
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

A Spatial Branch-and-Bound Algorithm for
Some Unconstrained Single-Facility Location Problems

by - ^

Richard Edahl

EDRC 05-34-89
Carnegie Mellon University

A SPATIAL BRANCH-AND-BOUND ALGORITHM

FOR SOME UNCONSTRAINED

SINGLE-FACILITY LOCATION PROBLEMS

Richard Edahl
Engineering Design Research Center

Carnegie Mellon
29 March 1989

Abstract
A globally convergent spatial branch-and-bound algorithm is given here which is shown to be

useful on several unconstrained single-facility location problems. These include the min-sum,
min-max, and max-min problems with cost functions that are continuous and non-decreasing in
distance. For the special case of the min-sum problem with Euclidean metric and power cost
functions, a quadratic lower-bounding function is developed that results in a convergence rate
superior to that of using a simple lower bounding function from the Big Square-Small Square
algorithm of Hansen et al.

1. Introduction
We examine here the utility of a general spatial branch-and-bound algorithm for a variety of

unconstrained single-facility location problems. While many of these problems have efficient
algorithms that converge to the globally optimal solution, there are still several problem classes
for which this is not true. The exceptions arise usually for non-convex problems, possibly
resulting in local optima that are not global optima. We give below several formulations of these
non-convex location problems and implementations of the spatial branch-and-bound algorithm
for them. These formulations are not meant to be exhaustive, but only examples.

The simplest formulation of the Weber problem is

min £ w/Cx1-*])2 + (*2-z,W

where the Wj's are positive weights and each z^(zjjf) is a distinct point (destination, sink,
resource location, etc.). The problem then is to find the location x* to minimize total
transportation costs from x* to the various sinks, etc. (Transportation cost is linear in Euclidean
or straight-line distance.)

The less restrictive form of this single-facility location problem that is examined here is the
general min-sum location problem:

where the Zj's are points in Rn, d(y) is the Euclidean metric, and each fj is a continuous non-
decreasing function of the distance, d. If the fj are convex, P1 can be shown to be convex and
algorithms exist that are globally convergent for it. (See e.g. Katz [8] and Cooper [3].) Weaker
restrictions on fj permit P1 to have non-optimal local minima, hence the best that these
algorithms can demonstrate is local convergence. (See e.g. [8].) The algorithm developed
below is globally convergent for P1.

The second formulation considered here is the min-max location problem:

P2) min maxfj(d(xfZj))

For P2, it is desired to find the location of x that minimizes the maximum cost or penalty of

University Libraries

S lepMe''On "Craf
Pennsylvania

distance to the points Zj. This formulation may be appropriate for example for some emergency
services (e.g. location of paramedic stations) where it is desired for the facility not to be too far
from any of a set of locations. Forms of this problem were examined in Drezner and
Wesolowsky [4] and Chen [2], among others. Using Euclidean distance for d, P2 is a convex
programming problem if the f: cost functions are convex in d. However, if the f.- functions were
only continuous and non-decreasing in d, then P2 may not be convex, but quasi-convex.

The third formulation considered here is the max-min location problem:

P3) max minfffl(xap)
xeS

where S is some box in Rn. For P3, it is desired to find the location for x to maximize the
minimum penalty of distance to the points Zj. This formulation may be appropriate for example
for problems to do with noxious facilities (e.g. toxic waste landfills) where it is desired that the
facility not be too close to certain locations. One form of this problem was examined in Drezner
and Wesolowsky [5]. This problem is not convex, and subject to many local optima. The
optimal solution will be unbounded if the feasible region is not compact. However, due to the
non-convexity of the problem, the optimal solution is not necessarily a boundary point of S.

Section 2 of the paper contains some notation and definitions and concludes with the
algorithm. The convergence proof for the algorithm is in Appendix I. It is shown in Section 3
how the algorithm may be applied to P1 using as examples the Euclidean metric with power
cost functions. In Section 4 is givens examples of using the algorithm on the formulations P2
and P3.

It should be kept in mind that this algorithm, while globally convergent for a wide range of
location problems, cannot be called 'fast1. One practical suggestion might be to use this
algorithm until a 'good1 approximation to the optima is found, and then to use a faster locally
convergent algorithm to improve the solution. (Since at each iteration both a lower and upper
bound for the optimal solution are given by the algorithm, some degree of confidence can be
given to this procedure.)

2. Algorithm
The algorithm developed here can be considered either a spatial branch-and-bound algorithm

(see e.g. Mitten [10]) or a variant of a sequential Lipschitz grid algorithm (see e.g. Shubert
[11] and Meewella and Mayne [9]). The main difficulties in using such algorithms stem from the

inability of applying the algorithm (no good Lipschitz number estimate or no good lower
bounding function), from combinatorial explosion coming from the dimension of the space, or
from the nature of the individual problem. For the problems considered here, it is shown that a
good lower bounding function is available. The algorithm given here has some similarities to the
BSSS (Big Square-Small Square) algorithm given in Hansen et al [7]. A more detailed
comparison with the BSSS algorithm is given in Section 3. We also give examples of using the
algorithm on problems in spaces of up to 6 dimensions.

For the problem

P) minF(x)

we will consider x* € S to be an e-solution if

We shall deem the problem solved if, for a given e > 0, an e-solution is found. Also let P be the
optimal value of the objective function in P.

We present here an algorithm which finds at each iteration, a lower bound for F\ The lower
bound is obtained by partitioning the set S into a set of cells and finding a lower bound for the
minimum of the function in each cell. This lower bound is calculated by the use of lower bound
functions. The cell associated with the lowest of the lower bounds is then partitioned into
smaller cells and the iteration is continued.

2.1. Partitioning or Branching
The details of the partitioning are presented in this section. The general description and

notation of the partitioning is taken from [9].

Let Rp be a ceH defined by

Rp m [xe Rn\oP^<x^ < p*1', /=l,...,n}

Then, a suitable partitioning is taken to be a collection of nonoverlapping cells {Rp}p € p whose
union covers S, where P is an index set. That is, {Rp}pe P satisfies the following two conditions:

(a) V{RpnRq) = 0, Vp,q e P,p*q, where V is Lebesgue measure;

(b) S=vpePRp

For ease of notation, we shall now consider a general cell

The vertices of the cell are indexed as follows. Let

be the binary representation of m-1, so that

Let the 2n vertices of the cell S be denoted by ym,m=1,...,2n. The vertices are numbered such
that the components {y'm | i=1 ,..,n} of the vertex ym are given by

m). /=1 n

where a' and pj are as given in the definition of R above. In the two-dimensional case, we have
the results shown in Table 2-1

m 1 2 3 4

c(m) (0,0) (0,1)2 (1,0) (1,1)^

Table 2-1: Cell Division

Definition 1: Let R be an arbitrary cell in Rn. Then the cell dividing function <j>

<t>2. - <M Operates 2" cells <t>m(R). m = 1 »2 2* defined by:

where

y = { p W } / 2

, i = ra4', i
l y , o

i = rp', i
ly, o

otherwise,

ifc«(m)=l,
y otherwise,

Note that

0um=1^»(|)m(/?) = /?

«) V{<|>/(/?)r̂ <>/n(/?)} = 0 for l*m. where V is Lebesgue measure;

Notation:

(e.g.ifn=1,l=1,
<J)2(/?) = • { • 1 (J?)

It is easily seen that <J>'(R) yields (2n)' sub-regions.

2.2. Determining Lower Bounds
The algorithm given here operates by first dividing the region into subcells and finding both

lower bound and upper bounds for F(x) in each of the cells. It is necessary that for each subcell
Rp, the lower bound FL(Rp) and upper bound Fu(Rp) satisfy

FL(/y £ min Fix) <S F"(/y
xeRp

The upper bounding function ought to satisfy also:

p

A simple upper bounding function (on the minimum value of F in R) is one that evaluates F at
some x in R. The most promising cell Rk (with lowest FL(Rp)) is chosen and further subdivided
into subcells, again computing the FL>s and Fu>s for these new subcells.

In order for this sort of algorithm to work, some restrictions on FL(R) are necessary. For
example, if FL(R)=K (FL is the constant function), and K were sufficiently small, while FL would
give a lower bound for F, such a lower bounding function would not help in finding a good x.
Instead of directly giving restrictions for FL, we give restrictions for an associated lower
bounding function whose domain consists of discs rather than cells.

Definition 2: C(x,r) = {y|d(x,r) < r; y e S). C(x,r) is a closed disc with center x and
radius r.

We now give conditions for the lower bounding function over discs:

Definition 3: F(x,r) is a d.l.b.f. (disc lower bounding function) for F if

f)F(x,r)<F(y)

if) VxeS, given any e>0,3 5(e) such that
F(X)-F(XS)<E V0<r<5(e)

Note that if F satisfies a Lipschitz condition,

3Lsuchthat\F(x)-F(y)\<Ld(x,y) Vx.yeS,

then F(x,r) = F(x) -rL is a d.l.b.f. for F.

Note also that the definition of a d.l.b.f. is similar to that for uniform lower semi-continuity. In
fact, if F is uniformly continuous (or uniformly lower semi-continuous), then there will exist a disc
lower bounding function. The problem is to find it.

We define a cell covering function:

Definition 4: Let h(R) be the longest side of the cell R. (h(R) - max {P'-ct1}).
Suppose there exists functions x(R) and r(R) so that

x(R) G R

R e C(x(R),r(R))
Then x(r) and r(R) define a cell covering function if there exist a non-negative
monotonic increasing function g such that

r(R)<g(KR)) Vr>0
and
Urn g(h) =0

Frequently, the cell covering function may be defined by x(R) = (a + p)/2, r(R) = ||p-a||/2.

We define a cell lower bounding function by comparing it with a disc lower bounding function:

Definition 5: Let x(R) and r(R) define some cell covering function for regions
R. Then FL(R) is a c.l.b.f. (cell lower bounding function) for F if,

F(x(R\r(R)) < FL(R) ^ F(y) VyeR
Note that F(x(R),r(R)) is a cell lower bounding function. In fact, for many of the location
problems, this is the 'default1 cell lower bounding function.

2.3. The Algorithm
The algorithm which we will give below may be likened to a branch-and bound procedure (see

[10], or a Lipschitz procedure (see [11] and [9]). For branch-and-bound the idea is to divide the
initial set into cells, obtain bounds and then choose the most promising of these cells for further
subdivision. In the notation from above, we would divide S into several subcells Rp, p=1,..,P
and find FL(Rp]). Then take the Rk with the lowest FL, etc. In this setting, the discs are used to
find bounds for the cells. For the Lipschitz procedure, discs are scattered to cover S. The disc

with the smallest FL(Rp) is removed and replaced with several smaller discs. In this setting, the
cells and dividing function <$> serve to enable this disc scattering and replacement to be done in a
regular manner.

ALGORITHM: (Assume e>0 is given)

Step 1 Divide (or approximate) S by cells Rp so that:

(a) S=vpePRp

(b) V{RpnRq} = 0, Vp,q e P9p*q, where V is Lebesgue measure;

Put the Rp's in list L1 in non-decreasing order of the FL(Rp). Set x* equal to
the solution at min F(y(Rp)). (y(Rp) is some point in Rp determined by a
method special to the problem. I.e. y(Rp) = x(Rp) may be used.)

Step 2 Remove Rk from the top of L1 and test whether

If no, go to Step 3. Otherwise, Stop (x* is then an e-solution).

Step 3 Apply <t> to Rk. Perform the following loop on m, m=1 ,..,2n:

If FiyWJRJ) < F(**), set x* = y^JR,))
Insert $m(Rk) into LI,maintaining non-decreasing
order of the Fus.

Go to Step 2.

The above algorithm has two basic elements -1) the bounding function, and 2) the dividing or
partitioning method. The bounding function is generally independent of S and is frequently, as
we shall see in Section 2, may be independent of the metric space. For example, if F is
Lipschitz, F(x, r) = F(x) - rL is a valid l.b.f. for any space in which L is Lipschitz number for
F. Also, if the space is Rn, the l.b.f. is generally independent of what (compact) subset
comprises S.

2.4. Examples
Before going on to the location problems, we first give the results of using the spatial branch

and bound algorithm on three common non-location examples. These are the same examples
as used in [9]. The second example is Branin's function [1] and the third example is Goldstein's
and Price's function [6]. The lower bounding function for each example used the Lipschitz
number, which was taken from [9].

8

A(.x,y),r)=Axy)-rL

2 f2(x,y)=(y-5x2/4n2+5x/n-6)2+l0(l-V&K)cosx+10

/2(x*,/)=0.397887

L=100

L=960000

Results are given in Tables 2-2, 2-3, and 2-4. Note the poor performance of the algorithm on
these problems. The experience here is similar to that for Meew's algorithm. In each case,
even after 2000 iterations, the difference between the lower and upper bounds was significantly
greater than the improvement in the objective function from the early iterations to the final ones.
This would not give one a great degree of confidence that significantly better solutions did not
exist (when in fact they do not). Hence, for these problems, the lower bound is not very useful.

In these tables, 'CELLS' refers to the number of cells that are active at a certain iteration.
That is, it is the number of cells for which the lower bound is less than the value of the best point
found so far ("UPPER BOUND'). 'LOWER BOUND1 refers to the smallest lower bound of all the
current cells. Note that for these problems that the number of active cells increases roughly
linearly with the number of iterations.

ITERATION
1
2
5

15
34
86

100
500

1000
1500
2000

CELLS
4
7

14
37
87

201
228

1057
2081
3065
4073

LOWER BOUND
-3.6719d+00
-3.2969d+00
-1.7969d+00
-9.1797d-01
-4.6387d-01
-2.3315d-01
-2.2089d-01
-5.3024d-02
-2.6889d-02
-1.8718d-02
-1.3617d-02

UPPER BOUND
7.8125d-02
1.9531d-02
4.8828d-03
1.2207d-03
3.0518d-04
7.6294d-05
7.6294d-05
4.7684d-06
1.1921d-06
1.1921d-06
2.9802d-07

Table 2-2: Function 1

ITERATION CELLS LOWER BOUND UPPER BOUND
1
2

20
21
65

100
500

1000
1500
2000

4
7

59
62

183
279

1272
2365
3483
4639

-5.0787d+02
-5.0204d+02
-1.3105d+02
-1.3071d+02
-6.5620d+01
-5.7671 d+01
-1.6109d+01
-1.0728d+01
-7.1052d+00
-5.8062d+00

2.2456d+01
1.3286d+00
6.7287d-01
5.4097d-01
4.1767d-01
4.1767d-01
3.9880d-01
3.9880d-01
3.9880d-01
3.9880d-01

Table 2-3: Function 2

ITERATION
1
2
3
6

21
22
81

100
500

1000
1500
2000

CELLS
4
7

10
19
63
66

236
293

1478
2958
4399
5895

LOWER BOUND
-1.3558d+06
-1.3555d+06
-1.3505d+06
-6.7863d+05
-3.3937d+05
-3.3936d+05
-1.6969d+05
-1.6954d+05
-8.4073d+04
-6.1741d+04
-4.2180d+04
-4.1523d+04

UPPER BOUND
1.8760d+03
8.8725d+02
3.2688d+01
2.7512d+01
1.2637d+01
1.0394d+01
4.7795d+00
4.7795d+00
3.4466d+00
3.4466d+00
3.1127d+00
3.1127d+00

Table 2-4: Function 3

10

3. Min-Sum Problem
The applicability of the algorithm is restricted to problems for which a lower bounding function

(as in Def 5.) can be found. However there is a class of problems, those of the continuous
location variety, for which the algorithm might prove useful. Suppose one wishes to solve

P1) min F(x) = min £ fffXxj))

X€ R" X€ R" "

where is the Euclidean metric, z, is a point in Rn, (a resource or market location), and f; is a
non-decreasing continuous function in its argument (unit transportation cost). Then the problem
is to locate a facility to minimize transportation costs. It is a simple matter to show that

j (1)
;=i

isad.l.b.f. forF(x)

Lemma 6: Let

where fj is non-decreasing and uniformly continuous and d(y) is a metric. Then
F(x,r) in Equation 1 is a d.l.b.f. for F(x).

Proof:

0 d(x,zp < d(y$zp+d(x,y) by Triangle inequality
<d(y,zp+r VyeCM

-*ffd(x,zp-r) <fj<d(y,zp) Vye CM
J J

Hence, FM = J fffo*p -r) < £ ffdiy, zp) = F(y) Vye

ii) Let e>0. Then/} uniformly continuous ->
for any e//>0, 3 5<e/7) such that VO<r<54(e//),

Therefore, for 0 £ r ^ m/n 8;<
j

\ffd(x,zp) -ffdix^jhr)] = F(x) - F(x,r) < i

Hence F(xfr) is a l.b.f. for F{x). Q.E.D.

Note: lffj(d) = w jd,

FM = F(x) - r^ wy- = F(x) - rW is a d.l.b.f. for F(x).
7=1

One may use this d.l.b.f. as the c.l.b.f. (cell lower bounding function), but there is a slightly
tighter bounding function available:

11

ft
where yj is the solution to

min d(yjtzp (2)

The computation of y} is a relatively simple procedure. (It is the finding of the closest point in a
cell to a given point Zj).

The algorithm requires that the feasible region be divided in initial cells. The feasible region
being Rn does not cause difficulties here since it is well established that the optimal solution
must lie in the convex hull of the points Zj. Hence, choosing as the feasible region the smallest
cell that contains all of the Zj points, and choosing this cell as the initial starting cell for the
algorithm will suffice.

Some example problems using the cell lower bounding function of Equation 2 were run and
the results are given in Section 3.3. These examples indicate that the algorithm with this basic
lower bounding function may be useful especially in finding a good starting point for some other
algorithm. That is, the algorithm slows down appreciably as the upper and lower bounds come
together (that is, the asymptotic rate of convergence appears to be sublinear).

The Big Square-Small Square (BSSS) Algorithm of [7], also a spatial branch-and-bound
algorithm, has many similarities with the algorithm given above. For the problem P1, it uses the
lower bounding function given in Equation 2. The BSSS algorithm, while described for 2-
dimensional problems, also allows for the feasible region to be a union of polygons. While there
is nothing preventing the extension of the algorithm given above to this case also, it is not done
here. One important difference for the BSSS algorithm is that instead of dividing the cell with
the smallest lower bound estimate, all cells are divided (and the subcells with a value for the
lower bounding function greater than the value of the best point found so far are discarded).
The main computation justification given for this was the simplicity of implementation.

While the above lower bounding function will be sufficient for the general single-facility Weber
problem, there are some important variants for which an improved lower bounding function may
be found. We consider two such problems, each of which uses Euclidean distance as the
metric. The improved lower bounding functions given below give far superior results than the
lower bounding function in Equation 2 and for the BSSS algorithm on the appropriate problems.
It is the use of these special lower bounding functions that is the main difference between this
algorithm and the BSSS algorithm.

3.1. Euclidean Distance, Concave Cost Functions
Consider the following variant of problem P1:

P1 a) min F(x) = min JT fj(d(x9zp)

xeS xe S

Suppose that each of f;(d) cost functions are concave in d, besides being continuous and non-

12

decreasing in d. While efficient algorithms exist for the case of fj(d) being convex in d, they are
not guaranteed to be find the global optima should fj be concave.

The idea here is to determine, for each cost function fj, a lower bounding function over a cell
R that is of the form a+bd2. Were all the fj's actually such quadratics, then the problem would
be trivial to solve:

J /
FQ(x) = £ (dj + bjd(x,zp2) = £ (dj + bp

7=1 7=1

/ J J J

7=1 7=1 7=1 7

which is a simple quadratic function in x. To minimize this function over a cell R, one only has
to solve:

/ J J J

minY df + xfx Y b- - 2**Y b?l + Y b^.% (3)
xeR

Let:
j J J

7=1 7=1 7=

f bfj + f bjz/ij
>=1 ; = 1

« J J J

J
i4 +

7

= A + B{x-Z)\x-7) - B2Z + J 6 ^ . (4)

Solving this problem is then equivalent to solving

min d{x7)
xeR

the solution of which is given by

>
Z1' Otherwise (5)

Were F not of this special quadratic form, the quadratic lower bounding function for each fj
could be used in the above analysis. A lower bound for F in R can then be found by plugging
this value of x*R into the above approximation. All that remains is to find the ^ and bj
coefficients (these depend of course on the cell R) to use in forming the quadratic programming
problem in Equation 3.

Let U; and L be given by (the subscripts on R are omitted here):

13

L. = min

Uj=maxd(y,zp (6)
y€R

That is, these are the minimum and maximum distances from Zj to points in cell R. (One may
use d(x(R),Zj)± r(R)) instead).

aj and bj are then given by:

Note that bj must be non-negative since fj is a non-decreasing function. Also note that

fj<Uj) =

and

Hence this convex quadratic approximation must bound the concave fj from below for Lj < d <
Uj. That is,

for LjZd j
Now plug the values for ^ and bj into Equations 4 and 5 to get x*R. Then F(R) is obtained by
computing

F(R) = FQ(x\) ^A + Bix'z-mx^-V-BZZ+^bjZj'Zj (8)

3.2. Power Cost Functions
Consider this variant of problem P1:

P1b)

Suppose that each of fj(d) cost functions are of the form
f:(d) = W/ft, C: > 0

J J J

This form is discussed is for example in [3] and [2], and allow for more accurate transportation
cost fitting than the simple linear function (Cj=1).

There are three cases to be considered. The first is l>Cj>0, the second is 2>cy> 1, and the
third is cy>2. In considering these cases, the subscript of j will be suppressed for notational
simplicity. When the aj and bj terms have been computed, they can be used to compute F(R) in
the same manner as for P1 a.

14

3.2.1. Case 1
For l£c>0, f(d) would be concave, and the lower bounding function from the previous section

could be used. Applied to this function, a and b would be given by:

i
' ' ' "

b • VTF

3.2.2. Case 2
Here, the same lower bounding function as for the first case may be used. Since Case 2 is

convex, it remains to be shown since that this function actually bounds f from below. We must
show that

for L<d<U
Consider the problem

minftd) - q{d)

Since both f and q are differentiable over the interval, the minimum must occur either at an
endpoint or at a stationary point. Since the value of the difference is 0 at the endpoints (which is
acceptable), we need only concern ourselves with stationary points:

f(d) - q\d) = wear1 - 2 ^ ^ 5 ^ =°
—>

f/^ — if
wed0"2 = 2vv— ~

PL2

To test whether this d is a relative maximum or minimum, compute the second derivative at its
value:

Using wcd?~2 = 2w
IP--L2

^ ~ ^ < 0

Therefore, this d is a relative maximum for the difference function, which implies that that the
difference function is positive over the appropriate range.

15

3.2.3. Case 3
Let us construct the quadratic as follows:

Let r be any positive distance. Let q(d) be constructed so that q is tangent to f at r. Hence,
find a and b so that:

/ = wcr*-1 =2br

2-c - . c
a ss w>—- / * 6 = w-

*> »̂

Clearly, the quadratic approximation equals f at r, but it remains to be shown for other positive
values of d that the quadratic approximation is not greater than f.

It is sufficient to show that for d > r than the derivative of f is greater that the derivative of the
approximation, and for 0 < d < r, the reverse is true:

q'(d) = wcr*~2d

fid) =

q\d)

For c> 2 (Case 3), this last term is greater that 1 for d>r and less than 1 for d<r.

To determine which value of r to use to the lower bounding function, it is plausible to select r
so that

or

wUc — w r° — w-r^^U2 = wLc — w r° — vv-
2 2 2 2

2

Plugging this value of r into the equation for q(d),

The difference between this formula for q(d) and the one for case 2 is simply the value of the
constant term.

16

3.3. Examples
The spatial branch-and-bound algorithm was programmed with two different lower bounding

functions. The first is the basic location lower bounding function as in Equation 1, and the
second is the quadratic lower bounding function from the previous section. Several problem
sets of different dimensions were randomly generated. For all problems, the location of the
sources were taken to be uniform on the square (or cube or hypercube) with width 100. The
distribution of the weights and exponents were also taken to be uniform, with the bounds as
given in Table 3-1. The runs were all done on a MicroVax II workstation at Carnegie Mellon.
The running times listed in the tables are all in seconds.

The first four problems differ in the range of the exponent, with M211 having concave cost
functions, M212 nearly linear having some concave, some convex, and M213 nearly quadratic
having all convex cost functions. M214 has a exponent range covering those for the first three
problems. The second four problems differ from the first only in that they have double the
number of sources.

The results for the basic location lower bounding function on four of the problems are given in
Table 3-2. While the runs were not as bad as those in Tables 2-2, 2-3, and 2-4, they were also
not very successful. As in those other examples, the number of active cells was increasing
linearly with the number of iterations, and convergence of the algorithm was being bogged down
because of that. It should also be noted that the algorithm performed better for the more
concave cost functions (M211 rather than M212 or M232) and it is precisely this sort of problem
that would cause the normal Weber problem algorithms difficulties.

The improved lower bounding function of section 3.2 was used on the problems of Table 3-1.
The results for the 2-dimensional problems are given in Table 3-3. Here, the results are far
more successful than for the basic algorithm. All the runs converged in reasonable amounts of
time (given in the tables in seconds) and iterations. Note that the number of active cells did not
grow with the number of iterations, but stayed in some interval. Here, the more quadratic the
cost functions (M213 and M223), the quicker the convergence. This is logical since the lower
bounding function used here incorporated a quadratic approximation.

Runs for the higher dimensional problems are given in Table 3-4. In these cases also, the
algorithm converged with the number of active cells again remaining relatively stable for each
problem. However, one the drawbacks of the spatial branch-and-bound algorithm can be seen
here. The computation time necessary to achieve a given level of accuracy grows exponentially
with the dimension of the space. Here, each additional dimension resulted in a 4.5-5.5 time
increase in execution time.

17

Problem Set
M211
M212
M213
M214
M221
M222
M223
M224
M311
M312
M321
M322
M411
M511
M611

Dimension
2
2
2
2
2
2
2
2
3
3
3
3
4
5
6

Sources
50
50
50
50

100
100
100
100
50
50

100
100
50
50
50

Weight Range
[1.10]
[1.10]
[1.10]
[1.10]
[1.10]
[1.10]
[1.10]
[1.10]
[1.10]
[1.10]
[1.10]
[1.10]
[1.10]
[1.10]
[1.10]

Exponent Range
[•2,9]

[.5,1.5]
[15,2.5]
[.2,2.5]
[.2,9]

[.5,1.5]
[1.5,2.5]
[.2.2.5]
[•2,9]

[.2,1.5]
[•2,9]

[-2,1.5]
[.2,1.5]
[•2,1.5]
[.2.1.5]

Table 3-1: Problem Set Characteristics

PROBLEM

M211

M212

M213

M312

ITERATION

1
238

1038

1
308

1008

1
361

1061

1
500

1000

CELLS

4
410

2046

4
612

2025

4
587

2099

8
2480
4778

LOWER BOUND

1.7311d+03
3.3260d+03
3.3518d+03

1.2577d+04
2.6191d+04
2.6373d+04

5.5326d+05
1.3111d+06
1.3199d+06

1.3305d+04
2.4711d+04
2.4989d+04

UPPER BOUND

3.5953d+03
3.3592d+03
3.3592d+03

3.1372d+04
2.6454d+04
2.6454d+04

1.9846d+06
1.3243d+06
1.3243d+06

3.1590d+04
2.5545d+04
2.5544d+04

PRECISION

.52

.0099

.0022

.60

.0099

.0030

.72

.010

.0033

.58

.033

.022

TIME

117.6
554.3

152.8
530.9

179.3
564.6

556.1
1209.7

Table 3-2: Basic Lower Bounding Functions

18

PROBLEM

M211

M212

M213

M214

M221

M222

M223

M224

ITERATION

1
15
25
42
57

1
11
17
23
28

1
7

12
18
21

1
7

12
16
18

1
16
30
40
52

1
11
17
21
30

1
8

12
16
17

1
8

12
15
19

CELLS

4
11
19
15
13

4
6
7
6
6

4
4
4
4
2

4
4
1
4
3

4
13
13
13
13

4
6
6
8
5

4
3
3
3
1

4
3
4
2
4

LOWER BOUND

2.5964d+03
3.3286d+03
3.3561 d+03
3.3589d+03
3.3592d+03

2.3259d+04
2.6358d+04
2.6441d+04
2.6451d+04
2.6454d+04

1.1726d+06
1.3127d+06
1.3231d+06
1.3242d+06
1.3243d+06

6.8608d+05
7.6947d+05
7.7402d+05
7.7412d+05
7.7418d+05

4.5456d+03
5.8646d+03
5.9155d+03
5.9176d+03
5.9181d+03

3.7929d+04
4.3760d+04
4.3928d+04
4.3949d+04
4.3953d+04

1.7857d+06
2.0545d+06
2.0590d+06
2.0607d+06
2.0609d+06

9.5239d+05
1.0788d+06
1.0831d+06
1.0837d+06
1.0837d+06

UPPER BOUND

3.4221 d+03
3.3595d+03
3.3593d+03
3.3592d+03
3.3592d+03

2.6688d+04
2.6459d+04
2.6454d+04
2.6454d+04
2.6454d+04

1.3248d+06
1.3243d+06
1.3243d+06
1.3243d+06
1.3243d+06

7.7445d+05
7.7425d+05
7.7419d+05
7.7419d+05
7.7418d+05

6.0336d+03
5.9182d+03
5.9182d+03
5.9182d+03
5.9181 d+03

4.4351 d+04
4.3959d+04
4.3953d+04
4.3953d+04
4.3953d+04

2.0639d+06
2.0617d+06
2.061 Od+06
2.0609d+06
2.0609d+06

1.0843d+06
1.0841d+06
1.0838d+06
1.0837d+06
1.0837d+06

PRECISION

.24

.0092

.00094

.000094

.0000099

.13

.0038

.00048

.000099

.0000047

.11

.0088

.00090

.000088

.0000059

.11

.0062

.00023

.000087

.0000079

.25

.0090

.00044

.000088

.0000098

.14

.0045

.00057

.000096

.0000053

.13

.0035

.00096

.000075

.0000032

.12

.0049

.00059

.000060

.0000060

TIME

16.5
28.2
48.8
66.9

12.0
19.3
26.6
32.7

7.7
13.8
21.8
25.8

7.0
13.0
18.1
20.7

35.3
68.0
92.0

120.8

22.8
37.3
47.0
68.6

15.8
26.4
36.9
39.6

15.3
24.8
32.4
42.4

Table 3-3: Improved Lower Bounding Functions, 2-Dimensions

19

M311

M312

M321

M322

M411

M511

M611

ON

1
29
40
75
102

1
18
32
46
62

1
25
46
79
108

1
21
33
46
66

1
33
73
98
139

1
75
155
253
360

1
163
326
607
832

CELLS

8
13
32
27
26

8
13
12
15
15

8
23
30
35
31

8
10
13
16
11

16
39
21
21
41

32
78
78
102
113

64
187
327
290
224

LOWER BOUND

2.9883d+03
3.5584d+03
3.5699d+03
3.5729d+03
3.5731 d+03

2.2649d+04
2.5306d+04
2.5521 d+04
2.5541 d+04
2.5543d+04

5.3202d+03
6.2461 d+03
6.281 Od+03
6.2866d+03
6.2871 d+03

3.7452d+04
4.1908d+04
4.2174d+04
4.2202d+04
4.2204d+04

2.5603d+04
2.9558d+04
2.9800d+04
2.9826d+04
2.9828d+04

3.7145d+04
4.1776d+04
4.2152d+04
4.2190d+04
4.2193d+04

3.6256d+04
4.0321 d+04
4.0685d+04
4.0722d+04
4.0725d+04

UPPER BOUND

3.6119d+03
3.5739d+03
3.5732d+03
3.5732d+03
3.5732d+03

2.5666d+04
2.5546d+04
2.5544d+04
2.5543d+04
2.5543d+04

6.3380d+03
6.2890d+03
6.2872d+03
6.2872d+03
6.2872d+03

4.2476d+04
4.2207d+04
4.2205d+04
4.2205d+04
4.2205d+04

2.9856d+04
2.9831 d+04
2.9829d+04
2.9829d+04
2.9829d+04

4.2223d+04
4.2194d+04
4.2194d+04
4.2194d+04
4.2194d+04

4.0759d+04
4.0727d+04
4.0726d+04
4.0726d+04
4.0726d+04

PRECISION

.17

.0043

.00093

.000074

.0000081

.12

.0094

.00093

.000092

.0000081

.16

.0068

.00099

.000094

.0000093

.12

.0071

.00074

.000082

.0000088

.14

.0091

.00097

.000096

.0000084

.12

.0099

.00099

.00010

.000010

.11

.01

.00099

.00010

.0000098

TIME

65.1
91.5
178.0
244.9

38.2
71.0
105.6
145.2

110.6
214.1
377.2
520.0

88.9
147.9
212.0
310.7

126.3
321.2
448.0
655.9

634.3
1437.5
2453.7
3573.8

2706.1
6074.7
12046.9
16867.6

Table 3-4: Improved Lower Bounding Functions, Higher Dimensions

20

4. Other Formulations

4.1. Min-Max Problem
The min-max location problem is given by:

P2) min

It is easily seen that the following is a lower bounding function for P2:

F(x,r) = maxffd(x,zp-r)

A slightly tighter cell lower bounding function is given by:

F(R) = maxfj(d(yj,zj)-r)

where y^ is the solution to

min dtyzp (10)

As for the min-sum problem, choosing as the initial cell for the algorithm the smallest cell
containing all of the Zj points will suffice.

This lower bounding function in Equation 10 was used on several problems given in Table
3-1. The results are given in Table 4-1. The number of active cells increases here roughly
linearly with the number of iterations, which accounts for the relatively slow convergence.

4.2. Max-Min Problem
Consider max-min problem-

PS) max minfjidfazj))

This is equivalent to the following max-min problem:

P3') min max-ffd(x,zp)

A Lower Bounding Function for P3 is given by:

F(x,r) = max -fj(d(x,Zj)+r)

As for problems P1 and P2, a slightly tighter cell lower bounding function is given by:

21

where y^ is the solution to

max d(yj9zp (11)

Unlike problems P1 and P2 where the the unconstrained problem would generally have a
bounded solution (in the convex hull of the points Z;)9 here S must be a specified compact set,
for otherwise an unbounded solution would be likely. (That is, since it is desired to be as far
away from the points z; as possible, infinity in any direction would be optimal if it were feasible.)
We consider here some examples where S is is given as a box, using simple upper and lower
bounds on the components of x.

Let S be a box defined by

S m {xe Rn |XL ' '<* < Xtf9 «=1 «}
The spatial branch-and-bound algorithm given in Section 2 requires that the region be divided
into initial non-overlapping cells. Since the box S is the same form as a cell, one may use the
initial cell division as the single cell given by the box S.

As for the problems in Table 3-1, these problems were constructed by generating the sources
according to a uniform distribution on the [0,100]X[0,100] square and using power functions with
weights and exponents drawn from a uniform distribution. S was taken to be the
[30,70]X[30,70] box. The parameters used to generate these problems are given in Table 4-2.

The results using the lower bounding function given in Equation 11 are given in Table 4-3.
There is one thing of note concerning the runs. The algorithm converges much faster if the
solution is on the boundary. (TC=n in the table give n, the number of tight bounds for the
optimal solution.)

22

M211

M212

M213

M214

M311

noN
1

22
81

282

1
38

120
378

1
52

165
505

1
51

155
506

1
57

272
1142

CELLS

3
15
54

216

4
31
76

229

4
39

104
336

4
44

110
318

8
72

342
1256

LOWER BOUND

2.4110d+02
3.0247d+02
3.0472d+02
3.0498d+02

2.5662d+03
3.4737d+03
3.5006d+03
3.5035d+03

1.2588d+05
2.0864d+05
2.1053d+05
2.1071d+05

1.0195d+05
1.9002d+05
1.9164d+05
1.9181d+05

2.3722d+02
3.1091d+02
3.1355d+02
3.1382d+02

UPPER BOUND

3.6738d+02
3.0517d+02
3.0502d+02
3.0501 d+02

5.2648d+03
3.5066d+03
3.5041 d+03
3.5039d+03

3.7663d+05
2.1074d+05
2.1074d+05
2.1073d+05

3.4891 d+05
1.9192d+05
1.9183d+05
1.9183d+05

3.8445d+02
3.1405d+02
3.1386d+02
3.1386d+02

PRECISION

.34

.0089

.00098

.000099

.51

.0094

.00098

.000099

.67

.010

.00098

.000099

.71

.0099

.00097

.00010

.38

.010

.0010

.00010

TIME

11.3
39.8

137.6

19.1
58.7

184.3

25.9
80.5

246.7

25.0
74.5

243.0

57.1
271.2

1163.9

Table 4-1: Min-Max Problems

Problem Set Dimension # Sources Weight Range Exponent Range
T211
T212
T213
T214
T221
T222
T223
T224

2
2
2
2
2
2
2
2

50
50
50
50

100
100
100
100

[5.10]
[5,10]
[5.10]
[5.10]
[5.10]
[5.10]
[5.10]
[5.10]

[-5.1.5]
[-5.1.5]
[-5.1.5]
[.5.1.5]
[.5.1.5]
[.5.1.5]
[.5.1.5]
[.5.1.5]

Table 4-2: Max-Min Problem Set Characteristics

23

PROBLEM

T211
TC-1

T212
TC=0

T213
TC-1

T214
TC=1

T221
TC=0

T222
TC=0

T223
TC=0

T224
TC=0

ITERATION

1
9

13
18

1
10
22
41

1
6
9

12

1
7

11
15

1
9

20
29

1
13
28
37

1
16
24
32

1
19
37
46

CELLS

4
5
5
6

4
7
9

12

2
3
2
4

4
5
4
4

4
6
7
7

4
11
5
6

4
4
5
5

4
18
10
10

LOWER BOUND

-4.9248d+01
-4.6561 d+01
-4.6531 d+01
-4.6523d+01

-5.4479d+01
-4.6722d+01
-4.6365d+01
-4.6350d+01

-4.1181d+01
-3.9198d+01
-3.9198d+01
-3.9189d+01

-4.2255d+01
-3.6391d+01
-3.6261 d+01
-3.6243d+01

-4.9248d+01
-4.3969d+01
-4.3762d+01
-4.3737d+01

-4.5387d+01
-3.9464d+01
-3.9257d+01
-3.9243d+01

-3.7219d+01
-3.1595d+01
-3.1501 d+01
-3.1487d+01

-4.0303d+01
-3.3955d+01
-3.3772d+01
-3.3761 d+01

UPPER BOUND

-3.4557d+01
-4.6305d+01
-4.6493d+01
-4.6519d+01

-3.8406d+01
-4.6317d+01
-4.6339d+01
-4.6347d+01

-3.3203d+01
-3.8976d+01
-3.9167d+01
-3.9186d+01

-2.4001d+01
-3.6077d+01
-3.6226d+01
-3.6240d+01

-3.4557d+01
-4.3615d+01
-4.3720d+01
-4.3733d+01

-3.2318d+01
-3.9078d+01
-3.9233d+01
-3.9240d+01

-2.4164d+01
-3.1386d+01
-3.1470d+01
-3.1484d+01

-2.2015d+01
-3.3641 d+01
-3.3749d+01
-3.3758d+01

PRECISION

.30

.0055

.00083

.000097

.30

.0087

.00057

.000062

.19

.0057

.00077

.000084

.43

.0086

.00094

.000092

.30

.0081

.00095

.000095

.29

.0098

.00062

.000098

.35

.0066

.00099

.000083

.45

.0093

.00066

.000085

TIME

5.2
7.3
9.7

5.7
11.5
20.6

3.8
5.3
6.9

4.3
6.3
8.3

9.8
20.2
28.8

13.6
27.9
36.5

16.6
24.3
32.0

19.4
36.6
45.2

Table 4-3: Max-Min in Box, 2-Dimensions

24

4.3. Mixed Formulations
It is possible to use the spatial branch-and-bound algorithm given above for various mixed

location formulations. For example, consider the mixed min-sum and min-max formulation:
n

min £ fjidOvp) +

A d.l.b.f. for this formulation can be found by simply adding the d.l.b.f.'s for the two parts:

F(x,r)

where

F2(x9r) = maxffdixjp-r)
QZjZJ

A tighter cell lower bounding function can be found by using the tighter versions for these two
parts as given In Equations 2 and 10:

F(x,r) = Fl(R)+F2(R)

where

F2(x9r)

where yj is the solution to

min
y.eR

5. Conclusions and Future Work
The spatial branch-and-bound algorithm appears promising, particularly for the general

Weber (min-sum) problem with Euclidean metric and power cost functions. The key to
acceptable convergence rates seems to be in an improved lower bounding function, For the
problem P1a, the Lipschitz based lower bounding function resulted in rather slow convergence
whereas a quadratic lower bounding function converged far more rapidly, and even gave
reasonable results for 3 and 4-dimensional problems.

While good results were seen using the basic lower bounding function for the max-min
problem, they were not so good for the min-max problem. Perhaps trying to improve the lower
bound estimate may yield benefits for the min-max problem.

25

The special lower bounding function for the the min-sum problem relied on using the
Euclidean metric and power cost functions. For other metrics, the basic lower bounding function
(Equation 2) is still usable, but attempts should be made to find an improved bounding function
as done here for formulation P1a and P1b.

One obvious extension of this algorithm is to location problems with constraints. For example
a feasible region consisting of a union of polygons should be able to be handled in the way as in
the BSSS algorithm of [7]. If the cost functions were power functions, it is expected that using
the improved lower bounding function given in Section 3.2 would result in vastly improved
performance over the BSSS algorithm.

26

I. Convergence proof of the Algorithm
P) minF(x)

Lemma 7: Let F(x,r) be a d.l.b.f. for F, and (ypfxp, rp) p = 1 P be a finite set of
points and radii that satisfy:

ii)ype RpnS

iii) min F(yp) - e < min F(xp9rp)
p p

Then the x* that minimizes F(yp) is an e-solution for (P)

Proof:

F(xpfrp) < F(x) VxeCix^p)

minj{xp,rp) < F(x) VxeS
p

—»

Fix*) - e = minF(xp) - e < min F(xp,r^ ^ F(x) VjceS
p p

or
F(x*) - e < F(x) V xe 5<- -> x*\s an e-solution (Q.E.D.)

Lemma 8: Let F(x,r) be a d.l.b.f. for F, and (yp,xpf r^ p = 1,...,P be a finite set of
points and radii that satisfy:

paS (xpeS)

ii)ype RpnS

iii) rp < 5(e) (5 as given in Definition 3).

Then
min F(y) - e < min F(x ,r)
p p

(And consequently the hypothesis of Lemma 1 is satisfied.)

Proof:

-e < Fix^rJ p=l,...^(by Definition 3)

min F(yp) - e £ minF(xp,rp)(Q£.D.)
p P

Lemma 9: Let F(x,r) be a d.l.b.f. for F defined over a compact set S. Let {xp,
p=1 ,...,P be a collection of points in S and radii that satisfy:

27

xpeS.

Let x* be the solution of min F(xp), x7 be the solution of min F(xp, rp). Then if

7 £ 5(e), x* is an e-solution to (P).

Proof:

FQcs) > F(x) - e (Definition 2)
FQD - e > minF(xp) - e = F(x* - e)

p

—>

min F(xp,rp) > minF(xp) - e.(Q.E.D. by Lemma 2)

Theorem 10: Let F(x,r) be a l.b.f. to F(x) defined over a compact set S. Further
suppose that S may be divided into cells Rpf p=1 ,...,P where

ii)V{RpnRq] =0 forp*?.
Then the ALGORITHM (Section 2) converges to an e-solution for (P) in a finite
number of iterations (e > 0).

Proof: Let S = 5(e) as in Definition 2. Let n = max n(Rj, 5) as in Definition 5. By

Lemma 3, any region R with rR < 5 cannot be divided before the hypothesis of
Lemma 1 is satisfied (and hence an e-solution is found). Therefore the maximum
number of iterations possible is

(p is the number of sub-regions g\f\ divides a region into.) [an iteration is taken to be
Step 2 of the ALGORITHM.]

28

REFERENCES

[I] Branin, F. H., Jr.
Widely Convergent Method for Finding Multiple Solutions of Simultaneous Nonlinear

Equations.
IBM Journal of Research and Development 16():504-522,1972.

[2] Chen, Reuven.
Solution of Location Problems with Radial Cost Functions.
Computers and Mathematics with Applications 10(1):87-94,1984.

[3] Cooper, Leon.
An Extension to the Generalized Weber Problem.
Journal of Regional Science 8() :181 -197,1968.

[4] Drezner, Z.; Wesolowsky, G.O.
Single Facility I -distance Minimax Location.
SIAM J. Algebraic Discrete Methods 1 (3):315-321,1980.

[5] Drezner, Z.; Wesolowsky, G.O.
A Maximin Location Problem with Maximum Distance Constraints.
AIIE Trans. 12(3):249-252,1980.

[6] Goldstein, A. A., and Price, J. F.
On Descent from Local Minima.
Mathematics of Computation 25():569-574,1971.

[7] Hansen, P, Peeters, D., Richard, D, and Thisse, J.
The Minusum and Minimax Location Problems Revisited.
Operations Research 33(6)'A251 -1265,1985.

[8] Katz, I.N.
Local Convergence in Fermat's Problem.
Mathimatical Programming 6():89-104,1974.

[9] Meewella, C. C, and Mayne, D. Q.
An Algorithm for Global Optimization of Lipschitz Continuous Functions.
Journal of Optimization Theory and Applications 57(2):307-322, May, 1988.

[10] Mitten, I.G.
Branch-and-Bound Methods: General Formulations and Properties.
Operations Research 8():24-34,1970.

[II] Shubert, Bruno, O.
A Sequential Method Seeking the Global Maximum of a Function.
SIAM Journal of Numerical Analysis 9(3):379-388,1972.

