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Abstract

The MICON system is an integrated collection of programs which automatically synthesizes small computer
systems from high level specifications. The system address multiple levels of design, from logical through physical,
providing a rapid prototyping capability. Two programs form MICON's nucleus: a know ledge-based synthesis
tool called Ml; and, an automated knowledge acquisition tool named CGEN which is used to teach Ml how to
design. Other tools in the MICON system are an integrated database and associated data management tools. The
system is fully functional, having been used to generate working designs. This paper describes the architecture
and operation of the MICON system.

1 Introduction

Semiconductor technology is providing tremendous opportunities for high processing power, reliable, and low-cost
computing in the office or lab. Many of these computers, spanning the range from personal computers to super-
mini's, are based on commercially available micro-processor family components. The high-end microprocessors
available today commonly support virtual memory and main memory cache. Complementing these devices are a
full array of high-performance dedicated processors (e.g. graphics controllers and numerical co-processors) and
communication components. A very sophisticated machine can be constructed almost entirely from off the shelve
components. It appears that semiconductor designers have just begun to tap the well of possibilities, promising
more performance and function in future chips.

However, there is a price for all this. Sophisticated components require sophisticated hardware designers;
designers must be experts in high-speed logic design2 and computer architecture. The days of simple designs
consisting of a processor and a serial input/output (SIO) interface are long gone. The smallest of today's computer
systems contain at a minimum, disks, buses, and graphics terminal interfaces. Workstations must utilize a minimum
of three levels of memory hierarchy to achieve maximal performance. In addition, such traditional extras as
networking and graphics are standard equipment All of this places a strain on hardware designers trying to keep
abreast of a rapidly evolving technology.

In the marketplace where product lifecycles are, if anything, shrinking, the competition is growing stronger. So,
the hardware designer is being squeezed by three forces: a reduced design time, the ceaseless demand for increased
performance at a lower price, and a constantly evolving technology. It appears unlikely that these forces will abate
of themselves; therefore, some assistance must be provided in the form of computer-aided design (CAD) tools. The
MICON system is intended to provide support for computer hardware designers.

The objective of the MICON system is to reduce the time required to construct a hardware system. The approach
to achieving this objective is based on the following two points: capture and disseminate design expertise in a format
that actively assists designers; provide a tool environment which supports all aspects of computer design.

By making design expertise commonly available, a number of benefits accrue. The learning curve facing
designers when a new component is introduced is reduced and the number of new components which a designer
can consider is expanded. The number of errors in the design, and the amount of time spent in trial and error
learning can be reduced. This allows the designer more time to create alternative designs, or to just create a working
design more quickly.

The creation of computer hardware is not limited to logic design and physical design; other tasks, such as
reliability analysis, must be performed as well. By providing a design environment which supports multiple experts,
the designer can single-handedly address the entire spectrum of design activities. Through such an environment,
data consistency is handled more efficiently and fewer design errors will result.

The MICON system utilizes a set of technologies. Artificial intelligence (AI) is used for design synthesis and
the acquisition of design expertise. Databases are used to provide consistent views of data to all tools. Networking
allows the system to efficiently share common resources, such as the database, across many users of the system.
The following paper describes the architecture of the MICON system, provides examples of its use, and describes
a set of experiments to test its viability. The paper begins with a comparison of MICON to other design systems.

2Processors today commonly run in the 16-25 MHz range.



2 Contrasts with Related Systems
Synthesis is the process of producing an artifact that meets some set of specifications. In general, the specifications
are abstract relative to the details needed to build the artifact The synthesizer's task is to provide the missing
information. The mechanisms used to implement the synthesis system are as widely varying as the types of
synthesis tasks. The next several paragraphs discuss related synthesis work in digital domains, but work is also
being done in other domains, such as: analog circuit design [20] and mechanical engineering[16].

Digital system synthesis has been an area of particular interest in the CAD field[29]. Interest has grown from
graphics-oriented schematic capture systems to fully automatic systems capable of producing sophisticated, fully
operational designs.

Recently, much of the work in digital system synthesis has been oriented around the development of application-
specific integrated circuits (ASIC)3. In a broad sense, two approaches exist, depending upon the type and abstraction
level of the input and the resulting design. The first approach proceeds from a high-level behavioral description
into an IC. The types of systems produced typically include micro-processors and mini-computer CPUs. The SAW
project [3231], evolved from the CMU-DA project [14], synthesizes digital systems from a high-level behavior
language, ISP[3]. SAW's objective is to produce a very-large scale (VLSI) IC that implements the machine
described by the ISP input program. The synthesis process consists of transforming the behavioral description into
a technology-independent data flow representation called a VT graph. The data flow graph is then subjected to a
set of complex operations, resulting in a data-path and controller design represented as a set of register transfer
level (RTL) components. The RTL representation is bound to modules in an implementation technology, such as
standard cell libraries (see [15] for examples). Examples of other well-known systems which follow the same basic
design paradigm can be found in [28][25][27].

The second broad class of ASIC synthesis systems take as input a lower-level description of a system to
implement. The descriptions vary, but are typically based on any of the following: a hardware description language,
a set of boolean equations, state tables, et cetera. These tools produce sophisticated, but smaller scale artifacts
than the systems outlined above. Examples of these artifacts, which are used as building blocks of larger digital
machines, include: programmable logic arrays (PLA), state-machines, and blocks of combinational logic. Logic
synthesizers, typical of this class of tools produce ASICs using a set of pre-defined cells (e.g. standard cells or
gate arrays). International Business Machines (IBM) has a long standing and successful effort in this area with the
development of a production quality system called LSS[13]. There are a number of other systems which employ a
similar paradigm to produce combinational logic and/or state machines[17,4].

Artificial intelligence is being applied to a wide range of synthesis problems. The appeal of AI for synthesis is
the ability to use non-mathematically based representations (An example set of representations for digital systems
is found is [23]) and to use domain knowledge to reduce the search inherent in many synthesis problems. The
success of the XCON/R1 project[24] illustrated the potential of AI technology for synthesis (constructive) problems.
Examples of knowledge-based approaches for large digital systems synthesis (the first class of tools outlined above)
can be found in [12][33], The DAA system[22], part of CMU-DA, used domain knowledge to aid the generation
of an IBM 370 design. The VEXED system[26] is an interactive knowledge-based editor which assists a user in
traversing a hierarchy of functional blocks with the aim of creating an NMOS implementation of a design.

In surveying the literature, it is interesting to notice that the design of pieces of computers (e.g. CPU's), not
complete computer systems, has driven most of the current synthesis research. However, as these tools become
more proficient system integration issues will become prominent The MICON project has been interested in the
synthesis of systems through the configuration of existing components. The emphasis of this synthesis approach is
on matching the interfaces between components (and in this way is similar to Critter[21], although the intentions
and implementations of the systems are very different).

The MICON project originated with MO (a recently dubbed name)[5,8], a knowledge-based system designed
to assess the feasibility of automated single board computer synthesis based on commercially available micro-
processors. MO embodied, in a more primitive form, many of the concepts used in the design of the Ml system.
Several micro-processor families were programmed into the system. A number of designs were produced by MO,
and a Z80-based design was built. MO initiated the idea of templates for representing structural information for
synthesis. MO, however, had a number of drawbacks which limited its general applicability (see [18] for more

3 The term application-specific is used very loosely, connoting systems ranging from a simple controller to a full micro-processor.



details). These drawbacks lead to the development of M0.5[2,9], While M0.5 was not fully implemented, the ideas
garnished from it were essential to the development of Ml. In particular, M0.5 introduced component abstraction
which enables Ml to have a much larger degree of freedom in choosing components thereby creating a larger
number of interesting designs.

3 The MICON System

The MICON system was originally developed to design small computer systems4. The computers designed by
MICON consist of the following subsystems:

Processor: designs utilize a micro-processor as the CPU. Presently, the MICON system is capable of designing
with the following processors: Motorola 6809, 68008, 68010 and the Intel 80386.

Memory: designs contain read-only memory (ROM), and either static or dynamic memory (SRAM or DRAM). In
addition, MICON also supports the use of cache memories where support chips exist in the microprocessor
family, such as the Intel 80386 and 80385 combination.

Peripheral: all input/output (IO) is performed by dedicated parts, such as serial IO (SIO) and parallel IO (PIO)
devices. IO devices may utilize standard interfaces, such as RS-232-C.

Bus Interface: a selection of standard bus interfaces (e.g. AT bus) are supported by the system.

Support Circuitry: a set of circuitry provides support functions. Examples of support circuitry include address
decoders, wait state generators, oscillators and bus drivers. Included in support circuitry are specialized
structures for improving system reliability, such as Hamming encoders/decoders.

The complexity of designs produced is roughly equivalent to a small workstation.
MICON is intended to provide a rapid prototyping facility, therefore the overriding concern for the synthesis

system (Ml) is to quickly generate working designs. Design cost— as measured by a variety of metrics including
part cost, board area, and power dissipation— provide a framework for evaluating tradeoffs. Since designs will not
be produced in volume, a user is typically willing to lessen the cost constraints in order to get a design quickly,
therefore, cost optimization is not necessary. In general, designs produced by the MICON system compare favorably
to human generated designs, Section 4 provides more details.

The MICON system is shown in Figure 1. Note that a distinction is made between a user and a domain expert.
The domain expert teaches Ml through CGEN how to design, and uses the data entry tool to add new part models
to the data base. The user's goal is creating designs with Ml, exploiting the work of the domain expert If the
domain expert imparts sufficient knowledge to Ml, the user can be a novice hardware designer. Each of the tools
is described below.

Ml[18,19] is the synthesis module of the MICON system. Input to Ml is a set of high-level specifications that
describe the functionality required of the computer. For example, a user may specify the type of micro-processor,
amount and type of memory, and the amount and type of input/output devices required. An additional set of
parameters describing multiple objective criterion, such as design constraints (e.g. board size, cost), and system
reliability requirements, are input to the program. Ml uses its knowledge of components and micro-processor
system structures to develop a design that satisfies the requirements given to the system. During the design process,
Ml interacts with the user to resolve tradeoffs in the evolving design.

Ml is implemented as a rule-based system written in OPS/83. The rule-base consists of knowledge about the
components Ml can design with, micro-processor system design techniques, and design for reliability techniques.
In order for the MICON system to produce competitive designs the rule-base must be updated with new components
and design techniques as they are developed.

ASSUREfll] ^Automated .Synthesis for _REliability) is a sub-module within Ml that analyzes and modifies
designs for improved reliability. ASSURE's input consists of reliability criteria, such as mean time to failure
or mission time. ASSURE uses external reliability analysis tools to analyze the quality of the evolving design.
Designs failing to meet the user specified criteria are modified by a variety of techniques, ranging from simple

4MICON is being applied to design problems in other domains, such as design environments (frameworks) and mechanical engineering[7,10J.
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System data

Total part models
Total rules

382
1050

Table 1: Parameters indicating the size of MICON after the experimental period.

integrated circuit package changes to the addition of entire structures (e.g. error correcting codes on memory).
While ASSURE is closely tied to Ml , it has a separate, distinct problem-solving architecture.

CGEN[6,7] (JCode GENerator) is the knowledge acquisition tool for the Ml module. Typically, a rule-base
can only be updated by whose intimately familiar with the program, making the acquisition of new knowledge
difficult. CGEN allows a hardware designer, not familiar with Mi's implementation details, to add his expertise to
the rule-base. Inputs to CGEN consist of schematic drawings and simple equations.

A suite of tools are used to transform the output of Ml into a complete computer, performing the physical
design function. There are three steps in physical design. The first step is placement and routing of the design for
a board. A set of commercial physical design tools, TANGO-PCB[1], is used for this task. The second step is to
fabricate the board. Two board fabrication technologies are available: wire-wrapping which is done in-house; and,
printed circuit board (PCB) which is done at a local PCB manufacturer. The final step is to populate the board with
components and test it

The database (DB) is the central repository for the part models used by all modules in the system. The data
base is built on a commercially available product, Informix[30]. To ensure consistent information in the MICON
system, all modules get data from a common central database - local databases do not exist.

The system is tightly integrated, wherein all tools communicate via UNIX interprocessor communication (IPC)
links to the database. The database uses a server to establish communication links with each tool, or client. This
scheme allows the database to run dp a separate process. In addition to providing a great deal of flexibility, such
as allowing a large number of clients to be served simultaneously, it allows the dedication of a single workstation
on the network as the database node. This centralizes the database management functions and eliminates many
inconsistency problems. Figure 2 depicts the database server communicating with a set of clients running on
separate workstations across the network.

4 Experiments and Other Experience

MICON, a working system, was subjected to a set experiments to test its design abilities. The experiments involved
the following steps:

1. Teaching the system, using CGEN, to design with the set of micro-procesors mentioned previously (sec
Section 3).

2. Exercising Ml to generate a set of designs.

3. Pass an Ml generated design through the physical design and manufacturing processes.

The experiments were conducted using a set of designers who were not implementers of MICON5. The designers
captured data and knowledge about a large number of components, Table 1 provides an overview of the data (see
[7] for complete details). The database contained every type of part necessary to build the computers, ranging from
microprocessors to NAND gates, capacitors to RS-232-C ports (DB-25s). Mi's knowledge-base contained over
1050 rules, all of which were created by CGEN. These rules described how to design with each of the parts in the
database.

With its knowledge-base and database, Ml was able to create an interesting variety of designs. Since knowledge
is acquired concerning parts individually, unique combinations of parts can be configured into a design. The ultimate
limitation on the designs comes from:

5Except for Birmingham.



USER

i
M1

Design

i
1 ACC
1 Aov
1 Reliabilil

Synthesis

JURE ;
v module '

I \._.'_J

\

i nyoic

\

:al Design

Manufacture

CGEN
Knowledge Acquisition

Reliability an<alysis tools

DOM/

Data Base

Data Entry

Single board Computer

Figure 1: The MICON system.



faraday
(Vax 785)

/ mast
(micro-vax)

Figure 2: Multiple clients being supported simultaneously by the database server.

Design Specifications

Set
1
2
3
4

Amount SRAM
4 KBytes
4 KBytes
58 KBytes
58 KBytes

Amount ROM
1 KByte
1 KByte
4 KByte
4 KByte

Amount PIO
1
0
1
2

Amount Timer
0
1
1
2

Table 2: Partial specifications of the designs created by Ml.

• the size of the memory space

• the size of the IO space (if applicable)

• physical constraints (power, area, cost)

The specifications used for each design are shown in Table 2. Each of these designs represents a point in the
large space of designs that can actually be generated.

The design Ml produced for the 68008 using specification Set 3 from Table 2 was fabricated and is running.
Analysis of the designs shows:

• The designs work at the expected clock rates.

• The number of parts used is no greater than those generated by a human designer.

The favorable comparison with hand design in terms of part count is to be expected since the designs are built
almost entirely from VLSI components.

Other Ml generated designs were verifed by manually converting the wire-list to a schematic. While creating
the schematic the correctness of the design was checked. Several errors were found, which fell into one of two
categories:

missing part: several support parts (e.g. pull-up resistors and by-pass capacitors) were mistakenly absent from
some templates.
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Figure 3: ASSURED MTTF improvement plot for 6809 design

missing connections: some necessary connections between components were not made.

The errors all stem from mistakes in the schematics input to CGEN, which then propagated to Mi's knowledge-base.
The schematics containing the errors were corrected and new rules were generated. All designs were then bug free.

A 6809 based design produced by Ml was analyzed and modified by ASSURE for improved system reliability.
Figure 3 graphs the steps taken by ASSURE when the reliability goal was maximizing mean-time-to-failure (MTTF).
ASSSURE successively identifies the least reliable sub-system or part and applies a reliability enhancement technique
for it. ASSURE starts by applying simpler fault-intolerent techniques {e.g. changing a package from plastic to
ceramic, upgrading the quality of the package) until these result in marginal improvements (corresponding to the
flattenning-out of the curve after five steps in Figure 3). ASSURE next applies fault tolerent techniques for the
most failing sub-system. Here, Single Error Correcting/Double Error Detecting (SEC/DED) structures were added
to the SRAM and ROM array. ASSURE also attempted triplicating the processor and the io peripherals but found
that the fault-intolerance did not make up for the failure rate of additional support circuitry it had to add and hence
rejected those changes.

Since the experimental period the MICON system has been used very extensively. The user group has grown
to over a dozen, including industry. Two workshops with industrial partners were held. The MICON system



functioned without flaw in this more realistic environment6. MICON is now being evaluated at several industrial
sites.

Recently, the system has been used to generate more sophisticated designs than those described above. In
particular, an 80386 design with cache, co-processors, and AT-bus interface was designed by the system. Work is
beginning on a new multi-processor computer. Also, the capability to form P solid-model of the design to evaluate
its mechanical properites (e.g. enclosure interference), and thermal properties using an air-flow analysis package,
is under development.

MICON is also being used for a micro-processor interfacing course. As part of the laboratory requirement,
students build knowledge-bases of 8086 family components. Designs are then generated and verified. MICON is
a very powerful aid for teaching students good design methodology; a topic which is difficult to cover in the short
period of one semester. Student in this class gain exposure to design issues not generally experienced until they
begin industrial jobs.

5 Summary

MICON is a system which supports all aspects of computer design from logic design through physical design
to manufacture. One of the major strengths of the system is its ability to readily incorporate new technologies,
allowing it to track the state-of-the-art. MICON has proven its design capabilities through extensive use both inside
and outside of the laboratory.

Research is continuing on MICON. Several aggressive designs are being created with the system. In addition,
MICON is being ported to domains outside of computer design.
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