 22.6 = 302.3 > 391.
Il = 1. T(I) = (1,2)". Let ¢ =M ~ =360.9. X
is not a single source solution. See figure 2(c).
F={2,5}. Reg(2) = 111.6, Reg(5) = 37.9.
Choose colum 2. i, =2, i, =4, WBg =21.46 x 2 = 42.9

1 2 2

WBg = .04 x 16 = .64. Choose cell (2,2).
4

let Ccpp = -M Cor =M | =2 T(2) = (2,2)".

X, is single source. See figure 2(d). Z< = 458.
Let c,, = 10.2, ©cc,; = 12.9, ¢34 = 30.1;, 4=1
360.9 + 42.9 = 403.8 > 391.

4 = 0.

Stop. Z =391 is optimal, Xx" = 12, X1, = 18, X3 = 7,
X34 = 10 X45 = 261
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Figure 2(e) contains the four node search tree for the exanple. The
first nunber in the parenthesis at each node is the objective function val ue
of the current relaxation and the second nunber is the current upper bound . At
node one problemP is solved and the solution is not single source (see
figure 2(a)). The upper bound at this point is 371 which was obtained by
applying the regret heuristic with c& =1 for all jej. A this point the

non-basic variable fixing rule is applied to fix X X X and x,

122 -z ¥ £y r

to zero. Cell (1,2) is chosen for branching by the BC rule and at node 2

a single source solution is obtained with a value equal to the upper bound.
Next, using the LIFOrule, we nove to node 3 where the solution again is not
single source. Then we choose variable (2,2) and nove to node 4. At node 4

the value of the rel axation exceeds the current upper bound thus we fathom

the tree at node 4. Notice that the weak |ower bound was used at node 3

so that it was not necessary to fix out cell (2,2).

5- SINGLE SOQURCE VERSUS ROW UNI QUE SOLUTI ONS

In [ 7] the concept of a row unique solution was used to characterize
the acceptable solutions to the sources to uses problem In the present paper
we have replaced the idea of a row unique solution by a single source solution
Gearly every row unique solution is also a single source solution, but the
converse is not true, as can be seen in the exanple shown in Figure 3(a). The
basi ¢ solution shown there is a single source optinmal solution (which is not a
row uni que solution) and therefore solves the single source transportati on problem
However, the reader can verify that the prinal solution shown in Figure 3(a) is
uni que, and that there is no basic optimal row unique solution to the probl em
Hence, to find a row unique optimal solution, it is necessary to generate a

branch and bound search tree such as the five node search tree shown in Figure 3(b),
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This tree was generated by using the cost operator algorithmdescribed in
section 4(E). Because the search tree has only one node when we |ook for a
single source solution, and five nodes when we look for a row unique sol ution,
it is clear that use of the single source solution concept yields considerable
conput ational savings even on this small problemand hence nuch larger savings
woul d be expected on larger problens. Thus the single source concept is es-

sentially a way of circunventing one of the problens created by prinal degeneracy,

6. COVPUTATI ONAL RESULTS

In this section we will discuss the conputational perfornance of the
heuristics (Sec, 3) and the cost operator algorithm (Sec. 4) on a set of randonmy
generated problenms ranging in size from5 x 20 to 100 x 400. These probl ens

were generated in the nmanner described in [ 5] as follows. W use a uniform

probability distribution to generate random integer costs C':.'J for isl, |sJ,
between 1 and 50; we let C a1 =0 for 1isl; simlarly we generate

random i nt eger denmands, b.J for jsJ, between 5 and 20. Then recalling that
j1 is the smallest entry in colum |, we set
X. . =b. and x... =0 for i #1 , al jcd (23)
349 ] 13

VW then calculate the largest supply ,

S= mx {S]|s. = E x. .} (24)
iel jiej N
which is needed to guarantee feasibility of the solution in (23).
Finally for each isl, let the supply a.1 = ¢S where the slack para-

meter a is chosen to be less than 1; and set b , = £ a - £ b
n+1 i el i jej J
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As was nentioned previously, b >0 is a necessary but not a suf-

n+l
ficient condition for the existence of a feasible solution to p'. In genera
the smaller the value of a and hence of b -, in a problem the nore
n+i
difficult it is to solve. Wen the slack, b ,, is small, there is nore
n+1

incentive to divide the flow among the cells in a given colum, and thus
violate the single source constraints. Thus by varying the value of a we
can make the slack for a given problemlarger or snaller. For a =1, an
optinmal solution is given by the assignment in (23). For a <1, the
assignnent in (23) is infeasible and thus the single source problemis likely
to be nontrivial.

Figure 4 contains the test results of 27 problens ranging in size from
5x 20 to 75 x 200. Al of these problens were solved with a code witten
in Fortran IV using the BGregret rule discussed in section 4(D) on a DEC 20
time sharing systemat CMJ. The solution times in Figures 4 and 5 are §ubject
to- some neasurenent error due to variable loads on the tine sharing system
Avalue of cd = (cd& " cdt)/2 for all jel was used in the regret heuristic.
For each problemthe regret heuristic chose the best feasible solution out
of the five trial solutions which it generated. W decided not to use the
| argest dermand heuristic on these problens since the regret heuristic always
found at |east one feasible solution; however the |argest demand heuristic nay
be useful in other problens having a different data structure.

Notice that each problemsize is repeated three tinmes. This is because
the difficulty of these problens can vary greatly even for problens having the
sane dimension. Thus we felt it would be nore informative to solve three test
problens of a given size in order to denonstrate the potential variation in

problem difficulty.
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In addition to the problens shown in Figures 4 and 5 we solved three
test probl ems given to us by Prof. Terry Ross. Qur solution times, after
taking into account the difference in conmputers, are conparable if not slightly
better than those obtained by the Ross and Soland al gorithm

The regret heuristic error was evaluated on the basis of a percent error

formul a which is,

Z

AT, OPT
percent error = -r cZM X 100 (25)
‘OPT" “R
wher e 651_ is the optimal val ue, Zn, is the value obtained by the regret
heuristic, and
Z = E b. mnmn{c. .} (26)
R ]€J J i el 1J

ZR is the smallest possible objective function value for P’e The

purpose in subtracting Zr, fromthe denomnator in (25) was to avoid the

probl em of "scaling™ which is characteristic of network problens having a
transportation structure. That is, we could add or subtract some positive
constant, 5, to each of the costs in any colum of the transportation problem
without affecting the set of optimal single source solutions. Al though this
scaling does not affect the set of optimal solutions, it does however affect
the value of an optinal solution so that a standard percent error fornula

such as

lz - Z "
| —=fp—-PT* X 100 (27)
H 20PTPT

could be made larger or smaller by scaling the data. Thus we avoid this scaling

probl emby subtracting Z_K fromthe denomnator in (25). For exanple if 5 s
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added to the cost in each cell in colum j, then each of the parameters in
(25) increases hy bj'6 so that there is no net effect on the percent error
Al so, problens for which Z@T = ZR are usually uninteresting and thus we
attenpt to avoid this situation in practice by naking a snall enough so that
Zr is not an optinmal value- A discussion of the scaling problemfor genera

i nteger progranmng problens is given in Zerel [10],

Note that the CPU tine to run the heuristic varied approxinately
linearly with the problemsize as mX n increases. Note also that the percent
error of the heuristic tends to decrease as mX n increases. This paradoxi -
cal result would be even nore inpressive if we had used the standard error
formula (27) instead of (25). The reason that the heuristic solution nethod
gets better as mX n beconmes large is probably due to the fact that |arger
problens tend to have nore alternate optinal solutions, and there is the
possibility that some of them have the single soufce property. In any case
it is useful to know that a heuristically generated feasible solution to a
large problemhas a fairly high probability of being optimal in those cases in
which it is not possible to prove optinmality in a reasonable length of tine.

The variable fixing rule (15) seens to be quite effective in fixing
non-basic variables to zero. In many of the problenms as many as 95 percent of
the non-basic bariables are fixed at the initial node of the search tree.

As we mentioned in section 4(B), if the variable fixing rule consistently
elimnates nmore than say 607, of the non-basic variables then it would probably
be beneficial to use a sparse code to solve the transportati on rel axations.
The effectiveness of the variable fixing rule on a given problemis better

the cl oser ZP and Z are to each other, because then rule (15) permts

fixing out nore non-basic variabl es.
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W tested the cost operator algorithmboth with and without the weak
| ower bound cal cul ations and found that the weak |ower bounds are indeed cost
effective. They help by reducing the size of the search tree and by reducing
the overall CPU tinme. As can be seen fromFigure 4, the weak |ower bounds can
be used to fathom several of the nédes in the search tree which would other-
wi se have required explicit enunmeration. A so since we found that search
trees tend to be snaller when the weak |ower bounds are used for branch
sel ection than when they are not, we conclude that they provide good branch
sel ecti ons.

As expected, the single source transportation problens exhibit a nuch
hi gher variance in their execution tines than do ordinary transportation
problenms. The difficulty of a given single source probl emdepends upon nany
factors such as: m n, the gap between Zp/ and Zp, the anmount of slack

(i.e. the cost, supply, and demand distributions, the probl emdensity,

bn¥1)’
and the nunber of fractional variables in the initial transportation relaxation.
G ven tw problens of the sane size the one having the larger gap is

usually nore difficult to solve. Problens in which the denands are all equa

are easy to solve since, as we nmentioned in section 2, partial enuneration is

not necessary in this case. If all of the supplies, S; iel, are greater

than or equal to S, as defined in (2& , then it is easy to see that the
solution given by (23) is optimal. Wen many of the costs are very large, or
equi val ently when the problemis sparse, the nunber of |ow cost solutions is
reduced which then facilitates the inplicit enuneration. W have found that
one of the best indicators of the potential difficulty of soving a single
source transportation problem P?, is the nunber of fractional variables in
the transportation relaxation P. A "large" nunber cf fractional variables in
a basic solution to ﬁ essentially neans that P is not a close relaxation to

P’ and thus we expect that such problens will be difficult to solve
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It is possible to determine the range within which the number of fractional

variables in a basic solution to P must lie. Consider the distribution

of the basic cells in any ordinary transportation problem. Given an m X n
problem, we add one slack column, n+l, to the problem which has no single
source restriction. The total number of basic cells is m + (n+l) - 1 = m+n.
Each of the n+l columns must contain at least one basic cell which leaves
m - 1 basic cells to distribute among the n+l columns. The worst case (in
terms of the number of fractional variables in the basic solution to P)
occurs when m - 1 of the first n columns contain two positive flow basic
cells each, in which case there are 2(m-1) variables which violate the
single source criterion. The most desirable case occurs when the basic solution
to P 1is single source, that is when all of the m - 1 "extra" basic cells
either appear in column n+l, or appear among the first n columns and have a
flow of zero (they are primal degenerate). Thus the number of variables wﬂich
violate the single source criterion lies in the interval (0, 2(m-1)). Notice
that this interval is independent of n. Thus we can increase the number of
column locations in a given single source problem without affecting the upper
bound on the number of fractional variables. In practice we have found that
when a column contains more than one basic cell, then it usually contains two,
or in any event at most three basic cells. Given this observation one would
expect that the number of fractional variabies would be approximately 2(m-1).
However the number of basic cells which appear in column n+l plus the number of
primal degenerate basic cells appearing in the first n columns greatly reduces
the number of fractional variables in a basic solution to P. We have found
that the-number of fractional variables is usually much smaller than 2(m-1).
Figure 5 gives the computational results for seven problems ranging in
size from 100 x 100 to 100 x 400. These problems were generated as described

earlier except that once the problem is generated, we remove a cell (or give
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it alarge cost) with probability .6. Thus approxinately 60 percent of the
cell's have been elimnated from consideration. The naxi num nunber of fractional
cells which can occur in any of these problens is 2 x 99 = 198. The nunber

of fractional variables encountered ranged from 13 to 46 and, as expected, the
pr obl ens having the larger nunber of fractional variables were nmore difficult

to solve. This is also true in figure 4 where the only probl emwhich could

not be solved within 10 mnutes of CPU tines was a 75 x 200 problemw th 69
fractional variables out of a possible 2 x 74 = 148. Thus we believe t hat
nunber of fractional variables in the solution to P is a good nmeasure of the
potential difficulty of a given single source problem Wilizing the character-
istics of a class of problens to determne how difficult they may be to solve
is inportant since as we nentioned earlier there can be a large variance in

the difficulty of single source transportation problens of the sane size. In
figures 4 and 5 we have reported the characteristics of each probl emwhich we
feel provides an adequate measure of their conplexity.

If we look at the total CPU times in figures 4 and 5 we note the en-
couraging fact that, except for the one 75 x 200 probl emwhich required nore
than 600 seconds to conplete, the overall problemdifficulty does not seemto
increase with increasing problemsize. (O course, the total tine, which in-
cludes input and output tines, does increase with problem size.) Thus it
appears that the single source transportation nodel can be useful in the solution
of actual problens, especially if a user is willing to settle for a heuristic

sol uti on whenever total CPU running tine becomes excessive .

7.  CONCLUSI ONS
W have discussed the design and conputational testing of a cost operator

algorithm for solving single source transpbrtation probl ems. W& observed that
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the conputational difficulty of a randomy generated test probl em depended
on m n, the P to P gap, the anount of slack, the supplies, the demands,
the distributions of costs, the density of the problem and the nunber of
fractional variables in the initial solution to P

The regret heuristic seened to performvery well on these test problens.
The nmaxi numpercent error was 41, (as calculated in formula (25)), and nore
importantly the performance of the regret heuristic inproved as the probl em size
increased. UWsing the value of the regret heuristic as an initial upper bound,
the cost operator algorithm solved each of 32 of the 34 test problens in |ess
than 210 seconds of CPU tine on a DEC 20 conputer

Two surprising observations were made: First, the regret heuristic rule
tends to nmake smaller errors as the problemsize, mXn, increases. Second,
the overall solution time (with one or tw exceptions) does not tend to increase
wi th probl em size

These two observations lead us to conclude that the single source trans-
portati on nodel has the pofential of becom ng an easily applied operations

research tool, even though it is used to solve an NP conplete problem
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Heuristics
% | CPU* CPU*
e n t Vars.
r t 0 i P nodes | fixed Val ue
r [ d m to f at honed by # of of
o] m e e p' 2o Z. by rul e | Fractional oi in
mX n r e s | Total {Gp aPT R WB (15) | Variables |Generator
5X20 24.5 .05 1 174 1.39 85 1881 1730 54 46 6 .7
5X20 0 .04 2 .16¢ 33 | 23504 2287 2 74 2 .7
5X20 0 .04 3 .16 4 1913 1900 1 77 2 .7
5X100 36.9 .49 5611 | 137.1 28 | 10847 | 10533 2133 253 6 7
5X100 9.9 .48 | 2461 68. 6 28 111732 1 11421 597 340 6 7
5X100 41.0 .49 19 13 5 [ 10487 | 10409 9 365 4 T
5X200 10.2{ 1.56 | 1766 83.4 14 | 18769 | 18573 700 728 4 7
5X200 1.0| 1.60 47 4.54 13 | 19861 | 19561 15 773 6 e
5X200 20.7 | 1.60 2 2.56 0 [ 21538 | 21258 0 692 4 T
40X40 0 .41 7 .97 39 762 709 3 1425 8 .55
40x40 0 .41 23 .98} 37 1009 913 7 1448 4 .55
40X40 - 0 .46 12013 42.0 81 943 818 403 1314 20 .55
40x125 11.5| 1.54 177 10. 16 9 2523 2497 87 4764 24 .55
40X125 0 1.52 2 3.06 6 2770 2757 2 4826 4 .55
40X125 0 1.49 173 9.73 5 2365 2360 73 4818 16 .55
40X200 14.2 2.65 27 6. 44 2 4150 4115 19 7693 16 .55
40X200 0 2. 65 76 8. 86 9 { 3803 3784 32 7657 17 .55
40X200 3.5} 2.71 (3414 | 209.2 24 4358 4244 1392 7363 28 .55
75X75 51| 1.46 861 27.0 29 1172 1133 291 5224 20 .50
75X75 7.5 1.42 8041 28.5 38 ] 1269 1203 240 5047 33 .50
75X75 0 1.12 0 1.19 0 1158 1158 0 0 16 .50
75X125 0 2.16 591 28.8 29 1989 1946 231 8738 49 .50
75X125 0 2.02 17 4. 65 11 2137 2102 7 9051 N8 .50
75/ 125 0 ' 2.00 1 3.77 18 1953 1934 1 i 8916 38 .50
75X200* * - 4.34 {7153 | >600 -- - 3170 1848 I‘ 13167 69 .45
75X200 0 i 4.12 2 8.5 | 7 2958 2942 1 114591 33 .45
75X200 0 4.03 15 9.24) 17 | 3009 | 2979 9 i 14321 35 .45

Al times in seconds

* >Does not

i ncl ude

**  Termnated after

on a DEGC 20 conputer.

| nput / Qut put .

10 mnutes CPU tine.

Figure 4
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Heuri stics

% cPU

e CPU* n t Vars.

r t 0 [ P nodes | fixed Val ue

r i d m to fathoned! by # of of

0 m e e p' Zevor 7 by rule | Fractional ain

mX n r e s | Total GAP uri. R W.B (15) | Variables | Generator

100X100 0 2.11 . 505] 23.88 90 2773 2640 159 9221 24 .6
100X150 0 3.30 9461 48. 07 60| 3354 3251 362 14171 30 .50
100X200 33| 4.38 772} 49.63 75| 4044 3867 290 18543 42 .50
100X250 14.08! 5.73 78| 16.02 9| 5987 5916 32 24415 13 \ .55
100X300 0 7.71 20| 18.75 14| 6392 6356 8 29386 30 : .55
100X350**| =~ 9.94 16749| >600 -- -- 7036 | 2751 33486 46 ! . 60
100X400 0 10. 78 3| 23.39 11] 8236 8224 3 39292 20 ; .55

Al tines in seconds on a DEC 20 conputer
* > Does not include Input/CQutput.

** Termnated after 600 sec.

Figure 5
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| ocation be supplied froma single supply location. It is a special case of
Ross and Sol and's general i zed assignment problem  Such probl ens occur j
frequently in applications. This paper gives two heuristic solution nmethods t
and a branch and bound al gorithm for solving single source transportati on \
problens. A discussion of the branching rules, variable fixing rul es, and the}
conmput ati on of weak | ower bounds is "giVven: ~—Cochpu~tationll .
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