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Abstract

This paper is a study on the process of evolution of a novice to an expert in a diagnostic context. In this
paper, we have chosen an abstract example of a diagnostic problem. The results in this article are based
on a longitudinal study of a single subject. The empirical base is a protocol of the subject as he solved
this problem until he mastered the most sophisticated strategy. Based on an analysis of the protocol, we
have identified four different strategies that were used by the subject to solve the given set of problems.
These strategies vary in their efficiency of diagnosis and in their modes of reasoning. We also identify the
different operators that were used by the subject to transform one strategy into a more efficient one. The
learning process has been implemented as a computer simulation. Finally, we discuss the hypotheses
that are suggested by this experiment and the implications of our observations.
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1 Introduction

A complex problem-solving task generally allows for many different strategies, all of which could

potentially lead to a solution. However, all the strategies are not equivalent. They differ in terms of their

efficiency in arriving at the solution, the cognitive load they place on the problem-solver and the generality

with which they can be transformed to other problems. For someone encountering a task for the first

time, some strategies might become apparent immediately and others become apparent more slowly as

the problem-solver becomes familiar with the task. The process by which a person who begins a task

with "obvious" strategies, graduates to more efficient strategies with increasing familiarity is what we call

learning or skill acquisition4.

In this paper, we are interested in understanding this process for a class of problem-solving tasks

called diagnosis. More specifically we focus our attention to diagnosis of machines. Intuitively machines

are defined as devices designed to fulfill a function. If such a device produces aberrant behavior, we are

interested in identifying that part of the device which is responsible for such behavior. Typically, diagnosis

begins with a model of the device and a set of symptoms indicative of aberrant behavior. This model is a

description of the structure and behavior of the device. Given this information, there are many strategies

available for diagnostic problem-solving. We are interested in the learning process that occurs in this

problem domain.

2 The Learning Task

In this paper, we have chosen an abstract example of a diagnostic problem. Although this example is

limited in some of it's assumptions, it is general enough to be applicable to a wide variety of diagnostic

problems. The results in this article are based on a longitudinal study of a single subject. The empirical

base is a protocol of the subject as he solved this problem until he mastered the most sophisticated

strategy. Based on an analysis of the protocol [2], we have identified four different strategies that were

used by the subject to solve the given set of problems. These strategies vary in their efficiency of

diagnosis and in their modes of reasoning. We also analyze the protocols to identify the different

operators that were used by the subject to transform one strategy into a more efficient one.

We have characterized each strategy in terms of productions in an effort to indicate how it could be

4The thread of the argument in this paper is inspired by [1]



simulated on a computer. Similarly, we characterize the learning operators based on the cues used by

the subject to provide an account of the transformation of a strategy to a more efficient one.

3 Method

The experiment was carried out in two sessions. The first session lasted about 30 minutes and the

second one lasted about 45 minutes. The subject is an adult male, a graduate student at the business

school at Carnegie Mellon. The subject was familiar with networks and their analysis prior to the

experiment although he was not familiar with the particular set of problems that were posed to him. Each

session consisted of solving eight problems. The network for each problem is identical but the set of

observed symptoms are different.

The subjected was instructed to think aloud while solving the problems. The protocol of his

verbalizations were recorded on tape and later transcribed. The instructions for the problems were as

follows:

The task involves fault diagnosis of graphically displayed networks. These networks operate as follows.
Each component has a random number of inputs. Similarly a random number of outputs emanate from
each component. Components are devices that produce either a 1 or 0. An output of 1 denotes an
acceptable output; 0 denotes an unacceptable output. All outputs emanating from a component carry the
value produced by that component.

A component will produce a 1 if:
1. 4//inputs to the component carry values of 1 and

2. The component has not failed.
If a component fails, it will produce values of 0 on all outputs emanating from it.

A problem begins with the display of a network with the outputs indicated (refer to Figure 1 for an
example). Based on this evidence you are asked to identify the failed component. In order to perform this
task you are allowed to test connections between components but minimize the number of measurements
you perform. Keep in mind that only one failed component can explain the given set of readings.

Each session consisted of solving eight problems. As stated in the instructions, the network for each

problem is identical but the set of observed symptoms are different.

Unlike in physics problems we do not have available (for this task) any characterizations of the expert

and novice behavior. Therefore we need a measure to compare the performance of novices and experts.

Since for this particular task, we indicated that expertise is understood in terms of problem solving

efficiency, we propose to use the number of measurements as a metric for comparing performance. The

cost of of all measurements have been assumed to be equal. The network problems of the size we use

can be solved for optimal solutions. We shall measure the performance on a given task in relation to the

optimal possible performance.



Figure 1: A Network of Components
[5]

4 Results

The protocol consists of a total of 280 statements divided into two sessions. In this paper, the set of

eight problems in each of the two sessions are numbered P1 - P16. Problems P1 through P8 belong to

session 1, and P9 through P16 to session 2. The first session consists of 104 statements and the second

176 statements. Session 1 contains 52 statements about measurements between connections, 21

pertaining to reasoning to identify the next component or set of components that could be faulty, 7

metastatements about strategy, 4 verifications of faults, and the rest are observations and conjectures;

Session 2 contains 41 measurements of connections, 79 pertaining to reasoning to identify the next

component or set of components that could be faulty, 25 metastatements about strategy, and the rest are

observations, explanations and conjectures.

The protocols for both the sessions are explicit enough to leave no doubt about the strategy that is

being used by the subject at any given moment. However, the protocols are not sufficiently complete as

to identify how the subject acquired or used information to transform his strategy. This lack of explicit

evidence for the process of adaptation is also reported by [1J. The rest of the analysis is based on the

four strategies developed by the subject to solve the problems.



4.1 Depth-First Strategy

The strategy that the subject used P1 - P7, except P5 is what we call the depth-first strategy. From the

problem definition the subject hypothesized correctly that a faulty component has all inputs as 1 and all

outputs as 0. The search for a faulty component was not random. He chose the first 0 (from the top) for

a given set of outputs and checked for it's inputs. If one of the inputs was a 0, then he concluded two

things: (a) The component under consideration is not faulty and (b) the faulty component could be traced

to the component whose corresponding output was 0 or a component before that. This strategy always

leads to the solution and restricts the search to one component at any step. At each step, through

extensive testing only those components with output 0 are explored. However, this strategy is non

optimal in the number of measurements performed. For example, problem 1(P1) in session 1 required 6

measurements, whereas optimally it can be solved with atmost 3 measurements.

While solving each of these problems, the subject verified his result by tracing the outputs of the faulty

component to the 0 outputs at the terminal nodes. For example in P2 he traces the output of the faulty

component (32) to all the terminal nodes with 0 outputs (43, 44, 45, 46, 47). We present a section of his

protocol to illustrate this:
17.S:there are no inputs into 32, then 32 is at fault!

18.S:that should explain all the other zeroes, let's see, 37 has output 41, it that a 0 [yes]
19:S:37to46?[aO]
2O.S:32 to 39? [a 0]
21 .S:39 to 45 must be a 0, and 39 to 46 must be a zero and 38 to 47 must be a 0
22.S:okay 32 is at fault!

From solving this set of problems the subject retained two pieces of information in the long-term

memory. These are: (a) a faulty component has all inputs as 1 and outputs as 0, and (b)the outputs from

a faulty component can be ultimately traced to the 0 outputs at the terminal components.

In figure 2, we provide a set of productions which can simulate this strategy5.

In enumerating the productions, we have assumed that we have a structural description of the network

available. This implies that for any given node:
• All the predecessor and successor nodes can be generated. Hence functions like find-inputs

are capable of generating all nodes which have inputs to a given node. Similarly, the nodes
connected to the outputs of a given node are available and hence functions like trace-output
can apply recursively to find paths from a given node to the terminal nodes. These functions
have not been described here.

*We enumerate only those productions which are vital for for explicating each strategy



R1: (output of node n=0)

(inputs of node n=1)

-> (faulty-node =n)

R2: (faulty-node =n)

-> (trace-output n terminal-O)

! R3: (output of node n=0)

-> (find-inputs n)

R4: (inputs of n=unknown)

-» (measure-inputs n)

Figure 2: Depth-First Strategy as a set of Productions

• The value of the connections between any two nodes can also be checked. Functions like
input and output can check if the value of the output from a node, or the values on the input
of the node are 0,1 or unknown.

From the definition of the productions, the reader can verify that this executes the depth-first strategy.

4.2 Refined Depth-First Search

The strategy used during this episode is what we call the refined depth-first strategy. This strategy was

used for only problems P5, P8, P9 and P10. This indicates that the subject remembered this strategy in

his long-term memory which he was able to recall later.

This strategy is similar to the depth-first strategy in that the subject begins the search from the first

component with output 0 (from top, refer to figure 4-1). For this component he identifies all the inputs and

their corresponding components. At this point, he departs from depth-first. Instead of measuring each

input, he picks one component at a time (generally top to bottom) and traces the output of that component

to all the terminal nodes. If none of the components have outputs that trace to all the terminal 0s, then he

picks the first component and generates all the inputs. The same procedure is continued. However, when

a component is identified whose output traces to all the 0s, then he measures the inputs and the outputs

to verify that the component is faulty. When the above strategy is followed it always leads to the correct

solution and even though the number of measurements is less than the "depth-first strategy1*, they are not

minimized.
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The subject first used this strategy for P5 and then for P8. In both these problems all the terminal

nodes are 0, which prompted him to remember at each step, that any component under consideration has

to ultimately explain all the terminal 0s. He also used this strategy for P9, P10. He clearly states this

strategy while solving P9: "so basically my strategy is to locate that node from where there are paths to all

five (terminal 0s) f...".

The main piece of information retained in this stage is a perceptual one. As the subject traced the

outputs of suspected candidate, he discovered visually that a path from a given node to a terminal node is

equivalent to a path from a terminal node to a given node in the network. The productions for this

strategy are shown in figure 3.

R2: (suspect-node n) or

(output of node n=0)

-> (generate-suspect-list n)

R3: (suspect-list)

-> (trace-output suspect-list terminal-0)

R4: (suspected-faulty-node n)

(inputs of n=unknown)

-» (measure-inputs n)

(measure-output n)

Figure 3: Set of Productions for Refined Depth-First strategy

The productions in figure 3 similar to the one's for depth-first. The production R1 is common to all

strategies. For each strategy the productions that are presented are replacements of the productions with

the same number in the previous strategy. For example, the production R2 in the "refined depth-first" is

intended as a replacement of R2 in the "depth-first". The function generate-suspect-list provides a list of

components which feed inputs into a given node. This list is called "suspect-list". The function

trace-output is the same as before. If it succeeds for any node on the suspect-list it is returned as a

"suspected-faulty-node" else it returns the first node on the "suspect-list" which triggers R2 to recurse.



Once the suspect is isolated, R4 triggers measurements.

The control structure for this strategy is as follows: Once a suspect-list is generated, it becomes the

immediate goal. This ensures that the suspect-list of the first 0 is explored. Similarly, as soon as R2

generates a suspected-faulty-node or a suspect-node, these are treated as immediate goals which take

precedence over other productions.

4.3 Simultaneous Propagation

The use of the "simultaneous propagation11 strategy is first apparent in P11. This strategy involves

tracing the inputs of all the terminal nodes with 0 outputs, one level at a time. Once the input components

for each terminal 0 are identified, the subject checks to see if there are one or more components which

are common to all sets of inputs. If such a node(s) is found, then a faulty component is identified. It is

only after identifying such a root node that any measurements are made. If a root node is not identified at

a given level, then all the inputs to each of the suspect components are generated and the same check is

performed, else if a single root node is identified then the subject measures the inputs to verify that it is

indeed the faulty component. If a set of nodes are identified, then the outputs are first measured to

identify which component in the set produces a 0 output. Once this is done the inputs are measured to

verify the faulty component. This strategy minimizes the number of measurements.

This strategy is clearly and succinctly stated by the subject in P13: "I just trace the arcs backwards

from the nodes I want (terminal Os) and see if they converge at some point (node) someplace". The

subject also solved P11.P12 and P13 using this strategy. The productions for this strategy are provided

in figure 4.

The control structure here is slightly different from previous strategies. When R2 is fired and a suspect-

list is produced, this list is not marked as an immediate goal. Instead the input components of all the

nodes with Os are generated in the suspect-list, which is a list of lists. Only when all Os are exhausted

does R2 fire again. The function find-common-roots finds all the nodes common between all the lists of

the suspect-list. If there is none, then R3 is fired and recursed to the next level. However, if common-

roots are found then the inputs and outputs are measured to identify the faulty component.
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R2: (suspect-list)

-> (find-common-roots suspect-list)

R3: (suspect-list) or

(output of node n=0)

-> (generate-suspect-list)

R4: (common-roots)

-» (measure-output common-roots)

R5: (output of node n=0)

(belongs n common-roots)

-» (measure-inputs n)

Figure 4: Set of Productions for Simultaneous
Propagation strategy

4.4 Refined Simultaneous Propagation

This strategy is very similar to simultaneous propagation. The only difference is the fact that each step

some additional information is used to eliminate some of the suspects. We call this refined simultaneous

propagation. This strategy is also optimal in the number of measurements, but is computationally more

efficient since some of the suspects are eliminated at each step.

In this strategy, as before, the inputs to each of the terminal nodes with a 0 output are identified.

Simultaneously all the input nodes with terminal 1 are also traced. Since all the inputs to a node with

output 1 should be functioning normally, the corresponding nodes are eliminated from each list of

suspected faulty components. This reduces the number of suspects that need to be examined at each

step. Once this done, the subject examines the suspect-list to determine if there are one or more

components which are common to all the suspect lists. If none is found, the same procedure is repeated

at the next level and so on. Only when a root node(s) is identified are any measurements made.

The first use of information from an output of 1 is indicated in P14. The explanation for this is provided



in protocol, a segment of which we provide below:
105.S: That means the node I am looking for cannot be 38 or any nodes that precede 38.

106.S: Because 38 has an input into to 43 and also other nodes, and 43 shows a 1.

This strategy is also used in P16, but since P15 has all Os at the terminal nodes, the subject could not use

this strategy.

R3A: (function-list)

(suspect-list)

-»(remove function-list suspect-list)

R3B: (function-list) or

(output of node n=1)

-> (generate-function-list)

Figure 5: Set of Productions for Refined
Simultaneous Propagation

To characterize the strategy described, two productions R3B and R3A (figure 5) are added to the list

from the "simultaneous propagation" strategy. R3B generates the list of components that are functioning

properly, and R3A removes these components from the suspect list.

5 Learning

In the preceding sections, we characterized four different strategies that the subject used to solve the

diagnostic problem. We also showed that the subject started with the simpler strategies and over time

evolved to using more sophisticated strategies. This is the learning process. We have yet to indicate

how this process occurs. In this part of the paper, we provide a description of how the subject moves

from one strategy to another based on the protocol.

As we noted before, the subject when presented with the first problem began solving it immediately.

This search is far from random and suggests that the subject has available some prior knowledge of

some general problem-solving strategies. As he solves problems he is able to gather new information

which he combines with his prior knowledge to improve his problem-solving strategies. This implies that

the subject has also available some learning capabilities in his long-term memory.

In this section we describe four ways in which the subject combined new knowledge with prior
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knowledge to improve his problem-solving skills. From the protocol we have identified the different pieces

of information which provided the subject with cues to develop new strategies. We also provide operators

which combine this new information with prior knowledge to produce new strategies.

5.1 Knowledge from Depth-First Search

In the depth-first strategy, the subject used two characterizations of a faulty component. First the

subject realized that a faulty component has inputs that are all 1 and outputs that are 0. Another

necessary condition for a component to be faulty is that it's inputs should lead to all the terminal nodes

with a 0. The subject started by using the first definition as a goal for search. But as is apparent, this

strategy requires extensive measurements. After he located the faulty component, he used the second

characterization to verify his hypothesis.

The two characterizations are equivalent in terms of their ability to guide the search to the correct

solution. However, using only the first definition (of a faulty component) is not optimal in terms of the

number of measurements required to reach a solution. The subject realizes that the use of the second

definition does not require any measurements to identify a faulty component and it would be more

efficient to use this definition to check for each suspect before making any spurious measurements.

This learning process can be implemented simply in terms of re-ordering the firing of productions

(Figure 2). For any given node with output 0, R3 fires and generates all nodes with outputs leading to the

given node. Each of these nodes are potentially faulty. In the depth first strategy, the outputs of each of

these are measured to identify which node might have a 0 output. This is done by firing R4. Instead one

could fire R2 to check if any of the nodes can explain all 0s. Hence flipping the order in which R4, R2

fires leads to a more optimal solution. This process provides the mechanism by which the transition from

depth-first to refined depth-first occurs.

5.2 Knowledge from Refined Depth-First

During the stage when the subject is using the refined depth-first strategy, he gathers an important

piece of perceptual information. While checking for a suspect component by tracing the output to a

terminal 0, he discovers pictorially that tracing a path from a given node (in the network) is equivalent to

tracing back a path from a terminal 0 to given node.

The prior knowledge he brings to bear, is the fact that tracing the inputs from a terminal 0 generates a
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tree of suspects. Consequently at each level in the network, there is a set of suspects for each terminal 0

output. Since for each suspect, the output has to be traced to all the terminal 0 outputs, the fault-tree for

each terminal 0 is generated. Moreover, at each level the subject checks to see if there is a set of

components which are common to all the suspect-lists for each terminal 0. This set contains the faulty

component and no further discrimination can be done without measurements,

(current-state suspect-node)

(goal (trace-output suspect-node terminal-0))

-* (set-goal (member suspect-node

(fault-tree terminal-0)))

Figure 6: Adaptive Productions for Learning

The use of the perceptual information is represented by the production shown in figure 6. This

production replaces the trace-output by a fault-tree of the terminal 0 output and the suspect node- is

checked to see if it is a member of this tree. This can be generalized to generate the fault-trees of all the

terminal 0s, and then find the set of nodes common to all these trees at each level.

Hence we infer that the visual cue provides a pointer which indicates that the problem can be solved by

tracing back the fault-tree from all the 0s simultaneously. But the new strategy could not have evolved

without the realization that at each level, the suspects are found by finding the intersection of all the set of

suspects for each terminal 0.

5.3 Knowledge from Simultaneous Propagation

Since all the terminal 0 outputs are propagated backward to generate a fault-tree, a natural extension

is to propagate back from terminal 1 outputs. Since all inputs to such components have to be 1, all the

components on the tree generated by back-propagating a terminal 1 output have to be functioning

properly. Hence at each level, the subject eliminates all the components on the suspect-lists which also

lie on the functioning-tree. This makes the search more efficient in terms of computations. This learning

process can be implemented by providing adaptive productions which remove all the nodes, on the trees

generated from terminal 1 outputs, from suspect lists.
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5.4 Chunking

The use of chunking6 is clearly illustrated in problems P8 and P13. The subject has stored in long-term

memory the information that the node that ultimately explains all terminal 0 outputs is 17. This

information was gathered in P5 and stored in long-term memory. It was later recalled in P8 and P13

where all the terminal nodes have 0 outputs, and used effectively to reduce search. But this piece of

chunked information was insufficient as there is another component (18) which can also results in a 0 at

all terminal nodes. This caused the subject some trouble in P15, when the faulty component was 18.

Any search path that provides a set of root nodes that explain all the terminal 0 outputs is remembered for

future use. For example the fact that 17,18 are two nodes that can explain all terminal Os is remembered

and used later.

In our experiments this is the only example of chunking that is apparent. The case mentioned above is

remembered since it is related to the unusual set of all 0 outputs. It is expected that with increased

practice, other symptoms would be chunked to their faulty component set and remembered. In general,

for any symptom one can generate the set of faulty components which explain all the outputs and this

information can be chunked and stored in long-term memory.

5.5 Computer Simulation

Based on the analysis of protocols presented in the previous sections, we have implemented a

production system which simulates the learning process. The production system, implemented in OPS5,

incorporates the four strategies used by the subject in successive problems. Each of the strategies are

implemented independently and are executable independently as well. In addition, we have implemented

the learning process in terms of the four "learning operators" described in this section. These operators

are implemented as productions which gather additional pieces of information to evolve a better strategy

with respect to the current strategy. For example, in the evolution of the refined depth-first from depth-first

strategy(described in section 5.1), the information on the number of measurements required by the two

characterizations of a faulty component is used in the reordering of the productions. This reordering

results in reducing the number of measurements required for diagnosis. The implemented system

simulates the strategy shifts from depth first to refined simultaneous-propagation strategy. The system, in

simulating the strategy shifts, uses the same information as used by the subject but does not account for

6Chunking has been proposed as a learning mechanism which records goal-based experience [3].
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the temporal course of the subject's learning. The simulation ensures that the operators identified are

sufficient to explain the learning process.

6 Discussion

The subject has available in long term memory some general problem solving strategies. This

supported by the fact that he is able to solve the first problem successfully as soon as it is posed by using

the depth first strategy. The depth first strategy can be roughly approximated as means-ends

analysis [4]7. Although this strategy leads to the correct solution it is not optimal in terms of the problem

objective of minimizing the number of measurements for a diagnosis. However, the computational

requirements of the depth-first strategy are small. As the subject moves from the depth-first strategy to

simultaneous propagation strategy, he is able to decrease the number of measurements to a diagnosis.

However, the computational requirements of the corresponding strategies increase. We illustrate this by

an example.

Consider the network in figure 1 with the following symptom: (1, 0, 0, 0, 0, 0, 0). Each digit in the

vector corresponds to the output of the terminal node, from top to bottom. The faulty component is 20.

The depth-first strategy requires 11 measurements, refined depth-first requires 6, simultaneous

propagation and it's refined version require 5 (which is a minimum). Hence the diagnostic efficiency

improves as we move from depth-first to simultaneous propagation. On the other hand, the

computational load increases. In order to characterize the computational requirements of various

strategies, we define the number of rows as n and the number of columns as d in figure 1. The

computational complexity of the depth first and its refined version is of 0(nxd)t and that of simultaneous

propagation is of <9(n2xd).

The observation leads us propose that learning of new strategies is driven by competing objectives.

The problem objective guides the subject to evolve strategies which minimize the number of

measurements. The learning operators which transform the depth-first strategy to it's refined version and

subsequently to the simultaneous propagation strategy fall into this category. As the strategies that

minimize the number of measurements impose larger computational requirements, the subject devises

ways of alleviating these requirements in order to reduce the cognitive load. For example, the shift from

simultaneous propagation to it's refined version does not improve the the number of measurements but

7pp. 415-416
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reduces the computational effort. At each step, the refined simultaneous propagation strategy prunes all

the components on the suspect list which have outputs to a 1. This reduces the number of hypotheses

that need to be considered at each step. Moreover, the number of hypothesis generated in the next step

is also reduced. Chunking is yet another learning operator that provides a means to improve problem

solving by utilizing previously recorded goal-based experiences. From our observation of the protocols,

we think chunking also provides a means to generate structural abstractions on the device network.

In conclusion, this experiment has pointed out to us that the learning process is shaped by the

interaction between the cognitive load and the problem objectives. Further, each dimension has its own

set of learning operators.

7 Further Remarks

This work is proposed as a first step towards identifying computational mechanisms which can explain

the generation of expertise from fundamental knowledge. Fundamental knowledge is concerned with the

first principles of the domain and is described in terms of a model of a device. Typically, novices in an

area start out with this kind of knowledge. On the other hand, expertise consists of knowledge gained

through experience. It provides "short cutsM through the knowledge which enables experts to solve the

problems faster and more efficiently. The experiential knowledge consists of productions or rules which

encode knowledge compiled from the first principles. This question is of special interest in machine

diagnosis, where much research is directed towards integrating the use of model based systems with

expert rule based systems.

Design of tutoring systems concentrate on the identification of student models as means to develop

didactic strategies. A variety of techniques for characterizing student models have been proposed in the

literature [6]. In this study, we have explored the process of transformation of a novice to an expert. This

process is characterizable in terms of information that the novice uses to evolve better strategies. This

model of evolution could provide a basis for intervention to improve novice strategies for solving problems

in a tutoring context.
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