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Abstract

Knowledge-based systems are becoming pervasive in the computer-aided design area. For these systems to
achieve satisfactory levels of performance large amounts of knowledge arc necessary. However, the acquisition of
knowledge is a difficult and tedious task. Automated knowledge-acquisition tools (AKAT) provide capabilities for
quickly building and maintaining knowledge-bases. This paper describes the CGEN AKAT, which allows hardware
designers, unfamiliar with artificial intelligence programming techniques, to deposit their expertise into a synthesis
tool's knowledge-base. A set of experiments which tested CGEN's capabilities are presented. The experiments
show that with CGEN hardware designers can produce high quality know ledge-bases.

1 Introduction

Knowledge-based systems (KBS) have gained wide acceptance in computer-aided design (CAD) systems for tasks
ranging from diagnosis to hardware synthesis. It appears that the popularity of KBS will continue to increase as
new applications are found. The appeal of these systems is the promise of reasonable solutions to problems which
have defied automation in the past usually due to inadequate mathematically-based formulations. Knowledge-based
techniques provide a means for creating entirely new symbolic problem formulations for a particular task-domain.
Problem-solving techniques specific to a task-domain can then be employed.

KBS are composed of two major elements: the problem-solver and the knowledge-base. The problem-solver
contains the heuristic methods used to solve a particular class of problems, for example the design cycle in the
MICON system [1,8]. The knowledge-base contains the specific knowledge necessary for the problem-solver to
find a solution. Much research has been devoted to the development of problem-solving techniques (for examples
see Gajski[7] and Mitchell[15]), with little attention paid to the structure and engineering of the knowledge itself
(an exception is Mitchell[13]).

The ultimate success of KBS, however, depends not only on a good problem-solver, but also on the encoding of
large amounts of domain knowledge[12]. This is because the problem-solving techniques employed in KBS are not
inherently powerful. The problem-solver draws much of its ability from its store of knowledge. If the knowledge-
base contains errors, or is incomplete, the problem-solver will generate incorrect answers. Stated differently, a
KBS will only be as good as its knowledge-base. Therefore, the development of a high quality knowledge-base
sufficiently broad enough to cover all situations the problem-solver will encounter is essential.

CAD applications, in particular hardware synthesis, require substantial knowledge-bases for several reasons.
Hardware design requires substantial expertise, usually accumulated over many years. This expertise tends to be
centered around particular components and systems of components. For example, the synthesis of micro-processor
based computers requires knowledge specific to the components of systems (e.g. the micro-processor and memory
chips). In addition, knowledge of how to connect subsystems to form a system architecture* is required. Thus, as
the number of components and system architectures grows, so does the knowledge-base. Further compounding the
situation is the rapid evolution of electronic technology. A knowledge-base must be continually updated to enable
the KBS to exploit opportunities afforded by new technology. It is important to recognize that these concerns arc
common to other CAD domains where KBS are employed, not just synthesis.

To cope with the sheer volume of knowledge which must be captured and represented within a knowledge-base,
two actions must take place. First, some form of assistance must be provided to help construct a knowledge-base.
Typically, automated knowledge-acquisition tools (AKAT) are used. These tools interface a domain expert to a
KBS's knowledge-base without requiring the expert to write application code. The second action is to design the
knowledge-base to support automated knowledge-acquisition. In particular, the knowledge-base must be clearly
defined with respect to the types of knowledge used by the problem-solver and how the knowledge is used when
developing a solution.

CGEN (Code GENerator)[5], a part of the MICON system[4], is an automated knowledge acquisition tool for
the MICON Version 1 (Ml) synthesis KBS[8,2]. Ml is a rule-based system written in OPS/83[9] which produces
a complete small computer design from a set of abstract specifications. CGEN acquires knowledge about how
to build and when to use various computer structures— the domain knowledge required by Ml— from hardware
designers unfamiliar with KBS programming techniques. As such, CGEN provides a user-friendly interface for

3For example, a high speed system will require a cache not needed for a lower performance system. The addition of a cache will impact
the bus structure of the computer.
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Figure 2: Automated knowledge engineering process.

designers, allowing them to express computer structures with schematic drawings and to describe other types of
design knowledge (e.g. constraints) without having to write complex programs.

Following this introduction, a brief review of the knowledge acquisition process and related AKATs is provided.
A discussion of Mi's problem-solving approach and knowledge-base are given, followed by an explanation of
CGEN's design and implementation. Finally, a set of experiments testing CGEN's capabilities are presented.

2 Review of the Knowledge-Acquisition Process

The traditional knowledge-acquisition process is illustrated in Figure 1. The responsibility of the knowledge engineer
(KE) is to query the expert, culling the knowledge necessary to enhance or debug the program under development,
called the performance program. The gathered knowledge is re-formulated and encoded into a format (rules for
example) which the KBS can utilize, becoming part of its knowledge-base.

The knowledge engineer can be replaced by a program as shown in Figure 2. Since it interacts directly with a
domain expert, the knowledge acquisition tool must hide the implementation details of the KBS, as would a KE.
The languages used to implement a KBS are difficult to work with; a challenge facing AKAT builders is defining
the proper domain expert interface. This problem is analogical to developing high level language compilers to hide
the details of assembly language! 14].

Knowledge acquisition tools are synergistic with their associated performance programs. In general, AKATs
exploit knowledge about the performance program and, possibly, the domain to assist the acquisition of knowledge.
Minimally, these tools must generate code which can be executed properly by the KBS, therefore, knowledge of
the representations used in the performance program is necessary. At a deeper level, an AKAT utilizes knowledge
about the problem-solving behavior of the performance program to check the correctness and completeness of inputs
captured from the domain expert.

CGEN's capabilities are derived from its understanding of Mi's problem-solving method. Other successful
knowledge acquisition tools have similarly exploited such knowledge. The KNACK system[10] is used to create
performance programs to evaluate electro-mechanical designs. KNACK explicitly builds a model of its domain.
This model is used to gather additional knowledge from a domain expert. Another example system is SALT[11],
an AKAT used to build configuration (synthesis) systems. SALT was used initially for designing elevators and
is now being applied to other domains. As with CGEN, SALT embodies a model of its performance program's
problem-solving technique. During the knowledge acquisition process, SALT constructs a representation of the
knowledge it has acquired. This representation, and the model of the problem-solving technique, are used to drive
further interactions with the domain expert
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3 The Ml System

This section overviews Mi's knowledge-base and problem-solving approach. Understanding Ml is vital to under-
standing CGEN. A complete description of the problem-solving approach is provided by Gupta[8],

3.1 Mi's Problem-solving Approach

Systems designed by Ml are high performance, small computers roughly equivalent in complexity to an engineering
workstation. The input to Ml is a set of high level specifications. The specifications describe global constraints on
the design (area, power, and cost) and functionity of subsystems.

The primitive functions of the Ml architecture consist of search along two axes: a search for function and a
search for structure. During the search for function, a part implementing the function of a more abstract part must
be found. Once the part is found, the search for a structure into which it can be interconnected must be performed.

The search for function occurs along the functional hierarchy. The hierarchy shows how to transform functionally
abstract parts into successively more detailed parts until a physically realizable part is found. A simplified hierarchy
is shown in Figure 3.

The search for function occurs for a given part, the parent, and the parent's children. Consider, for example,
the hierarchy in Figure 3 where a search for function might begin with the 68XX_PROC_0, an abstract part. A
decision is made between which child to choose, either the 6809 or the 6800, both being physical parts.

Each part in the functional hierarchy has an associated part model. The part model contains, among other things,
definitions for characteristics and specifications. Characteristics are attribute-value pairs which describe properties
of a part. Example classes of properties include: physical, electrical, mechanical and thermal. Specifications are
also attribute-value pairs which provide values for properties of less abstract parts into which a given part will be
mapped; i.e. values for parts lying below a given part in the functional hierarchy. Specifications, therefore, are
excluded from models of physical parts. Both the functional hierarchy and the part models reside in an external
relational database that is accessed by Ml and CGEN via a standard query language.

Once Ml has successfully completed the search for function for a given set of parts, the next phase in the
design process is to search for a structure, or mapping, which allows the newly instantiated part to be configured
into the evolving design. Templates provide the mapping. An example template is given in Figure 4, showing the
mapping from the 68XX_SIO_0 into a 6850. The objective of the mapping is to replace the 68XXSIOJ), shown
in Figure 5, with a 6850 and its associated supporting parts. Figure 4 shows how the replacement is accomplished.
The box surrounding the 6850 is the 68XXJSIO0. The signals connecting to this boundary are more detailed
implementations of the 68XX_SIO_0 signals. The other components in the template, the CLOCK GENERATOR0,
RS232PORTJ), and INTR_BUSJtESOLVER_0 support the operation of the 6850.

Often multiple techniques exist for a part to implement its parent's function. In such situations a template is
associated with each implementation technique. For example, the template in Figure 4 uses an RS-232 external port.
An almost identical template could be used for an RS-422 external port by replacing the original RS_232_PORT_0
part with an RS_422_PORT_0 part



DATA BUS

CS BUS

ADDRESS BUS

VCCz

X HO T* X

1 m Ry X

X HP ~RTS X

X r>3 ~P,TS X

X D4

X ns -mo 11

X D6 6850

X H7 P X

X \/CC RAM- X

X nsn chin X

I T-
T TxCLK

X psn R*PJK X

T T

RS232__PORT_0

| Tx -Rl |

| Rx -DCD

| -RTS -DTR |

| ~CTS DSR|

INTR_BUS_RESOLVER _0

J^ CLCX^K.GENERATOR^O

~T

INTR BUS

E

R/W-

68XX SIO 0

Figure 4: Template for mapping a 68XX_SIO_0 into a 6850.
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Pre-conditions associated with a template determine when it should be applied. The pre-conditions are unique
across all templates so that no ambiguity exists regarding when a template should be selected. The pre-conditions
associated with each template are based upon the design state. The design state consists of all reports (a set of
variables containing constraint information), the parts which are involved in the search for function, and their
corresponding specifications and characteristics.

The final component of the Ml architecture is the design cycle. The following steps(6,2] compose the basic
design cycle:

Specification (d^): values for the specifications of a part are generated.

Selection (d^u*)' the parts lying below the part to be mapped on the functional hierarchy become candidates. The
characteristic portion of the part model for each candidate is compared to the specifications generated in step
"spec* The part which matches most closely is chosen.

Part Expansion (d€mcy. cascadablejKrts (e.g. memory) are built out to the proper width.

Structure Design (d^^^^ujz a template is chosen and asserted.

Calculation (dc^u): various calculations associated with the template are performed, including: updating the values
of constraints and generating design information.

Steps dsptc and d^Uct implement the search for function; the search for structure is realized by design cycle steps:
dcascy dumpuu<, and d^^.

A design cycle begins only when a part's specifications are complete. Spawning of new design cycles occun
through a linking of dcau of one cycle to d*^ of another cycle. During 4c«fc new information is generated in
the form of reports which are then used to complete specifications for some set of abstract parts introduced by
templates into the design state. These parts then begin their own design cycles, causing other parts* specifications
to be completed. This action continues until only physical parts exist in the design state.



RULE instantiate__SIO_template
{
(GOAL name = assert^template)/
(SPECIFICATION SIO_LINES = 1);
(SPECIFICATION PROCESSOR -
(6800 OR 6809));
&A (CHAR MAX_BAUD_RATE) ;
(SPECIFICATION TX_BAUD < &A);
(SPECIFICATION RX_BAUD < &A);
(SPECIFICATION DRIVERJTYPE - RS-232);
(SPECIFICATION TXJTYPE - ASYNC);
(SPECIFICATION RXJTYPE = ASYNC);
(REPORT IO_ACCESS_TIME > 300);
(REPORT REMAINING_J>OWER > 200);
(REPORT REMAINING_BOARD_AREA > 500);
(REPORT REMAINING__BOARD_COST > 120);
— >
make (label name = g8483943);
; The wire list is abbreviated for the sake of conciseness. Normally
; all parts and connections in the schematic are listed here.
; get_jpart retrieves a part model from the DB.
get_part (RS232_DRIVER) ;
get_part (BAUD_RATE_GENERATOR) ;

; connect_net creates a connection between the parts and pins in the
; parameter list.
connect__net (6850, DO, SIO_0, DATA_BUS) ;
connect__net (6850, TxCLK, BAUD_RATE_GENERATOR, OUT) ;

Figure 7: Final rule for template shown in Figure 4.

description: RS-232 PORT_TYPE specification method
calculation_type: specification
calculation: PORTJTYPE = MALE;

description: CLOCKJ3ENERATOR FREQUENCY specification method
calculation_type: specification
calculation: CLOCK FREQUENCY = TX BAUD * 16;

Figure 8: Example specification methods.



4.2 Generalization

The initial formulation of a template's pre-conditions coincides exactly with the design slate, yielding the tightest
set of invocation conditions. This is necessary to comply with Mi's requirement that each kumpiau rule have a
unique set of pre-conditions. Often the pre-conditions are overly constraining, preventing the template from being
applied in other design states where it is perfectly valid. There are three causes for this:

Equality Tests: equality is used as the test on a design state variable.

Constant Tests: constants derived from the design state are used for comparison.

Irrelevant Pre-conditions Used: superfluous pre-conditions are used.

The generalization process is used to relax overly constraining pre-conditions by applying an appropriate fix.
Fixes consist of:

One- or two-sided constraints: equality test is removed and a single or double-sided interval is used to test a
variable.

Variable substitution: variables are used whenever possible.

Delete pre-condition: superfluous pre-conditions are removed.

Care must be exercised in the application of fixes to prevent over-generalization, resulting in the intersection of
several templates' pre-conditions.

The knowledge needed for generalization, kg€H£rauu, explains how design variables interact and specifics the
proper range of such variables. The kgeMrauu partition is composed of two separate sets of knowledge:

^generalize = * generalize-method + & generalize-rule ( 4 )

where each set is defined as:

-method* a description given by the domain expert indicating, for each training case, the variables to relax
and their new boundary conditions.

uu* a set of generalization rules, residing in CGEN's knowledge-base, which capture constraint intervals
applicable to all training cases.

The kg€MraUi€ knowledge resides with CGEN; it is not part of Mi's knowledge-base.
Domain expert supplied methods are used to describe kgmuraiug-method knowledge. The methods for relaxing

some of the pre-conditions in Figure 6 are given in Figure 9. The TXJBAUD and RX_BAUD pre-conditions in
Figure 9 are set less than or equal to a variable representing the maximum baud rate (MAX_BAUDJRATE) of the
68505 . The pre-condition CLOCK_SPEED is removed, because it is subsumed by IO_ACCESS_TIME.

Figure 10 contains an example set of kg€9ura\xte^nde rules. These rules represent knowledge about general system
level constraints. For example, the rule relax_REMAININGJ2OARDj\REA sums the area consumed by each part
in the template6, which is used as the lower bound for the constraint REMAINING J3OARDj\REA.

The kgen4raiiu-mu knowledge partition is generated by the CGEN knowledge engineer. Any set of commonly
occurring methods are encoded into CGEN rules.

5 The CGEN Architecture
There are two components to CGEN's architecture, the acquisition cycle and rule generation. Two types of
acquisition cycles exist, based on the type of knowledge being captured: acquisition of ATf and acquisition of kseuct.
Rule generation involves the creation of code from CGEN's internal representation.

5MAX_BAUD_RATE is a characteristic of the 6850.

6The characteristic area consumed is in every part model
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description: TX Baud rate max value
calculation__type: generalization
calculation:
TX_BAUD <= MAX_BAUD_RATE;

description: RX Baud rate max. value
calculation: RX__BAUD <= MAX_BAUTD_RATE;

method: Delete CLOCK_SPEED
calculation_type: generalization
calculation: CLOCK SPEED - DELETE;

Figure 9: Methods for relaxing or deleting pre-conditions.

rule 68XX__bus_compatibility

(SPECIFICATION PROCESSOR - 6809)

(PROCESSOR = 6809 OR 6800;);

rule relax_REMAINING_BOARD__AREA

(REPORT REMAINING_BOARD_AREA);

(REMAINING_BOARD_AREA > total area consumed by template parts)

_ _ _ _ _ _ Figure 10: Example k^waitie-nde for relaxing pre-conditions.

11



rule RULE_NAME
<context-specific LHS>
<instance-specific LHS>

— >
<context-specific RHS>
<instance-specific RHS>

Figure 11: General Ml rule form.

The function of the acquisition cycle is to guide the overall problem solving activity of CGEN during a training
session. The acquisition cycle determines the types of analysis performed on the incoming knowledge. Two types
of analysis are performed:

Error/completeness checking: (applied during both cycles) the correctness and completeness of knowledge acquired
during a session is checked.

Generalization: (applied only during Kj) the previously described generalization scheme is applied.

Implicit in the definition of ATf. is the relationship of the design cycle (Mi's problem-solving paradigm) to
the knowledge-base. Since the acquisition cycle is based on K$t it drives CGEN to cull from the domain expert
the knowledge necessary to maintain consistency in Mi's knowledge-base. This ensures consistent design cycle
action. Without exploiting knowledge of Mi's behavior, CGEN would be incapable of verifying the completeness
of incoming knowledge.

The acquisition cycle's definition is also influenced by the nature of the domain knowledge; i.e. the need for
generalizing the pre-conditions for kUmplau rules. The behavior of Ml would not be impaired if the generalization
process were not applied; however, the domain expert would need to supply a larger number of training cases.

During the rule generation process, CGEN's intermediate representation of the acquired knowledge is translated
into a set of rules executable by Ml. Ml was designed so that all rules in a partition have the same canonical
format. The canonical form breaks the LHS and RHS of a rule into two parts: context-specific and instance-specific,
as shown in Figure 11. The LHS context-specific portion describes, among other things, the design cycle step a rule
belongs to. The RHS context-specific portion performs various data maintenance tasks. All rules in a partition share
the same context-specific LHS and RHS, ensuring all rules in a partition are invoked uniformly and have similar
actions7. The instance-specific portion is generated for each rule based on information gleaned from the training
case. For example, for kUmp\au rule instances, the design state pre-conditions form the LHS instance-specific portion
of the rule, and the RHS instance-specific portion is created from the wire list.

An important property of the representation of templates and canonical form for rules is that new knowledge
can be added without destructively interfering with existing knowledge. In domains where the knowledge-base will
grow larger over an extended period this property is essential, especially if many different experts will be adding
to the system.

The simplified acquisition cycle for K% is given below:

1. Read inputs (wire list, methods, design state)

2. Identify pre-conditions for kUmplau

3. Apply kgeneraUze:

(a) Identify overly-constraining pre-conditions

(b) Relax or delete those pre-conditions identified

4. Instantiate ktempiau'-

7 This eliminates many of the annoying side-effects inherent in rule-based programming.
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(a) Generate LHS from pre-conditions from methods

(b) Generate RHS from wire list from methods

5. Generate kcaic rules

6. Generate ksp€C rules

6 Experimentation

CGEN was subjected to a set of experiments to accomplish the following:

1. Test CGEN's ability to capture design knowledge

2. Test CGEN's ability to generate working code for Ml

A group of four designers, i.e. domain experts, used CGEN exclusively to teach Ml how to design. None of the
domain experts, except one of the authors8, was familiar with AI programming techniques, the OPS/83 language, or
the implementation details of CGEN and Ml. The designers received training in Ml and CGEN design philosophy
and tool usage equivalent to a two-day course. During the knowledge acquisition process, the domain experts did
not write any OPS/83 code or modify the rules created by CGEN9.

At the beginning of the experimental process, the Ml knowledge-base contained only:

Kl = kcasc + karch (5)

Therefore, Ml started with no design knowledge.

Ml was taught to design with the following micro-processor families:

• Motorola 6809

• Motorola 68008

• Motorola 68010 ^

• Intel 80386

A design for each processor was obtained from either published reports or industrial affiliates. All training cases
for the physical components were derived from this set of designs.

After the designers were familiar with their micro-processor families, the knowledge acquisition process began.
The following steps formed the process:

1. Part models were developed for all abstract and physical parts.

2. Data for all part models were entered into the central database.

3. Training cases were then developed for each part. Each training case consisted of the following steps:

(a) Templates were drawn using a schematic drawing package.

(b) The set of methods was prepared.

(c) Knowledge acquisition sessions were conducted using CGEN.

6.1 Part Data

The size of the database in terms of part models is given in Table 2. Table 3 provides the average number of
characteristics, specifications, and pins per part model.

8 Birmingham entered the 6809 family knowledge.

9 Four rules were hand-edited by Birmingham to add a special RHS action, which is no longer needed.
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Part Model Totals

Abstract Parts
Physical Parts
Total Parts

167
215
382

Table 2: Summary of part data.

Part Model Data

Specification/model
Characteristics/model
Pins/model

Average
4
4
15

Std. Dev.
3
5
18

Table 3: Summary of part model data.

6.2 Rule Data

The number of training cases and rules for each design are given in Table 4, with the breakdown of rules by
partition shown in Table 5. The knowledge-base is nearly three times as large as the original MICON system[3],
and significantly larger than most reported data for design systems. Considering that it took roughly four man-
months to build the knowledge-base, CGEN assisted experts can produce about 11 fully debugged rules per day.
This represents an order of magnitude increase in productivity over hand-coding.

Partitions kcasc and karCh were fixed when the knowledge acquisition process began. The kcasc partition allowed
construction of memory arrays and replication of IO devices; no other structures were necessary. 10 replication
occurs when the Ml user requests multiple copies of a single function; for example, two SIO devices. In this case,
Ml creates as many instances of the function as needed. There was no growth in either kCQsc or karch during the
entire experimentation period, as expected. Table 6 shows the average growth rates for all partitions in units of
rules per training case.

Training Cases and Rules Per Design

Design
M6809
M68008
M68010
I80386
TOTAL

Cases
86
38
19
79
221

Rules
343
173
147
256
919

Table 4: Number of training cases and rules per design.
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Rules per Partition

Partition

Kpec

Kelect

Kemplat*

Kale
TOTAL

Rules
552

8
226
133
919

% of Total
60
.1
25
15
100

Table 5: Number of rules per partition.

Average Growth Rate

Partition

KeUct

Jocose

kumglate

Kale

Kirch

Growth Rate
2.5
.04
0

1.0
0.6
0

Std. Dev.
4.8
.03
0

0.2
1.8
0

Table 6: Average growth rate per partition in rules/training case.
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LHS Data (avg)

Design State Size (pre-conditions)
Pre-conditions/rule

Pre-conditions removed/rule
Pre-conditions relaxed/rule

% Pre-conditions relaxed/rule
Number of cases

35
13
22
10

77%
221

Table 7: LHS data averages.

[_ RHS Data (avg)

Number Wires/Rule
Number Parts/Rule
Number of cases

11
1.1
221

Table 8: RHS data averages.

The complexity of the LHS of template rules is illustrated in Table 7. The first entry in the table is the average
size of the design state or number of template pre-conditions generated by Ml at the beginning of a training
session, followed by the average number of pre-conditions surviving to become part of a kUmpiau rule . The number
of pre-conditions removed by the domain expert is given next. This is followed by both the number, and then
percentage of pre-conditions generalized (of those not deleted). Note the high percentage, 77%, of pre-conditions
relaxed, verifying that a generalization technique is necessary.

The RHS data for kUmplau rules are summarized in Table 8. The table shows the number of wires and parts
asserted per rule. The large number of wires relative to number of parts is explained by two factors. First, many
templates (especially for the 80386) require a large number of wires to connect the parts in the template10. Second,
the templates tend to have local information[8] which does not require a large number of support parts. Locality of
knowledge indicates the incremental nature of template knowledge. Templates divide the structural design problem
into relatively small sub-problem^.

An assumption underlying the Ml architecture is the orthogonality of template pre-conditions. To confirm this
assumption, Ml was instrumented to write to a file every time more than one template was eligible for selection.
Every Ml run contributed to the file. Examination of the file verified that in all cases, no more than one template
rule was eligible for execution.

6.3 Design Generation and Construction

Once training was completed, experiments were run using Ml to generate an example set of designs for all the
micro-processors families, thereby verifying correctness of the knowledge acquired by CGEN. The specifications
used for each design are shown in Table 9. Ml successfully produced these designs11.

l0Consider that an 80386 has 32 address and 32 data lines.

11 These designs represent a few points in the large space of designs Ml is capable of producing.
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I
Design

1
2
3
4

Amount SRAM
4 KBytes
4 KBytes
58 KBytes
58 KBytes

Design Specifications

Amount ROM
1 KByte
1 KByte
4 KByte
4 KByte

Amount P1O
1
0
1
2

1
Amount Timer

0
1
1
2

Table 9: Input specification summary for Ml design tests.

The design Ml produced for the 68008 using specification set 3 from Table 9 was built and is working. Analysis
of the design shows the following:

• The design works at expected clock rates.

• The number of parts used is the same as a hand-generated design.

The favorable comparison with hand design in terms of part count is to be expected since the design was built
almost entirely from very large scale integrated (VLSI) circuit components.

6.4 Other Experience

CGEN, as part of the MICON system, has been used extensively outside its original development and testing group.
As described in a companion paper [4], CGEN has been used in a number of industrial-university workshops. The
workshop attendees included hardware designers, who independently verified the experimental results by using
CGEN to capture a small amount of design knowledge (roughly 10 rules). Additionally, CGEN is being evaluated
at several industrial sites.

CGEN is also being used in an education setting, as part of a micro-processor interfacing class taught at the
University of Michigan. Students use CGEN to build an Intel 8086 family knowledge-base, which they subsequently
exercise with Ml to generate designs. «

The total number of rules CGEN has acquired in experimental, educational, and industrial settings combined is
over 1100.

7 Summary
CGEN has demonstrated an effective mechanism for capturing knowledge from domain experts. The ability of
domain experts unfamiliar with either OPS/83 or the implementation of the Ml to develop working knowledge-bases
shows the tool has a good representation of the domain. CGEN has also been shown to be effective for capturing
the knowledge necessary to produce designs, thus proving its ability to encode such knowledge appropriately for
Ml.

There are several limitations on CGEN. CGEN is tightly coupled to the Ml architecture. Only declarative
knowledge is captured; procedural knowledge must be hand-coded. CGEN's ability to reject incorrect knowledge is
limited since it does not have a complete model of the domain knowledge. Therefore, CGEN lacks an independent
reference for verifying that the acquired knowledge is correct.

CGEN is presently in use acquiring knowledge of new micro-processor families and of reliability enhancement
structures. The CGEN-M1 system is being deployed to several IC and computer manufacturers for use in actual
engineering design environments.
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