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A SINGLE SOURCE TRANSPORTATION ALGORITHM

by

Robert V. Nagelhout and Gerald L. Thompson
Carnegie-Mellon University

ABSTRACT

A single source transportation problem is an ordinary transportation

problem with the additional requirement that the entire demand at each

demand location be supplied from a single supply location. It is a special

case of Ross and Soland's generalized assignment problem. Such problems

occur frequently in applications. This paper gives two heuristic solution

methods and a branch and bound algorithm for solving single source trans-

portation problems. A discussion of the branching rules, variable fixing

rules, and the computation of weak lower bounds is given. Computational

experience with the solution of randomly generated problems having up to

40,000 integer variables is reported.

1. INTRODUCTION

In this paper we consider ordinary transportation problems with the

additional restriction that each demand must be entirely supplied from a

single source. It is therefore a special kind of generalized assignment

problem in the sense of Ross and Soland [ 5 ]•

There are many applications in which such requirements are made on

the solution. For instance, the supplying of supermarket orders from a

network of central warehouses frequently has this restriction. In military

applications it is common to require th^t all troops going on the same

mission leave from the same staging area. When a group of computers is used
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to fill a set of computation demands, the common requirement is that all

computation on each single job be performed entirely by a single computer [1].

Many facility location models contain a single source requirement on the

shipment of goods from the opened facilities to the demand locations [6].

Single source transportation problems are also related to a large class of

"loading'1 or "packing" type problems where we attempt to assign a set of

weighted objects to boxes or bins which have weight capacities [2 ].

In [ 3 ] De Maio and Roveda formulated a problem which is a special

version of the generalized assignment problem stated later by Ross and

Soland [ 5 ] . Srinivasan and Thompson [ 7 ] showed how to transform De Maio

and Rovedafs problem into a single source transportation problem. They

proposed solving the latter using a branch and bound cost operator algorithm

which used the ordinary transportation problem as a relaxation of the single

source problem.

In the present paper we describe and give computational results for two

heuristic solution methods and a cost operator algorithm which is similar to

the algorithm described in [ 7 ] . The present algorithm differs from that in

[ 7] in the following respects: (a) We have replaced the "row unique"

solution concept in [ 7] by our "single source" solution concept, see section 5;

(b) Different variable selection and branching rules are used. (c) Weak

lower bounds are calculated and are used in fathoming as well as for variable

selection. (d) A non-basic variable fixing rule has been added.

In section 6 computational results from the solution of problems ranging

in size from 5 x 10 to 100 by 400 are presented. All of these problems were

generated randomly using the method described in Ross and Soland [5 ]. A

discussion is given concerning the way that problem difficulty depends on the

setting of parameters in the Ross and Soland problem generator.
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2. STATEMENT OF THE PROBLEM

In the single source transportation problem we consider a set of

sources I = {l,...,m} each having capacities a. > 0; a set of uses (or

users) J = {l,...,n} each having known demands b. > 0; and a set of

costs c.. of supplying use j from source i. The problem is to assign

sources to uses so that: (i) the total amount shipped from each source does

not exceed its capacity; (ii) each use is supplied by exactly one source;

and (iii) the total cost Z of the assignment is minimized.

We shall assume, as a necessary but not sufficient condition, for

feasibility that

I a. > Z b. (1)
iel x jeJ 1

i.e., that supply exceeds or equals demand. Defining j' = J U {n-flj,

c. . = 0 for iel, b . = I a. - Z b.3 and letting x.. be the
1 > n n i d X jeJ J 1J

amount shipped from i to j, we can write the single source transportation

problem as:

Minimize Z = I £ c. . x. . (2)
iel jeJ 1J 1J

Subject to

I 7x. . = a. for iel (3)
jeJ LJ

I x. . = b. for jeJ7 (4)
iel LJ J

x. . > 0 for iel, jeJ7 (5)

x. . = 0 or b. for jeJ (6)
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The problem defined by (2)-(5) is an ordinary transportation problem

which we will call problem P. We denote by P7 the problem in (2.)-(6).

We will say that problem P is the transportation relaxation of problem P7

REMARK: In the case where all of the demands, b. jeJ, are equal,

P can be transformed into an equivalent (semi-assignment) problem, P ,

having integral supplies and all demands equal to one. This can be done by

making the following transformations: let b. = b for all jeJ

c?. = c. . X b iel jej' (7)
ij ij J v '

a* = d± isl (8)

where a± = d X b + k 0 < k < b (9)

b* - 1 jeJ (10)

The reader can verify that by making the transformations (7) - (11) the

resulting single source transportation problem, P , is equivalent to the

original problem, P , in the sense that X is a solution to P if and

only if x' = bX is a solution to p'. The significance of transforming P7

into p" is that p" is a transportation problem with integral supplies and

unit demands. Such problems are known as semi-assignment problems. Thus due

to the well known unimodularity property of the basis matrix for a transporta-

tion problem, we know that the solutions to the transportation relaxation of P

will either be 0 or 1 and therefore will satisfy the single source require-

ment automatically without any special search algorithm. In this paper we con-

sider the case of unequal demands.
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DEFINITION 1. By a single source basic solution to the transportation

problem P we mean a feasible basic solution with the property that for each

jsj there is a row index i = i(j) such that x.. = b.; in other words a

solution in which each demand is completely supplied by a single source.

In [ 7 ] the idea of row unique solutions were introduced, which are a

special kind of single-source solutions. A row unique basic solution to

problem P is a basic feasible solution with the property that for each jeJ

there exists a unique row i = i(j) such that x./. is the only basic

variable in column j. For a nondegenerate transportation problem, these two

concepts are identical. In the case of (primal) degenerate problems, it is

necessary to use the single-source solution concept instead of the row unique

concept. We will elaborate on this point in Section 5. Since many of our

problems are degenerate we concentrate on the former concept here.

Any single source solution to the transportation problem P gives rise

to a feasible solution to problem p'. In Section 4 we describe a branch and

bound algorithm which solves P by finding single-source solutions to a series

of transportation problem relaxations of P . Each of these relaxed problems

differs from P by having the cost of some of the cells set equal to -r-M or -M

(where M stands for a number much larger than the absolute value of any cost)

in order that those cells are forced into or out of the basic solution for the

corresponding relaxed problem.

3. HEURISTIC SOLUTION METHODS

In order to reduce the size of the search tree in the branch and

bound search process we developed two heuristic solution methods that almost
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invariably find feasible solutions to P in a short time. The smallest

value of the objective function for such heuristic solutions is used as an

initial upper bound in the branch and bound algorithm. In many cases these

heuristic methods actually find an optimal solution, as will be discussed in

Section 6 where data from problem solutions is given.

The two heuristic solution methods we used differ only in the order

in which uses (columns) were selected to be assigned to sources (rows). The

first method calculates "regrets11 similar to those of the VAM starting

solution method [4] for transportation problems; the second method selects

uses in the order of non-increasing demand sizes.

To describe the regret heuristic let c. . be the kth smallest
JkJ

cost in column j. Define Reg(j), the regret for use j to be

Reg(j) = (c - c. .)b (12)
2 1

The first use to be assigned to a source is one whose regret is largest. Once

it has been assigned (in a manner to be discussed in the next paragraph), it

is removed from the set U of unassigned uses, new regrets are calculated

as necessary, and a second use with largest regret is chosen to be assigned, etc.

Given that use j is to be assigned, we first construct a set S.

of sources to which it can be assigned, according to the following rule:

S. = Usl|ck. - c. . < a.} (13)

where <J. is a parameter chosen by some rule such as

a = c . - c. . (14)
j J3J JXJ
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In other words S. consists of the indices of all sources whose costs in

column j differ from the smallest cost in column j by an amount less than

or equal to c. Then one of the indices isS . is chosen randomly to be

the actual source to supply demand b.-

The reasons for the random choice among indices in the set S. are:

first, with a specific choice rule it is quite easy to make early choices which

lead to infeasible solutions; and second, with the random choice rule we can

repeat the heuristic choice rule several times and retain the smallest cost

solution found.

In order to state the regret heuristic more precisely we first define

the notation to be used.

U = set of unassigned uses

Z = the cost of current solution (or partial solution)

S. = set of all sources ksl such that c. . - c. . < a..

c. = a parameter whose size determines the number of elements

in S.. (In some problems it may be desirable to have

a. change as more steps are taken in the algorithm.)

(HI) Regret heuristic.

(1) (Initialization) Let U = J, Z = 0. For each j€U find

j l f j 2 , and j 3 . Set a. - c _ - c.^..

(2) (Check feasibility) If c. . = M for some jeU go to (8).
J 1 J

Else go to (3).

(3) (Choose the use having the largest regret). Choose jsU such

that Reg(j) = (c. . - c. .)b. is a maximum.
J2J JiJ J



-8-

(4) (Determine the choice set.) Calculate S. which is defined in (12).

(5) (Select a source.) Choose isS. at random. Make the following

replacements:

U by U - [j]

Z by Z + c. .b .
ij J

a. by a. - b. .

(6) If U = 0 go to (9). Else go to (7).

(7) (Update the costs.) For all hsU if b, > a. set c. = M.
h i ih

Find the two lowest cost cells c. , , ct , . in each column.
run run

Go to 2.

(8) Current solution is infeasible. Stop.

(9) Feasible solution found. Stop.

The second heuristic, which we call the "largest demand heuristic,"

is identical to the regret heuristic except that in step (3), instead of

choosing at each step the use with the next largest regret, we choose the use with

the next largest demand. Thus in the largest demand heuristic (H2), step 3

is replaced by:

(3T) (Choose the next use.) Let jsU be the index of an unassigned

use whose demand, b., is largest.

Since step (3) requires more effort in the regret heuristic than in the

largest demand heuristic we find, as expected, th~.t the regret heuristic uses

more CPU time. However, neither of the heuristics requires very much time.

For example, five runs of the regret heuristic on a 75 x 200 problem requires

about 4 seconds of CPU time (DEC 20 computer).

The regret heuristic, being the "greedier" heuristic, tends to generate

lower cost feasible solutions than the largest demand heuristic. The largest
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demand heuristic was designed to find good feasible solutions in the case

when the regret heuristic failed to find any solution. In all of our compu-

tational experience this phenomenon occurred only once; yet it may be more

frequent in problems with a different data structure. We might add at this

point that neither of the heuristics can be guaranteed to find a feasible

solution to a given problem. It can be easily verified that the problem of

finding a feasible solution to P7 is NP complete. Finding a feasible

solution to P is equivalent to determining whether one can find a partition,

S,,...,S , of a set of integers {b , ...,b } (the demands) such that the
1 m In

sum of the elements in S. equals a. (the supply) for i = l,...,m.

The latter problem is known to be NP complete. Thus it is probably necessary

to carry out a partial enumeration of assignments such as is done in the

method of section 4, in order to guarantee the finding of a feasible solution

to P , when such a solution in fact exists.

4. THE COST OPERATOR ALGORITHM

We now describe a branch and bound algorithm which uses cost operators

in the sense of Srinivasan and Thompson [ 8 ]. The basic idea in the algorithm

is that the solution of problem P is obtained by solving a sequence of

related transportation problems P, P,,.-.,P until we have found a problem,

say P. , such that the optimal transportation solution to P is also an

optimal single source solution to P . Each successive transportation problem

differs from its predecessor in that certain costs have been changed from

their original values to either -M or 4-M. When we drive a cost to -M

we will say we have "fixed in11 the corresponding cell, and when we drive it to

+M we will say that we have "fixed out'1 the cell. We now give more precise

definitions.
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We shall say that cell (i,j) has been fixed out of the basis when a

cost operator has been applied to the problem so that c.. becomes equal to +M,

where M is so large that x. . = 0 for all optimal solutions to the new problem.

The operation of freeing a cell (i,j) which has been fixed out is the applica-

tion of a cell operator to drive c.. back to its original value.

We shall say that cell (i,j) has been fixed in the basis when

(a) a cost operator has been applied to the problem so that

the cost c . becomes equal to -M, where M is so large

that x.. - b. in any optimal solution to the new problem;

(b) a. has been replaced by a. - b.;

(c) for any k such that b, > a. we fix cell (i,k) out of the

basis, since source i cannot supply the demand at k.

B v freeing a cell (i,j) which has been fixed in we mean to undo the actions

listed above, so that the costs and rims go back to their previous values.

In (A) - (D) below we describe the various steps of the algorithm.

The algorithm is stated in detail in (E) and a simple example is worked in (F).

(A) Tree Search Rules

The branch and bound algorithm which we are going to describe is of the

LIFO (last in first out) or depth first variety. The method starts by first

solving the problem P. If its solution satisfies the single source property

we are finished. If not, we apply a nonbasic variable fixing rule, to be

described later, which fixes some of the nonbasic variables at zero. Next

a cell is selected by one of the cell selection rules given later, and the cell

is fixed in the basis. This procedure is continued until either (a) a single

source solution is obtained or (b) the objective function value of the new

problem exceeds the current upper bound. In case (a) we compare the solution
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with the current best single source solution and update the latter and the

current upper bound if the current solution is better. In either case we back-

track by freeing the last cell fixed in. Then (using the LIFO rule) we choose

the last cell fixed in and consider it for fixing out. If the objective

function value of the current relaxation plus a weak lower bound (to be

described later) exceeds the current upper bound, then we continue backtrack-

ing. Otherwise the cell is fixed out and the search process continues deeper

in the search tree. A more precise description will be given later in this

section.

(B) Nonbasic Variable Fixing Rule

At the initial node of the search tree the transportation problem P

is solved. If the solution to P is not a single source solution then it

is possible to examine the nonbasic variables in the solution to P in order

to fix some of them at zero. Let Z , Z be the objective function value of P.
P u

and the current upper bound respectively. Let u. and v. be optimal dual

variables associated with the current basic solution to P. For any nonbasic

variable (i,j), isl, jeJ, if

(Gij ' (ui + V j ) } * b j ̂ Z u " Zp - l ( i 5 )

then we can set x.. = 0 for the remainder of the procedure. This is true

since if a nonbasic variable x.. were to become positive then it can only

assume the value b., in which case the left hand side of (15) represents

the minimum amount by which the objective function value of P will increase

if we were to require that x. . = b.. Thus if this amount exceeds the current

gap between the upper bound and the transportation relaxation then we can be

sure that x.. will not be positive in any single source solution to p'.

Actually this variable fixing test could be repeated at any node of the search
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tree, in which case Z would be replaced by the objective function value of

the current relaxation. However, the computational cost of doing so would

probably exceed the benefit.

It is interesting to note that the left hand side of (15) increases

as the demand, b., increases. Intuitively this seems plausible since forcing

a larger amount of demand into a single cell causes more of a restriction on

the problem. In other words the constraint x.. > b. becomes stronger as b#

increases. We have found that the variable fixing rule (15) will set to zero

as many as 95% of the nonbasic variables. When solving problems in which 60%

or more of the nonbasic variables are fixed to 0 by the variable fixing rule,

it would probably be worthwhile to use a code which takes advantage of the

sparse structure of the resulting transportation problem. We have not so far

used such a sparse code in our studies.

(C) Weak Lower Bounds

The algorithm that we have implemented is essentially a linear pro-

gramming based implicit enumeration scheme. At any node of the search tree

we have solved a relaxation of problem p' where a variable, x.., is

either fixed at zero, fixed at b., or free to assume any value between

zero and b.. If the objective function value of the current problem, Z ,

does not exceed the current upper bound, Z , and its solution is not single

source, then we choose one of the free variables, say x.., and we create

two new problems. In one of the new problems we require that x.. = 0 and in

the other problem we require that x.. = b.. Let us denote their objective

function values by Z and Z respectively. By calculating weak lower

bounds we can determine the minimum amounts by which Z must increase if we

require that x . = 0 or x . . = b . . Thus for any free variable x.., we can
4 ij ij J ij

calculate a weak lower bound WLB« in the x.. = 0 direction and WLB. in
0 ij D

the x.. = b. direction where,
ij J
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< Z c +WLBQ < Z Q (16)

Z < Z + WLB, < Z . (17)
c ~ c b — b

What we hope to find is tha t e i t h e r

Z + WLBn > Z (18)
c 0 — u

or

Z + WLB, > Z (19)
C D — U

or both. In case (18) ((19)) we can fathom the search tree in a particular

direction without having to calculate Z~ (z^) * Of course there is a cost-

benefit tradeoff involved here since some computational effort is required

to calculate the weak lower bounds. Thus the real question is whether the

extra information obtained from calculating the weak lower bounds is worth

the added computational effort. We have found that in almost all of the

tests which we have performed the weak lower bounds have proven to be cost

effective. The weak lower bounds are useful not only for fathoming nodes

in the search tree, but for choosing a "good11 variable for branching. We

will describe the branching rules which we have selected in the next section.

We now describe how the weak lower bounds are calculated. Suppose that

at a given search tree node we wish to calculate a weak lower bound,

in the direction x.. = 0 . This is done by applying a positive cell cost

operator 5c.. to the cell (i,j) which determines the maximum amount, u, , by which

the cost in cell (i,j) can be increased while maintaining optimality in the cur-

rent basis. This is called the positive basis preserving cell cost operator, and
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is described in [ 8 ]. At this point cell (i,j) contains some flow, x..,

between zero and b. and the weak lower bound WLBn is,

WLBQ = M<
+ x (20)

WLBQ is a lower bound on amount by which the objective function value of the

current relaxation will increase if we branch in the direction x = 0 .
ij

For a proof see [ 9 ] .

In a similar but slightly more difficult manner we can calculate a weak

lower bound, WLB,, in the direction where x.. = b.. In this case we apply a

negative cost cell operator 5 c . to cell (i,j) which determines the maximum

amount, u , by which the cost in cell (i,j) can be decreased before the

current basis becomes non-optimal. If the cost in cell (i,j) is changed to

c.. where

c-j - =t. - •,- (21)

then some nonbasic cell, say (p,q), will have a reduced cost, c - (u + v ),

of zero. If cell (p,q) is added to the basis then a unique "cycle11 or "loop" is

formed in the current basis tree. From this cycle we can determine a cell (e,f)

which would leave the basis, and the amount A, by which the flow along this

cycle would change if cell (p,q) were brought into and cell (e,f) were removed

from the basis. The valid weak lower bound WLB, is (see [9])
D

WLB, - n"A (22)
D

Notice that WLB, is more difficult to obtain than WLBn since in the former
o u

case we must find the minimum giver amount, A, along the cycle created by

an incoming nonbasic cell.
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The effectiveness of the weak lower bounds depends for the most

part on how close the current upper bound, Z , is to the value of the

current relaxation, Z . If Z - Z is small then (18) and (19) provide
' c u e

strong fathoming devices. Thus the ability of the heuristics to generate

low cost feasible solutions is a crucial factor in the performance of

the branch and bound algorithm. Another important factor is the branching or

cell selection rules which we describe next.

(D) Cell Selection (Branching) Rules

We have tested several of many possible cell selection rules and have

subsequently reduced our choices to two rules. These rules utilize both the

regret concept and one of the weak lower bounds, WLB~, discussed earlier.

In order to describe these rules we first define the following quantities at

any step of the tree search:

F = the set of columns containing more than one basic cell having

positive flow

U = the set of columns containing no fixed in cells

B = the set of basic cells having positive flow

WLB~. = the weak lower bound in direction x.. = 0 for cell (i,j).

Using this notation we describe two branching rules:

(1) BC-(basic cell) regret rule

a) Column selection - choose jeF such that Reg(j) > Reg (k)

for all keF, that is, choose a column having largest regret.

b) Row selection - find the two smallest cost cells (i,,j),

(i2,j) s B and choose cell (i,j) where i = i. if

WLBn. > WLBn. , and otherwise i = i«; that is, of the
Oll Ol2 2

two smallest cost cells in column j which have positive

flows, pick the cell whose weak lower bound is largest.



-16-

2) G-(General) regret rule

a) Column selection - Choose jsU such that Reg(j) > Reg(k)

for all keU. (This rule is the same as (1) (a).)

b) Row selection - find the two smallest cost cells (i,,j),

(i2,j) e I and choose (i,j) where i = i if

W L B Q >WLB r. , and i = i otherwise; that is, of
1 2

the two smallest cost cells in column j, pick the cell

whose weak lower bound is largest.

It is clear that by using the G-regret rule there are more cells to choose

than by using the BC-regret rule. Also the BC-regret rule only considers

cells (i,j) whose flow x.. satisfies 0 < x.. < b.; we will call this

a fractional flow, in agreement with the usual integer programming terminology.

On the other hand, the G-regret rule may select a cell whose flow is b., i.e.,

an integral flow.

In most integer programming algorithms the cell selection criteria is

limited to a choice among fractional flow variables. The reason is that if a

non-constrained variable is "naturally" integer then it would seem to be un-

productive (i.e., would increase the size of the search tree) to explicitly

restrict the variable to be integer by branching on it. However, it is

plausible that some of the variables which are naturally integer in the optimal

solution to P might also have the same integer values in an optimal solution

to p'. Hence it might be worthwhile to restrict these variables to their

respective integer values in hopes that the size of the search tree will ulti-

mately be reduced. In line with this reasoning we have found through computa-

tional experience (section 6) that in some cases the size of the search tree
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is smaller when using the G-regret rule for branching rather than the

BC-regret rule. The G-rule usually produces a smaller (in number of nodes)

search tree than the BC-rule when the relaxation, P, has a solution which

is not very close to being integer. That is when P contains only a few

fractional flow cells, the BC-rule concentrates on the non-integral (i.e., the

non single source) portion of the relaxation, and in doing so it is usually

capable of performing a quick partial enumeration. However, when the problems

are "tight," that is H a . - Z b. is small, and there are several
iel L jsJ J

fractional variables, it is often better to fix some of the variables (say those

variables in columns having a large regret) into the basis even if they are not

fractional. This avoids the possibility of these variables becoming fractional

as we move deeper into the search tree. This is accomplished by using the G-

regret rule. Clearly fixing non-fractional flow variables is not always the

best alternative. However, we have noticed dramatic differences in the per-

formance of the algorithm between the BC-rule and the G-rule on some of the

more difficult problems which we have generated. For example on a particular

5 x 50 test problem (i.e., m = 5, n = 50) the search tree using the BC-rule

had 13,814 nodes whereas the search tree using the G-rule had only 356 nodes.

In our experience the BC-rule usually yields a search tree with fewer nodes than

does the G-rule; however, the BC-rule is not invariably better than the G-rule.

(E) Statement of the Algorithm

Before we state the algorithm we define some notations:

£ = level of the tree

Z. = the transportation problem objective function value at level K

X. = the transporation problem solution at level K

U = the set of columns containing no cells which are fixed in

= (i,j)~ if cell (i,j) is fixed in at level I, and = (i,j)+

cell (i,j) is fixed out at level K
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(Al) The Single Source Cost Operator Algorithm

Step (1) (Heuristics) Run the regret and the largest demand heuristics to

get an upper bound, Z . If neither gives a feasible solution then

set Z = «.
u

Step (2) (Initialize) Let U = J; 4 = 0. Solve P. If ZQ > Z^ - 1 go

to (10). Otherwise go to (3).

Step (3) (Variable fixing) For all non-basic cells (i,j), if

(c.. - (u. +v.)) * b . > Z - Z - 1 then let c.. « M otherwise

go to (4).

Step (4) (Cell Selection) Use either the BC-regret rule or the G-regret

rule to choose a cell (i,j) upon which to branch. Save WLBQ .
i

Step (5) (Fix in cell) Replace 4 by 4+1. Let T(4) = (i,j)~. Fix in cell

(i,j). If Z^ > (Z - 1) go to (6). Otherwise if X^ is single

source, save X,; let Z = Z.; go to (6). Otherwise replace U by

U - {j} and go to (4).

Step (6) (Free after fixing in) Free cell (i,j); replace 4 by 4-1;

go to (7).

Step (7) (Check WLB) If Z^ + WLBQ > Z go to (9). Otherwise go to (8).

Step (8) (Fix out cell) Replace I by 4+1. Let T(4) = (i,j)+. Fix out

cell (i,j). If Z^ > (Zu - 1) go to (9). Otherwise if X^ is

single source, save X^; let Z^ = Z^; go to (9). Otherwise go to (4).

Step (9) (Free after fixing out) Replace I by 4-1. If 4 = 0 then go to (10),

Otherwise free cell (I,j). If T(4) = (i,j)+ go to (9). Otherwise

go to (8).

Step (10) Stop. The current solution, if there is one, is optimal. Otherwise

there is no feasible solution to the problem.

(F) Example

Consider the problem given in Figure 1. Using the algorithm just

described we will indicate the various steps involved in finding an optimal

single source solution to this problem.
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Step Description of the Operation

1 Application of the regret heuristic with a. = 1 for

all jcJ yields Z = 391.

2 U = {1,2,3,4,5}; I = 0; The solution to P is given

in figure 2(a) ZQ = 279.7.

3 Apply the non-basic variable fixing rule and set

C13 = C24 = C43 = C44 = M*

4 (using the BC regret rule) F = {2} i. = 1; i- = 2.

WLBQ = 1.41 x 16 = 22.6; WLBQ = 1.09 x 2 = 2.18.

Choose cell (1,2).

5 Let c12 - -M; cn = M; c15 = M; I = 1; T(l) = (1,2)".

X, is a single source solution. See figure 2(b). Save X •

6 Let c12 - .39, cn = 2, c ^ = 5.19, I = 0.

7 279.7 + 22.6 = 302.3 > 391.

8 I = 1. T(l) = (1,2)+. Let c12 = M. ^ = 360.9. X±

is not a single source solution. See figure 2(c).

4 F = {2,5}. Reg(2) = 111.6, Reg(5) = 37.9.

Choose column 2. i = 2, i = 4. WLBQ = 21.46 x 2 = 42.9

WLBQ = .04 x 16 = .64. Choose cell (2,2).
4

5 Let c22 = -M, c21 = M, I = 2, T(2) = (2,2)".

X2 is single source. See figure 2(d). Z~ = 458.

6 Let c22 = 10.2, c21 = 12.9, c24 = 30.1; 4 = 1

7 360.9 + 42.9 = 403.8 > 391.

9 4 = 0.

10 Stop. Z = 391 is optimal, x^ = 12, x 1 2 = 18, x 2 3 = 7,

X34 = 10' X45 = 26'
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Figure 2(e) contains the four node search tree for the example. The

first number in the parenthesis at each node is the objective function value

of the current relaxation and the second number is the current upper bound . At

node one problem P is solved and the solution is not single source (see

figure 2(a)). The upper bound at this point is 371 which was obtained by

applying the regret heuristic with c\ = 1 for all jej. At this point the

non-basic variable fixing rule is applied to fix x x x and x

to zero. Cell (1,2) is chosen for branching by the BC rule and at node 2

a single source solution is obtained with a value equal to the upper bound.

Next, using the LIFO rule, we move to node 3 where the solution again is not

single source. Then we choose variable (2,2) and move to node 4. At node 4

the value of the relaxation exceeds the current upper bound thus we fathom

the tree at node 4. Notice that the weak lower bound was used at node 3

so that it was not necessary to fix out cell (2,2).

5- SINGLE SOURCE VERSUS ROW UNIQUE SOLUTIONS

In [ 7] the concept of a row unique solution was used to characterize

the acceptable solutions to the sources to uses problem. In the present paper

we have replaced the idea of a row unique solution by a single source solution.

Clearly every row unique solution is also a single source solution, but the

converse is not true, as can be seen in the example shown in Figure 3(a). The

basic solution shown there is a single source optimal solution (which is not a

row unique solution) and therefore solves the single source transportation problem.

However, the reader can verify that the primal solution shown in Figure 3(a) is

unique, and that there is no basic optimal row unique solution to the problem.

Hence, to find a row unique optimal solution, it is necessary to generate a

branch and bound search tree such as the five node search tree shown in Figure 3(b),
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This tree was generated by using the cost operator algorithm described in

section 4 (E). Because the search tree has only one node when we look for a

single source solution, and five nodes when we look for a row unique solution,

it is clear that use of the single source solution concept yields considerable

computational savings even on this small problem and hence much larger savings

would be expected on larger problems. Thus the single source concept is es-

sentially a way of circumventing one of the problems created by primal degeneracy,

6. COMPUTATIONAL RESULTS

In this section we will discuss the computational performance of the

heuristics (Sec, 3) and the cost operator algorithm (Sec. 4) on a set of randomly

generated problems ranging in size from 5 x 20 to 100 x 400. These problems

were generated in the manner described in [ 5] as follows. We use a uniform

probability distribution to generate random integer costs c.. for isl, jsJ,

between 1 and 50; we let c. =0 for is I; similarly we generate

random integer demands, b. for jsJ, between 5 and 20. Then recalling that

j is the smallest entry in column j, we set

x. . = b . and x. . = 0 for i # j , all jcJ (23)

We then calculate the largest supply ,

S = max {S.|s. = E x. .} (24)

iel jej XJ

which is needed to guarantee feasibility of the solution in (23).

Finally for each isl, let the supply a. = c*S where the slack para-

meter a is chosen to be less than 1; and set b , = £ a - £ b .
n + 1 iel i

 j ej J
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As was mentioned previously, b > 0 is a necessary but not a suf-

ficient condition for the existence of a feasible solution to p'. In general

the smaller the value of a and hence of b - , in a problem, the more
n+i

difficult it is to solve. When the slack, b ,, is small, there is more
n+1

incentive to divide the flow among the cells in a given column, and thus

violate the single source constraints. Thus by varying the value of a we

can make the slack for a given problem larger or smaller. For a = 1, an

optimal solution is given by the assignment in (23). For a < 1, the

assignment in (23) is infeasible and thus the single source problem is likely

to be nontrivial.

Figure 4 contains the test results of 27 problems ranging in size from

5 x 20 to 75 x 200. All of these problems were solved with a code written

in Fortran IV using the BC-regret rule discussed in section 4(D) on a DEC-20

time sharing system at CMU. The solution times in Figures 4 and 5 are subject

to some measurement error due to variable loads on the time sharing system.

A value of c. = (c.« " c.i)/2 for all jeJ was used in the regret heuristic.

For each problem the regret heuristic chose the best feasible solution out

of the five trial solutions which it generated. We decided not to use the

largest demand heuristic on these problems since the regret heuristic always

found at least one feasible solution; however the largest demand heuristic may

be useful in other problems having a different data structure.

Notice that each problem size is repeated three times. This is because

the difficulty of these problems can vary greatly even for problems having the

same dimension. Thus we felt it would be more informative to solve three test

problems of a given size in order to demonstrate the potential variation in

problem difficulty.
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In addition to the problems shown in Figures 4 and 5 we solved three

test problems given to us by Prof. Terry Ross. Our solution times, after

taking into account the difference in computers, are comparable if not slightly

better than those obtained by the Ross and Soland algorithm.

The regret heuristic error was evaluated on the basis of a percent error

formula which is,

^TI " OPT
percent error = -r2 z^^ X 100 (25)

ZOPT " R

where Z^- is the optimal value, Z is the value obtained by the regret
OFT n.

heuristic, and

Z = E b. min {c. .} (26)
R j€J J iel 1J

Z is the smallest possible objective function value for P • The
R.

purpose in subtracting Z-r, from the denominator in (25) was to avoid the

problem of "scaling11 which is characteristic of network problems having a

transportation structure. That is, we could add or subtract some positive

constant, 5, to each of the costs in any column of the transportation problem

without affecting the set of optimal single source solutions. Although this

scaling does not affect the set of optimal solutions, it does however affect

the value of an optimal solution so that a standard percent error formula

such as

Iz - Z !

' W OPT*
H OPTZOPT

— X 100 (27)

could be made larger or smaller by scaling the data. Thus we avoid this scaling

problem by subtracting Z_ from the denominator in (25). For example if 5 is
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added to the cost in each cell in column j, then each of the parameters in

(25) increases by b.-6 so that there is no net effect on the percent error.

Also, problems for which ZQ = Z are usually uninteresting and thus we

attempt to avoid this situation in practice by making a small enough so that

ZR is not an optimal value- A discussion of the scaling problem for general

integer programming problems is given in Zemel [10],

Note that the CPU time to run the heuristic varied approximately

linearly with the problem size as m X n increases. Note also that the percent

error of the heuristic tends to decrease as m X n increases. This paradoxi-

cal result would be even more impressive if we had used the standard error

formula (27) instead of (25). The reason that the heuristic solution method

gets better as m X n becomes large is probably due to the fact that larger

problems tend to have more alternate optimal solutions, and there is the

possibility that some of them have the single source property. In any case

it is useful to know that a heuristically generated feasible solution to a

large problem has a fairly high probability of being optimal in those cases in

which it is not possible to prove optimality in a reasonable length of time.

The variable fixing rule (15) seems to be quite effective in fixing

non-basic variables to zero. In many of the problems as many as 95 percent of

the non-basic bariables are fixed at the initial node of the search tree.

As we mentioned in section 4(B), if the variable fixing rule consistently

eliminates more than say 607o of the non-basic variables then it would probably

be beneficial to use a sparse code to solve the transportation relaxations.

The effectiveness of the variable fixing rule on a given problem is better

the closer Z and Z are to each other, because then rule (15) permits
P u

fixing out more non-basic variables.
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We tested the cost operator algorithm both with and without the weak

lower bound calculations and found that the weak lower bounds are indeed cost

effective. They help by reducing the size of the search tree and by reducing

the overall CPU time. As can be seen from Figure 4, the weak lower bounds can

be used to fathom several of the nodes in the search tree which would other-

wise have required explicit enumeration. Also since we found that search

trees tend to be smaller when the weak lower bounds are used for branch

selection than when they are not, we conclude that they provide good branch

selections.

As expected, the single source transportation problems exhibit a much

higher variance in their execution times than do ordinary transportation

problems. The difficulty of a given single source problem depends upon many

factors such as: m, n, the gap between Z / and Z , the amount of slack

(i.e. b . ) , the cost, supply, and demand distributions, the problem density,
n+1

and the number of fractional variables in the initial transportation relaxation.

Given two problems of the same size the one having the larger gap is

usually more difficult to solve. Problems in which the demands are all equal

are easy to solve since, as we mentioned in section 2, partial enumeration is

not necessary in this case. If all of the supplies, S. iel, are greater

than or equal to S, as defined in (2&) , then it is easy to see that the

solution given by (23) is optimal. When many of the costs are very large, or

equivalently when the problem is sparse, the number of low cost solutions is

reduced which then facilitates the implicit enumeration. We have found that

one of the best indicators of the potential difficulty of soving a single

source transportation problem, P , is the number of fractional variables in

the transportation relaxation P. A "large" number cf fractional variables in

a basic solution to P essentially means that P is not a close relaxation to

P and thus we expect that such problems will be difficult to solve.
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It is possible to determine the range within which the number of fractional

variables in a basic solution to P must lie. Consider the distribution

of the basic cells in any ordinary transportation problem. Given an m X n

problem, we add one slack column, n+1, to the problem which has no single

source restriction. The total number of basic cells is m + (n+1) - 1 = m+n.

Each of the n+1 columns must contain at least one basic cell which leaves

m - 1 basic cells to distribute among the n+1 columns. The worst case (in

terms of the number of fractional variables in the basic solution to P)

occurs when m - 1 of the first n columns contain two positive flow basic

cells each, in which case there are 2(m-l) variables which violate the

single source criterion. The most desirable case occurs when the basic solution

to P is single source, that is when all of the m - 1 "extra11 basic cells

either appear in column n+1, or appear among the first n columns and have a

flow of zero (they are primal degenerate). Thus the number of variables which

violate the single source criterion lies in the interval (0, 2(m-l)). Notice

that this interval is independent of n. Thus we can increase the number of

column locations in a given single source problem without affecting the upper

bound on the number of fractional variables. In practice we have found that

when a column contains more than one basic cell, then it usually contains two,

or in any event at most three basic cells. Given this observation one would

expect that the number of fractional variables would be approximately 2(m-l).

However the number of basic cells which appear in column n+1 plus the number of

primal degenerate basic cells appearing in the first n columns greatly reduces

the number of fractional variables in a basic solution to P. We have found

that the-number of fractional variables is usually much smaller than 2(m-l).

Figure 5 gives the computational results for seven problems ranging in

size from 100 x 100 to 100 x 400. These problems were generated as described

earlier except that once the problem is generated, we remove a cell (or give
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it a large cost) with probability .6. Thus approximately 60 percent of the

cells have been eliminated from consideration. The maximum number of fractional

cells which can occur in any of these problems is 2 x 99 = 198. The number

of fractional variables encountered ranged from 13 to 46 and, as expected, the

problems having the larger number of fractional variables were more difficult

to solve. This is also true in figure 4 where the only problem which could

not be solved within 10 minutes of CPU times was a 75 x 200 problem with 69

fractional variables out of a possible 2 x 74 = 148. Thus we believe that

number of fractional variables in the solution to P is a good measure of the

potential difficulty of a given single source problem. Utilizing the character-

istics of a class of problems to determine how difficult they may be to solve

is important since as we mentioned earlier there can be a large variance in

the difficulty of single source transportation problems of the same size. In

figures 4 and 5 we have reported the characteristics of each problem which we

feel provides an adequate measure of their complexity.

If we look at the total CPU times in figures 4 and 5 we note the en-

couraging fact that, except for the one 75 x 200 problem which required more

than 600 seconds to complete, the overall problem difficulty does not seem to

increase with increasing problem size. (Of course, the total time, which in-

cludes input and output times, does increase with problem size.) Thus it

appears that the single source transportation model can be useful in the solution

of actual problems, especially if a user is willing to settle for a heuristic

solution whenever total CPU running time becomes excessive .

7. CONCLUSIONS

We have discussed the design and computational testing of a cost operator

algorithm for solving single source transportation problems. We observed that
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the computational difficulty of a randomly generated test problem depended

on m, n, the P to P gap, the amount of slack, the supplies, the demands,

the distributions of costs, the density of the problem, and the number of

fractional variables in the initial solution to P.

The regret heuristic seemed to perform very well on these test problems.

The maximum percent error was 41, (as calculated in formula (25)), and more

importantly the performance of the regret heuristic improved as the problem size

increased. Using the value of the regret heuristic as an initial upper bound,

the cost operator algorithm solved each of 32 of the 34 test problems in less

than 210 seconds of CPU time on a DEC-20 computer.

Two surprising observations were made: First, the regret heuristic rule

tends to make smaller errors as the problem size, m X n, increases. Second,

the overall solution time (with one or two exceptions) does not tend to increase

with problem size.

These two observations lead us to conclude that the single source trans-

portation model has the potential of becoming an easily applied operations

research tool, even though it is used to solve an NP complete problem.
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Figure 5
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location be supplied from a single supply location. It is a special case of •
Ross and Soland's generalized assignment problem. Such problems occur j
frequently in applications. This paper gives two heuristic solution methods t
and a branch and bound algorithm for solving single source transportation \
problems. A discussion of the branching rules, variable fixing rules, and the}
computation of weak lower bounds is "given. Cocnpu~tationlInexperience with theJl

DO „ ,__ , solution of
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S/H 0 1 0 2 - 0 1 4 - 6 6 0 1

f randomly generated problems having up
integer variables is reported..
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