
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Development of Software for
Solving Systems of Nonlinear Equations

by

Karl Westerberg

EDRC 05-36-89
Carnegie Mellon University

DEVELOPMENT OF SOFTWARE FOR
SOLVING SYSTEMS OF NONLINEAR EQUATIONS

Karl Westerberg

Engineering Design Research Center

Copyright© 1989 ASCEND

Uwersity Libraries

f Me//0n

Table of Contents
1. Introduction 1
2. Description of the software structure 1
3. Implementation 3

3.1. Evaluation 3
3.2. Storage 3
3.3. Soiving 4

4. Conclusions 5
I. Solving example 6
II. Insert files 10

List of Figures
Figure 2-1: Module dependency tree

1. Introduction

This report discusses the development of a stand alone software package for solving large sparse

systems of nonlinear equations. This work continues the devetopment effort toward a solving capability for

the ASCEND mathematical modeling environment (Piela, 1989), and is based on a linear equation solver

that we have previously developed (Westerberg, 1989). Readability, modularity, flexibility, and portability

were the issues given top priority in the solver's design. Our chosen software/hardware platform was

Pascal on an Apollo workstation. Although efficiency was also a concern, modularity took precedence; it

was important for the software to easily incorporate multiple solving strategies.

This manuscript is divided into two distinct parts the first of which describes in general terms the

development of the software described above. The second part located in appendix II is primarily

intended for software developers and contains the Pascal include files for the software. Each include file

contains a set of procedure declarations; and each declaration contains the parameters associated with

the procedure, and a short description of what the procedure does.

2. Description of the software structure

Figure 2-1: Module dependency tree

The module dependency tree is shown in figure 2-1. The modules which comprise the non-linear

equation solver are as follows:

1. var: management of variables and variable tables.

2. expr: storage of general algebraic expressions.

3. eqn: management of equations and equation lists.

4. eqnjnan: higher level manipulation of equations, expressions and variables, e.g.,
evaluation of expressions and their derivatives.

5. slv: solution of a system of non-linear equations. The structure supports the general
optimization problem, although the current implementation ignores the objective function
and treats all constraints as equalities.

6. filter: contains some commonly used equation and variable filters.

The insert files can be found in the appendix II. The modules llnsol, part, gauss, and mtx are part of

a linear equation solver which have been described in (Westerberg, 1989).

This solver differs from many others in that it incorporates an internal representation of an equation.

Most other solvers require that the user write a routine which evaluates the equation (and possibly its

derivatives), and then bind this routine with the solver which leaves the user with the problem of having to

represent equations. By devising our own representation, we have relieved the user of the burden of

writing complex code for performing operations on equations, such as evaluation of derivatives.

We have chosen to separate the representation and manipulation of equations into four modules: var,

expr, eqn, and eqn_man. We felt that this separation constituted a set of abstractions which provided a

high degree of flexibility in the design and re-use of this software. The eqn and var modules are

responsible for managing collections of equations and variables, and were separated from the storage of

expressions. The reason for making eqnjnan (equation manipulator) a separate module was that its

functionality doesn't depend on the data representation.

We consider equations and expressions to be different. An equation is a statement which can be true

or false; an expression represents a real number. An equation is composed of two expressions separated

by a relational operator (such as * or <).

After some discussion we decided to export the structure of the variable record to the user. A complete

data abstraction would have demanded that this record be completely hidden from the user and the fields

be accessible only through procedure calls. However, we envisioned the user needing to add fields to the

variable record. With an exported record definition this is straightforward; however, a hidden structure

would require the user to write two additional procedures (one to fetch the value and another to set the

value) in addition to adding the field to the record. Also, with a hidden structure, a reference to a variable

would require a function call, which is considerably more expensive than dereferencing a pointer. The

same arguments were applied to the equation record.

We anticipated that users might want to count the number, or obtain a list of variables, with a specified

property (such as fixed). Rather than write a separate routine for each property, we allowed the user to

pass in a function that takes a variable as an argument and returns true or false depending on whether

the variable has the given property or not. We call such functions filters, and these filters can be written by

the user. To assist in this task we wrote a filter module which contains some common filters (such as a

filter accepting free/fixed variables). Again, the same arguments were applied to equations.

3. Implementation

There are three issues of implementation worthy of mention: storage of expressions, evaluation of

expressions (and their derivatives), and the algorithm for solving systems of equations.

3.1 . Evaluation

We evaluate expressions and all of the derivatives using a stack (Ponton, 1982). This involves

scanning the expression in postfix for the tokens, (a token is either a constant, a variable reference, or an

operator) and maintaining a function stack and possibly one or more derivative stacks. This method is

numeric, and thus the derivatives need not be stored symbolically. However, the derivatives computed

are exact. We extended the method to handle second derivatives, anticipating the need for them in the

solution of optimization problems.

3.2. Storage

We had considered two different representations for equations: a threaded tree (Knuth, 1973) and an

array (tokens stored in postfix order). The tree is a good for dealing with structural rearrangement, the

array is better for evaluation. Our evaluation method required that the tokens be accessed in postfix

order, and a tree representation (even threaded) would not provide them as quickly as an array

representation.

Although the ability to perform structural rearrangement was important, most time would be spent in

evaluation and so we adopted an array representation. However, in our representation each token

includes pointers back to the root(s) of the subexpression(s). This allows us to do all operations

associated with a tree representation efficiently and maintain an effective evaluation mechanism. We

made these pointers relative, so that most of them would remain untouched, even if a large part of the

expression was removed or replaced. Also, informal calculations suggested that the tree representation

would require at least twice as much memory as the array representation (or more, since allocation of the

tree would occur in small pieces, whereas the array would be allocated as one piece). Since we were

designing a solver to handle large sparse systems, this difference could be on the order of a megabyte.

3.3. Solving

We implemented a variant of Newton's which searches along the Newton-gradient plane (Westerberg

and Director, 1978). One can specify the maximum allowable step to be taken at a given iteration, and if

the Newton step is too large, then a direction between the Newton and the gradient is efficiently selected

so that the step is as close as desired to the maximum allowed. The solver adjusts the maximum step

allowed after each iteration.

We found the method for adjusting the maximum step suggested in this algorithm to be unsuitable. Our

experience was that whenever the solver rejected the Newton direction, the maximum step was reduced

to virtually zero. However, the heuristic method for increasing the maximum step size was unable to

increase it to reasonable values. In an attempt to correct this problem we replaced the complicated

method with a simple one: we simply multiplied the maximum step by 1.5 if the previous step was

accepted, and we divided it by 2 if the previous step was not accepted. In addition, after each successful

step, we attempted to search in the Newton direction regardless of the value of the maximum step. This

improved things somewhat, but with certain problems the maximum step got too small and the Newton

predictions in that area were unacceptable. Furthermore, the step control was still based on arbitrary

scaling factors such as 1.5 and 2 which have no theoretical basis.

We then investigated the Armijo line search (Armijo, 1966) as a method for step control. The Armijo line

search begins by attempting a full Newton step. If the objective function does not decrease (by enough),

the step is rejected and is reduced by a factor based on how much the objective function would have

increased had the step been accepted. Otherwise, the step is accepted and the sequence starts over.

We carried this idea over to the Newton-gradient method. We first tried a full Newton (by setting the

maximum step to infinity). If the objective function reduced, the step was accepted and the maximum

step was reset to infinity. Otherwise, the step was rejected and the maximum step was reduced using the

Armijo line search. We feel that this hybrid algorithm is better than either of the two algorithms it is based

on.

In order to maintain numerical stability during computation, to provide a reasonable objective function,

and to provide reasonable step length control, we needed to scale equations and variables. We scale

variables using nominal values provided by the user (the nominal value is a field of the variable record),

by multiplying each column in the jacobian by the nominal value of the corresponding variable. Having

scaled the variables, the equations are scaled by normalizing them. The weights remain constant for a

specified number of iterations and are then updated. We use the weighted sum of squares as our

objective function. Step length control is based on the scaled step, so that variables with larger nominal

values can take larger actual steps. It is important that the solver only use scaled values for making

internal decisions, such as what step to try and whether to accept it. External decisions such as the

convergence test should be decided independently of the weights. We therefore use the unweighted

residuals to test convergence.

The solver offers the option of partitioning the problem into irreducible blocks and solving each

irreducible block separately. This should increase the speed and reliability of solving problems which

have non-trivial partitions. However, it is possible (although less likely than the reverse) that a problem

cannot be solved when partitioned but can be solved as a single block. This could occur when the

solution of all predecessors to a block and its initial values result in a numerically singular starting point for

that block. The initial singularity could be avoided by solving the entire system. (Here is an example: try

x=0 and cos(y)+x*sin(y)=0, starting at (x,y)=(1,0).) To avoid these pathological cases the user has the

option of turning partitioning off.

4. Conclusions

We have developed a structured solver which should provide a good basis for further research. The

solver has been tested on a large number of examples, including a set of standard problems given in

(Ferraris and Tronconi, 1986). Its performance compares favorably with the results presented in that

reference, and should improve as work progresses.

6

I. Solving example

In this section, we illustrate the use of the solving software on the following problem proposed by

Powell (Powell, 1970).

10,000 vl v2 m i .o
exp(-vl) + exp(-v2) * 1.0001

Starting point: vl = 0, v2 = 1

Firstly we create a variable table with two entries, and an equation list with two entries.

VAR
vl,v2 : var$_t;
var_table : var$_table_t;
el,e2 : eqn$__t;
eqn__list : eqn$_list_t;

var$__create__table (variable) ;
var$_create_var (var_table , 1 , {=>> vl) ;
var$_create_yar (variable , 2 , {=>} v2);
eqn$_create—list (eqn__list);
eqn$_create_eqn (eqn_list , 1 , {=>} el) ;
eqn$_create__eqn (eqn_list , 2 , {=>} «2);

The variable and equation entries are created with default values for most of their fields. To specify the

structure of the problem completely, we need only modify the value field of both variables; and the two

expression fields and the relation field of both equations. Variable values (initial) are specified as follows:

vlA.value := 0.0;
v2A.value := 1.0;

At present, specifying the structure of equations is somewhat tedious; however, an equation parser (to

be written) could make this process much easier. The following illustrates how equations would be

parsed.

VAR
eqn_str : s t r$_at r ing_t ;

eqn_str :« str$_form(/10000 * «1 * #2 * 1.0') ;
parse(eqnjstr , el) ;
str$_destroy (eqn_str);
eqn_str :» str$_£orm('exp(-#l) + exp(-#2) = 1.0001');
parse(eqn_str , e2);
3tr$_jde3troy(eqn_str);

At present, the user can build equations in one of two ways: either hierarchically, or in postfix. We shall

demonstrate both ways by constructing equation 1 in postfix, and equation 2 hierarchically.

Construction of equation 1:

VAR
token : expr$__token__t;
tag : expr$_tag_t;
ok : boolean;

{ Equation 1 in postfix: LHS: 10000 vl v2 v2 * * RHS: 1.0 >
expr$_create_expr_injpostfix(tag) ;

token.op := expr$_const;
token.value := 10000;
expr$__append__token (tag, token);

token.op := expr$_var;
token.v := vl;
expr$__append_token (tag, token) ;

token.op := expr$__var;
token.v := v2;
expr$__append_token (tag, token) ;
expr$_append__token (tag, token) ;

token.op := expr$_mul;
expr$_append_token(tag,token);
expr$_append_token(tag,token);

expr$__return__expr (tag, elA. LHS, ok);

expr$_create_exprMinjpostfix(tag);

token.op := expr$__const;
token.value := 1.0;
expr$__append_token (tag, token) ;

(If the above code is correct, then ok should certainly return true }
expr$_return__expr (tag, elA. RHS, ok) ;

Construction of equation 2:

VAR
token : expr$_tokenjt;
exl,ex2,ex3 : expr$__t; { Temporary expressions }

token.op := expr$_var;
token.v :« vl;
expr$_coznbine (token, exl); { exl « vl }

token.op := expr$__neg;
expr$_combine(token,ex2,exl); { ex2 = -vl, exl destroyed }

token.op := ejqpr$_exp;
expr$_combine (token,exl,ex2); { exl = exp(-vl), ex2 destroyed }

8

token.op :» expr$_var;
token.v :» v2;
expr $__conb±ne (token, ex2); { ex2 » v2 }

token.op :* expr$_neg;
expr $__combine (token, ex3,ex2); { ex3 • -v2, ex2 destroyed }

token.op := expr$__exp;
expr$__combine (token, ex2,ex3); { ex2 • exp(-v2), ex3 destroyed }

token.op := expr$_add;
expr$_combine(token,e2A.LHS,exl,ex2); { e2A.LHS * exp(-vl) + exp(-v2) }

token.op := expr$__const;
token.value := 1.0001;
expr$_combine(token,e2A.RHS); { e2A.RHS = 1.0001 }

As the above example suggests, coding the equations directly into a program may require a lot of

statements. However, if the user is willing to read the equations from a file (or from the keyboard), a

procedure can be written which requires that the user only enter relevant structural information. For

example:

PROCEDURE input__expr (OUT expr : expr$__t);
VAR

tag : expr$_tag_t;
token : expr$_token__t;
vnum : integer;
ok : boolean;

BEGIN { input_expr }
writeln('Enter in the expression in postfix.');
writeln('Terminate using expr$_end.');

WHILE true DO BEGIN
write('Op -> ') ;
readln(token.op);
IF token.op » expr$_end THEN exit;
IF token.op = expr$_const THEN BEGIN

write('Constant ~> ');
readln(token.value);

END; { IF >
IF token.op = expr$__var THEN BEGIN

write('Variable number —> ') ;
readln (vnum);
token, v := var$_get_yar (var_table , vnum) ;

END; { IF }
expr$__append_token (tag, token) ;

END; { WHILE }
expr$_return__expr (tag, expr, ok) ;

END; { input_expr)

In order to solve the problem we must create a "solve system1* which references the variable table and

equation list that we have created.

VAR
system : slv$_system_t;

slv$_create (system) ;
slv$~set_eqn_list (system , eqn_list) ;
slv$_set_var_table (system , var_table);

The solve system is created with a set of default values for attributes, such as maximum number of

iterations, and CPU time limit. If these values are acceptable, the problem is ready to be solved. If the

default values are unacceptable, they can be easily changed. The following shows how to specify the

CPU time limit.

VAR
status : slv$_status_t;

{ Always get the status before modifying it, especially if you only want to
modify some of the parameters }

slv$_get_st at us (system , status);
status.time_limit := 30.0; { 30.0 CPU second time limit }
slv$_change_status (system , status) ;

The system is now ready to be solved. A call to the slv$__presolve procedure prepares the system of

equations for solution, and a call to slv$_solve will attempt to solve the system.

slv$_presolve (system) ;
slv$_solve (system);

On completion of slv$_solve, the "solve status" should be checked to verify that the system of

equations actually converged. This is done by making a call to slv$__change_status. Variable values at the

solution can be obtained by examining v1\value and v2A.value.

10

II. Insert files

{ BEGIN var.lns.pas >

| Prevent this file from being included more than once.

%IFDBF var$_already_inserted %THEN
%BXIT "

%BLSE
%VAR var$_already__inserted

%ENDIF

%INCLUDB '/ascend/utilities/ins/str.ins.pas';
%INCLUDE '/ascend/utilities/ins/list.ins.pas' ;

| All variable numbers must be greater than zero. It is recommended, but not
| required that all variable numbers also be no greater than mtx$_max__order_c.
| Higher level routines that work with a matrix will require variable numbers
| to be in this range. VARIABLE NUMBERS SHOULD ONLY BE READ, NEVER CHANGED?

TYPE

| Warning: If a field is added, then the assignment of its default value must
| also be added to internal routine var_create_var. In addition, EVERY module
| above this one must be recompiled, even modules which don't use the new field.

var$_spec_t
number
vlabel
value
nominal
lower_bound
upper_bound
fixed
solved__for
incidence
block
destroyed

END;
var$_t
var$_table_t
var$ filter t

RECORD
integer;
str$_string_t;
double;
double;
double;
double;
boolean;
boolean;
boolean;
integer;
boolean;

Avar$_spec_t;
UNIV PTR;
AFUNCTION (IN v

{ Variable number (for reference in table) }
{ Variable label (NIL: no label) >
{ Current value of the variable >
{ Nominal value of the variable }
{ Lower bound of value }
{ Upper bound of value }
{ Fixed status >
(Whether the variable has been solved for yet
{ Whether the variable is incident }
{ Which block the variable belongs to (solver)
{ Destroyed status }

var$_t) : boolean;
{ Filters need not be able to handle NILs >

%BJBCT; {**}

PROCEDURE var$_create_table (OUT table : var$_table_t
); EXTERN;

{ -
Creates a variable table and returns a handle to it. The table is initially

?ty.

OUT
table New variable table.

PROCEDURE var$ destroy_table (IN OUT table : var$_table_t
""); EXTERN; "

{ -
Destroys a variable table and all variables in it.

IN
table Variable table to be destroyed.

11

I OUT
| table MIL.

PROCEDURE var$_oreate_yar(IN table : var$_table_t
; IN number : integer

OUT v : var$_t
); EXTERN;

Creates a variable in the table and returns a pointer to it. Default values
of the fields are filled in. If the number exists already, or is out of
range, then the lowest available number is used instead.

IN
table The table in which the new variable is to be created,
number Variable number to create.

OUT
v The new variable.

PROCEDURE var$_destroy_var< IN table : var$_table t;
IN OUT v : var$_t "

); EXTERN;

| Destroys a variable and removes it from the table.
I
IN

table The table that the variable is in.
v The variable to be destroyed.

OUT
v NIL.

FUNCTION var$_get_var (IN table : var$_table_t
; IN number : integer ""
) : var$_t

EXTERN;

Looks up the variable by number on the variable table and returns a pointer to
it. If the variable does not exist, then NIL is returned.

IN
table The variable table,
number Variable number.

RETURN Pointer to the variable specified.

FUNCTION var$_exist(IN table : var$_table_t
; IN number : integer
) : boolean

EXTERN;

Returns true if the variable exists, false otherwise.

IN
table The variable table,
number Variable number.

RETURN Whether or not there is a variable in the table with the given
number.

12

FUNCTION var$_f ind_label (IN table : var$_table_t
."" ; IN vlabel : atr$~string t

) : var$~t "
EXTERN;

Searches the variable table for the given label and returns the first match.
If there is no match, then NIL is returned. A variable with a NIL label never
results in a match.

IN
table The variable table.
vlabel The desired variable label.

RETURN The variable with the given label.

NOTES
All searches are case sensitive. It is the responsibility of the user to
convert all labels to one case if a case insensitive search is desired.

PROCEDURE var$_number_of_yars (IN table : var$_table_t
OUT number_yars : integer
OUT lowest_varn : integer

; OUT highest_yarn : integer
); " EXTERN;

Returns the number of variables defined in the table as well as the lower and
upper bound on the variable numbers.

IN
table Variable table.

OUT
number__vars The number of variables.
lowest_varn Lowest defined variable number.
highest_varn Highest defined variable number.

FUNCTION var$_count(IN table : var$_table_t
"" ; IN filter : var$~filter_t

) : integer
EXTERN;

Returns the number of variables for which the filter returns true.

IN
table The variable table,
filter The filter.

RETURN Number of variables for which the filter returns true.

FUNCTION var$_get vars(IN table : var$ table_t
"" ; IN filter : var$~filter_t

) : pl$ list t "
EXTlRN; "

Returns a list of variables for which the filter returns true. The list will
be in increasing order of variable number.

IN
table The variable table,
filter The filter.

RETURN List of variables matching the filter.

13

%BJXCT;

14

{ BEGIN eqn.ins.pas

I Prevent this file from being included more than once.

%IFDEF eqn$_already_inserted %THEN
%EXIT ""

%BLSE
%VAR eqn$_already_inserted

%BNDIF ~

%INCLUDE '/ascend/utilities/ins/str.ins.pas';
%INCLUDB '/ascend/utilities/ins/list.ins.pas';
%INCLUDB '/ascend/solver/ins/var.ins.pas';
%INCLUDB '/ascend/solver/ins/expr.ins.pas';

| All equation number* oust be greater than zero. It is recommended, but not
| required that all equation numbers also be no greater than mtx$_max_order_c.
| Higher level routines that work with a matrix will require equation numbers
| to be in this range. EQUATION NUMBERS SHOULD ONLY BB READ, NEVER CHANGED!

TYPE
eqn$__relation__t • (eqn$_less eqn$_equal , eqn$_greater);

t Warning: If a field is added, then the assignment of its default value must
| also be added to internal routine eqn_create_eqn. In addition, BVERY module
| above this one must be recompiled, even modules which don't use the new field.

eqn$_spec_t
number
elabel
LHS,RHS
relation
residual
satisfied
included
block
destroyed

END;
eqn$_t «
eqn$JList_t •
eqn$_filter_t *

{ Filters need

RECORD
integer;
str$_string_t;
expr$_t;
SBT OF eqn$_relation_t;
double;
boolean;
boolean;
integer;
boolean;

{ Equation number }
{ Equation label (NIL: no label) >
{ LHS and RHS expressions }
{ Required relation }
{ LHS - RHS >
{ Whether the relation is satisfied or not >
{ Whether equation is included }
{ Which block the equation belongs (solver }
{ Whether equation is destroyed }

Aeqn$_ spec_t;
UNIV_PTR;
AFUNCTION (IN eqn : eqn$_t)
not be able to handle NILs }

boolean;

%EJECT; {**}

PROCEDURE eqn$_create_list (OUT list : eqn$_list_t
); EXTERN;

{ - - -
Creates an equation list and returns a handle to it. The list is initially
empty.

OUT
list New equation list.

PROCEDURE eqn$_destroy_list (IN OUT list : eqn$_list_t
); EXTERN;

Destroys an equation list and all equations in it. The expressions are all
destroyed, but the variables within the expressions are not.

IN
list Equation list to be destroyed.

15

OUT
li*t NIL.

PROCEDURE eqn$_create_eqn (IN list : eqnf_list_t
; IN number : integer

OUT eqn : eqn$ t
); EXTERN;

Creates an equation in the equation list and returns a pointer to it. Default
values of the fields are filled in. If the number exists already, or is out
of range, then the lowest available number is used instead.

IN
list The equation list in which the new equation is to be created,
number Equation number to create.

OUT
eqn The new equation.

PROCEDURE eqn$_destroy_eqn < IN list : eqn$_list_t
; IN OUT eqn : eqn$ t
); EXTERN;

Destroys an equation and removes it from the list. The expressions are
destroyed, but not the variables within the expressions.

IN
list The equation list from which the equation is to be destroyed,
eqn The equation to be destroyed.

I OUT
I eqn NIL.

FUNCTION eqn$_get_eqn (IN list : eqn$_list_t
; IN number : integer
) : eqn$_t

EXTERN;

Looks up the equation by number on the equation list and returns a pointer to
it. If the equation does not exist, then NIL is returned.

IN
list The equation list,
number Equation number.

RETURN Pointer to the equation specified.

FUNCTION eqn$_exist(IN list : eqn$_list_t
; IN number : integer
) : boolean

EXTERN;

Returns true if the equation exists, false otherwise.

IN
list The equation list,
number Variable number.

RETURN Whether or not there is an equation in the list with the given
number.

16

FUNCTION eqn$Jfind_label (IN list : eqn$_list_t
; IN elabel : str$~string_t
) : eqn$~t

EXTERN;

Searches the equation list for the given label and returns the first match.
If there is no match, then NIL is returned. An equation with a NIL label
never results in a match.

IN
list The equation list.
vlabel The desired equation label.

RETURN The equation with the given label.

NOTES
All searches are case sensitive. It is the responsibility of the user to
convert all labels to one case if a case insensitive search is desired.

PROCEDURE eqn$_number__of_eqns (IN list : eqn$_list_t
OUT number_eqns : integer
OUT lowest_eqnn : integer

; OUT highest_eqnn : integer
); ~~ EXTERN;

Returns the number of equations defined in the list as well as the lower and
upper bound on the equation numbers.

IN
list Equation list.

OUT
number_eqns The number of equations.
lowest__eqnn Lowest defined equation number.
highest_eqnn Highest defined equation number.

FUNCTION eqn$_eount(IN list : eqn$_list_t
"" ; IN filter : eqn$~filter_t

) : integer
EXTERN;

Returns the number of equations for which the filter returns true.

IN
list The equation list,
filter The filter.

RETURN Number of equations for which the filter returns true.

FUNCTION eqn$ get_eqns (IN list : eqn$_list_t
" ; IN filter : eqn$~filter_t

) : pl$_list t
EXTERN; ""

Returns a list of equations for which the filter returns true. The list will
be in increasing order of equation number.

IN
list The equation list,
filter The filter.

| RETURN List of equations matching the filter.

17

%EJBCT; {**}

18

{ BEGIN slv.ins.paa

| Prevent this file from being included more than once.

+
%IFDRF slv$_already_inaerted %THEN

%SXIT
%BLSB

%VAR slv$_already_inserted
%BHDIF ""

%INCLUDB '/aacend/utilities/ins/str.ins.pas' ;
%ZNCLUDB '/aacend/utilities/ins/list.ins.pas';
%INCLUDB '/ascend/solver/ins/var.ins.pas';
%INCLUDB '/ascend/solver/ins/expr.ins.pas';
%INCLUDE '/ascend/solver/ins/eqn.ins.pas';
%INCLUDB '/ascend/solver/ins/mtx.ins.pas';
%INCLUDB '/ascend/solver/ins/linsol.ins.pas';

There will be (in general) more than one solver. Since all of them may be
bound in at once (to give a choice of solvers at run-time), the routines must
have different names for each solver, and consequently, different insert files
are required. The naming convention is slvn$_xxx, where n is the number of
the solver. The insert file is correspondingly slvn.ins.pas. All insert
files must have the same "structure". In particular, when a modification is
made, the contents of one insert file may be copied into another, with the
only change being the substitution of "slvm$__" for "«lvn$_".

TYPE
slv$_convergence__t

slv$_technique_t

slv$_converged
slv$_di verged
slv$__inconsi st ent
slv$_timeout
slv$ continue

, { System converged >
, { Solver gave up }
, { Solver found definite inconsistency }
, { Iteration or time limit exceeded }
);{ Solver still trying }

slv$_newton
slv$_newton_a;radient

slv$_status_t «
ready_t o_ sol ve
everything__ok
over_defined
under__de fined
st ruct_singul ar
convergence
solver
technique
calc_ok
residual
iteration
cpu_elapsed
block

num_of
current
size
prev
iteration

END;

verbose
partition
time_limit
iteration_limit
tolerance

unsealed
scaled

END;

- RECORD
: boolean;
: boolean;
: boolean;
: boolean;
: boolean;
: slv$_conv
: integer;
: slv$_tech
: boolean;
: double;
: integer32
: double;
: RECORD
: integer;
: integer;
: integer;
: integer;
: integer ;

: boolean;
: boolean;
: double;
: integer;
: RECORD
: double;
: double;

System is ready to be solved }
Everything is ok }
System is over-defined }
System is under-defined }
System is structurally singular }
•nce_t; { Convergence status }
Number of the solver being used }
ae__t; { Recommendation for next iteration }
Jill numerical calculations ok }
Current total residual }
Current iteration count }
CPU time elapsed so far }

Number of blocks }
Current block number }
Size of current block }
Total size of previous blocks >
Iteration count of current block >

Verbose flag }
Whether or not to solve by blocks }
Time limit }
Iteration limit >
Residual tolerance (per equation) }

Both tolerances must be satisfied }

19

- UNXVJPTR; { System handle }

* y

PROCBDURB slv$_create(OUT system : slv$_system_t
); EXTERN;

Initializes the internal structure of a system and returns a handle to it.
The system is initialized with no equation list, no variable table, and a zero
objective function.

OUT
system Handle to a new system.

PROCBDURB slv$_destroy (IN OUT system : slv$_system_t
; IN destroy_others : boolean
); ~ EXTERN;

The internal structure of the system is destroyed. If destroy_others is true,
then the equation list and variable table are also destroyed, "otherwise, they
are both preserved.

IN
system System to be destroyed.
destroy__others Whether or not to destroy equation list and variable table.

OUT
system NIL.

PROCBDURB slv$_set_eqn_list (IN system : slv$_system_t
"" ; IN eqn_list : eqn$~list_t~

); EXTERN;

Establishes the equation list for the system. This must be done before the
system can be solved.

IN
system The system handle.
•qn_list The equation list to be associated with the system.

PROCBDURB slv$_set_var_table (IN system : slv$_system_t
; IN var__table : var$_table t
); "" EXTERN; "

Establishes the variable table for the system. This must be done before the
system can be solved.

IN
system The system handle.
var_table The variable table to be associated with the system.

PROCBDURB slv$_set_obj_function(IN system : slv$_system_t
; IN obj : expr$ t
); EXTERN;

Establishes the objective function for the system. This must be done for
optimization problems.

IN

20

I system The system handle.
| obj The objective function to be associated with the system.

• - >

PROCEDURE slv$_get_status (IN system : slv$_system_t
OUT status : slv$ status t

); EXTERN;

Returns the status associated with the system.

IN
system The system handle.

OUT
status The current status.

PROCEDURE slv$_change_status (IN system : slv$ system t
" ; IN status : slv$~status~t

); EXTERN;

Modifies the system status. The only fields that can be modified are:

technique Recommended technique.
partition Whether or not to solve each block separately.
verbose Verbose flag.
time_limit CPU time limit.
iteration_limit Iteration limit.
tolerance Residual tolerance, per equation.

All other fields of the status are ignored.

IN
system The system handle,
status New status.

PROCEDURE slv$_presolve(IN system : slv$_system_t
); EXTERN; ""

{ - - —
Prepares the system for solving. This procedure must be called before the
system is solved. To insure proper behavior of the solver, the user cannot
modify the equations or the variables in any way after this procedure is
called, until the solver is done.

IN
system The system handle.

The status can be obtained by slv$_get_status. The status is affect as
follows:

OUT
everything_ok True if everything is ok (i.e. the fields below are false)
over_defined Whether or not the system is over-defined,
underjdefined Whether or not the system is under-defined.
struct_singular Whether or not the system is structurally singular.

In addition, the fields ready_to__solve, convergence, technique, iteration, and
cpu_elapsed are initialized for the first iteration.

>

PROCEDURE slv$_copy_reorder (IN system : slv$_system_t
"" ; IN OUT matrix : mtx$_matrix_t

); EXTERN;

21

Copies the permutation used to reorder the system to the matrix. All other
aspects of the matrix are unaffected, except possibly for the order (see
mtx$_copy-perm). slv$jpresolve must be executed first.

IN
system The system of equations which has been reordered,
matrix The matrix to use.

OUT
matrix The re-permuted matrix.

PROCEDURE slv$_get_jacobian_aystem(IN system : slv$_system_t
OUT ms : linsol$ matrix system t

); EXTERN;" " ""

Returns the handle to the jacobian system. It is recommended that at least
one iteration is performed before getting this system. If m»«NIL, then the
matrix system is not available.

IN
system System of equations.

OUT
ms Handle to the jacobian system.

NOTES
The user should not assume that the jacobian system has been solved. If it
has and the user attempts to solve it, the linear equation solver will
return immediately.

FUNCTION slv$_obj_function (IN system : slv$_system_t
) : double

EXTERN;

Returns the value of the objective function.

IN
system System of equations.

RETURN Current value of the objective function.

PROCEDURE slv$ iterate(IN system : slv$_system t

); EXTERN;
{ -
Performs one iteration. slv$_presolve must be called before calling this
routine. If status.ready_to_solve is false, this procedure returns
immediately. This routine modifies the variable values in an attempt to
satisfy all of the equations (or inequalities) in the equation list, and
minimize the objective function. In general, it must be called multiple
times.

IN
system The system handle.

The status can be obtained from slv$_get_status and modified using
slv$_change_status. It is used here~~as follows:

IN
ready__to_solve TRUE if the system is prepared to be solved,
technique Technique to be used this iteration,
iteration Number of previous iterations.
cpu__elapsed CPU time elapsed in previous iterations,
verbose Whether to display useful info on the screen.

22

time_limit CPU tin* limit.
iteration_limit Maximum number of iterations,
tolerance Residual tolerance (per equation).

OUT
ready_to_solve TRUE if a next iteration is required.
everything_ok TRUE if calc_ok, and ready_to_solve or converged.
convergence Convergence status.
technique Reoonendation for next iteration.
calc_ok All numeric calculations ok.
residual Norm of the residual vector.
iteration Updated to reflect this iteration.
cpu__elapsed Updated to reflect this iteration.

In addition, the variable values and equation residuals are updated
automatically.

NOTES
Current implementation ignores the relations in the equations, treating
each equation as an equality condition. Also, the objective function is
ignored.

PROCEDURE slv$_solve(IN system : slv$_system_t
); EXTERN; ""

Repeatedly iterates the system until it is either solved, or the solver gave
up (i.e. until status.ready_to__solve is false) . See slv$ iterate for further
details. ~ " ~

IN

system The system to solve.

+ >

23

References

L Armijo. (1966). Minimization of Functions having Continuous Partial Derivatives. Pac/y/cJ.Maf/?., 76,

1-3.

Guido Buzzi Ferraris and Enrico Tronconi. (1986). BUNLSI - A Fortran program for solution of systems

of nonlinear algebraic equations. Computers and Chemical Engineering, 10(2), 129-141.

Richard S. Varga and Michael A. Harrison (Eds.). Donald E. Knuth. (1973). Fundamental Algorithms. :

Addison-Wesley.

Peter Piela. (1989). An object-oriented computer environment for modeling and analysis. Doctoral

dissertation, Dept. of Chemical Engineering Carnegie Mellon University,

J.W. Ponton. (1982). The numerical evaluation of analytical derivatives. Computers and Chemical

Engineering, 6(4), 331-333.

P. Rabinowitz (Ed.). M. J. D. Powell. (1970). Numerical Methods for Nonlinear Algebraic Equations.

Gordon and Breach.

Karl Westerberg. (January 1989). Development of software for solving systems of linear equations (Tech.

Rep.). Engineering Design Research Center, Carnegie Mellon University,

A.W. Westerberg and S.W. Director. (1978). A modified least squares algorithm for solving sparse n x n

sets of nonlinear equations. Computers and Chemical Engineering, 2, 77-81.

