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Abstract

The development and implementation of the Range and Null space Decomposition

(RND) strategy for large-scale problems is described with emphasis on the optimization

of engineering systems. The RND technique, as detailed in Vasantharajan and Biegler

(1988), uses nonorthonormal, gradient based projections for the Jacobian. However, this

implementation is dense, and does not take advantage of system sparsity. Here we

extend this algorithm to incorporate general purpose sparse matrix techniques. Also,

problems like inconsistent linearizations and infeasible Quadratic Programs (QPs), which

are generally associated with QP based methods compromise the robustness of this

method and need to be considered. Finally, systematic ways of generating a nonsingular

basis for general nonlinear programs must be developed if this strategy is to be adapted

to solve large, sparse problems efficiently. To deal with these problems, a two phase

LP-based procedure is coupled to the RND algorithm. This strategy also serves to

partition the variables into decisions and dependents, thereby generating a nonsingular

basis. Any redundancies/degeneracies in the constraints are also detected and processed

separately. The entire reduced SQP implementation is then interfaced with GAMS

(Brooke et a/. (1988)), a front end for representing and solving process models.

Finally, a thorough comparison of the RND based reduced SQP strategy with

MINOS (Murtagh and Saunders (1978)) is effected on a set of NLPs and process design

problems. The process problems include the optimization of the operation of

distillation columns. These problems warrant special mention as have been uniquely

conceived and implemented in a novel equation-oriented manner, thus exploiting the full

potential of the GAMS architecture. Detailed discussion of the formulation and results

are included and results are obtained that confirm the viability and efficacy of the

reduced SQP implementation for efficient solution of large, difficult nonlinear programs.
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1. Introduction

Design systems are in general described by large models, requiring the solution of

large, sparse sets of equations depicting the process modules and the engineering

operations, but only a few degrees of freedom. For example, for a typical flowsheet

the number of variables and equations may be of the order of 10,000, while the

parameters would be of the order of 10 (Locke et a/. (1983)).

Although there is still no universal consensus about the "best" algorithm for

nonlinearly constrained optimization in the dense case, SQP has been recognized by

many studies (Reklaitis et al, 1983; Hock and Schittkowski, 1980; Edgar and

Himmelblau, 1988) as one of the most efficient algorithms for small to moderately sized

problems, requiring the fewest function evaluations for optimization. However, as the

size of the problem become large, it has been observed to be time consuming. The

computational effort and overhead required to solve QPs with current, dense quadratic

programming implementations become significant and, indeed, may be the major

computational cost.

Unlike SQP, MINOS was developed as an efficient nonlinear programming

algorithm for large-scale implementations. In this approach, the nonlinearly constrained

problem is solved as a sequence (major iterations) of linearly constrained sub-problems,

which have as their objective function a projected Lagrangian. The solution of each

linearly constrained problem can be found by applying unconstrained algorithms (minor

iterations), such as variable metric methods, in the null space of the active linear

constraints. Under mild conditions it can be shown (Murtagh and Saunders (1978)) that

the major iterations converge to the solution of the nonlinear program at a quadratic

rate. Minor iterations generally converge to the solution of the linearly constrained

problem at a superlinear rate. Moreover,-although this strategy generally requires more

function and gradient evaluations than SQP, it lends itself to efficient sparse



implementations, especially with respect to matrix factorizations for null space

operations. Consequently, the MINOS algorithm often performs well on large scale

process optimization problems.

With the Range and Null space projections, on the other hand, a reduced SQP

algorithm, RND, has been developed, giving SQP the potential to solve large, sparse

problems. RND solves a much smaller quadratic program only in the null space of the

active constraints, which is of the dimension of the degrees of freedom of the problem.

Linear equations then need to be solved to compute the range space move to a feasible

point on the linear subspace of the active constraints. In addition, this algorithm has

been shown (Nocedal and Overton, 1985) to have the same theoretical convergence

properties as the that of the undecomposed SQP algorithm. Moreover, our

computational experience (Vasantharajan and Biegler, 1988) has shown that this method

almost never requires more iterations than the full SQP, and only a small fraction of

the computational cost.

Even for large scale problems, however, effort required for function evaluations is

still significant, and therefore, SQP strategies tailored to these problems still can be

very effective. Thus, there is considerable incentive to develop a reduced SQP strategy

through range and null space decomposition for process optimization problems. It

should be noted here that the measure of efficiency of any algorithm for solving large-

scale process optimization problems should be based both on the number of function or

model evaluations, as well the computational time required.

2. Adapting RND for Process Optimization Problems

With the fact that process optimization problems usually have many variables and

equations, and relatively few degrees of freedom in mind, let us re-examine the final

system of reduced space equations as proposed by the RND approach:
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Here, u and v denote the decision and dependent variable subsets of the set process

variables, x; d denotes the search direction in x and \L are the multipliers of the

inequality constraints from the reduced space QP (RND). X are the multipliers that

correspond to the equality constraints. Also, a has been defined as the matrix

f (V h1)"1 V h T 1 and j3 as the vector f (V h1)"1 hi for convenience of notation.

From these we can define the range space projection matrix as Y = [ a I ]T and

the null space projection matrix as Z = [ I -ftT ] T . The matrix (I + ttttT) can be

seen from the definition of a to be of the same size as the number of equality

constraints, h, in the problem. This makes the LU decomposition task for this matrix

computationally prohibitive. However, this matrix can be reduced using Householder's

transformation as follows:

(I + aaV = [i - a (I * aTa r1 aT ] (2)

Now, the matrix to be decomposed, (I + a T a ) is only of the size of the number of

degrees of freedom in the problem, and hence denotes a very significant reduction in

terms of computation required. With this transformation, the modified expressions for

d and X can be written as follows:



dY « - [j3 - « <i • a T a)- (aT/3)] .

and,

x = - (Vh)'1 [ I - a (I + aTa)"' aT ] YT (V4> + Vg fi) (3)

The reduced space algorithm then consists of solving for the range and null space

directions at each iteration and then performing a linesearch along the search direction,

d. A detailed description is given in a later section. To deal with large, sparse Jacobian

matrices, sparse routines from the Harwell subroutine library, viz. MA28AD and its

related procedures, are used to solve the systems of linear equations to construct the

matrix a. The routine MC19 is employed to obtain the scaling factors for the matrix

to be factored. On the whole, the Harwell library routines seemed adequate for this

implementation.

3. Consistent Linearization and Basis Generation

The SQP algorithm solves a sequence of QPs, the constraints of which are obtained

by a 1st order Taylor's series expansion of the nonlinear constraints imposed on the

problem. Denoting the equality constraints by "h", and the inequality constraints by "g",

this can be represented as follows:

h(x) = h(xk) + VhT(xk) (x - xk) = 0

g(x) = g(xk) + VgT(xk) (x - xk) £ 0 (4)

A frequent problem in solving quadratic programming sub-problems is that the

quadratic programming problem does not have a solution. This occurs when the

linearized system of equations, as shown in eqn. (4) is inconsistent A necessary and

sufficient condition for this is that the rank of the coefficient matrix be equal to the

rank of the matrix augmented with the right-hand side. For large-scale problems

where "good" starting points are not available, the probability of encountering infeasible



QP iterations is high. In the past, safeguards for SQP (Biegler and Cuthrell (1985)) have

been proposed, that have the effect of relaxing the feasible region, and thus solving an

altered QP. However, none of these relaxation techniques avoid failure on all problems.

Here, we will propose a systematic approach to handling infeasible quadratic

programs, which parallels the phase I strategy adopted by many LP strategies to find

an initial feasible basic solution. It is formulated as an LP, with each equality

constraint padded with two non-negative artificial variables, and each inequality

constraint augmented by one such variable. Denote these additional variables as P and

W for the equalities, and by S for the inequalities. The objective of this auxiliary linear

program is to minimize the sum of these artificial variables. The expanded system,

which we will call primary phase I LP, can be written as:

MEQ IEQ

Min T" <P + W> + X S <LP1>

st. h (x ) + Vh T(x ) (x - x ) = P - N
ik i k k i i

g(x) + Vg T (x) <x - x) < S
j k j k k j

xL £ (x - xk) < xu

P, N, S £ 0 V i. j

Here, MEQ and IEQ denote the number of equality and inequality constraints,

respectively. At the LP solution, the value of each of these artificial variables measures

the magnitude of the infeasibility in its associated constraint If there is a feasible

solution to the original system of constraints given by eqn. (4), then it is obvious that

(LP1) has minimum value of zero, with P, N, and S, each equal to zero. Thus, if

(LP1) terminates with all these auxiliary variables non-basic at zero, then the the set of

equations is consistent. If however, any artificial variable is basic at a non-zero value,

implying infeasibilities in the linear system, the LP solution is then used as a search



direction for the next point. A step length, CO, is then computed along this direction

for which some merit function, measuring the constraint infeasibility is minimized. We

have chosen the Ll-norm of the constraint values

max[0,g] (5)

as this merit function. Here, the set I is the set of all MEQ equality constraints, and

J the set of IEQ inequality constraints. Partitioning the set of equality and inequality

constraint each into three set as follows:
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it can be shown (Vasantharajan, 1989) that the search direction given by (LP1) is a

descent direction for the merit function 6. An Armijo line search along this direction

using 6 has been incorporated with the primary phase I strategy to reduce the sum of

infeasibilities. At the new point computed, the constraints are once again linearized and

a new (LP1) solved. This process is continued until the sum of the infeasibilities is

below a chosen tolerance. This procedure is re-executed each time an infeasible QP is

encountered during the intermediate iterations of the RND algorithm.

A principal advantage of embedding a full set of artificial variables into the

constraint system is that any redundancy or degeneracy associated with the system does
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not pose computational problems. For example, if a given system has been over-

specified, whereupon, a particular equation can be constructed by a linear combination

of the others, it leads to a linearly dependent set of constraints, and therefore a

singular system. With the Newton's method the main drawback is encountering singular

Jacobian matrices. The parallel in the quasi-Newton method, RND, is a singular basis.

As linear dependence among the linear constraints is commonplace in practical

problems, it is desired to have a suitable formulation to pick a non-singular set of

dependent variables, as well as identify any redundancy in the set of equality

constraints. An alternate phase I LP, which will be referred to as the secondary phase

I, is devised for this purpose as follows:

MEQ

Min T * (P + N) (LP2)

st. h (x ) + Vh T(x ) (x - x ) = P - N
i k i k k 1 1

P, N £ 0 V i
i i

This problem is identical to (LP1) sans the inequality constraint and the bounds on the

process variables.

As solution of (LP1) has already ensured consistency of the entire system of

constraints, we know that (LP2) is always feasible, with objective function value lower

than the chosen tolerance. Further, with full set of artificial variables the equations are

alway linearly independent by construction. If (LP2) terminates with all these variables

non-basic at their lower bound, there are no redundant constraints. But, if any P or N
i i

is basic at zero, i.e. a degenerate solution, it signifies that the associated constraint is a

redundant (but consistent) equation. Tjie offending constraint is not used in the

computation of the range space step, but is imposed as a constraint on the QP, when



computing the null space movement. The reason is that the degeneracy could be a local

property at the current point, and the constraint could be a valid one at optimum. In

addition, as part of the (LP2) solution, the LP solver identifies a set of basic process

variables, v, commensurate with the number of basic or non-redundant equations.

Caution should be exercised if the Jacobian becomes singular at later iterations,

since the effect of a change in basis on the projected Hessian should be considered.

One obvious option is to reset the projected Hessian to Identity and restart with the

new basis by resolving (LP2). This was found by experience to be effective, serving

only to slightly slow down the method. A second option is to repartition the variables,

but use the old projected Hessian. Although this seems to work on some of the

problems we tested, it is not recommended. The third and probably most correct option

is to compensate for the change in basis, by considering explicitly the influence of the

basis Z on the update. This requires an explicit form for the transformation matrix M

which permits the nonorthonormal basis to be expressed as a linear combination of the

columns of an orthonormal basis, i.e.,

Z = Z M (7)

This can be computed by:

Z (ZTZ)~W2 = Z (M)"1 = Z (8)

and would require the storage of the basis Z for each iteration and a Cholesky

factorization to compute M. Although we did not implement this approach, we mention

this option here for completeness.

It should be noted here that in a purely equality constrained or inequality

constrained problem solving (LP1) will suffice, and (LP2) is not necessary. Also, in a

mixed problem, if the optimal solution 'of (LP1) has all the logical variables (slacks)

associated with the inequality constraints in the basis, this impies that these constraints
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are not active, and it is not necessary to solve (LP2). On the other hand, even if one

of the inequality constraints is active, then one of the process variables will be basic

with respect to this equation. As it is not possible in sparse LP solvers to obtain a

one-to-one correspondence between the basic variables and the basic constraints, it is

necessary to solve (LP2) in the absence of this constraint to sort out the non-singular

basis to the set of equality constraints.

If at intermediate iterations infeasible QPs are encountered, we return to the

solution of (LP1), followed by (LP2), if necessary. If a singular basis is met, we return

to (LP2).

4. Interface with GAMS

General Algebraic Modelling System (GAMS) (Brooke et a/., (1988)) is a high-level

language for compact representation of large and complex models. It was developed

primarily to make easy the onerous task of model representation and modification, and

its subsequent optimization by mathematical programming techniques. The GAMS model

portrait permits mathematical representations, and all data transformations are specified

succinctly and algebraically. Of principal importance to us was the fact that GAMS

compiler computes the objective and constraint function derivatives of a given model

using symbolic differentiation. It also permits existing algorithmic methods to be

interfaced efficiently, enabling the use of the GAMS framework to test NLP solvers.

The large-scale reduced SQP method has been interfaced with the GAMS system

as a general purpose nonlinear solver. Unlike MINOS which has been specially adapted

and integrated within the GAMS, SQP had to be interfaced within the bounds provided

by the system's framework. Even so, as will be borne out by the computational results,

the development has been a successful one.

The RND/GAMS implementation is a modular one and uses different commercial
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routines for operations such as LP and QP solutions, and solving systems of equations.

For example, the FORTRAN code QPSOL (Gill et al, 1983) is used to solve the QP

subproblems: the Harwell routine MA28 is used to factor the sparse Jacobian.

However, care has been taken to ensure that the RND strategy is not wed to any of

these routines. A flexible platform has been provided, whereby the incorporation of

new and more efficient procedures is straightforward, and does not require a overhaul

of the software.

5. Reduced SQP Algorithm

The RND algorithm, as refined and extended to solve large-sparse problems can

now be detailed as follows:

• Set iteration counter k to 0.

• Preprocessing Phase:

1. Evaluate the functions and gradients 4>, V*, h, Vh, g and Vg at x .

These are computed by GAMS in a sparse form with only the nonzero

entries being processed.

2. Set up the primary phase I problem (LP1) and solve the linear

program. Currently, any LP routine interfaced with GAMS (such as

BDMLP, ZOOM, MPSX or even MINOS) can be used for this step.

3. If the LP1 objective function value is not less than the desired tolerance

(10"6 default) then perform an Armijo line search along the search

direction, d provided by the LP. Use the merit function 8 Ceqn. (6)]

to find a step size CO.

Update x = x + d . Increment counter: k = k + 1. Go to 1.
k* l k k

4. If all constraints are either equalities or inequalities, then stop. If we

have a mixed set of constraints, and if all slacks associated with

inequality constraints are basic, then go to step 5. Else, set up

secondary phase I linear program (LP2) with only the equality

constraints and solve.
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5. Identify the basic variables and constraints. Tag the redundant equality

constraints for special processing.

• Reset iteration counter, k = 0.

• Initialize the projected Hessian approximation to Identity matrix, I.

• Optimization Phase:

1. Set and solve a sparse system of linear equations using MA28 and

related routines. Compute OL and p by matrix multiplication. If basis

singular, return to Preprocessing Phase to execute the secondary phase

I procedure.

2. Set up system of equations for solution as an augmented matrix, denoted

by C:

c = [d + aTa) ! aTj3]

From the system C compute using LU decomposition and matrix

multiplication d [eqn. (3)]

3. Solve the QP (RND) with the redundant equality constraints included, to

obtain d and /

re-execute (LP1)

obtain d and /i. If QP is infeasible return to Preprocessing Phase to

4. Reconstruct the search direction d and estimate the Lagrange multipliers

for the equality constraints, X [eqn. (3)].

5. If the error in the first order necessary conditions, the fractional change

in the variables and objective function are each less than the desired

tolerance, then stop. Else:

6. Perform an Armijo line search along the search direction d to get the

step length, a).

7. Set x = x + G> d. Set k = k+1.

8. Update the projected Hessian (ZTB Z) using the BFGS update formula

with Powell's (1977) positive definite correction.



13

6. Computational Experience

The sparse reduced SQP/RND implementation has been extensively tested against

MINOS on a number of nonlinear programs, within the framework of the GAMS

system. This software evaluation endeavor attempted to answer the following questions:

1. How does the reduced SQP strategy generalize to large, sparse problems?

2. How well does the RND strategy compare to MINOS in terms of number of

function evaluations and computational effort?

3. How do the two procedures compare from the point of robust performance

on difficult process optimization problems?

The performance comparison of the RND implementation, written in FORTRAN

77 was carried out against GAMS/MINOS version (5.1) on a VAX 8810. The

VAX/VMS interface of GAMS/MINOS version (5.2) was not supported by GAMS for

this hardware at the time of testing, so we decided to use the earlier version, to

provide a consistent environment for drawing conclusions. However, the version (5.2)

which was available with another version of GAMS implemented on a SUN 3/60 was

used, whenever the earlier version proved inadequate for our purpose.

While tabulating the results, the following notation will be adopted throughout: N

will be used to denote the number of variables, M the total number of constraints, and

MEQ the number of equality constraints. These will be used to characterize the

problems specifications. TIME" will be used to represent the CPU time required.

Unless otherwise specified, the time unit is CPU seconds on the VAX 8810. TUNC"

will depict the number of function evaluations required. When the algorithm fails of a

particular problem the notation (F) will be employed to indicate this. Finally the

heading "LP" shows the CPU time for the RND Preprocessing Phase. Here BDMLP, a

sparse LP solver, was used as it was the most reliable LP option available* at time of

testing.
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The nonlinear problems considered can be classified into two distinct groups: The

first class of example problems, which will be referred to as "General test problems",

are from a repository which is included with the GAMS system. These are models

collected from the early stages of development of GAMS. The results and sizes for

these problems are presented in Table 1. As can be seen from this table, we have

considered a wide variety of problem sizes, ranging from small « 50 variables) to

medium (about 100) to large (> 200), primarily to address the first question posed

above. These results will serve to illustrate that the transition to solving larger

problems with a reduced SQP implementation has been an efficacious one.

The second set of problems are optimization of separation-based processes. The

classical phase-contacting operations, absorption and distillation, are considered here.

These problems, unlike the first coterie, are complex process models, and the

optimization problems are not easy. The results for these are given in Table 2, and

will address the second and third factors considered above. Based on the trends in

these results, it is patent that the range and null space decomposition strategy is indeed

a highly efficient and robust strategy for large-scale problems.

6.1. General Test Problems

These nonlinear problems from the GAMS library are real world models. This

library is an exhaustive one, and contains models from diverse are of applications like,

Agricultural Economics, Engineering, Chemistry and Chemical Engineering, Mathematics

etc. For further details of these models and their origins, refer the GAMS, A Users

Guide (Brooke et a/., (1988)). A brief outline of each of these problems will be given

here. A feature of all these problems is that they are tractable, and have known

optimal solutions.

The first problem, "Ramsey", is a savings model which illustrates the trade-off

between consumption and investment The second, "Chenery", is also an economic
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development model which deals with substitution and structural change. These two

constitute the "small" example problems. The last three examples are from the field of

applied general equilibrium. While "Korcge" and "Camcge" are models for Korea and

Cameroon respectively, "Ganges", is a macroeconomic framework for India.

Both MINOS (5.1) and RND are successful in solving all these problems. RND, as

expected, always requires fewer function evaluations than MINOS. On the two smaller

problems, RND is better than MINOS in terms of the computational effort required.

Although the function evaluations for the reduced SQP are considerably lower, on these

simple models, the effect on CPU time is negligible. On the medium-sized problem,

"Korcge", and on one of the larger problems "Camcge", RND requires less than half

the CPU time taken by MINOS, although the differential in the number of function

evaluations is not significant. The last problem in this category, "Ganges", is unusual

from an engineering perspective in that it has 83 decisions out of a total of 357

variables, a very significant number. Consequently, although RND requires only 4

iterations, the solution of each of these large QPs is still time consuming. This

translates into the reduced SQP strategy requiring about 20% additional CPU time than

MINOS. However, with the inclusion of a more efficient QP routine, the solution of

these large problems should be much faster.

These results confirm the distinct advantages that the RND approach offers to

solve general nonlinear programs. On this set of varied models solved, RND is

computationally very competitive with MINOS, and always requires fewer model

evaluations.
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Table 1: Compuutional Results for General Nonlinear Problems
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6.2. Process Optimization Problems

The second class of problems considered are separation process optimization

problems involving absorber and distillation models. These models exhibit the

conventional design problem characteristics of being described by a large number of

variables and equations. In all four major models/systems are considered here, and the

optimization results are presented in Table 2. The first one is an absorber model and

the last three are distillation columns modelled from first principles. Of the distillation

problems, the first one is a design specification problem, which assumes ideal vapor and

liquid properties. A brief discussion of these two models will be presented. The last

two distillation problems are optimization of the operating conditions. These are realistic

and complex models, with rigorous thermodynamic equations for the vapor and liquid

phase properties. The implementation details, and an in-depth discussion of the solutions

obtained for these two models will be presented here. As these large models are

computationally intensive to evaluate, and the overlaid optimization problems are

difficult to solve, they will serve as apposite tests to evaluate the efficiency and

robustness of the optimization algorithms compared.

The first example is the optimization of an absorber process model described by

Kremser equation (refer to Kocis (1988) for details). This process unit model neglects

heat effects and assumes a pure solvent The objective here is to minimize the sum of

the capital cost, expressed as a function of the number of trays in the absorber, and

operating cost, calculated as a function of the stream and component flowrates. Two

cases have been considered in this model; these are denoted as Absorber (a) and (b) in

Table 2. In the first case, the absorption factor is a decision variable, and an upper

bound of 20 was imposed on the number of trays. In the second case, the model was

simplified by fixing the absorption factor and increasing the maximum number of plates

to 30. As can be seen from the results, on the first problem MINOS (5.1) terminated

at an infeasible solution, although the (5.2) version was successful in finding the optimal
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PROBLEM

Absorber

(a)

(b)

Distillation
Ideal

(a)

(b)

Distillation

Nonideal (1)

(a)

(b)

(c)

Distillation

Nonideal (2)

(a)

(b)

(c)

SPECIFICATIONS

N

50

228

569

977

M

42

227

567

975

42

227

567

975

MINOS (5

TIME*

#
(F)/26.3

23

17.8

26.1

115.9

231.9

(F)/1.6+

(F)/(F)

360.2

(F)/(F)

.1)/(5.2)

FUNC

(F)/140

91

12

85

43

289

(F)/746

(F)/(F)

162

(F)/(F)

REDUCED SOP

TIME*

1.93

1.11

11.9

19.9

35.2

94.1

96.7

104.1

190.8

193.4

FUNC

33

14

7

12

14

48

55

31

26

34

LP

TIME*

0.82

0.82

73.5

85.0

124.3

12.3

105.6

365.5

27.7

316.2

* CPU Second-VAX 8810

+ CPU Hours SUN-3/60

(F) Failed

# CPU Seconds SUN-3/60

Table 2: Computational Results for Process Optimization Problems

solution. On the second problem, version (5.1) proved adequate. RND was able to find



19

the optimal solution in both cases with less computational work. In addition, in

keeping with the forte of this approach, very few model evaluations are needed, a small

portion of the calls required by MINOS.

Problem specifications for the next three problems are given in Vasantharajan

(1989). The first of these is denoted as Distillation Ideal, and the last two cases as

Distillation Nonideal (1) and Distillation Nonideal (2), respectively. In the results

given in Table 2, individual cases considered for these will be indexed by (a), (b) etc.

The convention adopted here is that for the nonideal problems, case (a) would denote

the simulation result, case (b) the subsequent optimization, and case (c) the results for a

simultaneous solution technique.

All these columns were initialized with linearly interpolated starting points, using

the simulation specifications given in the literature. A linear pressure distribution, with

a pressure drop of about 0.1 atm was assumed along the column. The symbols,

conventions and equations used in describing the columns, as well as the mathematical

model of these columns can be found in Vasantharajan (1989).

Problem Distillation Ideal deals with the separation of a binary mixture of

benzene and toluene and is required to determine the minimum external reflex ratio to

effect a specified separation for a given number of stages. Both the liquid and vapor

phases were assumed to exhibit ideal behavior, a reasonable assumption for this system

at the column pressure. Two different starting values for the reflux ratio were tried

out. The second case was purposely initialized far away from the optimal value

predicted from the first starting point. This is reflected in the performance of both the

optimization algorithms, which require more effort for the second case. The previous

trends observed in comparing MINOS and RND are also seen here. In both cases, the

reduced SQP implementation outperforms MINOS.
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6.2.1. A New Equation-Oriented Model for Distillation

The motivation to solve the last two nonideal separation models, interestingly,

stemmed from the research efforts of Lucia and coworkers. As an alternative to the

use of decomposition strategies to improve the performance of SQP, Kumar and Lucia

(1987) developed sparse Hessian updates, tailored to distillation optimization problems.

These update formulae exploit the properties of thermodynamic functions and the

sparsity in the Hessian matrix. In this hybrid approach, derivative information is

supplied where calculable, and remaining information is approximated through sparse

quasi-Newton formulae that are thermodynamically consistent (TCH). It has been

observed by Lucia and Kumar (1988) that in evaluating the numerical performance of

quasi-Newton methods on distillation optimization example problems, that feasible

starting points were mandatory. All the methods employed failed when a simultaneous

simulation and optimization approach was adopted to solve these models, using linearly

interpolated starting points. Rather, they claimed that a sequential approach was

necessary, which simulates the column first, and then optimizes the operating conditions.

Further, even when feasible starting points are used, only the TCH method was able to

successfully solve all the problems considered. The authors then stated that it would be

interesting to examine the performance of RND on these arduous problems.

It should be noted here that although significant improvements in performance

have been noted with TCH, no theoretical improvements in convergence have yet been

shown, and, in fact, computational difficulties can occur because the updated Hessian

may not be positive definite. Moreover, these strategies apply only to specific classes

of problems with special structure. For general purpose problems, it may be difficult,

if not impossible, to develop sparse updating formulae that improve the performance of

SQP. However, accepting the challenge, we decided to model and solve two of the

example problems used by Lucia et a/.,.which, in particular, exemplified the reliability

and efficiency of the TCH method.
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In order to exploit the facilities in GAMS, we decided to adopt a novel approach

to describe these detailed and rigorous models. In the conventional "sequential-

modular'* approach, which is adopted by almost all commercial process simulators,

instead of specifying the full process model as a single set of nonlinear equations that

need to be solved, process equations are grouped according to the particular unit

operation they describe. Physical and thermodynamic properties required are evaluated

by calling the appropriate procedures. While the modular nature of the formulation

enables easy construction and modification, gradient information is not directly available.

As accurate computation of these gradients is imperative for optimization, we decided to

embed the thermodynamic package in the distillation model, resulting in an equation-

oriented representation of the entire problem. By doing so, the GAMS symbolic

differentiation capability can then be used to compute all the necessary gradient

information analytically. Although this approach would lead to a large increase in the

number of process variables, it should be noted here that all the physical property

related variables are fully determined by the equations defining them. Consequently, by

using the reduced SQP technique, all these equations can be decomposed. Thus, the

final optimization problem solved will be no larger than the one that would be

obtained by decomposing a model described in a modular environment

The ease with which the amalgamation of the physical property equations and the

model description was achieved is a tribute to the excellent facilities for data and

model representation in GAMS. The liquid phase was modelled by UNIQUAC

(Prausnitz et al. (1980)) method. The generalized method of Hayden-O'Connell was

used to compute the pure component and cross second virial coefficients to evaluate the

vapor phase fugacity coefficient The enthalpies of both vapor and liquid were

corrected for the effects of pressure and mixing. The entire system representation was

divided into five files/sections of information, in such a way that the development of

the model would parallel the hierarchical manner in which an individual would
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conceptually decompose these problems. The first section was the physical property

database, where, all the required properties, parameters and constants for the process

components were tabulated and computed. This file was then compiled by GAMS and

saved. In a second file, the vapor phase related parameters and their definitions were

represented. This file was then processed and saved, restarting from the saved data

from the first file. A third file, which had the liquid phase related particulars, was

then similarly processed. In the fourth section, a feed flash unit was modelled to

calculate the bubble-point temperature of the feed, given its composition and pressure.

Homotopy-continuation method has been built into this system to solve the necessary

system of equations. In the final section the actual distillation model equations are

represented, which could then be executed by restarting from the processed information

from the fourth segment. By adopting this modular representation of the entire system.

the only change that is required for solving similar distillation optimization problems is

modifying the physical property database. All other sections remain intact. For more

information on this systematic development, a GAMS representation of a distillation

optimization problem can be found in Vasantharajan (1989).

6.2.2. Optimization of Rigorous Distillation Columns

The first of the two nonideal example distillation optimization problems solved is

due to Naka et al. (1979) and is an acetone-acetonitrile separation system, equipped

with a partial condenser. The source for the second distillation problem is Gallun and

Holland (1976), whose objective is to separate methanol and chloroform. Unlike Lucia et

al., who used a partial condenser, we decided to preserve the original intent of the

authors, and use a total condenser. For these problems, the column related variables

are the liquid and vapor mole fractions, the liquid and vapor flowrates, the

temperatures and the condenser and reboiler heat duties (for details refer to

Vasantharajan, 1989). The objective function used here to represent the operating

conditions is:
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Mm • = 3.0 x 10"7 (QR - QC) - (LKC • HKR) (9)

Here, the superscripts C and R denote the condenser and reboiler, respectively. LK and

HK the light and heavy key component flow rates. Q denotes the heat duties. We have

adopted here the objective function form used by Lucia and Kumar.

The optimization results in Table 2 bear testimony to the exemplary robustness and

efficiency of the reduced SQP strategy. Of the six cases considered, version (5.1) of

MINOS failed on three instances. Version (5.2) succeeded in solving one of these

problems, but was unable to tackle two cases of Distillation Nonideal (2K which are

by far the toughest cases solved here. For this problem, the initial set of values used

for the variables were selected in a relatively arbitrary fashion by Gallun and Holland,

so that they could not be regarded as good first guesses in the sense of being close to

the solution. Thus, simulation of the column, or its simultaneous optimization from this

starting point is not easy; these are the two cases on which MINOS failed. RND, on

the other hand, was highly successful in solving all six cases. Further, on the cases in

which both algorithms reached the optimal solution, RND was considerably more

efficient than MINOS, and, in fact, required an order of magnitude lower number of

model evaluations.

The initial and final values for the objective function and critical variables for

both these problems are given in Vasantharajan (1989). Lucia and Kumar reported the

optimal values for the acetone-acetonitrile splitter case alone, and these are given there

for comparison. In addition, they discuss in the separation details of this particular

example. As can be seen from the results for this problem, there is a small difference

in the final values of the variables and the objective. In their formulation, the column

was operated isobarically, and the vapor phase was assumed to be ideal. In the current

formulation, however, a rigorous model for the vapor phase fugacity and enthalpy is

used, and a linear pressure variation across the column is permitted, making the column
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representation more rigorous and complex. This extra rigor in modelling will explain the

marginal differences in the optimal solutions.

For the starting values given in Gallun and Holland, the methanol-chloroform

separation is very poor. About 63% of the methanol in the feed is taken overhead, with

only 20% purity of the distillate product. Likewise, about 62% of the heavy key,

chloroform is separated in the bottoms, with a purity of 20%, indicating tremendous

scope for improvement. The simulation results obtained from this starting point are

presented in Vasantharajan (1989), and demonstrate a much improved separation of these

key components. Approximately 94% of the methanol is now carried overhead at a

purity of about 36%, while an equal percentage of chloroform in the feed is recovered

in the bottom stream, at a purity of about 30%. However, considerable increase in the

condenser and reboiler duties is required to effect this sharp separation. The new utility

consumption represent a 225% increase over the specified initial values.

The main improvement in the operating conditions of this column at the optimal

solution is in the reduction of heat duty requirements. At the solution, the optimal

utility requirements represent a modest 12% increase over their initial values. In

addition, 99.8% of the methanol is recovered in the overhead product stream indicating

an overall improvement in the column performance. This is at the expense of a small

decrease in the chloroform recovery in the bottoms. A comparison of the initial and

optimal values for this column reveals a significantly better separation performance with

an infinitesimal increase in the utility requirements. Identical results are exhibited by a

simultaneous approach to optimize the column, confirming the viability of such

techniques to solve complex separation problems with the reduced SQP approach.
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7. Conclusions

In this study the range and null space decomposition strategy (RND) has been

extended to solve large-scale nonlinear programs. A reduced SQP implementation using

sparse matrix processing techniques has been developed using this strategy, and

interfaced with an efficient modelling front-end, GAMS. In addition, systematic

procedures for tackling problems associated with QP-based methods like inconsistent

linearizations or infeasible quadratic programs have been included. Facilities for

automatic generation of the required nonsingular basis has been developed and integrated

in this package.

The reduced SQP has been extensively tested against MINOS on a variety of

general nonlinear problems, and a series of process optimization problems. The

problems solved range from 34 variables and 23 constraints to 977 variables and 975

constraints. Numerical comparison based on these diverse problems demonstrates the

efficiency and robustness of the RND strategy to solve difficult and complex models.

MINOS, on the other hand, was unable to solve two cases of the largest problem

considered here. Further, the results show that both in terms of the number of function

evaluations required, and in terms of the computational effort required, RND is almost

always superior to MINOS.

In addition, this study describes a new equation-based representation of distillation

based models. Based on a systematic, conceptual decomposition of the tasks involved in

modelling separation processes rigorously, and exploiting the facilities in the modelling

environment, GAMS, a highly modular and flexible depiction of general distillation

columns has been achieved. Using the reduced SQP implementation, the operating

conditions of these models have been optimized, using both sequential and simultaneous

techniques to solve them. The results confirm the efficacy and the viability of the

decomposition strategy, RND, to solve large, arduous problems. Further, contrary to
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published results, they show that the simultaneous paradigm is an efficient alternative to

solve these difficult problems.

Finally, improvements of the current implementation have been planned, in terms

of incorporating more efficient LP and QP solution techniques, and better sparse matrix

solvers. For the QP subproblems, a new and promising large-scale technique, PDQP by

Ng and Thompson (1986), has yet to be tested. Preliminary results obtained in solving

random quadratic programs have demonstrated tremendous potential of this technique.

Efforts to integrate this strategy in the reduced SQP implementation are currently

underway.
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