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Abstract

The duality of control theory and the theory on the solution of operator equations has been

exploited to develop a nonlinear control law. The control law is developed by analogy to Newton's

method and several related properties are shown. To handle the state and control variable constraints,

the method is generalized to include a Successive Quadratic Programming (SQP) algorithm. Stability

properties for this algorithm have been studied. It was found that with large enough but finite sampling

time, systems that are open-loop asymptotically stable in the large can approach the setpoint

monotonically. Simulation results of two example problems demonstrate the effectiveness of the

proposed strategy.

1. Introduction

While linear control theory has been used in virtually all process control applications, the nonlinear

character of many chemical processes is becoming increasingly appreciated. However, until recently,

nonlinear process control has seen relatively few results. In fact, most of the current work relating to

nonlinear processes can be divided into two categories: transformation methods and optimization

methods. The former approach stems from transforming process models with inherent nonlinearities to

those with linear structures. An empirical approach to these transformations was described by Georgakis

(1986) using extensive variables. Later, using the global transformation results of Hunt, Su and Meyer

(1983), Hoo and Kantor (1986) described a number of applications for which at least partial

transformations can be made to reduce the nonlinear problem to linear form. A very readable account of

this approach to nonlinear control, as well as its limitations, is given by Kantor (1987).

Optimization methods by themselves are not new. Here the on-line solution of state-space

variational problems is considered using state-of-the-art nonlinear programming algorithms. This

approach has been advanced by Sargent and coworkers and has seen considerable recent development

due to simultaneous approaches to solving the differential equation model together with the optimization

problem (see Biegler, 1984; Renfro et al., 1986; Eaton and Rawlings.1988). Unlike linear approaches and

transformation approaches, optimization based approaches currently lack the familiar theoretical

background of stability analysis and robustness. Nevertheless, this approach is very general and has

yielded excellent performance.

Given the limited class of nonlinear models for which these transformations can be applied as well

as the theoretical limitations of the optimization-based approaches, we consider instead an approach for

nonlinear process control based on operator theory. Here the classes of nonlinear models that can be

considered is unlimited and not restricted by size or other properties such as involutivity (see Kantor,

1987). Moreover, the duality between control theory and the theory on the solution of operator equations
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has been observed previously by a number of researchers (e.g. Astrom and Wittenmark, 1984) and has

been used to establish strong quantitative results. For instance, Kalman and Bertram (1960) were first to

use contraction principle arguments to study the stability of autonomous discrete systems. Zames(1966)

used the same principles to derive the so-called small gain, circle and conicity stability conditions for

continuous input-output systems. Later, the singular value decomposition method, originally introduced in

the study of the sensitivity of inverting linear operators, was employed by Doyle and Stein (1981), and

Lehtomaki (1981) to establish a theory on the robustness of linear feedback structures.

However, practically all these results are confined to analysis issues, such as stability and

robustness. The implications for synthesis and design still require further study.

To address these issues, Economou et al (1986) formulate the controller design problem as an

operator equation. Both analysis and synthesis aspects are thus benefitted from a relatively well

developed theory on the solution of operator equations. Here, controllers induced by Newton's method

are also introduced and the corresponding stability characteristics are studied. This paper extends these

concepts by taking advantage of the local and global convergence characteristics of strategies based on

Newton's method. For example, it is well known that Newton's method has a fast rate of convergence in

some neighborhood of the solution. Perhaps less well known is a global convergence property of

Newton's method which can be guaranteed by choosing a suitable stepsize along the Newton search

direction. Similar arguments can thus be made regarding stability (i.e. convergence) properties of

nonlinear control algorithms.

In addition to developing these operator properties we also exploit the extension of this nonlinear

algorithm to constrained, nonlinear process models. Except with optimization based approaches, control

and state constraints are frequently overlooked in the development of control laws, especially where

nonlinear systems are involved. In fact, the only widely used control algorithm which successfully handles

general process constraints is Dynamic Matrix Control (DMC) (Cutler and Ramaker, 1979, Prett and

Gillette, 1979) and its second generation development, Quadratic Dynamic Matrix Control (QDMC)

(Garcia and Morshedi, 1984). Both are model- predictive controllers, which deal only with linear

descriptions of the process (and its constraints) and solve linearly constrained optimization problems

on-line to produce new controller actions. In this paper we also an approach similar to optimization based

approaches, and apply constraints directly to the nonlinear system.

To develop the topics introduced above, we first introduce some basic notation and concepts in the

next section. In section 3, we derive the pseudo-Newton control law following the derivation of the

well-known Newton method. Stability theorems for open-loop systems in state space are introduced in

section 4 together with stability of closed-loop systems under an assumption of a perfect process model.

Furthermore, the relationship between sampling time and closed-loop stability is analyzed to establish

global convergence criteria for the pseudo-Newton control law. Finally, we extend the pseudo-Newton

control law to its optimization-based analog by considering a fully converged model based controller. Here

the stability analysis developed above can also be extended for this case.



Another objective of this paper is to present a straightforward nonlinear, constrained controller

design procedure. Thus, the nonlinear control law is transformed to an optimization problem in section 5,

and is solved using a variant of the Successive Quadratic Programming (SQP) algorithm. The advantage

of this approach is that it can directly deal with general nonlinear models with process constraints. To

demonstrate the effectiveness of the strategy, two example problems are analyzed and simulated in

section 6. These results clearly illustrate the potential of the proposed algorithm. The concluding section

summarizes the major points in the paper and suggests future work.

2. Preliminaries

In order to deal with nonlinear systems in a general manner, it is necessary to establish a

mathematical framework to describe some basic concepts. The autonomous lumped parameter Multiple-

Input-Multiple-Output (MIMO) nonlinear system studied in this paper can be modeled by a set of ordinary

differential equations (ODEs). The vector form is as follows:

§ = M«(0) (2.1)

where x € Rn is the state of the system, and for every t € ( 0 , « ) , u(t) € Rm is the input, with the

corresponding output map (y e Rp) and p < m:

y = g(x) (22)

In this study, several assumptions are made: 1) The solutions of the system (2.1) exist and are

unique. 2) The model is perfect. 3) The system inputs are piecewise constant functions. These

assumptions are made to make the controller design problem finite dimensional. In the discrete-time

formulation the sm sampling interval extends from f to t8*1. T « t8*1 - t 8 is the constant sampling

time; x8 is the state at t8; u8 is the system input held constant over (t8, t8*1).

In the discrete setting of the study, xO1*1; ^.x8^8) is the solution of equation (2.1) at time t8*1 for

u(t)« u8 (t8 < t < t8*1) and initial condition x(ts; ts,x8,u8)« x8; x8 will denote the state of the system at t -

t^ . i .e .x 8 * 1 :

(23)

Since (2.1) is autonomous, f does not depend on t explicitly, i.e., xtt8* T; f.x.u) «

t^.x.u), time will be dropped from the parameter list and the following convention will be used:



Xs = x(T> **»"*) = X(^+r; Pjfjf) (2.4)

The derivatives of xs with respect to xs and us will be defined as follows:

(2.5)

(2.6)

y*+1« g(xs*1) is the system output at f+ 1 , The derivative of y5*1 with respect to x6*1 will be defined

by:

Cs m zl = Z2±l (2.7)

The sensitivity matrices 4>s and r^ are obtained from solution of two sets of linear time-variant

ODE's(Economou, 1985):

-\ «\*» •c=ryuir-U").c=U" ~ x' \*>»OU)

initial condition: *(fO = / (2.86)

(2.8c)

anO _ 3AC 0,. .. . r ( 0 + 2 i ^ v , (2.9a)

a< ac

fm'ttd/ condition: T(f) = 0 (2.96)

P « r(r»+7) (2.9c)

For a linear system:

^ = Ax+Bu (2.10a)

y « Cx (2.106)



where A ,B ,C are constant matrices. 4> and r can be evaluated explicitly:

(2.11)

B (2.12)

If the system (2.10a) is open loop stable i.e. all eigenvalues of the matrix A are in the open left half

plane, then <t>-»0, T->-A~xB for T

3. Pseudo-Newton Control Law

Before deriving the pseudo-Newton control law we briefly introduce a few related concepts.

System Operator Under the existence and uniqueness assumptions, systems governed by (2.1)

generate a well defined operator N, which maps states xs at the beginning of a sampling interval t* and

inputs us constant over that sampling interval, to states xs*1« xO"»xS.us) and outputs y8*1« g(xs+1) at t8*1.

N
(x, u) € RnxRm -» (x, y) e RnxRm (3.1)

Control Objective In this study, the basic control objective, which is used to formulate the control

problem as an operator equation problem, is to drive the system output ys+1 to a desired level y*,i.e., y*+1

- y#. In general we may require ys+k = y\ where k is a fixed number of forward steps.

Control Operator Equations The operator equation corresponding to this control objective is:

[0 IJNQc. ii) * JVjC*. ii) = / (3.2)

where Im is the m x m identity matrix.

Control law computations to achieve the objective can be based on iterative algorithms for the

solution of (3.2). Potential gains of this approach stem from a well developed theory on algorithms for the

solution of operator equations, especially in the case of control theory for nonlinear systems.

In order to simplify the notation of a pseudo-Newton control law, we assume dim(u) - dim (y) * m

i.e. system (2.1) is square. Let us postulate that the control objective is met at time s+2 i.e.

/ - / - 0. (3.3)



and expand this expression in a Taylor series around the state x « xs, u • u6:

Jg(O,
^ 5

(3.4)

In the context of the Newton methods, in order to compute us+1 that solves (3.4) to first order, the

higher order terms in (3.4) are set to zero. Furthermore, xs+1 is substituted from (2.3) and the notation of

section 2 is introduced, yielding:

(3.5)

Solving (3.5) for us+1, the following control law is obtained:

# 1 (3.6)

The algorithm is called a pseudo-Newton control law, because it is similar to a Newton method.

However, it is not identical to Newton's method; with Newton's method #*1 is specified by the solution of

an equation of the form (3.1), while in the above derivation it was set equal to xCHx8^8) to conform with

the evolution of the system states. The stability of this control law will be discussed in the next section.

For the linear system (2.10), the control law of (3.6) becomes:

(3.7)

The control law (3.7) is an output deadbeat controller that drives the system output to y* within one

sampling interval. The proof can be found in the Appendix A. Its properties are well studied (Kuo,1980;

Franklin and Powell, 1981).

Moreover, by including a relaxation factor X in the control law, equations (3.6) and (3.7) become:



/+1)] (3.8)

u?+\[C(exp(AT)-r)A-lBrl

1 (3.9)

The relaxation factor X not only changes the shape and speed of the system response, but also

expands the region of stability of the closed-loop system, as we will discuss in the next section.

Control Algorithm Summary

0. Set s « 0; initialize model state xs, e.g. based on process measurements; implement u8

1. Compute xs from the model (2.1) and compute OM^ , Cs from (2.7) to (2.9).

2. Measure ys*1 and set X * 1.

3. Setu s*1 « us+X(Csr«)-1[Cs<i>s(xs-xs)+(y#-ys+1)]

a)Evaluate y8*2 « g(x(xs*1, us+1))

b)// | | / * 2 - / l l - I I /+ 1 - / ! ! £ -eX(Armijo Inequality, see LI and Biegler (1988))

for some small e > 0, go to step 4

Else set X = yX, where ye (0,1) and is found by quadratic interpolation

go to step 3.

4) s « s+1, go to step 1.

For the algorithm to be successful, a nonzero X must be found that satisfies the inequality in step

3.b. In section 4 below, we will show that for sufficient large but finite sampling times that this relation will

always be satisfied and the algorithm converges to its setpoint. The extension of the pseudo-Newton

control law to handle the process constraints will be discussed in section 5.

Computational Method for Sensitivity Functions

The pseudo-Newton control law (3.6) is based on the first order sensitivity functions $ * and I * . If

the dimensions of state and control variables are n and m, respectively, we need to integrate a system of

n(i+n+m) ODEs. As the dimensions of the problem increase, the computational task becomes more

difficult and time consuming. However, the sensitivity equations (2.8) and (2.9) have the special feature

that they are linear, despite the nonlinearity of the state equations (2.1). Caracotsios and Stewart (1985)

exploited this feature and developed an efficient algorithm to calculate the sensitivity functions. Here state



e

equations (2.1) are integrated first to obtain the state value at the end of the time step. Then a local

interpolant of x[t} is used to represent the value of x(t) and equations (2.8) and (2.9) become two sets of

time-variant linear ODE's which are independent of the state equation (2.1). Since the state equations

are accurately calculated for a given time step, the sensitivities can be calculated simply by solving

equation (2.8) and (2.9) for that step by using the same matrix factorizations that were calculated when

solving the state equations. Thus, instead of integrating (2.8) and (2.9) along with the state equation,

sensitivity functions are obtained at each step by solving linear equations after the state variables are

determined.

4. Stability of Pseudo-Newton Control Law

This section is divided in three subsections. The first subsection provides a framework for the

stability analysis. Next stability for the model reference case is analyzed, which is defined by assuming a

perfect model. The effect on stability of sampling time T and a relaxation factor \ is then analyzed in

subsection 4.3. Except for subsection 4.3 the proofs of the theorems and corollaries can be found in

Economou (1986) and are omitted here.

4.1 A Framework for Analysis

For the stability analysis, we assume a fixed input uf to the system (2.1) and reduce our attention to

the system

(4.1ft)

First we introduce a set of definitions which puts the stability discussion into a quantitative format.

Definition 4.1: Equilibrium State

A state vector x^ is an equilibrium state of the open loop system of (4.1) if it has the property:

fixeq*f) = 0 (42a)

Def. 4.1 and Eq. (4.1) imply that

£ = 0, for x(0) = x (42b)
at *



Using the state evolution (2.4), an additional property of x^ can be written:

Definition 4.2: Region of Attraction

A ball U(x°,r) is called a region of attraction for the equilibrium point x^ of the discrete system

generated by (2.1) and u « u f l if every trajectory starting at any initial state within U(x°,r) eventually

converges to x ^ .

Definition 4.3: Asymptotically Stable in the Large

We first introduce a nominal solution xo(t) which satisfies system (4.1):

-5 = J{xo(t)Mf) (4.3)

The nominal solution xo(t) of system (4.1) is asymptotically stable in the large if the following

conditions are satisfied:

(a)For any \Q and any z > 0 there exists a 8(6,^) > 0 such that Mt^XQ^W £ 6 implies

|[x(/}-xo(/)|| < e for all t £ \Q. (Stable in the sense ofLyapunov)

(b) For any x{\^ and any \Q

IWfl-*6(0ll -> 0 as t -> - (4.4)

Here IWI denotes any norm for the vector x.

Now let us introduce the stability criterion of an open-loop system in a region of attraction.

Theorem 4.1 Consider the discrete open loop system generated by (2.1) with u « uf

x>+1 = xiT^Mf) . (AS)

and a state x°. If
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\w*u/)i\ * II a
 /n < e < i (4.6)

J ox

V X 6 U(X°S)

where r £ r° •
(i-e)

then the system has a unique asymptotically stable equilibrium state xeq in U(x°,r). Furthermore, U(xo,r°)

is a region of attraction for xeq.

Corollary 4.1 A discrete linear system is stable if and only if

p(<D) = p{exp(AT)) < 1 (4.7)

where p(4>) denotes spectral radius of <t>.

Corollary 4.1 merely states that a discrete linear open loop system is stable if and only if the

eigenvalues of the transition matrix * are inside the unit circle.

4.2 Model Reference Stability

In this subsection, a perfect model is assumed. The stability criterion of a closed-loop system with

the control law of the following form :

= IlCxVoy ) (4.8)

is established, where yj is any external input (usually a setpoint) and n is some finite dimensional

operator from Rn+m to Rm.

In order to use control law of the form (4.8) and to apply the pseudo-Newton law derived in section

2, the state vector can be predicted at every sampling instant. This is because the perfect model of the

system is available and, if the state of the system was known at some sampling instant (e.g. t « 0), the

state vector could be inferred at any subsequent time by simulating the model of the system:
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*0 - XQ at t « 0

(4.9)

where z(t) is the model state. Under assumptions of the perfect model and available initial condition, the

model state vector z(t) equals the process state vector x(t).

Consider the disaete closed loop system consisting of the open loop system (2.3) and feedback

control law (4.8). Augmenting (2.3) by (4.8) generates an open loop system for the augmented state

vector (x*,u*)T. The stability of the closed loop system is equivalent to the stability of the augmented open

loop system and is characterized by the following theorem.

Theorem 4.2 Consider the disaete dosed loop system generated by augmenting a sampled system

of form (2.3) with feedback control law of the form (4.8) as well as a state (x°, u°)T of the resulting system.

If

6 < 1 (4.10)

where

V

the closed loop system has a unique asymptotically stable equilibrium state

Furthermore U((x°,u°VfJ>j6 a region for attraction tor (x^.u^J.

Corollary 4.2 A linear system with a linear control law

in U((x°,u°),r).

(4.11)

•P 6 FT' Q € R-x m P e JTxn
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is stable if and only if

C r) < 1 (4.12)

Corollary 42 implies that the dosed loop system will be stable, if and only if the feedback control

law (4.8) places the closed loop eigenvalues of the discrete system inside the unit circle.

For the linear pseudo-Newton control law (3.9)

(4.l3.a)

Q « ( l -xy-Vcn^cor (4.13.&)

4.3 The Relationship Between Sampling Time and Closed-Loop Stability

For control of discrete time systems, the choice of sampling time T (over which the control variable

is held constant) strongly influences the quality of control. As T increases, one effectively detunes the

controller while for small T the computational burden of applying the control algorithm may be prohibitive.

In the analysis presented next, we demonstrate an additional concern relating to the choice of T. Here we

show that for some linear and nonlinear systems, the closed loop systems with the pseudo-Newton

control are guaranteed to be stable for T above a finite critical sampling time. Theorem 4.3 shows the

stability criterion for linear systems; theorem 4.4 shows the stability criterion for nonlinear systems.

Linear Systems

For open-loop stable linear systems, we can show that a closed-loop system with the pseudo-

Newton controller may be unstable because of sampling times that are too short. Only when the

sampling time is greater than a critical sampling time T* Is the stability of the closed-loop system

guaranteed.

Introducing the relaxation factor X, on the other hand, has a similar effect on stability as increasing

the sampling time. However, we first prove that adjusting the relaxation factor X alone cannot stabilize

some of the closed-loop systems. Then we show with examples that adjustment of X will reduce the

spectral radius and the critical sampling time for linear systems.

Theorem 4.3
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For an open-loop stable linear system (2.10) there exists a finite critical sampling time T\ When the

sampling time T is greater than the critical sampling time T\ the closed-loop system is stable with the

pseudo-Newton control law (3.9). As limiting cases, the following results can be obtained:

(a) For X m 1, 2m eigenvalues approach zero; and n-m eigenvalues approach the system zeroes.

(b) For X -> 0, n eigenvalues approach the system poles; and m eigenvalues approach unity.

(c) For 0 < X £ 1, as T -> «*>, n eigenvalues approach zero; and m eigenvalues approach

The proof of theorem 4.3 is in Appendix B.

Theorem 4.3 shows that increasing sampling time T alone can achieve closed-loop stability for

linear systems. On the other hand, adjusting the relaxation factor X alone cannot guarantee stability.

When X approaches zero, m eigenvalues approach one but they might do so from the outside of the unit

disk. Therefore, stability of the closed-loop system is uncertain. (When X equals zero, the system

becomes open loop.) When X equals one, n-m eigenvalues approach the system zeroes. Thus the

closed-loop system becomes unstable if the zeroes of the discrete system are outside the unit circle. This

can be the case even if all the zeroes of the continuous system are in the left half plane, which is

demonstrated in the following examples.

l)An Inverse Response System

Consider the following example problem with the transfer function:

The spectral radius of the closed-loop system is a function of the sampling time. Figure 1 shows the

spectral radius versus sampling time with the control law (3.9). Setting the relaxation factor X to unity, we

see from the figure that the critical sampling time T* is 5.5 i.e., for a sampling time less than 5.5, the

closed-loop system is unstable.

When varying the relaxation factor X from unity to a very small number, the critical sampling time T*

is monotonically decreased. Figure 2 shows the critical sampling time T* versus relaxation factor X for the

system (4.14). It shows that even when X approaches zero, the critical sampling time remains nonzero,

i.e., too small a sampling time will make the closed-loop system unstable. We also note that the smallest

X plotted in Figure 2 is 0.001, for which the corresponding critical sampling time is 3.3.

II) A High Order System
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G » - ^ j (4.15)

Now let us find the critical sampling time T* when the pseudo-Newton control law (3.9) is used.

Setting the relaxation factor X to unity, the spectral radius of the dosed-loop system versus sampling time

can be calculated. Figure 3 shows these results. We find that the critical sampling time is 1.84.

When decreasing the relaxation factor from one to a small number, the critical sampling time T*

varies. Figure 4 shows the critical sampling time versus the relaxation factor X. From the plot we can find

that when X approaches zero, the critical sampling time also approaches zero. It is worth noting that the

smallest X plotted in Figure 4 is 10"8, for which the corresponding critical sampling time is 0.017.

Astrom et al. (1984) studied the relationship between the zeroes of a continuous time system and

its sampled version. They found that discrete systems with a zero order hold may have unstable zeroes

as the sampling time is decreased, even though all the zeroes of the continuous system may be stable.

The main results of their studies are limit theorems, which give the zero locations for small and large

sampling times. It was shown that all continuous time systems with pole excess larger than 2 will always

give sampling systems with unstable zeroes provided that the sampling time is sufficiently small. They

found that the sampled version of system (4.15) has a zero outside the unit disc if 0 £ T < 1.84 ,

which agrees with our result.

Nonlinear Systems

For nonlinear systems we show that there is a finite critical sampling time that lead to a descent

direction for I I /+ 1 - / ! ! and thus we can guarantee stability with the pseudo-Newton control law of (3.8).

Unlike linear systems the sensitivities Os, r* of nonlinear systems are dependent on the state xs

and input us. Varying sampling time alone cannot guarantee the global asymptotic stability of the closed-

loop system. On the other hand, the nonlinear system can be locally approximated by a linearized

system. Knowledge of sampling time affecting the stability of a linear closed-loop system can help us to

understand the relationship between the sampling time and closed-loop stability fbr a nonlinear system.

For a spedal dass of nonlinear systems, namely those asymptotically stable in the large, the system

outputs are guaranteed to approach the setpoint monotonically when the sampling time is large enough.

Theorem 4.4

If an open-loop nonlinear system is asymptotically stable in the large, then the closed-loop system

converges monotonically for l l / * 1 - / ^ 5, where 8 > 0, with a sampling time T > Y\ where T# is some

finite critical sampling time, i.e:
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-II/+2 - y\\ - ll/+1 - y II * -y (4.16)

A proof of this theorem is presented in Appendix C.

Corollary 4.3 If the assumptions of Theorem 4.4 hold, and S is such that the system is within the

attraction region U((x°,u°),r) for (xeq,ueq) (i.e. equation 4.16 is satisfied by the closed-loop system), and

the setpoint is the unique asymptotically stable equilibrium (xeqlueq) in U({x°tu°)tff i.e., y* « g(xeq), then

the system is asymptotically stable in the large.

Proof: Theorem 4.3 shows that linear systems can be stabilized by choosing T sufficiently large.

Thus, also for nonlinear systems, for T sufficiently large there is a region of attraction which includes x^,

ueq. If 5 is chosen as indicated in Figure 5, the asymptotic stability in the large is ensured.

Theorem 4.4 guarantees that this convergence is monotonic up to \\y(t}-y\\ £ 5. Figure 5 shows

the relationship between 5 and r in a two dimensional state space.

Corollary 4.3 combines a number of properties. First, once the system is within the region of

attraction and the setpoint is the unique equilibrium point in this region, the system output asymptotically

approaches the setpoint. Moreover, this will occur because a large enough sampling time has been

chosen and a descent direction is guaranteed for the line search.

For the case where \\y-y\\ £ 8 we see theorem 4.4 applies and the setpoint deviation is reduced

monotonically. Within the region of attraction ||y-/|| £ r,*we know by theorem 42 that the pseudo-

Newton control is stable for X * 1 and therefore converges to the setpoint.

The deadbeat structure of the pseudo-Newton control law for linear systems and the stability

properties of this controller for nonlinear systems lead us finally to consider nonlinear algorithms that

apply optimization approaches. The single step unconstrained analog to these is a model based controller

where the setpoint is satisfied at the end of each timestep. If this can indeed be achieved for a specific

problem (e.g. sampling times are large enough so that time delays, inverse and high order responses

lead to implicit functions for the controller) then one could construct such an algorithm simply by applying

step three of our algorithm iteratively to convergence. The above theoretical development can easily be

extended to the case of this iterated control law by considering the following properties.

First, the monotonic convergence property of Theorem 4.4 is trivially satisfied because the setpoint

is achieved at each sampling time. However, this, by itself does not imply asymptotic stability. For this we

invoke Theorem 4.2 to state and prove the following theorem.
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Theorem 4.5

If an open-loop system is asymptotically stable in the large, then there exists a finite critical

sampling time T* such that for all sampling times larger than T* the closed loop system is asymptotically

stable with the iterated control law.

The proof for this theorem can be found in Appendix D.

With the presentation of the stability properties for linear and nonlinear systems, the pseudo-

Newton control law will be extended in the next section to deal with input and state variable constraints.

5. A Nonlinear Strategy for Handling Process Constraints

To extend the pseudo-Newton control law, optimization algorithms can be applied, which deal with

linear and nonlinear constraints. Thus a possible approach to handle process constraints is to transform

the control problem to an optimization problem. To motivate this approach, the control objective desaibed

in section 2 can be written as follows:

Min \\y(T; x * + V + 1 ) - y \ \ (5.1)

If the first order approximation based on xs and us is used to represent y(T;xs+1
lu

s+1), y becomes:

(52)

Substituting (5.2) into (5.1) and rearranging yields the objective function:

Min CTAu? + hitoffHto* (5.3)

An*

where

CT « -[C'^x* - x*)+( 7 - y*1)] r(CT0 (5.4)

H = (crrficr*) (5.5)
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The above Quadratic Programming (QP) problem without any constraints is identical to the pseudo-

Newton control law. The proof is given by Li and Biegler (1988). Note that the Hessian of the objective

function is positive semi-definite, which means that a global minimum value can be found. Moreover,

within a QP formulation, nonsquare systems can also be controlled by this algorithm, i.e. dim(y) does not

need to be equal to dim(u).

With quadratic programming and the quadratic form of the objective function, linear equality and

inequality constraints of control variables can be handled easily. In this case problem (5.3) becomes:

Min

SJ cf <> j4(w*+Azi) < au (5.6)

where A e k x m is a constant matrix multiplying the control variables; V defines the number of

constraints . When a| equals af (subscript i indicates that it is Ith row in a1 and au), it becomes an equality

constraint. In practice, we need to deal not only with constraints on the control variables, but also with

constraints on the state variables. The latter are important to get a desired product or to avoid failure of

the production process. Since simple bounds on state variables are the most common state constraints in

chemical processes, our objective is to handle the following problem:

Min C'A«* + -
*f 2

s.t cf S i4(«J+Awy) <, au (5.7)

JC7 5 x(t) S *«

In order to avoid the computational difficulties associated with these state constraints, which have

infinite dimension (the function x(t) from t8*1 to ts*2 is continuous), a new state variable xn+1 is defined to

convert the path constraints into a terminal constraint (Sargent and Sullivan,1977). The state equation for

becomes:

<5-8>
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We then impose the constraint x * ^ = 0 and substitute this constraint for the path constraints of the

state variables in (5.7). Here the nomenclature defined in section 2 is used. Now x*+^ is an implicit

function of u and there is no explicit method to handle this nonlinear function. Thus an iteration algorithm

is developed. We expand x ^ j about u ^ 1 by using Taylor series and truncate the expansion after the

second term. The letter j is used as a subscript to indicate the j-th (QP) iteration to solve (5.7).

^ (5.9a)

We define

(5.96)
du

- u* (5.9c)

The calculation of K^ 1 can found in Li and Biegler (1988). Thus, the constraint x*$ j « 0 is

linearized by the following equation:

- 0 (5.10)

The QP problem at the j * iteration is therefore:

At in

SJ of S A(u*H+Aufix< d1 (5.11)

= 0.

Finally we consider the formulation for two types of constraints. With hard constraints no dynamic

violations of the bounds are allowed at any time. For soft constraints violations of bounds are tolerated

for satisfaction of other criteria. In problem (5.11), for instance, the state constraint is treated as a hard

constraint even though the feasibility of the QP is unknown. Although the feasibility of state constraints

can be analyzed theoretically, the system states can easily be pushed out of the feasible region by

disturbances in the real process. Therefore, we add a slack variable S in constraint (5.10) to relax the hard

constraint to a soft constraint. This is a common relaxation technique that is similar to the treatment in

Dynamic Matrix Control (Morshedi et al., 1985). Palacios-Gomez et al. (1982) have also proposed
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appropriate weighting factors for these slack variables in order to enforce feasibility on soft constraints.

Upon adding a slack variable the constraint (5.10) then becomes:

* 6 (5.12a)

8 * 0 (5.12*)

In a large scale system we may deal with hundreds or even thousands of state constraints. If we

lump all state constraints into (5.8), the algorithm may be very difficult to converge. In this case the

individual state constraints can be defined separately. This approach has another advantage; the

importance of different state constraints can be distinguished by assigning different weighting factors for

the corresponding slack variables in the objective function. The th state constraint is therefore:

(5.13)

= 0 / - 1A .... m1

The dimension of state constraints is m1 which is less than or equal to the state dimension n. A

first order approximation of the new variable xn+, is used as in (5.9) and a slack variable 5, is added in the

inequality to relax the constraint. The P* state constraint of (5.13) in the j* iteration becomes:

where

The calculation form can be found in Li and Biegler (1988). The vector form of these state

constraints is

where
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'#•1

(5.17)

(5.18)

Let us now assume the soft constraints for control variables are

d <> <. a" (5.19)

where A, € Rm2 and m2 is the number of soft constraints. Since these constraints can be violated to

satisfy the hard constraints, the slack variables Su need to be added in the inequality (5.19) to increase

the feasible region. On the other hand, including the summation of all elements of 5M in the objective

function, SM - [^ 5u] . the algorithm can determine the control to satisfy soft constraints whenever

it is feasible. Then the soft constraints of (5.19) become:

a"+6
w

(5.20)

Since the importance of each constraint may not be the same, weighting factors ws can be included

to reflect the differences, with the value of the weighting factor w4 tuned on-line. Including all process

constraints, the quadratic programming problem a t j * iteration then becomes:

Min
t

SJ {521)

0.
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where m * m1 + m2 is the dimension of all of the soft constraints. The detailed description of this

control algorithm can be found in Li and Biegler, (1988).

6. Examples

Two example problems are simulated to demonstrate the effectiveness of the strategy proposed in

this work. The first example problem was modified from Economou and Morari (1986), which describes a

first order reversible reaction in a well stirred tank reactor. Here their original problem was extended to a

three dimensional system with constraints. The second example problem was adapted from the paper of

Orava and Niemi (1974), which models a pH control process in two tanks connected in series. The

control objective of both problems is to operate the processes as closely as possible to the set point. Both

example problems are highly.nonlinear with process constraints. The nonlinear controller with constraints

proposed in this work controls both systems very well, as seen by the results of our simulations.

Example 1: A Stirred Tank Reactor

The first order reversible exothermic reaction

• B

is carried out in an ideal stirred tank shown in Figure 6.

We assume that the combined concentration of A and B is constant,.i.e., C « CA + CB « 1.0 and the

tank is well stirred with liquid outlet determined by the liquid height in the tank. The nonlinear ODE's are

derived from differential mass and energy balances.
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_ I = /,(*; u) = -0.\6

^ = /2(r, «) = 0.16«

_1 = /3(x; H) = 0.16u,-O.4x§5 (6.1)

yx = x, y\ = 0.508

y2 = X3 / 2 = 0.160

As analyzed in Economou et al. (1986), this problem has a sign change in the steady state gain

and therefore can cause difficulties for linear control algorithms. In fact, in their analysis, Economou et al.

(1986) showed that linear Internal Model Control (IMC) (Garcia and Morari, 1982) becomes unstable for

certain initial conditions. For this reason Economou et al. proposed a nonlinear IMC control law similar to

the one developed here.

In the model, xv x2, and x3 denote the concentration of reactant, temperature, and liquid height in

the tank, respectively. u1 and u2 denote flow rate and temperature in the inlet stream, respectively. The

control objective is to operate the reactor output as closely as possible to the setpoint subject to the

process constraints. The initial condition is set to x10 = 0.41, x20 • 503.0, x30 « 0.20, u10 « 1.12, u^ •

504.0. At this initial condition, the linear Internal Model Control] (IMC) linearized around the setpoint, with

a constant flowrate, was shown by Economou et al to become unstable. Using the algorithm developed

in section 5 (see also Li and Biegler, 1988), we simulated this example problem with and without control

variable and state variable constraints for comparison. Figures 7 and 8 show system outputs yt and y2

versus time, respectively. Figures 9 and 10 show control variables u1 and u2 versus time, respectively.

Two curves were plotted in each figure. Curve 1 has a constraint on x t; Curve 2 has no state variable

constraints. The parameters for these constraints are listed in Table 1.

From Figure 7, Curve 1 with the constraint on x1 performs better than one without the state

constraint in terms of having small system errors in the initial stage of the system response. The price to

be paid for having better control on x1 is that one has to tolerate sluggish response on x3. In other words,

one can manipulate the state variable constraints to change the response speed of the individual state

variable for a MIMO system. As seen, in problem (5.21), the hard constraints on the control variables are

always satisfied during the iterations due to the structure of the problem. This is also supported by the

simulation results plotted in Figures 9 and 10.
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The constrained controller moves for this example problem usually require 3 to 4 QP iterations per

time step except at the first sampling interval, where more iterations are required to find a solution for

(5.21). To simulate and control 10 sampling times (sampling time T * 1.0 min.) in this example required

about 2.0 CPU minutes on a MicroVax II. Of course problems without state variable constraints require

much less computation since only one QP solution is required for a time step. Note also that convergence

to the setpoint requires at most only three to four sampling times, which makes its computational effort

quite comparable to optimization based approaches.

Example 2: A pH Control Process

Consider an assembly of a stirred tank reactor, an intermediate tank, and a pH measuring chamber

which is illustrated in Figure 11. The control objective is to operate the reactor at a desired pH value. The

pH value is only measured in the measuring chamber. Mixing in the tanks and in the chamber is perfect

so that the fluid phase is homogeneous. If the equilibrium of H* and OH' is assumed to hold at any time,

and a variable C is used to denote the difference of concentration I-T and OH', we have:

Ka

C = //+ - Otr = //+ - — (tla)

where Ka = 10'14 is the equilibrium constant. By solving the quadratic equation (6.2.a) for H+ and taking

the positive root, we have:

//• = 0.5[C+(C2+4.0xl0-14)0-5] (62b)

Using material balances and the assumptions made by Orava and Niemi (1974), the process can

be modelled as a set of ODEs:

_! = = ffa u) = -5.0xl0r6+0.\u-(.05+u)xl

^ « * /20r, u) « (.05+ii)x(xr^) (63)

^ « « /3(r, u) « lOOc^)

4 4 ) - 5 ] } / « 7.0

Here xv x2, x3 are values of C in the reactor, intermediate tank, and measuring chamber,
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respectively, u is the acid flow rate Q1 ( pH « 1). The inlet flow Qo is constant with pH value of 10. The

control objective is to operate at a desired pH value in the reactor. The difficulty is that the pH value can

only be measured in the chamber (system output), and therefore lags behind the pH value in the reactor.

The initial conditions are x10 « x^ - x ^ « 10"4, i.e., the pH value in the process is equal to the pH value of

the inlet flow; the initial inlet flow u0 is set to zero. Table 2 lists numerical values of all parameters for this

system.

Using the pseudo-Newton control law developed in section 3. the example problem was simulated

without process constraints. Since we assume the model is perfect, the process measurements are equal

to predicted system outputs.

From Figures 12 and 13 we can see that the controller is able to achieve offset free output even

though it has some oscillations. Here, it is worth noting that if the sampling time is too small, the system

outputs can have severe oscillations. This may be caused by the lag between the system output (pH

value in the measuring chamber) and the state variable (pH value) in the reactor. Here the controller

overcorrects the offset outputs, which causes the oscillations. Basically, the pseudo-Newton control law

cannot handle the oscillations in the system outputs because the control objective is to force the system

output to meet the setpoint at each sampling time and not between the time interval. The acid flow rate,

control variable u, versus time is shown in Figure 14. Note that from Figure 13 the output exactly equals

the setpoint and thus performs the same way as if the output were converged to the setpoint at the end of

each time step. Here we see that a single step optimization- based approach would not yield any different

results.

When the system outputs oscillate with a frequency faster than our sampling frequency, the

controller may not eliminate these oscillations, which then deteriorate the control performance. Thus it

would be desirable to formulate the control problem so as to allow an additional integral control term

which would help eliminate these oscillations. This can be done by modifying the control objective when

the constrained pseudo-Newton type controller is used:.

Min || y » 2 - / II2 + I ItvCO - / II2 dt

St. £ = Mtirtt)) (6.4)

yit) =

x**1 • known

Here we augment the system outputs to include pt (pj £ p) new variables where
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i • 1, 2

which are those system outputs for which integral control action is desired. Zj (i « 1, 2, . . . pt) are those

newly defined variables. Comparing Eq. (6.5) with the objective function, one can intuitively argue that yjf

a tuning parameter, is proportional to the inverse of sampling time. By increasing value of Vj. the

controller may reduce the degree of oscillation for corresponding system outputs by decreasing the

average of the norm of the difference between system outputs and the setpoint. However, this may slow

down the system response and cause the system outputs to have a larger offset at the end of a given

time interval. At the present time, there is no analytical method to choose the optimal value of y if and

therefore, the value of % has to be tuned on-line.

The system output y of dimension p + p1 is

y = [y. zf (6.6a)

f = \y\ if (6.66)

and

i = 0 (6.6c)

Thus the objective function is also modified to accommodate the new system outputs, i.e.

|| y+l - y ||2 (6.7)

Then the algorithm proposed in previous sections can be employed to handle this problem.

We now reconsider Example 2 and modify the system output to include the integral control term

discussed above:

§ « V(y - y)2 (6.8a)

I?] = [y. zf (6.86)
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After including the new defined variable z in our system output, the process is then controlled by

the Newton-type control algorithm with the same initial conditions and sampling time as above. Figures

15 and 16 show pH values in the reactor and in the measuring chamber versus time, respectively. Figure

17 shows acid flow rate, u (control variable), versus time. There are three curves in every figure because

three different values of parameter y are used to adjust the integral control action. The values of y are

chosen to be 0.1, 0.0125, and 0.008 , corresponding to Curve 1, Curve 2, Curve 3.

From these figures we observe that when the value of y increases, the integral control action also

increases in terms of smoothing the system response. When y equals 0.1, the system response, Curve 1,

has no oscillations. However, the rise time increases with increasing the value of y. At present, we have

no analytical method to choose the value of y to satisfy the desired control criterion, but choosing a value

of y proportional to the inverse of the sampling time gives an intuitive guideline.

To simulate and control 10 sampling times (sampling time T « 40.0 sec.) in this example problem

required about one CPU minute on a MicroVax II.

7. Conclusions

A nonlinear, constrained controller design procedure for stationary lumped-parameter MIMO

nonlinear systems is presented and analyzed. The derivation of this pseudo-Newton cotrol law closely

parallels that of the well-known Newton method for solving nonlinear equations. Moreover, global and

local convergence properties of Newton's method have similar analogies to the stability properties of the

control law. Here, the stability criteria for both state-feedback and model reference controllers are

established for general nonlinear systems. These properties can be sharpened when only linear cases

are considered. In addition, the relationship among the sampling time, relaxation factor, and system

closed-loop stability has been shown. In particular, we note that for nonlinear systems that are

asymptotically stable in the large, the closed-loop system with the pseudo-Newton control law converges

monotonically to the setpoint for sufficiently large, but finite, sampling times. Furthermore, while the

appropriate selection of the relaxation factor alone will not guarantee stability for a given sampling time, it

does allow smaller sampling times to be used for stable performance.

The same results also apply to closed-loop linear systems with the pseudo-Newton control law.

Again, it was shown for sampling times larger than some critical sampling time, the closed-loop system is

stable. However, in contrast to nonlinear systems, this critical sampling time can be calculated a priori by

evaluating the spectral radius of the closed-loop system.

The pseudo-Newton control law also extends naturally to deal with state and control variable

constraints. This extension is formulated as an optimization problem which can be solved efficiently by

tailoring the Successive Quadratic Programming (SQP) algorithm. These formulations can also be

generalized to include both hard and soft constraints on the process. As demonstrated in the previous
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section, the method is very efficient as it requires little iteration of QP solutions for each time step.

Moreover, simulation results for two nonlinear control problems show the effectiveness of this algorithm.

Finally, two issues that have not been considered in much depth in this paper, and remain for future

work, are the algorithm's behavior in the presence of model mismatch and the extension of the pseudo-

Newton method to a multi-step algorithm. To handle the first issue, an efficient parameter estimation

scheme can be applied to reduce the model mismatch. Note that the algorithm can still be applied here as

long as a descent direction is obtained for the pseudo-Newton controller. Consequently, the analysis for

Theorem 4.4 can be extended to include the presence of model mismatch and to include the application

of parameter estimation to reduce its effect. To deal with the second issue, the pseudo-Newton structure

can be extended to a multistep predictive algorithm that follows a moving horizon. This can be viewed as

a nonlinear analog to several well-known linear control schemes such as Dynamic Matrix Control (DMC).

This extension would be especially useful for nonlinear processes with time delay. Development of this

multistep approach will be described in a forthcoming paper.
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APPENDIX A

We now prove that when a pseudo-Newton law (3.7) is employed to control the linear system

(2.10), the controller is deadbeat, i.e. the system output is offset free at all sampling instants after the first.

The state of system (2.10) at t - 1 8 * 1 can integrated analytically, yielding:

Substituting (2.11) and (2.12) into (i.a), we obtain:

x"1 = <&** + I V

or

x**1 - Xs = (4> - l)x* + ru* (ii.b)

Similarly, we have:

+ rv
<DIV +

CTu1*1

The pseudo-Newton control law (3.7) can be written as follows:

= if + ( c r r ' K W - * * 1 ) + (y* - y**1)

+ C^fw1 - y) (tv)
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Substituting the control law (iv) into Eq.(iii.b), the system output ys*2 becomes:

y*+2 m c<i>V + corv - crtccn'kc^V + corv - / ) ]

= / (v)

Thus, we prove that the controller is deadbeat.
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APPENDIX B

Proof of Theorem 4.3

Referring to corollary 4 2 , the stability condition of linear closed-loop systems with the pseudo-

Newton control law (3.9) is determined by the eigenvalues of the following matrix:

r
a

where

(0

* = exp(AT)

r = [exp(ATH]A~lB

Q

* e RHXH

T € Rnxm

V 6

a e

(«.a)

(ii.b)

When sampling time T is small, we have

O - (1+87V

r -

O - (l-\)I- QUJ)

Obviously, the matrix (i) has nontrivial eigenvalues, m(T).



31

In order to analyze the distribution of eigenvalues for matrix (i) under this condition, the following

similarity transformation is employed, which leaves the eigenvalues unchanged:

(IV)

n

(v)

It is obvious that m eigenvalues of matrix (v) are zero. Using Schur's formula (Kailath 1980), the

characteristic equation of matrix <t>-r(Cr)*1C<I> can be written:

det

det

(u7-4>)

/

cr

1
det(CT)

det 1
detiCT)

Note that the determinant of the second matrix in the bracket defines the zeros of the system {C, * . T). It

follows from (vi) that m eigenvalues are zero. Thus, when X « 1, 2m eigenvalues go to zero; and n-m

eigenvalues go to the system zeroes.
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(b) X -» 0

When X approaches zero, matrix (i) becomes:

r
(vu)

m eigenvalues approach one; and n eigenvalues approach the system poles.

(c) 0 < X <, 1

Now let us show that when sampling T approaches infinity, n eigenvalues of matrix (i) approach

zero and m eigenvalues approach (1-X).

lim

lim r • -A"1

lim (CT)"1 *

lim ¥ « lim -;

lim a = lim

(VUIM)

(yui.b)

(yiiix)

(viii.d)

(viiix)

When T approaches infinity, the characteristic equation for matrix (i) becomes:

lim det r

n

del

d-xy
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Thus, n eigenvalues approach zero; and m eigenvalues approach (1-X). Since all elements in *, r, y,

and a are continuous functions of sampling time T, the spectral radius is also a continuous function of

T. Therefore, there exists f < -, sothatp(T) < l forr > f.
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APPENDIX C

The notation defined in section 2 is used here. We make following assumptions:

(1) The system (2.1) is asymptotically stable in the large for all feasible control variables u e Rm

(2) All gradients with respect to u* and x8 are bounded and continuous.

Proof of Theorem 4.4

Let us prove first that all gradients with respect to xs approach zero when the sampling time

approaches infinity. Let us introduce a new variable F+ 2 « x fx^ .u 8 ) , i.e., the system state at t = f+2 if the

input is held constant at u • us over the (s+1 )th sampling interval. Expand 3cJ+2(xs"1'1 ,us) in its Taylor series

around (xs,us):

where

a*»

Using assumption (1), we have

lim

Eq.(ii) also implies that when the sampling time T approaches infinity, every term except the first in

Eq.(i.a) goes to zero. Therefore, we can write:

lim (*O'' = 0 f • 1, 2, ...

where

The pseudo-Newton control law (3.8) can be rewritten as follows:

û '-w* - MPrThCVOf-xr^y-y"*] (iv)
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Expanding y 6 * 2 ^ * 1 , u*+1) in a Taylor series around (x»,u») gives:

where

(vx)

c; - £x ax*

Subtract y* from both sides, apply the pseudo-Newton control law (iv), and take norms of both sides

to get:

+ llxrtI-xf|l Ili^'-ifll WJH + \

We now have from above:
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lim O» -* 0 (VUM)

lim * * -» 0

lim « £ - > ( )

Therefore

lim H ^ - • 0

lim W^ -> 0, and (w>)

Z*1!!2 (v«V)

For high order terms OflKx*1-*5). (M^'-UOII3 ) , all gradients with respect to xs go to zero when
sampling time T approaches infinity. All gradients with respect to us are bounded and the terms involving
u are multiplied by a power of the relaxation factor X. Using eq. (vii), eq.(vi) can be written as follows :

OQ?)

We now choose a finite T so that Q * . ^ and X are small enough to satisfiy:

OQ?) + Oa^ 3 . X3)

(a)

Then we have

which proves the theorem.
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APPENDIX D

Proof of Theorem 4.5

The assumptions of the asymptotically stable In the large system and continuous and bounded

gradients in Appendix C still hold here.

Referring to Theorem 42, the discrete closed-loop system has a unique stable equilibrium state
u«q>in u « * ° ' u0)' r>H me t h e Wowing condition is satisfied:

a*
(x
at

du

dUjxju)
du

where

If we assume that the system output reaches the setpoint at the end of the first sampling time by

using the iterative control law, then the following relation

holds. At the optimal condition, we also have:

\A

- * - •

•S-* 1
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a*»
. 0

which is equivalent to the following equation:

«3bc*

where

Then the derivatives of n* with respect to x* and u* become:

a**

§ 0 ! . o

The contraction mapping matrix is:

As T approaches infinity, the eigenvalues go to zero, which proves Theorem 4.5.
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Curve

Curve

1

2

1
X

0.49

no

u

0.51

no

1
X

2
300.0

no

u
X

2

550.0

no

I
U 2

300.0

300.0

u
u

2

550.0

550.0

Table 1: Process constraints for example 1
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Qi

QM

VR

VI

VM

q+

<
0

inlet flow rate

acid flow rate

inlet flow rate for
the measuring chamber

volume of the reactor

volume of the intermediate tank

volume of the measuring chamber

H concentration of the inlet
flow in the reactor

H + concentration of the acid
flow in the reactor

S.01 / sec .

control variable

0.1 1/sec.
100.01

100.01

0.01 1

10.0 mol /I

10.0 mol /I

Table 2: Numerical values of all parameters for example 2
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I
CO

•» S. Radius
f— S. Radius « 1 .

6
Sampling Time
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0.0 0.2 0.4 0.6 0.8 1.0
3
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CO

oc

o.o

•*• S. Radius
— S. Radius = 1.

1.0
Sampling Time
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0.2 0.4 0.6 0.8 1.0
Lamda
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X l •



46



47

0.60-1

0.55-

Concentration
(yi)

0.50'

0.45-

0.40

Curve 1
Curve 2
Setpoint

Hin.
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L Level
(y2)

022

0.18

0.16

0.14

0.12 H

0.10

Curvti

Curv«2

Sctpolnt

Min.
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Inlet flow
rat«(u1)

0.7

0.6

Curve 1

Curve 2

6

Min.
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Inlet flow
temp. (u2)

440

400

360

Curvti

Curv*2

Mln.



°o °o ° 0

h b 'r
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|

100

•n- pH Value
— Set Point

200 300
Time ( Sec)
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• pH Value
— Set Point

100 200 300
Time (sec.)
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o

1.0a-4

8.0e-5-

6.0e-5-

4.0e-5-

2.0e-5-

0.0e+0

Acid flow rate

100 200 300
Sec.
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Cuiv* 1
Curvt 2
Curv* 3

8«tpolnt



56

12 T

Curve 1
Curve 2
Curve 3

Setpolnt

200 400 600

Sec
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1.2*4-

1.0e-4

8.0*5

(Acid fiowrate)
6.0e-5-

4.0*5

2.0*5

0.0*40

\

— — Curve 1
••»» • Curve 2
- - • - Curve 3

200 400 600

Sec.
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