
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Communication in Automated Engineering Design

by

David V. Morse, Chris T. Hendrickson

EDRC 12-32-89
Carnegie Mellon University

Communication in

Automated Engineering Design

David V. Morse

IBM Special Studies Program
Department of Civil Engineering
Carnegie Institute of Technology

Carnegie-Mellon University
Pittsburgh, Pennsylvania

Chris T. Hendrickson

Department of Civil Engineering
Carnegie Institute of Technology

Carnegie-Mellon University
Pittsburgh, Pennsylvania

June 9,1989

University Libraries
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

Table of Contents
1. Introduction t
2. Communication In the Design Process 2

2.1. Uses of Communication 3
2.2. Modes of Communication 3
2.3. Semantics of Communication 4

3. Problem-Solving Model 6
3.1. Process Model 6
3.2. Semantic Model 9

4. Prototype System Description 1 o
4.1. Global Solution Database 11
4.2. Deslg n Operators 15
4.3. Semantic Interpreter 19
4.4. Conflict Resolver 19
4.5. Monitor 21
4.6. Controller/Scheduler 22

5. Example Problem 22
5.1. Problem Description 22
5.2. Interdependencles 23
5.3. Implementation Environment 23

6. Typical System Interactions 25
6.1. Example: Adding an Equipment Load to an Existing Beam 25
6.2. Example: Locating an Equipment Load Where No Beam Exists 26
6.3. Example: Altering the Location of a Beam 27

7. Summary 27

List of Figures
Figure 4-1: FLEX Prototype Architecture
Figure 4-2: Example of FLEX Global Solution Data Structure
Figure 4-3: Example of Data Item Attributes In FLEX
Figure 4-4: Example of Attribute Facets In FLEX
Figure 5-1: Example of Consistent Floor Layout Solution

12
14
16
17
24

1. Introduction

Engineering design tasks represent a class of complex generative problems whose solutions depend
upon the cooperative participation of multiple specialists. In a building design project, for example, many
design professionals must contribute knowledge and expertise in order to ensure a successful end result.
Typically, each specialist approaches a problem with reasonably complete understanding of his local
design objectives and the methodology for attaining them, but the specialist has only superficial
knowledge about the other domains with which he must communicate and interact. An individual expert
may also possess an understanding of global design objectives; the methodology for attainment,
however, cannot be defined a priori, since the "best" global solution usually represents a compromise
among specialists whose preferred local solutions are not fully compatible. The form and substance of the
compromise solution emerges from the interactive process itself.

The communications entailed in cooperative engineering design vary over a broad spectrum, ranging
from straightforward dissemination of information to highly complex exchanges which characterize
negotiation and compromise among contending design participants. Throughout this range of
communication types, the goals remain constant: to ensure feasibility and efficiency in the global problem
solution. Yet, the mechanism for achieving these goals varies as one traverses the spectrum. Simple
information dissemination could be envisioned as a one-way communication; more commonly, two-way
communication is appropriate to allow information recipients a channel for response. The response itself
may vary from acquiescence to criticism to out-and-out rejection of the information received. In all but the
first case, further action is required to ensure the desired solution consistency and efficiency.

The procedures required for consistency maintenance and conflict resolution at any particular level of
complexity are largely dependent upon the degree of integrated design knowledge which is implicit in the
problem-solving environment. If, for example, a cooperative design is to be performed by the combined
efforts of disparate specialists having little knowledge of global goals and interdependences, then it can
be expected that a referee will be required to resolve disputes even at the most elementary level.
Conversely, a sophisticated group, possessing the capability to handle most consistency issues implicitly,
would have less need for external arbitration. By extension, one could postulate a level of knowledge and
sophistication where the need for external conflict resolution would be eliminated entirely, but such an
ideal is seldom achievable in complex design environments. Thus, while the types of communications
required in cooperative engineering design actually form a range in terms of complexity, they can be
categorized into two subproblems, demarcated according to the intrinsic intelligence of a particular
problem-solving system. We can speak of that subrange of consistency maintenance issues whose
resolution is within the intrinsic capabilities of the system as internally-enforceable consistency issues and
the subrange requiring external conflict resolution as externally-enforceable consistency issues.

In the interest of automating the engineering design process, considerable research effort has centered
around the blackboard model for problem-solving, in which each contributing domain of expertise can be
represented as a separate, semi-autonomous program which can contribute interactively to an evolving
design solution represented in a shared global database (or blackboard). This model provides a
reasonable abstraction of the traditional interdisciplinary engineering design process. One of the primary
issues with the model, however, has been the maintenance of consistency in the emerging global
solution, given that the contributions of each specialist can, and generally will, influence the contributions
of others.

One consistency maintenance strategy that has been applied with some degree of success is the
constraint-posting approach. In simple terms, this scheme gives temporal priority to the contributions of
the various specialists: the information added to the global solution by one specialist becomes an input
constraint on a specialist who contributes later. Clearly, this strategy runs the risk of eliminating some
desirable solution alternatives from the feasible solution space: an inappropriate decision early in the
design sequence can steer the ensuing design activity to a conclusion which, while consistent, might be
unacceptable in practical terms. Modifications of the strict constraint-posting approach which provide for
feedback loops or backtracking have addressed this concern to a certain extent.

This document describes another approach which views the issue in terms of the two subproblems
described above, internally-enforceable and externally-enforceable consistency maintenance. Internally-
enforceable consistency applies where the knowledge of design intent and interdependences
represented in the problem-solving system is sufficient to permit automatic propagation of the
consequences of an addition or modification to the emerging problem solution. Externally-enforceable
consistency applies to situations where an addition or modification to an emerging problem solution
creates a conflict whose resolution requires knowledge beyond the level represented internally; this would
be analogous to the case in the conventional design office where a design dispute would require
arbitration by a higher authority, due to the global nature or complexity of the decision factors. In this latter
case, knowledge represented in the solution data structure would still be required to provide the arbiter
with information necessary for rational decision-making.

The following section considers the communication issues which characterize cooperative interactive
engineering design, in terms of the motivations as well as the mechanisms for information-sharing. Then,
a conceptual overview is presented of a model which addresses the communication and representation
requirements of complex design in the automated environment. The model consists of two components.
The process component, or problem-solving framework, is a variation on the blackboard model which
incorporates object-oriented programming. This component forms an architecture which facilitates
communication and organizational requirements for cooperative, interactive, value-based engineering
design. The semantic component provides a model for the abstraction of solution knowledge essential for
consistency maintenance and value-based reasoning. Subsequent sections of this document describe a
prototype which will illustrate the application of the model to the domain of floor layout and equipment
placement.

2. Communication in the Design Process

When one considers the ingredients for a successful engineering design project, often the first need
which comes to mind is the requirement for design expertise. This is a proper observation, since the
design depends for its form and integrity upon the wealth of knowledge, experience and creativity of the
contributing design experts. However, in complex designs characterized by the need for multiple domains
of specialty, a second ingredient ranks equal in importance with the design expertise itself: the need for
effective communication. Communication binds the contributions of individual experts into a cohesive
whole. Many a project shortcoming, be it a matter of component inconsistency or failure in achieving
global objectives, can not be attributed to a lack of design competence among individual contributors;
rather, it is often traceable to the inadequacy of information exchange between them.

2.1. Uses of Communication

What functions are served by communication in cooperative engineering design? Most commonly, it is
a means of disseminating information generated by an individual design discipline to others in the process
who need it, either as input for their own design activities or in order to ensure consistency at design
interfaces. Such exchange can promote design consistency by articulating constraints between related
disciplines and by facilitating reactive adjustments in the evolving solution.

Communication is also essential in exploring hypothetical design alternatives, what is referred to in the
vernacular as "what-if analysis." It is characteristic of design problems that numerous solution paths
generally will lead to feasible results; yet, the various feasible solution alternatives can vary widely in
terms of how well they meet overall design objectives. Given the strong motivation for design efficiency,
the ability to consider alternate solution paths is useful. Communication plays a vital role in assessing the
ramifications of hypothetical solution variations from the viewpoints of the various interdependent domain
specialists.

Finally, communication is essential where the competing interests of individual design specialists
threaten the consistency of the overall design solution. Conflict, in this sense, is a positive force, since it
represents the attempts of individual designers to optimize with respect to local priorities; nonetheless,
compromises among local priorities often are essential to maintain overall solution integrity. This requires
conflict resolution, a special type of "what-if" analysis in which the contending parties submit to arbitration
by a higher decision-making authority. The communication requirements of conflict resolution are highly
complex, involving exchanges between arbiter and disputants to establish not only a feasible range of
compromise solutions but also to determine the "best" alternative within that range. Frequently, the
ramifications of the "what-iT analysis will extend significantly beyond the immediate parties to the conflict.

2.2. Modes of Communication

Communications enable the exchange of information between the multiple participants in the
cooperative design process. Typical communication modes in the interactive design environment fall into
five categories:

Communication between a designer and the design record. A design record refers to any media
used to convey information about the emerging design solution. In the conventional engineering design
environment, the design record consists of drawings, specifications, calculation sheets, models, etc. In
the world of automated design, the record consists of one or more solution databases. The designer
communicates with the record to represent his contributions to the solution and also to obtain required
input information for his specific design activities.

Communication between peer designers. Though much of the information exchange between
individual design specialties takes place indirectly via the design record, there also is a frequent need for
direct communication between peer designers. One purpose of such an exchange might be to obtain
clarification or to raise an objection to another expert's solution input, in the interest of overall design
consistency. Another purpose would be to obtain information or input from another design specialist with
regard to intent, in advance of its detailed design activity and formal entry of solution data into the design
record. In the conventional engineering environment, this might take the form of visiting another design

department to take a look at their work while it is still Mon the boards."

Communication between the project manager and the design record. In a typical complex design,
the project manager will monitor the emerging solution in order to ensure consistency with global project
objectives. This is considered a "read-only" access to the design record, since it typically is inadvisable for
the manager to make design modifications without first consulting the appropriate specialists. The project
manager can view and query the design record, possibly leading to communications of the fourth type:

Communication between designers and project manager. The relation between designer and
project manager is usually one of interdependence: while the designer possesses requisite specific
technical knowledge to ensure a feasible solution, the project manager maintains the global perspective
and decision-making authority to direct the integrated solution in accordance with overall project priorities
and objectives. As such, the communication between the two usually takes a form where the manager
queries the specialist in order to obtain sufficient understanding of technical issues germane to a
particular global decision-making situation. Such an exchange might be initiated by either party. The
manager may raise questions as a result of reviewing the design record; individual designers may involve
the project manager as arbiter to resolve conflicts among contending local design issues. In either case,
the designers generally function as advisors and the project manager is responsible for the ultimate
decision.

Communication within the design record. Various mechanisms have been employed to impose
control and consistency on the design record itself. The use of design standards is one common
example. Another method of promoting consistency in conventional building design is the traditional "pin-
overlay" technique, where drawing transparencies from interfacing disciplines are physically
superimposed to check for spatial conformity. The automated design environment, with its potential for
incorporating knowledge on interdependencies directly into the solution database structure, offers a
significant opportunity for sophisticated consistency maintence within the design record.

2.3. Semantics of Communication

Clearly, the required content of a given communication varies with the mode. Simple broadcast of a
design result may require little more than physical attribute data, while an effective interchange for the
purpose of conflict resolution would encompass information on design intent, rationale, propensity to
modification, and many other factors. While each specific design domain would have distinct
requirements at the detail level, a requirement for the following classes of information is common to all:

Physical attributes convey information used for direct processing or computation, such as
dimensions, section properties, material characteristics, etc.

Constraint Information expresses the nature of relationships that must be observed and maintained
to ensure a feasible design solution. Constraints may be of several forms:

• Objectives, which express the desirability or acceptability of a particular solution value
relative to design goals and priorities,

• interdependencies, which express the legal relationships between various design entities,
and

• Limits, which express the feasible bounds on a solution value (e.g., code restrictions or
physical limitations on the design).

Design firmness expresses the level of design detail associated with a solution entity; this is helpful in
conflict resolution decision-making, as it bears upon the reliability and flexibility of solution data.
Information coming out of a preliminary design would normally be viewed differently from information
representing detailed consideration and computational effort; detailed design information would be
handled differently from information on a built design.

Design sensitivity information is essential to rational decision-making, given the reality that a globally-
consistent design invariably requires compromise among the individual design participants. Sensitivity
refers to the feasibility and cost associated with modification of a design solution. It has an explicit
component: evaluation metrics can be applied to a particular solution entity and its variations, to assess
its direct sensitivity to change. It also has an implicit component which arises from the interdependences
within the design: modification of a component may have cost-relative ramifications beyond the directly-
assessable effect.

The problem-solving model which is introduced in the following section addresses these
communication characteristics and requirements within the context of an automated system for
cooperative engineering design. It employs a semantic data representation scheme comprised of five
elements:

• Data Attributes. This category contains information germane to direct computational and
inferential processing of the data object itself: such information as the value of the data item,
units, and its justification (i.e., which design operator placed the data item, whether the
current value is a result of arbitration, etc.). Methods for obtaining "derived" data attributes
from basic data values can also be represented.

• Data Interdependences. This category contains information on the genealogical
relationship of the data item with its ancestors and descendants in a hierarchical data
structure as well as other domain-specific interdependencies which might exist (e.g., beam
connectivity information in a structural floor system).

• Compatibility Conditions. Contains information on value ranges and functional
relationships which must be maintained in order to preserve consistency in the global
solution. This category would also include any mechanisms employed to flag data
inconsistencies requiring external conflict resolution.

• Level of Design Completeness. A classification to delineate the state of design refinement
for that portion of the design to which the subject data item belongs. For example, a beam
data item might be classified as a preliminary design, a final design or an existing (built)
member. The distinction would have a bearing on the sensitivity of the data item to change;
this in turn would influence the decision strategy if the data item were a party to arbitration.

• Evaluation Metrics. Contains information on the "value profile1* for a data item: its cost or
benefit in terms of the evaluation criteria defining the global design goals. Typically, the
value(s) associated with a current data item value would be represented, along with the
function(s) for computing the value(s) from relevant attributes and global costing information.
In the case of a steel beam, for example, the cost function would compute the value based
on the current attribute values for end-coordinates, structural section and global unit cost
data for structural steel. A data object representing a class of objects would maintain the
aggregate value of objects below it in the hierarchy. This information is used to facilitate
value-based conflict resolution by permitting rational comparison of multiple design
alternatives.

3. Problem-Solving Model

The model that is proposed for interactive, value-based problem solving in multidisciplinary engineering
design is the GUIDE (Globally-Unified Interactive Design and Evaluation) model. It is based on the
concept that interactive design will entail the cooperative involvement of multiple specialist agents, each
which represents a separate center of expertise necessary to the success of the overall solution. The
contributions of the individual agents can be expected to be interconstraining to various degrees; that is,
the design decisions made by a certain agent will, in general, impose limits which will impact the
decisions of other agents. Further, the GUIDE model is developed with the idea that it is not sufficient to
develop a consistent solution- one in which constraints are satisfied, in order to be useful in practical
engineering design situations, the solution must be developed with consideration for efficiency and
effectiveness as well, according to a value system which reflects the global objectives of the design
project.

The GUIDE model considers two important aspects of the cooperative design environment. The first of
these is the process component: the problem-solving framework which addresses the mechanics,
communication and control issues involved in interactive multidisciplinary design. The second aspect of
the model is the semantic component. This addresses representation issues involved in providing a data
structure that will support the maintenance of solution consistency and also facilitate the value-based
reasoning necessary to arrive at an efficient solution.

This section discusses the primary considerations associated with each of these components in the
generalized GUIDE model. A detailed description of a prototype application using the GUIDE model is
presented in the subsequent sections, to illustrate implementation details in applying the concepts to an
actual engineering design domain.

3.1. Process Model

The GUIDE process model, or problem-solving framework, is an object-oriented blackboard structure.
This structure consists of several components:

• DESIGN OPERATORS. As in most systems adopting a blackboard problem-solving
architecture, design operators in the GUIDE model can be loosely-coupled autonomous
agents, each of which embodies a certain specialized domain expertise relevant to the
overall design task. These operators may be individual knowledge-based programs,
algorithms or even individual rules. They may represent agents that have been developed
specifically for the global design task at hand or may be disparate elements, such as pre-
existing systems or the results of other development efforts, whose capabilities can be
brought to bear usefully on the task at hand. In these latter cases, it is likely that a utility
would be required to provide semantic translation between the data representation of the
integrated system and that recognized by each disparate element.

A second type of operator is inherent to the GUIDE model: the conflict resolution agent. This
is an extension beyond the traditional view of blackboard knowledge sources in that the
conflict resolver has authority over the design operators, to impose or modify constraints

when such action is necessary to preserve consistency of the solution. The conflict resolver
plays the role of arbiter when two or more design operators place inconsistent information
into the global solution database as a result of interfacing requirements and differing local
design goals and priorities. Presumably, each design operator is attempting to optimize its
piece of the design; when their "preferred" solutions cannot be satisfied concurrently, the
conflict resolver is charged with evaluating various compromise alternatives in light of the
global project priorities and imposing the most efficient resolution choice on the global
solution. In order to accomplish this, the general conflict-resolution procedure is conceived
as having the following form:

• A conflict situation is recognized and flagged by the global solution database,
characterized by the condition that the defined legal relationship between two data
items is not satisfied and provisions do not exist within the global solution data
representation to resolve the discrepancy automatically. The contending data values
in the global solution, through their expressed functional dependency, define two
endpoints in a range of resolution alternatives. Hard constraints on either of the data
values could further restrict the feasible solution alternatives to a subset of this range.

• From the feasible range of compromise resolution alternatives, the conflict resolver
establishes a discrete set of evaluation points. This could be accomplished by a simple
segmentation of the overall resolution range or by a more sophisticated "hill-climbing1*
technique.

•The conflict resolver creates a "hypothetical world** representing each candidate
conflict resolution alternative. The data values corresponding to the resolution
alternative are imposed as solution constraints, and the affected design operators
regenerate those portions of the design impacted by the new constraints. The
valuation metrics associated with the global solution data allow an evaluation of each
hypothetical alternative in terms of global design priorities, (In the case of highly
involved designs, regeneration could be accomplished using a simplified
interdependency network, to arrive at an approximate evaluation of each hypothetical
design alternative while reducing the computational burden on the system.)

• The conflict resolver selects the feasible resolution alternative which best satisfies the
global design objectives and imposes the corresponding "compromise" data values on
the global solution. Portions of the solution impacted by the new constraint values are
regenerated by the appropriate design operators.

Clearly, the conflict-resolution process can become extremely resource-intensive. The use of
a simplified data dependency network addresses this issue to some extent. Further
simplification is possible, at the expense of generality, by incorporating into the conflict
resolver domain-specific knowledge relevant to the common forms of conflict that might be
anticipated in particular cooperative design problems. A conflict resolver with practical
efficiency could be considered as having a "toolkit" of domain-specific strategies to handle
the common and predictable conflict situations germane to a particular problem type as well
as a "fallback" general resolution strategy to cover other conflict situations.

Design operators in the GUIDE model, then, are conceived as each being focused on a
particular subproblem within the global design project, with limited knowledge of the other
subproblems and specialists contributing to the overall solution. Where the system
knowledge is sufficient to handle consistency maintenance issues automatically, such
knowledge resides in the global solution data structure in an implementation of the
interdependency and compatibilfty-expression provisions of the semantic data model. Where
external conflict resolution is required, the conflict resolver can query individual design
operators for their domain-specific inputs on solution flexibility and sensitivity, but the task of
interpreting these inputs with respect to global project priorities and arriving at the
appropriate arbitration decision belongs to the conflict resolver. This division of labor

promotes a high degree of autonomy, and thus modularity, for the design operator modules
of the problem-solving system.

> BLACKBOARD. The GUIDE blackboard is a global database, accessible by all design
operators, which contains information on the evolving solution. One essential category of
global data is the representation of the current state of the design. The GUIDE model is
intended for use in so-called "routine design1* situations, characterized by the fact that the
general form of the solution may be predefined. In conventional building design, for example,
one can describe the components and interrelationships that comprise a building even before
the first decision is made about layout or sizing. This implies the potential to invest the
database with a considerable amount of intentional knowledge about the artifact to be
designed. The GUIDE model capitalizes on this potential through the incorporation of a
knowledge-rich semantic data model (discussion follows) and through the use of a
communication-rich, object-oriented, frame-based data structure. The result is an intelligent
global solution database which can:

• Maintain Internal consistency through its own knowledge of data
Interdependences. The attachment of active values, or demons, to data attributes
permits certain consistency enforcement actions to be triggered automatically when an
attribute is modified. The object-oriented blackboard facility permits direct messaging
between data objects, so that information on attribute modifications can be
communicated quickly and efficiently to all interdependent solution data objects which
could be impacted by the modification.

• Assist the conflict resolver In Identifying Instances requiring external arbitration.
In addition to managing internal consistency, the data structure can incorporate
knowledge which allows it to recognize when the consistency maintenance
requirements fall outside the scope of its own automatic resolution procedures. Such
an instance could be characterized by a condition where the defined functional
dependency between two data attributes is violated, but the provisions for internal
resolution are absent. In such a case, the object-oriented nature of the blackboard can
accommodate messages directly from the inconsistent data objects to the conflict
resolver. These messages could simply alert the conflict resolver of the need for its
services or could provide additional information as well, to assist the conflict resolver in
identifying the nature of the inconsistency and identifying appropriate resolution
strategies.

•Assist the conflict resolver In value-based arbitration. The global solution
database incorporates individual and cumulative information on the impacts of current
data attribute values (which represent components of the solution) with respect to the
global design priorities and objectives. The conflict resolver can query objects, or
classes of objects, through direct messaging and obtain information relative to the
"value" of solution components. Similar value-based queries are possible in the
consideration of multiple hypothetical conflict resolution alternatives. This facility is the
basis for rational decision-making on the part of the conflict resolver.

Another category of solution data which may be represented on the blackboard addresses
control of the solution process. This may be a combination of predefined control information
and a dynamic record of solution progress. The GUIDE model will accommodate multi-level
control strategies.

> CONTROL ELEMENTS. The GUIDE model provides two types of control elements. The
monitor is primarily responsible for identifying instances in the intelligent global solution
database where inconsistencies in the evolving solution require external arbitration by the
conflict resolver. This can occur actively (from the monitor's viewpoint) by scanning the
database for inconsistency flags or passively through the reception of alarm messages from
inconsistent data objects.

The controller/scheduler ensures an orderly progression toward problem solution by

regulating the actions of the various design operators. The controller/scheduler is given
information on which design operators are eligible to make contributions and decides which
should be authorized to do so (and in what order). Conceptually, the sophistication of the
controller/scheduler could range from simple queue management to highly complex strategic
solution direction.

Inherent throughout this discussion has been the notion that a high degree of communication flexibility
can be attained by modeling the blackboard structure for cooperative problem-solving in the object-
oriented paradigm. In particular, the capability exists to communicate directly between individual data
objects, control elements, and design operators. This introduces the freedom to utilize formal control
structures optionally when they can benefit the problem-solving process and bypass them when a simpler
control strategy is more beneficial.

3.2. Semantic Model

The foregoing discussion of the intelligent global solution database in the GUIDE model already has
alluded to two primary requirements in cooperative engineering design. To recapitulate, these are:

• To maintain solution consistency. When a change occurs to a data object, appropriate
measures should be taken to ensure the integrity of the emerging solution. In some cases,
the consequences of a change are logical, predictable and unambiguous, albeit that they
may also be extensive. In such cases, data objects may be invested with "intentional"
knowledge that, in conjunction with a communication-rich process model, will allow the
consequences of the change to be propagated to the appropriate extent automatically. In
other cases, a change to a data object may create an inconsistency situation whereby a
number of resolution options are possible and the intervention of an external decision-maker
is appropriate. Data objects may possess the knowledge to make this distinction and bring
such situations to the attention of an external arbiter.

• To facilitate solution optlmallty. When consistency maintenance is to be provided by an
external decision-maker through arbitration, it is essential to the rational design process that
the decision be consistent with global design objectives (cost minimization, for example). It is
not sufficient for the arbiter to know which data objects are in disagreement; given that an
adjustment will be imposed upon the contending data items in order to restore solution
consistency, the arbiter must also know how sensitive to change the data items are, to
promote a decision that considers solution efficiency as well as solution consistency. Three
issues arise when considering how to resolve a conflict between two contending design
alternatives:

•Does the compromise solution under consideration represent a feasible design
alternative? Can the contending data items legally assume the values that this
compromise would dictate?

• Does the compromise solution give proper regard to the -firmness" of the data? Given
that design is a process of successive refinement, it is sensible to assign greater
decision-carrying weight to data which represents more highly-refined portions of the
design.

• Does the compromise solution resolve the conflict in accordance with the global
objectives of the design? If cost-minimization (or aesthetics, or functionality) is a global
priority, then the selected compromise solution should attempt to optimize with respect

10

to this goal.

The GUIDE model seeks the attainment of these design objectives by defining a general semantic
model for the solution data structure. The model classifies solution data knowledge into five categories
and defines the intent of each. Specific data attributes appropriate for each category will depend upon the
domain of routine design for which an application is developed, and the syntax will further depend upon
the programming environment which is selected. Any instance of the representation scheme, however,
will consist of the same essential semantic elements:

• Data Attributes,

• Data Interdependencies,

• Compatibility Conditions,

• Level of Design Completeness, and

• Evaluation Metrics.

Types of information germane to each semantic category are as described in Section 2.3.

The following sections illustrate the application of the GUIDE model to a specific design domain.

4. Prototype System Description

FLEX (Floor Layout EXpert) is a prototype implementation of the GUIDE (Globally-Unified Interactive
Design and Evaluation) problem-solving model described in the previous section. FLEX addresses the
domain of equipment arrangement and brings together several elements of consideration in floor layout
for industrial facilities: the configuration of structural floor framing, the placement of mechanical
equipment, the sizing and adequacy of structural components, and the constructability of the overall
system.

These elements, while closely interrelated, are seldom adequately coordinated in conventional design
practice. Most commonly, structural framing arrangements are dictated by the requirements of a pre-
established equipment layout with the somewhat parochial rationale that the purpose of a structural
system is "to serve" the needs of the facility arrangement. Formal evaluation of the system's
constructability often occurs far downstream in the design sequence, if it happens at all. Reconfiguration
of the floor arrangement based on construction considerations, when evaluation occurs so late in the
cycle, is typically impractical in all but the most dire circumstances. Clearly, the prospect of integrating
these facets of the floor design process to allow timely feedback and evaluation offers significant potential
advantages from the viewpoint of global project optimization.

The concept of optimization as proposed by the FLEX prototype takes a somewhat different definition
than that recognized by the operations research community, in which optimization often assumes the form
of a rigorous mathematical formulation. While it might be argued that the application of optimization theory

11

to a simple floor framing system could be represented practically by a formal mathematical technique, the
class of interactive design problems which FLEX is built to represent cannot, in general, employ such
precise approaches. When interdependencies become more complex, optimization takes the form
distinguished in operations research theory by the concept of approximate optimization: that is, the
evaluation of a discrete number of solution options within the feasible solution range and the choice of
that option which best suits the decision criteria.

In addition to the far-reaching interdependencies which characterize multidisciplinary design problems,
the design objectives themselves are often complex and may entail entire lists of priorities such as cost,
aesthetic appeal and functionality. FLEX employs cost as its primary metric for value-based decision-
making, a choice that typifies a broad range of industrial design projects.

The overall architecture of the FLEX prototype conforms with the GUIDE model for cooperative
problem-solving, which was described in the previous section. The FLEX implementation of the model is
depicted in Figure 4-1 and consists of six conceptual components: a global solution database, a collection
of design operators, a semantic interpreter, a conflict resolver, a monitor and a controller/scheduler.
Consistent with the purpose of a prototype, each of these components is implemented to an extent which
captures the essential features and demonstrates the utility of the model in complex, cooperative
problem-solving. The following discussion describes each of these components, both in terms of intent
and in terms of its implementation details within the prototype system.

4.1. Global Solution Database

The global solution database, or blackboard, in FLEX represents the evolving solution to the floor
arrangement and design problem in the form of a hierarchical structure of data objects. This data
repository is accessed by the design operators both to obtain the necessary input data for the individual
processes and also to record their output. The blackboard in FLEX may be considered an intelligent
database in that the global solution data structure contains information on the domain-specific legal
restrictions and consistency relationships that must be maintained between individual components of the
solution (intentional knowledge). This permits the blackboard to promote solution integrity by taking an
active role in consistency maintenance on two levels:

Internally-enforceable consistency, as described earlier, refers to the activity of making all the
updates to the data structure which follow naturally and unambiguously from the modification or addition
of a data item by a design operator. If the consequences of a change in a data value are known (i.e., the
interdependencies and constraints are defined), and if there are no conflicting viewpoints about the
consequences (i.e., the consequences are a matter of logic rather than of opinion), then the intelligent
database should be able to handle the details of maintaining consistency without reliance on outside help.
An example of such a situation arises when a load is added to a beam in the floor system. The immediate
consequence is that the load is added to that beam's load list. The logical implications, however, extend
much further. The beam's end-reactions, shear and bending moment will likely change. The required
structural section may also change. In addition, these changes will propogate to any other beams into
which the affected beam frames. The consequences are logical, predictable and unambiguous; the
intelligent global database, infused with sufficient intentional knowledge, handles them automatically.

Externally-enforceable consistency, by contrast, applies to situations where the conflict resolution

12

Global
Solution
Database

Semantic
Interpreter

Structural Layout Op

Equipment Placement Op

Structural Design Op

Construction Critic Op

Conflict
Resolver

Monitor

Controller/Scheduler

Figure 4-1 : FLEX Prototype Architecture

13

decision requires not only knowledge of data interdependences but insight into overall project priorities as
well: a value judgement, or tradeoff, is necessary. Given that priorities change from one project to the
next, this value-based conflict-resolution knowledge should be modeled separately from the invariant
intentional data knowledge. FLEX embodies this information in the conflict resolver module which will be
discussed presently. For an example of a typical floor-layout scenario where external conflict resolution is
predicated, consider the case of an equipment placement expert who wishes to support his equipment at
a point where a beam does not exist in the structural system. In order to maintain design consistency, a
resolution strategy must be selected from among several possible courses of action:

• The equipment placement expert could be directed to relocate the equipment such that it can
be supported by the existing beam arrangement. Presumably this would represent a
suboptimal, and therefore more expensive, alternative for the equipment expert (otherwise,
he would have chosen the alternate location in the first place).

• The structural framing expert could be instructed to modify the framing arrangement so as to
provide support beams for the equipment as currently located. This alternative would
presumably entail additional expense for the floor framing system, since it would represent a
move away from the structural framer's preferred solution.

• A compromise could be identified, whereby each party to the conflict would be required to
make modifications in whatever combination would have the least adverse impact on overall
project cost.

In a situation involving multiple feasible alternatives, the global solution database relies upon an
external agent to make the requisite value judgements. The database, however, must possess the
intelligence to recognize when external conflict resolution is appropriate and necessary, and it must also
model the value-related attributes of its data such that an external conflict resolver can make decisions in
a rational manner.

The structure of the global solution database for the FLEX prototype system is depicted in Figure 4-2.
The relationship between individual data items reflects the inherent hierarchies in the major components
of the floor layout domain: a floor system is comprised of structural components, supports and externally-
applied loads. In this case, all of the structural components are beams, support points are represented by
columns, and external loads are applied by pieces of mechanical equipment which must be supported.
Each individual data item has a number of attributes which are represented using a frame-based
approach, such that individual attributes can be attached to specific data items while inheritance permits
an economical and consistent representation of those attributes which are common to whole classes of
data items. These attributes represent the five classes of data description identified in the semantic
component of the GUIDE model:

• Fundamental Data Attributes (units, magnitude, etc.);

• Relationships with Other Data Items (logical interdependencies);

• Compatability Conditions (legal relationships);

• Level of Design Completeness (preliminary, final, existing, etc.); and

• Evaluation Metrics (such as cost).

In addition, any data item attribute can have several pieces of information associated with it,
represented as subslots or attribute facets. Figure 4-3 illustrates the attribute information associated with

FLOOR-BEAMS

M-lg
BEAM-19
BEAM-M
BEAM-21
BEAM-22
BEAM-23
BEAM-24
BEAM-25
BEAM-2*

FLOOR-SYSTEI COLUMNS

COLUMN-B4

LUMN-B5

COLUMN-C4

EQUIPMENT-LOADS EQUIPMENT-ITE

EMERGENCY-WATER-TANI

FORCED-DRAFT-FAN-1

POINT-LOADS

Figure 4-2: Example ot FLEX Global Solution Data Structure

TANK-LOAD-1

TANK-LOAD-2

ANK-LOAD-3

TANK-LOAD-4

FAN-LOAD-1

AN-LOAD-2

FAN-LOAD-3

FAN-LOA&4

15

a typical beam data item, and Figure 4-4 provides an example of the facets which might be associated

with a particular attribute.

Consistency maintenance is facilitated through a communication strategy which includes a combination
of active value attributes and object-oriented programming. Active values (sometimes called demons)
cause actions to be taken whenever a change in value occurs to the data attribute with which the active
value is associated. For example, suppose the length of a beam changes (signified by a change in its
end-coordinates). The beam itself should be made aware that such a change in length may have such
consequences as a change in reactions, shear, moment and section requirements. In addition, any
"parent beams'* into which the affected beam frames will experience similar impacts, and so will their
"parent beams", etc., until the ripple effect finally reaches the columns. Additionally, each data item
possesses methods, or attached procedures, which enable it to make the pertinent self-evaluations. For
example, if a beam becomes aware that its loads have changed, it has a method it can use to recalculate
its bending moment.

The final piece in the story is the communication link. We now know, for example, that a beam can
become aware when its loads have changed (through the use of active values), and the beam knows
which other data items are impacted (through the knowledge defined by the semantic model). We also
know that the other data items can respond to change by employing their methods. What remains is to
provide a means for the beam to make the other impacted data items aware that a change has occurred.
This is accomplished by the direct communication that can take place between data items by messaging
in the object-oriented programming paradigm. In our example, the modeling of individual data items as
objects allows the beam whose loads have changed to send a message directly to its "parent beams"
which, in essence, would say: "My loads just changed. You support me. Therefore, you had best re-
evaluate your bending moment as a result of this change.1* Similarly, in an instance where the services of
an external conflict resolver are required, a message can be employed to invoke the conflict resolution
module.

4.2. Design Operators

The design knowledge for the FLEX prototype system is supplied by four design operators, each
representing a specialized body of expertise pertinent to floor layout and design. Two of these, the
structural layout operator and the equipment placement operator, could be considered as "facility layout1*
experts, in that their primary concern is an acceptable and consistent spatial arrangement of floor beams
and mechanical equipment. Spatial consistency, in this case, is predicated upon the requirements that
sufficient clear space exists between any two pieces of equipment and floor beams are provided beneath
equipment support points. The acceptability criterion for a design has these spatial consistency
requirements as a prerequisite and, additionally, demands that the design be cost-effective. It is in the
assessment of cost-effectiveness that two other experts come into play: the structural design operator,
which designs the beam sections, thereby allowing a cost estimate of the structural system, and the
construction critic operator, which evaluates the constructability criteria for the overall floor system,
thereby providing timely feedback on the merits of the design from the perspective of construction cost.

Each of the design operators has direct access to the global solution database, with interpretive
assistance as required (the semantic interpreter is described in the following section). A monitor module

16

BEAM-20

beam-id
beam-section
begin-coord-x
begin-coord-y
end-coord-x
end-coord-y
begin-reaction
etui-reaction
uniform-load

begin-support-member
end-support-member
beam-begin-children
beam-end-children
equipment-point-loads

methods: add-child-beam
remove-child-beam
add-equipment-load
remove-equipment-load
compute-cost
compute-length
compute-max-shear
compute-max-moment

design-level

beam-cost
floor-beam-unit-cost

Figure 4-3: Example of Data Item Attributes in FLEX

17

BEGIN-COORD-X from BEAM-20

Comment: x-coordinate defining beginning of beam.

Values: 540

Units: INCHES

ValueClass: NUMBER

Cardinality.Min: 1

CardinalityMax: 1

Justification: FRAMER

Inheritance: OVERRIDE.VALUES

A twite; BEAM-COST-AV
REPLACE-VARIABLE-VALUE-AV
ADJUST-BEGIN-CHELDREN-AV
ADJUST-END-CHILDREN-AV

Flgurt 4-4: Example of Attribute Facets in FLEX

18

(also described subsequently) determines when a design operator should be activated, based on the
current state of the emerging global solution. The following paragraphs describe each of the design
operators, and their implementation in the FLEX prototype, in further detail.

STRUCTURAL LAYOUT OPERATOR. Taking as its initial design constraint the support (column)
locations, the structural layout expert attempts to configure a beam system to support the uniform load of
the floor and any prespecified concentrated loads. The local design objective is to minimize the total
weight of the structural system. The structural layout operator places information in the global solution
database on beam end coordinates, connectivity, initial loading and design level (i.e., whether this
represents preliminary design data, detailed design data, or data on an existing structural element). The
structural layout operator also supplies the unit cost of structural steel, used for subsequent cost
estimates. In interaction with the other design operators, the structural layout operator can respond by
making local adjustments to its layout or by initiating complete new designs with additional constraints, as
the situation dictates. For example, if all but one equipment load were to be supported by an existing floor
layout, the logical response would be to add or move a single beam to meet the requirement. If sweeping
changes were required, however, the more logical approach might be to redesign "from scratch" with the
new requirements incorporated at the start. In the FLEX prototype, structural layout expertise is
represented by a human expert interacting with the global solution database.

EQUIPMENT PLACEMENT OPERATOR. The design operator responsible for locating mechanical
equipment on the floor takes as its input a list of equipment and associated placement constraints and
parameters. The primary constraint on an individual equipment item addresses the concern of overall
spatial consistency; each piece of equipment has an associated "clearance envelope" that defines a
minimum distance which must be maintained from columns and other equipment items. The location
parameters for each equipment item include a preferred location and a cost function which describes the
dollar penalty associated with variance from the preferred location. This information, stored in the global
solution database, permits the equipment placement operator to arrive at a consistent, "preferred"
arrangement. When an item's location is established, this information is added to the global solution
database, along with the associated cost of the selected location. Information on loads and locations of
equipment support points is also entered (the magnitude and relative spacing of support points is
predefined, so their absolute locations can be established once an equipment reference location has
been determined).

[NOTE: The first iteration in equipment location, then, considers the optimum functional mechanical
arrangement without regard to the structural layout. Only sheer coincidence would result in global design
consistency on the first pass. More likely, adjustments will be required in the structural layout, the
equipment layout, or both. The solution database incorporates the information required to assess the
economic impacts of such adjustments.]

STRUCTURAL DESIGN OPERATOR. When a structural framing layout is first established, or when
subsequent modifications occur to an existing layout due to changes in spatial arrangement or imposed
loadings on members, it is necessary to consider the effects of these actions on the design of the
impacted members. The intentional knowledge structure of the global solution database is sufficient to
ensure that the effects of a change are propagated correctly; the beam data items themselves have the
method-encoded knowledge to compute their design parameters, such as maximum shear, maximum
moment and unbraced length. The structural design operator, then, is responsible for taking these inputs

19

when a beam has been cited for redesign and selecting the best structural section in accordance with
governing design specifications. For the purpose of member design in the FLEX prototype, a knowledge-
based system will be employed to select appropriate steel beam sections from a database of available
rolled shapes in accordance with the strength and serviceability requirements of the American Institute of
Steel Construction (AISC) specifications.

CONSTRUCTION CRITIC OPERATOR. The idea of assessing constructability issues during the layout
phase of floor design recognizes that there is an additional cost component which is often overlooked in
the early stages of a project- and which sometimes haunts the project later. While the structural layout
and equipment placement operators both make cost evaluations, these are mainly from the material
procurement and fabrication viewpoint. The construction critic, by contrast, considers design cost from
the installation point of view. For the FLEX system prototype, construction criticism focuses on the
complexity of the design (e.g., number of beam end-connections to be made) and produces output
consisting of comments and suggestions for possible improvement, directed primarily to the structural
layout expert. In the sense that the FLEX prototype is offered as an example of design integration, the
construction critic operator exemplifies a whole conceptual class of "peripheral" design considerations
whose closer linkage would benefit global project objectives.

4.3. Semantic Interpreter

The semantic interpreter module in FLEX is conceptualized as a simple utility to make syntactic
translations between the representation of information in the global solution database and the
s e mant lea I ly-equivalent form used by any design operator whose representation scheme is dissimilar. A
logical expansion of the FLEX prototype, for example, might benefit from the inclusion of additional design
operators developed outside the system environment and therefore not "native" to FLEX. It would be
expected that such disparate operators might express logically equivalent information in dissimilar forms.
The semantic interpreter provides the two-way translation. In those cases where design operators are
built using the native representation, of course, interpretation is unnecessary; the provision of a semantic
interpretation module in the system architecture recognizes the conceptual requirement for true system
modularity.

4.4. Conflict Resolver

The conflict resolver may be considered as a separate operator with a higher level of authority in the
problem-solving process than the individual design operators. It is the arbiter with knowledge of global
project priorities and the power to impose consistency in externally-enforceable conflict situations
accordingly. The conflict resolver is inactive until the intelligent global database indicates a consistency-
maintenance situation requiring extemal resolution (denoted by status: inconsistent flags on data items in
the solution database). The flagged data items typically will identify a situation where proposed local
solution alternatives cannot be satisfied concurrently.

In the general case, it would be reasonable to assume that the contending data items demarcate limits
on a space of possible consistent "compromise" solutions. If this segment of the solution space is
continuous, then an infinite number of consistent solution alternatives exists, and it is the task of the
conflict resolver to select discrete points along the continuum as candidate solutions and to evaluate

20

relative suitability of the candidates with respect to global project priorities. A practical example would
involve the bay spacing in a floor system, where facility layout preferences might advocate a very large
space between columns (to minimize obstructions) and the structural engineer might opt for a closer
column spacing (to achieve economy in the floor design). Any dimension for bay spacing between the two
contending extremes would be a possible solution. In the absence of an exact mathematical optimization
function (which is rare in cases of practical complexity), the strategy that will make a value-based design
decision tractable will involve the evaluation of the total project cost at each extreme and at several
intermediate discrete bay spacing values, followed by the selection of the "best" alternative, according to
whatever global decision criteria are appropriate.

Of course, not all solution spaces are characterized by a continuum of possible and practical solution
alternatives. It behooves a conflict resolver to have some specific knowledge of its domain in order to
identify typical situations which would be better addressed by other conflict-resolution strategies. The
FLEX prototype illustrates one such situation in the floor layout domain, where an equipment support
might be located at a point where a beam does not exist to support it. If one were to follow the general
(default) conflict-resolution strategy, such a circumstance would pose an infinite number of possible
resolution alternatives:

• Move a beam to the current equipment support location,

• Move the equipment load to a current beam location,

• Add a new beam at the current equipment support location,

• Split the difference: move a beam and the equipment point load in various combinations until
they coincide.

Each of these resolution alternatives represents a path to a consistent solution at a definable cost. In
practicality, however, a competent designer would limit his strategies to the first three alternatives,
recognizing that the myriad possibilities generated by the fourth alternative add great complexity to the
decision process, with questionable potential return. Investing a conflict resolver with similar domain-
specific knowledge to cover the more common and anticipated conflict types is a departure from
generality that can be more than offset by the consequent gains in efficiency and rationality.

Thus the conflict resolver as conceptualized for the FLEX prototype has a general conflict-resolution
strategy that entails the discretization and periodic evaluation of a continuous range of solution
alternatives; in addition, however, it has the capability to recognize common conflict situations specific to
the floor layout domain and to invoke specialized resolution strategies where appropriate. For the FLEX
prototype, the conflict resolver will be simulated through user interaction with the database and design
operators. An approach is being explored whereby each individual alternative in a conflict resolution
session would be represented in a separate hypothetical "world" which would be maintained only until the
best alternative could be identified and the global solution database modified to suit.

Several issues in conflict resolution, broached by the foregoing description, are worthy of further
comment. First, the notion of selecting discrete candidate solution points for evaluation from a continuous
range of possible solutions carries the implication that the best alternative will only approximate the true
optimal value. Logically; the approximation could be improved by increasing the number of discrete
evaluation points, but such a decision has system performance impacts. One possible middle ground

21.

would entail the use of nonlinear search strategies within the solution space, reducing the search
increment as "promising" regions of the feasible solution range are identified.

Second, for practical situations, design cannot be considered as a "single-pass" operation. Some
portions of the solution database may represent the results of detailed design while others reflect only a
preliminary treatment. At the extreme, in the floor layout application, some solution data may represent
floor components which have already been built. The conflict resolver should recognize the level of design
completeness associated with contending data items as a part of its resolution strategy.

Third, it is worthwhile to note in the global solution database when a data item value has been imposed
as a result of arbitration by the conflict resolver. While this status would not exempt the data item from
further adjustment, it would be useful in tracking the justification for the evolving solution.

Finally, the generation of multiple complete designs in order to weigh the relative attractiveness of
various resolution alternatives is an approach that could easily become resource-constrained in large,
complex design problems. One means of "pruning" the decision tree for evaluation purposes would be to
differentiate between data interdependencies which are significant in the evaluation process and those
which need not be considered except for consistency in the final design. This two-layer representation of
the design interdependency network would add a nominal load to the data storage memory requirements
at a significant potential savings in processing requirements for rational conflict resolution.

4.5. Monitor

In the FLEX prototype, the monitor functions to determine when it is appropriate for a design operator
to be activated. The decision is based upon two factors:

• When sufficient information exists in the global solution database to satisfy the preconditions
and inputs for a design operator to be invoked, or

• When the conditions of the evolving solution require a qualified design operator to be
invoked.

As an example of the former situation, the equipment placement operator might be determined as eligible
to fire when the following conditions are satisfied:

IF [there is physical data on an item of equipment <x>]
AND [there is not location data on equipment <x>]

THEN [equipment-placement-operator is eligible to run]

The latter situation refers to certain instances where the knowledge in the intelligent global database
enables a direct determination that a design operator should be activated. For example, when
inconsistencies arise between equipment support locations and beam locations, it is necessary to invoke
the conflict resolver. It is desirable for this to happen expeditiously, regardless of the eligibility of other
design operators to fire. The monitor should be able to recognize such a situation and instruct the
controller/scheduler accordingly.

In some cases, the flexibility of the object-oriented environment allows the global solution database to

22

perform the monitoring process directly. For example, when the conditions of a beam data object change
such that redesign is dictated, the data object can send a message directly to the structural design
operator to obtain the desired new design information. Thus, the formality of involving the monitor and
controller/scheduler can be included where it benefits the solution process and sidestepped where not
needed.

4.6. Controller/Scheduler

The intent of the controller/scheduler module in FLEX is to regulate the interactions and contributions
of the individual components in the model in order to ensure an orderly and consistent progression toward
the complete global solution. Conceptually, the GUIDE model admits a considerable amount of
sophistication to the controller/scheduler in terms of developing and pursuing solution directions and
control strategies. The FLEX prototype implementation of a controller/scheduler functions primarily as an
agenda controller acting upon design operator eligibility information provided by the monitor. If more than
one operator is eligible to run at any given time, the controller/scheduler creates an agenda which, in the
case of the FLEX prototype, consists of a queue. In the situation where a flagged inconsistency requiring
external conflict resolution is identified in the global solution database, the controller/scheduler invokes
the conflict resolver module and suspends further firing of design operators until the inconsistency has
been resolved.

For the FLEX prototype, the controller/scheduler willl be simulated by user interaction with the
individual design operators and the conceptual conflict resolver module.

5. Example Problem

A small sample problem will be implemented using the FLEX prototype system, to illustrate the features
and component interactions described in the previous section.

5.1. Problem Description

A 15-by-20-foot bay of a proposed industrial facility will be considered, in which two items of
equipment, a forced-draft fan and an emergency water tank, are to be placed. Neither the floor system
configuration nor the equipment location plan is predefined, although "preferred1* location knowledge is
incorporated in the data model for each piece of equipment. Such information reflects the fact that the
equipment does not stand in isolation but must be connected to other equipment items by piping,
ductwork, etc., and "preferred" locations represent the motivation to minimize connection costs. Each
piece of equipment also has an associated cost function which reflects the additional connection
expenses incurred in varying from the "preferred** location. (Optimization theory terms this a penalty
function.)

Each design operator has a local objective which is its driving force in advocating a specific solution
direction. The structural layout operator attempts to develop a beam framing configuration which
minimizes the total weight of structural steel (a simplistic but reasonably valid index to the cost of the
structural system). The equipment placement operator attempts to satisfy location preferences for

23

equipment items while also maintaining clearance requirements. The structural design operator seeks to
ensure that the design of each component beam is structurally adequate and in conformance with AISC
specification requirements. The construction critic operator attempts to expose any problem areas in the
design by commenting on factors which will adversely affect construction cost.

The overall design is approached with the global objectives of minimizing total cost while providing a
structurally sound and consistent solution. While these goals are fundamentally consistent with the local
design goals, local "differences in opinion" on how to best achieve overall cost effectiveness require
intervention and arbitration by the conflict resolver. Safety and structural adequacy follow automatically
from the internal consistency maintenance features of FLEX.

5.2. Interdependences

The key to internal consistency maintenance lies in the knowledge which each component possesses
about other members upon which it is dependent as well as other members which are dependent upon it
Each beam, for example, "knows" who its parents are (the beams which support its ends). Each beam
also knows which other beams and equipment loads consider it to be one of their parents. If a beam
should be removed from the system, messaging between data objects permits its parents' child-beam
lists to be updated automatically, thus maintaining consistency among spatial relationships. Similarly, if
some attribute of a beam which affects its reactions should change (such as length, uniform load, child-
beam reactions, applied equipment loads), the affected beam has the ability to recognize and act upon
the need to recalculate its own end reactions, shear and bending moment and to submit to a re-sign.
Beyond this self-adjustment, the beam can also notify its parents so that they can re-adjust accordingly.

In similar fashion, each support load associated with a piece of equipment "knows" that it must be
supported by a beam. Given a current load location, the equipment placement operator can search the
beam list to determine whether a current load location is consistent with a current beam location. If so, the
equipment load is associated with the beam's load-list (triggering the beam redesign responses described
above). If no beam is found to be consistent with the current load location, the conflict resolver is invoked
to investigate possible resolution options involving the adjustment of beam and equipment locations in
various combinations, with total project cost minimization as the goal that will determine which resolution
option prevails.

Figure 5-1 depicts a possible consistent design configuration for the FLEX prototype design example.

5.3. Implementation Environment

The implementation environment selected for the FLEX prototype is the KEE (Knowledge Engineering
Environment) system developed by IntelliCorp. KEE is an appropriate choice for the illustration of several
concepts which are central to the GUIDE problem-solving model:

• A frame-like data representation scheme is supported, enabling multiple data slots and
facets to be associated with any data item. Procedural code and active values (demons)
may also be attached, and inheritance is supported.

• The object-oriented paradigm provides direct messaging capability between data objects,

24

r
6106*1.

te>o*

5O"

BEAM-

i

I tC

i
SMCfSfcJO'

45V KAM-21

Rgur»5-1: Example of Consistent Floor Layout Solution

25

facilitating consistency maintenance strategies.

• The programming environment supports the creation of "multiple worlds" as an approach for
the evaluation of hypothetical conflict-resolution alternatives.

• An integrated facility for production-system programming accommodates the development of
the monitor module and design operators.

6. Typical System Interactions

This section presents several examples of system actions and responses in detail, in order to illustrate
how the FLEX prototype implementation handles internally- and externally-enforceable maintenance
situations. The descriptions of the various system actions are given in narrative form, but the terminology
is consistent with the implementation environment; that is, "messaging- or "sending a message" refers to
the object-oriented programming facility for communication between data objects, "activating" refers to the
enablement of an active value, or demon, attached to a data object attribute, and a "method" refers to
procedural code which is associated with a particular data object via direct attachment or inheritance. The
process of "generating a load list" refers to a function whereby a beam can search its stored lists of child
beams and applied equipment loads to dynamically generate a list of its currently-supported loads and
their positions on the beam. The approach of creating this information procedurally whenever needed
ensures that the resultant load list is always current.

6.1. Example: Adding an Equipment Load to an Existing Beam

The addition of a new equipment load to an existing beam represents a case in which the intelligent
global solution database should be able to adjust automatically, since the consequences of such an
action are predictable and unambiguous. Thus, this is an example of internally-enforceable consistency
maintenance. A comparable sequence of actions would occur in the case where the value of an existing
equipment load were altered. It is assumed in this example that the floor layout operator has already
generated a configuration of support beams, perhaps after some previous interaction with the equipment
placement expert. The current activity represents the addition by the equipment placement operator of a
new equipment load at an existing beam location.

1. A description of the new equipment load is added as a new object in the database. This
description includes a load identifier, location coordinates, load magnitude, units, and a
parent-beam identifier. In addition, the new data object inherits active values and methods
which trigger two activities immediately:

2. A consistency check is performed to ensure that the load location is coincident with the
specified support beam. If it is not, then the parent-beam identifier is removed. If it is
coincident, then a message is sent to the specified parent-beam to add this new load
identifier to its stored list of supported equipment loads.

3. Upon modifying its list of supported equipment loads, the parent beam activates attached
procedures to recalculate its end reactions and submit to redesign. When its end reactions
change, these modifications in turn activate similar messages to its parent beams, and so
on, until the change is propagated to the support points (columns).

4. For each beam whose loading is changed, a message is sent to the structural design

26

operator, requesting a redesign. Along with the request message, the structural design
operator is given the information it needs to perform the redesign: the beam's maximum
shear, maximum bending moment and maximum unbraced length. Each of these values is
calculated by a method attached to the beam data object; to produce the information, the
beam data object dynamically generates a new load list and invokes functions to calculate
the design input values.

5. When the structural design operator has returned new beam designs for all affected beams,
this information is stored by the individual beam data objects, and the global solution
database has been restored to a consistent state.

6.2. Example: Locating an Equipment Load Where No Beam Exists

This example assumes that a floor beam layout has been established by the structural layout operator,
and possibly some equipment locations have also already been established. Then, in establishing a
position for a new piece of equipment, the equipment placement operator chooses a position such that an
equipment support point is not consistent with any current beam location. The preferred resolution to such
a situation depends upon the project priorities and may take any of several forms; there is no single,
predefinable resolution strategy. Thus, the example is representative of a situation requiring externally-
enforceable consistency maintenance, calling for the involvement of the conflict resolver.

1. As in the previous example, the information on the new equipment load is added as a new
object in the database. The parent-beam slot is labeled unknown.

2. A consistency check, performed by the intelligent database, determines that there is no
beam coincident with the load location in the current layout and flags the new equipment
load location as inconsistent This triggers a message to the monitor that the conflict
resolver is required.

3. The conflict resolver's domain strategist recognizes the form of the conflict as a "no-beam"
inconsistency and identifies three feasible conflict-resolution strategies:

• Specify that the load location be modified to coincide with the nearest existing
support beam location,

• Specify that the nearest support beam location be altered to coincide with the
equipment load in its current location, or

• Add a new beam to the framing system to coincide with the equipment load in its
current location.

The conflict resolver can dictate the creation of alternate hypothetical worlds, each
representing one of the solution alternatives. Each hypothetical world would be a
permutation of the global solution database representing a consistent solution, complete
with the global cost information which is routinely represented in the intelligent database.
The conflict resolver's domain strategist would also have the capability to specify particular
evaluation criteria for various conflict types occurring in the design domain. For example, it
is a domain-specific characteristic of the floor layout problem that individual load locations
are not independent: if you move one support leg of a tank, you must also move the other
three. Therefore, in this type of a conflict, the evaluation procedure might logically consider
two criteria:

27

• For a given conflict resolution alternative, how the choice impacts the global project
cost, and

• For the alternative under consideration, how many additional inconsistencies are
propagated in the solution.

The addition of the second evaluation criterion specifically for "no-beam" conflict resolution
is an example of a domain- and situation-specific strategy to prevent solution "churning*.

4. The conflict-resolution alternative selected by the conflict resolver is imposed upon the
global solution by messaging the appropriate design operator(s) to regenerate the affected
portion of the solutions with the imposed values as new constraints.

5. Depending upon the conflict-resolution alternative chosen, further adjustments (such as
beam redesigns) would take place within the intelligent database automatically, through its
internal consistency maintenance system.

6.3. Example: Altering the Location of a Beam

The third example highlights a situation which is ostensibly a matter for internally-enforceable
consistency maintenance but which also might have implications requiring external conflict resolution. In
order to maintain spatial consistency of the floor framing system, it is necessary that connected beams
remain connected when the floor framing plan is altered. In the intelligent global database of the FLEX
prototype, the responsibility for maintaining parent-child consistency is delegated to each parent-beam as
follows:

1. When a beam is moved (as determined by a change in its end coordinates), the beam
notifies each child-beam framing into it that its location has changed.

2. Child-beams, in turn, invoke methods to adjust their end coordinates to maintain
consistency with the new parent-beam coordinates.

3. The adjustment in length of child-beams triggers several consequences. Each modified
child-beam recalculates its end reactions and design values and submits to a redesign, as
in the first example. Further, the changes in end reactions impact the parent-beam, since
these reactions represent loads on the parent-beam; therefore it adjusts its reactions and
design values as well. In addition, the changes in beam end-coordinates and structural
specifications trigger recalculation of the cost information on each affected individual beam
as well as on the overall structural system.

4. If there are any equipment loads on the relocated parent-beam, the revised situation is
examined to determine whether a consistent equipment support condition still exists. If not,
the inconsistency is flagged, invoking an external conflict-resolution procedure as described
in the second example.

7. Summary

The GUIDE model has been proposed as an approach for automating the cooperative multidisciplinary
engineering design process in a framework that promotes solution consistency and value-based conflict
resolution. A prototype system, FLEX, has been employed as an illustration of the GUIDE model in a

28

typical interactive design domain. It is the intent of the GUIDE model to draw upon previous development
efforts in cooperative automated design, and to incorporate the value-based decision-making perspective
exemplified by conventional engineering design practice. Two central aspects of the model address
these objectives:

• A flexible problem-solving framework which preserves the modularity and autonomy of
the individual bodies of expertise which contribute to the overall design effort while providing
a choice of communication alternatives ranging from direct peer messaging to a formal
control structure, and

• A high degree of data Intelligence, including intentional knowledge about the
interrelationships and interdependencies among data items as well as value profile and
design sensitivity knowledge which is essential to the rational decision process.

This synthesis of automated design concepts and conventional engineering management
methodologies can elevate the usefulness of interactive computer-baseid design systems by combining
"the best of both worlds":

• The high-speed computation and inferencing abilities of computer systems allow the
exploration many more design alternatives than could be accommodated by manual
approaches.

• The ability to evaluate alternatives with a view toward optimizing global project goals, and to
resolve conflicts with the dual objectives of consistency and design economy increases the
likelihood that system-generated designs will address the practical needs of the professional
design community.

