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1. Introduction 
A consensus protocol is a set of n processors, running asynchronously, that communicate by applying operations 

to a shared object The object may be a message channel, an array of read/write registers, or something more 
complex. Each process starts with an input value, either 0 or 1, and runs until it chooses a decision value and halts. 
A consensus protocol is correct if it is consistent: no two processes choose different decision values, non-trivial: the 
decision value was some process's input value, and wait-free: each process decides after a finite number of steps. 

Consensus protocols are interesting because they are fundamental to synchronization without mutual exclusion. 
The traditional approach to coordinating concurrent access to shared data objects is to rely on critical sections: only 
one process at a time is allowed to operate on the object Nevertheless, critical sections are poorly suited for 
asynchronous, fault-tolerant systems: if a faulty process is halted or delayed in a critical section, non-faulty 
processes will also be halted or delayed. By contrast, an implementation of a concurrent data object is wait-free if it 
guarantees that any process will complete any operation in a finite number of steps, independent of other processes' 
halting failures or variations in speed. If there exists a consensus protocol for an object X, then one can use X to 
construct a wait-free implementation of any concurrent data object whose operations are total [21]. 

If the shared object X is an array of registers providing read and write operations, then consensus is known to be 
impossible [2,12,21,26]. If X is an array of registers providing test-and-set or fetch-and-add operations, then 
consensus is possible K veen two processes, but not among three [21]. Nevertheless, in both cases, consensus 
among an arbitrary numDer of processes can still be achieved probabilistically. This paper presents two new 
randomized consensus protocols, one in which processes communicate by reading and writing shared registers, and 
one in which they communicate by applying fetch-and-add operations. The protocols are consistent, non-trivial, and 
they guarantee that each process decides after a finite expected number of steps. The only previously known 
read/write protocol, due to Abrahamson [1], requires an expected 2°^ operations. Ours is significantly faster, 
requiring an expected 0 ( n 2 ) writes and 0 (n 4 ) reads. The fetch-and-add protocol requires an expected 0 (n 2 ) 
fetch-and-add operations. 

The basic idea behind our protocols is quite simple. We first describe a simple protocol that has exponential 
expected running time if an adversary scheduler runs the processes in lockstep. Each process flips an unbiased coin 
at each round, and the protocol halts when all n processes simultaneously flip the "right" value. The probability of 
terminating at any particular round is 1/2", so the expected number of rounds until termination is 2 n . A naive 
approach to speeding up the protocol is to replace the n independent coin flips with a single unbiased coin shared by 
the processes. Unfortunately, implementing an unbiased shared coin is provably impossible in an asynchronous 
system (see Section 8 below), so it would appear that no progress has been made. The key insight, however, is 
similar to one proposed by Chor, Merritt, and Shmoys [10]: it suffices to ensure that processes are sufficiently likely 
to flip the same value, and that an adversary scheduler has a sufficiently weak influence over which value is chosen. 
The heart of our consensus protocol is a weak shared coin protocol that guarantees: (1) processes are likely to 
observe the same outcome, (2) an adversary scheduler has only a weak influence over that outcome, and (3) the 
protocol has expected running time polynomial in the number of processes. 

Consensus is often viewed as a problem in game theory. One side, the processes, tries to achieve agreement 
against an adversary scheduler. The processes apply read and write operations to the shared registers, and the 
adversary chooses when the operations actually occur. The adversary is extremely powerful: it has complete 
information about the processes' protocols, their internal states, and the state of the shared memory. The adversary 
is not restricted to polynomial resources, thus it cannot be outwitted by encryption schemes. The adversary cannot, 
however, predict future coin flips. Against such a powerful adversary, it may seem surprising that consensus can be 
achieved by a simple protocol in polynomial expected time. 
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2. Related Work 
Fischer, Lynch, and Paterson [19] show that there is no consensus protocol for two processes that communicate 

by asynchronous messages. Doiev, Dwork, and Stockmeyer [14] and Dwork, Lynch, and Stockmeyer [16] give a 
comprehensive analysis of the circumstances under which consensus can be achieved by message-passing. 
Randomized protocols can achieve consensus when deterministic protocols cannot Ben-Or [3] proposes a 
randomized consensus protocol with exponential expected running time that tolerates up to n/5 failures, where n is 
the number of processes. A consensus protocol due to Bracha and Toueg Loj relies on probabilistic properties of the 
message-passing system. 

Loui and Abu-Amara [26] give several consensus protocols and impossibility results for processes that 
communicate through shared registers with various read-modify-write ("test-and-set") operations. Chor, Israeli and 
Li [12] give two randomized consensus protocols for shared read/write registers, one for two processes, and one for 
three processes.1 Their protocols, however, are correct only if one assumes that a process can write a register and 
change state in a single atomic transition. They do not work in the model used in this paper, where updating a 
register and changing process state are considered to be distinct transitions. Abrahamson [1] gives consensus 
protocols for both the "strong" model used by Chor, Israeli, and Li, and the more demanding "weak" model used 
here. As mentioned above, Abrahamson's consensus protocol for the weak model has exponential expected running 
time. 

A number of protocols have been proposed for implementing shared coins in message-passing systems subject to 
byzantine or halting failures. Some constructions are direct [4,8,15], and others arise as parts of protocols for 
consensus [10], transaction commitment [13], or byzantine agreement [7,10,17,32], The models underlying these 
protocols differ from ours by assuming that private channels or encryption can be used to prevent the adversary from 
observing certain messages and processes' internal states. Chor and Coan [11] give a randomized byzantine 
agreement protocol that does not assume private communication, but restricts when the adversary may exploit 
knowledge of the processes' states. 

3. Model 

3.1. I/O Automata 
Formally, we model processes and registers as I/O automata [27,28]. An I/O automaton is a non-deterministic 

automaton A with the following components: 
• states(A) is a finite or infinite set of states, including a distinguished set of starting states. 

• in(A) is a set of input events, 

• out(A) is a set of output events, 

• steps(A) is a transition relation given by a set of triples (s',ej), where s and s' are states and e is an 
event Such a triple is called a step, and it means that an automaton in state s' can undergo a transition 
to state 5, and that transition is associated with the event e. 

If (s',ej) is a step, we say that e is enabled in s\ I/O automata must satisfy the additional condition that inputs 
cannot be disabled: for each input event e and each state s', there exist a state 5 and a step (s' 

An execution of an automaton A is a finite sequence s0, eIf sJt en, sn or infinite sequence s0, ev 5 7 , ... of 
alternating states and events such that s0 is a starting state and each ($,, e u l , sM) is a step of A. A history of an 

The three-process protocol published in [12] has t bug: the termination condition must be strengthened to ensure consistency. 
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automaton is the subsequence of events occurring in one of its executions. 

A new I/O automaton can be constructed by competing a set of I/O automata with disjoint output events. A state 
of the composed automaton S is a tuple of component states, and a starting state is a tuple of component starting 
states. The set of events of S, events(S), is the union of the components' sets of events, and the set of output events 
of 5, out(S), is the union of the components' sets of output events. The sets of input events of S, in(S)> is events(S) -
out(S), all the events of S that are not output events for some component. A triple (s' yej) is in steps(S) if and only if, 
for all component automata A, one of the following holds: (1) e is an event of A, and the projection of the step onto 
A is a step of A, or (2) e is not an event of A, and A's state components are identical in s' and s. If H is a history of 
a composite automaton and A an automaton, H I A denotes the subhistory of H consisting of events of A. 

3.2. Processes, Coins, and Registers 
A process P is an I/O automaton with output events WRITE(P, v, R), READ(P, R), and DECIDE(P, v); input 

event RETURN(P, v, R); and internal event COIN-FLIP(P, x), where v is a value, R a register, and x (the value of 
the coin-flip) an element of the set {0,1}. The two COIN-FLIP events of a process represent possible results of a 
random decision made within the process; if either is enabled in a particular state, the other must also be enabled. 
READ and WRITE events are called invocations, and RETURN events are called a responses. An invocation and 
response match if their process and object names agree. An operation is a pair consisting of an invocation and the 
next matching response. An invocation with no matching response is pending. To capture the notion that a process 
represents a single thread of control, we say that a process history is well-formed if every response is immediately 
preceded by a matching invocation. 

A register R is an I/O automaton with input events WRITE(P, v, R) and READ(P, R), and the output event 
RETURN(P, v, R), where P is a process and v a value. 

33. Protocols 
Let P = { P j , P n ) be a set of processes and R = [Rv R m } a set of registers. The protocol <PrR> is the I/O 

automaton composed by identifying invocations and responses for processes P p P n and registers R l t R ^ A 
protocol history is well-formed if each HI P{ is well-formed, and a protocol is well-formed if each of its histories is 
well-formed. We restrict our attention to well-formed protocols. 

A protocol history H is sequential if. for each register Rj, H I Rj begins with an invocation and alternates 
matching invocations and responses. If we restrict our attention to sequential histories, then the behavior of a 
register can be specified in a particularly simple way: the value read is the last value written. Each history H 
induces a partial 4 'real-time" order < H on its operations: op0 <H opl if the response for op0 precedes the invocation 
for opj. Operations unrelated by < H are said to be concurrent. If H is sequential, < H is a total order. 

A protocol {Pj P n ; R l f R m } is linearizable [20] if, for each history H, there exists a sequential history S 
such that: 

• F o r a l l P ^ H I P ^ S I P ^ 

In other words, the history "appears" sequential to each individual process, and this apparent sequential 
interleaving respects the real-time precedence ordering of operations. Each read or write appears to take effect 
instantaneously at some point between its invocation and its response. We restrict our attention to linearizable 
protocols. 
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3.4. Randomization 
The random non-determinism involved in the choice between COIN-FLIP(P,0) and COIN-FLIP(P,l) has a 

different nature from the "ordinary" non-determinism in the protocol. It is possible to make the distinction 
formally by placing the other non-deterministic choices under the control of an adversary, a function A which maps 
each of the protocol's finite executions s0, eJy j y , en, sn to a set of events enabled in sn, such that for all finite 
executions A(£) consists either of a single non-coin-flip event or a pair of coin-flip events representing the two 
possible outcomes of a coin-flip at some process. The intent is that the adversary controls which executions are 
possible; more formally, we say that an adversary A permits a (possibly infinite) execution 2; = s0, e y , s ; , i f , for 
every event e t in t{ is an element of A(s0, elt sI s M ) . We write 2 A for the set of executions that A permits, 
and Z A s for the subset of 2 A consisting of executions which have s as their initial state. 

Let c(£) be the sequence of coin-flip values in It is a straightforward consequence of the constraints on the 
domain of an adversary function A that, for each countable sequence C of O's and l's, there exists exactly one 
§ A f J(C) in 5 A s such that c(£ A (Q) is a prefix of C. We can think of £ A s as a measurable function from the sequence 
space Q, on the set {0,1} to the sequence space 2 of protocol executions.2 We can thus use ^ A s to define a 
probability measure on 2 by transforming the probability measure on Q as follows: 

^ W = W I ^ ( Q e X } , 

(where the probability on the left is defined only when X c 2 is measurable 2). An immediate consequence of the 
definition is that PAJX) = 0 for any X which is disjoint from 2 A . 

3S. Consensus Protocols 
A consensus protocol is a protocol whose processes each have two initial states, corresponding to input values of 

0 or 1, respectively, and whose histories all satisfy the following conditions: 
1. Consistency. Every DECIDE event in the history has the same value, which must be an input value for 

at least one of the processes. 

2. Termination A DECIDE event for P must be the last output event of P. 

3. Non-triviality. If s is an input state in which some processes start with different values, there exist 
adversaries A, B such that P A j ( { £ I £ contains DECIDE(P, 0) for some P}) and P B ,({£ I k contains 
DECIDE(P, 1) for some P}) are both non-zero. 

The first condition guarantees that the protocol actually achieves consensus. The second condition is not critical 
to describing a consensus protocol, but is necessary for identifying when a protocol is finished. The third condition 
excludes protocols which achieve consensus trivially by fixing the outcome in advance. 

The running time r(H) of a protocol history H is the length of the shortest prefix of H which contains a DECIDE 
event for every process in the protocol. The worst-case expected running time of a protocol is given by 

oo 

max^gf r^(« l f (S) . /J ) 

which is simply the expected running time of the protocol against the worst possible adversary. If, for some 
adversary A and initial state s, the sum in the above expression does not converge, we say that the protocol has an 
infinite worst-case expected running time. 

2For i detailed discussion of sequence spaces, see [221. We will assume throughout that each branch in ft has weight 1/2, i.e. that our coins 
are fair. 
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4. An Exponential Consensus Protocol 
% Initially: 

r.prefer := ± % preferred value 
r.round := 0 % racing counter 

% The algorithm 
r := [prefer: input, round: 1] 
while true do 

read registers 
if all who disagree trail by 2 AND I'm a leader 

then decide(r.prefer) 
% Agree with unanimous leaders ... 
elseif leaders agree then 

r := [prefer: leader.prefer, round: r.round + 1] 
% Warn of impending change 
elseif r.prefer ~= 1 then 

r := [prefer: 1, round: r.round] 
% Guess a new value. 
else r := [prefer: flip(), round: r.round + 1] 
end % if 
end %for 

Figure 4-1: An Exponential Consensus Protocol 
Each process P has a register with two fields: 
• prefer, if distinct from ±, is the value P would choose if it were to complete the protocol executing in 

isolation, 

• and round is a counter that keeps track of the number of rounds P has executed so far. 
A process Q agrees with P if (1) both prefer fields are equal, and (2) neither is 1. A process is a leader if its 
rounds field is greater than or equal to any other process's rounds field. 

The protocol, shown in Figure 4-1, works as follows. Initially, P's register is initialized so that round is 0 and 
prefer is 1. Process P starts by setting round to 1, and prefer to its input value. P then enters the main loop 
of the protocol. It reads all processes' registers. The protocol terminates if P is a leader, and if all processes whose 
round fields trail P's by less than two agree with P. Otherwise, if the leaders agree, P updates its register to agree 
with the leaders, increments its round counter, and resumes the loop. Otherwise, if its prefer field is not 1, P 
4 'warns" the other processes that it may change its preference by setting prefer to 1 before resuming the loop. If 
prefer is already J_, then P chooses a new preference by an unbiased coin flip, increments round, and resumes 
the loop. 

Although the rounds field is potentially unbounded, larger values are reached with lower probabilities, thus the 
likelihood of overflow can be made arbitrarily small. 

4.1. Consistency 
Let H be a history (sequence of reads, writes, and flips) permitted by a particular adversary. For brevity, we say 

that process P prefers v * 1 at round r if P writes [prefer: v, round: r] at some step in H, and that P is 
busy at round r if it writes [prefer: ±, round: r] . The first process to prefer v at round r is the one whose 
write occurred earliest in H. We use v and v' to stand for the two distinct decision values. 

Lemma 1: If P prefers v at round r and v' at round r+1, then some Q * P prefers v' at round / > r, and 
Q's write precedes P's write of v'. 

Proof: P can change preference from v to v' in one of two ways: if it observes that all leaders agree on 
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v', or if it observes that one leader prefers v and another v'. In either case, some other Q prefers v' at round 
r' > r, and since P read that value, Q's write of v' must precede P's. 

Lemma 2: If every process that completes round r in H prefers v at that round, then no process prefers a 
distinct value at any higher round. 

Proof: Suppose not. Let P be the first process in H to prefer v' at round r '>r. Lemma 1 implies that 
some Q prefers v' at round r" > r. Since it is given that all processes that completed round r prefer v, it 
follows that r">r, contradicting the hypothesis that P is the first process to switch its preference after 
round r. 

By similar reasoning: 

Lemma 3: If every process that completes round r in H prefers v at that round, then no process is busy 
at any higher round 

Lemma 4: If every process that completes round r in H prefers v at that round, then every process that 
completes round r+1 decides v before completing round r+2. 

Proof: By contradiction. Any process that decides after round r must decide v, since Lemma 2 implies 
it must prefer that value. Let Q be the first process to read at the start of round r+2. Since no other 
process has started that round, Q is a leader. If Q fails to decide, or it disagrees with another leader P at 
round r+1. The first case contradicts our assumption that Q is the first process to finish round r+1. In the 
second case, since Q prefers v at round r, either Q prefers v' * v at round r+1, contradicting Lemma 1, or 
Q is busy at round r+1, contradicting Lemma 3. 

Lemma 5: If P decides v at round r in H, then no other process prefers v' at round r. 
Proof: Suppose not. Let Q be the first process to prefer v' at round r in H. Since P decided v, it must 

have observed one of two situations when it last read Q's register: (1) Q prefers v at round r -1 , or (2) Q's 
round was r'<r-l . 

In the first case, we have the following sequence of steps. P writes [prefer: v, r o u n d : r] , and 
later reads [prefer: v, r o u n d : r -1] from Q's register. Before Q can switch its preference, 
however, it must set its prefer field to 1 and reread the registers. Q now observes that P prefers v at 
round r. By hypothesis, no other process prefers v' at round r, hence by Lemma 2 Q observes that the 
leaders agree on v. Q must reset its register to agree with the leaders, a contradiction. 

The second case is similar. P sets its register to [prefer: v, r o u n d : r]. P later reads Q's 
register, which has round r' <r -1 . Q advances its round to r'+l < r and rereads P's register, observing that 
P prefers v at round r. By hypothesis, no other process prefers v' at round r, hence by Lemma 2 Q 
observes that the leaders agree on v, and Q resets its register to agree with the leaders, a contradiction. 

Theorem 6: This consensus protocol is consistent. 
Proof: If any process decides on v at round r, then all processes will prefer v at round r (Lemma 5), and 

hence all processes will eventually decide v (Lemma 4). 

This protocol can be extended to allow decision values from an arbitrary domain, not just {0,1). Before joining 
the protocol, each process writes its initial value 10 a public register. Instead of flipping a coin to change preference, 
a process randomly adopts a leader's preference. 

42. Running Time 
The adversary scheduler can force the protocol to run forever if it can ensure that at each round, two processes 

have different preferences. 

Let V and V* be the sets of processes that respectively prefer v and v' at round r. 
Lemma 7: The set of processes that randomly chose their round r preferences encompasses at least one 

o f V a n d V . 
Proof: We show that if P and Q belong to V and V , then at least one of the two must have chosen its 
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preference by a coin flip. 

Let P be the first process to write a preference, say v, at round r. If P did not choose v by flipping a 
coin, men P must have observed that the leaders prefer v. Since P is the first process to enter round r, it 
must have observed that all processes at round r-1 prefer v. Let Q be the first process to prefer v' at round 
r. If Q did not flip a coin, then it must have observed that the leaders prefer v'. Since all processes at 
rounds r and higher prefer v, Q must have observed that all processes at round r-1 prefer v'. Each process, 
however, writes out its preference for round r-1 before reading the other's register, thus at least one of the 
two must have observed a disagreement before entering round r, and that process must have performed a 
coin flip. 

Theorem 8: The consensus protocol has a worst-case expected running time of O (2 n) rounds. 
Proof: Consider the set of coin flips associated with each round. If the set is empty, Lemma 7 implies 

that the processes have identical preferences, and Lemma 4 implies that protocol is about to terminate. If 
the set is non-empty, then Lemma 7 implies that all the processes that chose a preference for round r 
without flipping chose the same preference, say v. If all the processes that choose randomly also choose v, 
then, by Lemma 4, the protocol will terminate. Since there are at most n coin flips at each round, and 
since exactly one combination of flips can terminate the protocol, this protocol has expected running time 
no worse than 2n rounds. This bound is easily seen to be tight The adversary can run the processes in 
lockstep, so that all n processes observe disagreement at each round, and all flip to choose a preference for 
the next round. 

Corollary 9: The consensus protocol has a worst-case expected running time of 0(2") steps. 
Proof: In each round, each process performs at most n READ invocations, one COIN-FLIP, and one 

WRITE invocation, for a total of 2n+3 steps. Thus the total number of steps taken per round by all 
processors is at most n 2 , giving a maximum total running time of O (n22n) = O (2*) steps. 

5. The Weak Shared Coin Protocol 
In this section we show how to transform our exponential protocol into a polynomial protocol in which processes 

achieve agreement after an expected 0 (n 2 ) writes and 0 (n 4 ) reads. The basic idea is to replace the independent 
coin flips with a weak snared coin object that, in essence, simulates a coin shared by all processes. The weak shared 
coin protocol is parameterized by a value K>1. It has the key property that any adversary scheduler has only a 
weak influence over the protocol's outcome: 

No adversary can ensure that some process will observe a particular outcome (e.g., heads) with (1) 
probability exceeding (AT+l)/2Af. 

The bias that can be introduced by any adversary scheduler is thus independent of n, and asymptotically approaches 
zero as K increases. We remark that the protocol does not guarantee that all processes observe the same outcome, 
but Property 1 implies that they do so with probability greater than (K+\)/2K. 

We make the following modification to the consensus protocol. The processes share an unbounded array of weak 
shared coins. At round r, instead of flipping independent coins, the processes collectively flip the weak shared 
coin. 

Theorem 10: The revised protocol terminates in O (1) rounds. 

Proof: A process is deterministic at round r if it does not flip a coin at that round. If there are no 
deterministic processes, the protocol terminates if all non-deterministic processes randomly choose the 
same new preference (Lemma 4). Otherwise, Lemma 7 implies that all deterministic processes at round r 
have identical preferences at that round, say v, and that the protocol terminates if all non-deterministic 
processes randomly choose preference v (Lemma 4). In either case, Property 1 ensures that the protocol 
terminates at round r with likelihood at least (K-\)/2K. The protocol is thus a Bernoulli process with 
expected running time less than or equal to 2KI(K-\), independent of n. 

The complexity of achieving consensus in terms of primitive reads and writes is thus the complexity of 
implementing the weak shared coin. 
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5.1. Implementing a Weak Shared Coin 
The weak shared coin protocol is implemented using a shared counter abstraction, whose implementation in 

terms of reads and writes is given below. The counter is initially zero, and it provides the following operations: 
i n c = p r o c ( c : c o u n t e r ) 

increments the counter, 
d e c = p r o c ( c : c o u n t e r ) 

decrements the counter, and 
r e a d C o u n t e r = p r o c ( c : c o u n t e r ) r e t u r n s ( i n t ) 

returns the counter's current value. 

The protocol is shown in in Figure 5-1. The processes collectively undertake a random walk: each process flips 
an unbiased coin, and depending on the outcome, increments or decrements the shared counter. It then reads the 
counter. If the observed value is greater than or equal to Kn, the process decides heads, and if the observed value is 
less than or equal to -Kn, it decides tails. Informally, the only way the adversary can influence the outcome of the 
protocol is to suspend processes that are about to move the counter in the undesired direction. After suspending n-\ 
such processes, however, the adversary has 4 4used up" its influence, and the remaining process is free to wander at 
random. As K increases, the importance of this bias decreases. 

Let H and T be the respective number of heads and tails generated so far. 
Lemma 11: If H-T< -(Af+l)/i then all undecided processes will eventually decide tails. 
Proof: Since the adversary can suspend at most one write per process, the counter value read by any 

process can differ from H-T by at most n -1 . Once H-T falls below -(Jf+l)n, every process that samples 
the counter will observe a value less than or equal to Kn. 

By similar reasoning: 
Lemma 12: If some process decides heads, then at the time of its last read, H-T> (K-\)n. 

We can combine these two observations to derive a bound on the likelihood the adversary can force disagreement, 
or a desired outcome. 

Theorem 13: The adversary can force processes to disagree with probability less than or equal to 
(K-D/2K. 

Theorem 14: The adversary can force some process to flip heads with probability less than or equal to 
(K+\)I2K. 

Proof: Lemma 12 implies that no process can decide heads before H-T reaches (K-l)n for the first 
time. If, however, H-T falls below -(K+l)n before reaching (tf-l)n, then Lemma 11 implies that no 
process can decide heads. If we make the conservative assumption that the adversary can force some 
undecided process to choose heads if H-T>(K-\)n, then the value of H-T can be viewed as a random 
walk starting at the origin with absorbing barriers at -{K+\)n (all decide tails) and (K-\)n (some may 
decide heads). It is a standard result of random walk theory [18;Ch.XIV] that the probability of reaching 
(K-\)n before -(tf+l)n is (K+l)f2K. 

Theorem 15: The expected running time of the protocol is 0 (n 2 ) rounds. 
Proof: Instead of promoting a particular outcome, suppose the adversary adopts a dilatory strategy, 

seeking to prolong the protocol for as long as possible. As noted above, the protocol will terminate 
whenever the absolute value of the counter exceeds (Af+l)n, thus the protocol behaves like a random walk 
starting at the origin with absorbing barriers at (JT+l)/i and -(Jf+l)n. It is a standard result of random walk 
theory [18] that the expected running time of such a walk is (K+l)2n2, i.e. 0 (n 2 ) . 
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flip = proc{coin: counter) returns (bool) 
while true do 

if local__f lip () then inc(coin) else dec (coin) end 
state := readCounter(coin) 
if state >= K*N then return (heads) 
elseif state <= -K*N then return (tails) 
end 

end 
end flip 

Figure 5-1: The Weak Shared Coin Protocol 

6. The Counter Abstraction 
The counter implementation is a straightforward adaptation of an algorithm proposed by Lamport [24] for 

read/write registers. The counter is represented by an n-element array of registers, one for each process. Each 
register has two fields: a count field incremented whenever that process alters the register's value, and a v a l field 
representing that process's contribution to the current counter value. To increment or decrement the counter, P 
overwrites its register with a new value whose count field is incremented, and whose val field is incremented or 
decremented. To read the counter it scans the array twice: if both scans yield identical values, the read returns the 
sum of the val fields, otherwise the read is restarted. 

Note that the inc and dec operations are wait-free, but readCounter can be starved if it is interrupted by an infinite 
sequence of writers. The adversary cannot exploit this property to force the protocol to run forever: after enough 
writes, the next reader will drop out of the protocol, and because there are only finitely many processes, it will 
eventually be possible for some process to complete a read. 

reg » record[count: int, val: int] % Initially [ 0 , 0 ] 

Inc = proc(counter: array[reg]) 
r: reg := counter[self] 
counter[self] := [r.count + 1, r.val + 1] 
end Inc 

Dec = proc(counter: array[reg]) 
r: reg := counter[self] 
counter[self] [r.count + 1 , r.val - 1] 
end Dec 

ReadCounter = proc(counter: array[reg]) returns (int) 
scanl, scan2: array[int] 
while true do 

for i: in l..n do scanl[i] := counter[i] end 
for i: in l..n do scan2[i] := counter[i] end 
if scanl = scan2 then return (sum (scanl)) end 
end 

end ReadCounter 
Figure 6-1: Implementation of Shared Counter 

Each inc or dec translates into to a single write, so the 0 ( n 2 ) expected steps needed to exhaust the random walk 
translate into an expected 0( / i 2 ) primitive write operations. Each write can disrupt readCounter operations by n-\ 
processes, and each of these must then undertake n additional primitive reads, thus the O (n 2) expected steps result in 
an expected O (n 4) primitive read operations. 
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7. Consensus Using Fetch-And-Add 
The fetch-and-add operation [23] atomically adds a quantity to a register and returns the register's old value. 

Fetch-and-add solves consensus deterministically for two processes, but not for three or more [21]. Figure 7-1 
shows a weak shared coin implementation using fetch-and-add operations. Not surprisingly, fetch-and-add is more 
efficient than read and write; it is straightforward to show that this protocol completes in an expected O (n2) total 
operations. 

flip = proc(coin: register) returns (bool) 
while true do 

if local_flip() 
then state := fetch-and-add(coin, 1) 
else state := fetch-and-add(coin, -1 ) 
end 

if state >= K*N then return (heads) 
elseif state <= -K*N then return (tails) 
end 

end 
end flip 

Figure 7-1: The Weak Shared Coin Protocol using Fetch-And-Add 

8. Strong Shared Coin Protocols 
A strong shared coin protocol is a consistent wait-free algorithm by which n processes agree on a value in 

[heads, tails] by applying operations to a shared object. A shared coin protocol is unbiased if both choices are 
equally likely; i.e., the adversary has no control over the outcome. A naive solution might have each process flip an 
unbiased local coin to choose its input value, and then achieve consensus with the others. Such a solution is heavily 
biased, however, since an adversary that 4 4wants" an outcome of heads will run only the processes that prefer heads. 
Against such an adversary, this naive protocol will decide tails only if all processes initially flip tails, a probability 
of 1/2". 

Theorem 16: An unbiased strong shared coin protocol is impossible. 
Proof: By contradiction. For any two-process protocol, we construct an adversary that produces heads 

with probability greater than 1/2. Assume we have an unbiased protocol, and let P and Q be the two 
processes. Define a configuration's bias to be the maximum probability of eventually deciding heads 
from that configuration, where the maximum is taken over all possible adversaries. Define a process's 
current preference to be the probability it will eventually decide heads if it is run uninterruptedly until it 
decides. For an unbiased protocol, the initial configuration's bias is 1/2, as is each process's preference. 

Consider the following adversary. Run P until it is about to take a step that changes the current bias. 
Such a step must eventually occur, because the protocol cannot run forever. Moreover, that step must be a 
coin flip internal to P, since all other steps are deterministic and under the adversary's control. Before the 
coin flip, the configuration's bias is 1/2, as are P and Q's preferences. Suppose P's local flip yields heads 
with probability A. Let bk (bt) be the bias resulting if P flip heads (tails). Since the protocol is unbiased, 
we have: 

1/2 = hbk+(l-h)br 

implying that one resulting bias is greater than 1/2 and one less. Assume bh> \/2>bt\ the other case is 
symmetric. Since Q cannot directly observe P's coin flip, its preference continues to be 1/2. 

If the outcome is heads, the definition of bias implies that the adversary can ensure an outcome of heads 
with probability bh. If the outcome is tails, the adversary runs Q uninterruptedly until it decides, ensuring 
an outcome of heads with probability 1/2. Taken together, the adversary can ensure heads with 
probability: 

+(1-/0/2. 
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Since bh>\/2, however, this quantity exceeds 1/2, contradicting the hypothesis that the protocol is 
unbiased. 

Note that this proof makes no assumptions about how processes communicate; they could use read/write registers, 
fetch-and-add registers, messages, or other objects. 

Although we have shown that the adversary can always introduce some bias, we have given no indication of how 
large that bias must be. A shared coin protocol is asymptotically unbiased if the bias introduced by the adversary 
can be made arbitrarily small. 

Theorem 17: A asymptotically unbiased strong shared coin protocol with expected running time 
polynomial in the number of processes is possible using shared read/write registers. 

Proof: Have each process choose heads or tails using a weak shared coin, and then run the polynomial 
consensus protocol given above. The adversary can influence the outcome by biasing the initial 
preferences. If any process prefers heads, the adversary can suspend the others, while if all processes 
prefer tails, the adversary has no more control. The likelihood the adversary can force some process to 
choose heads in the initial round is thus (K+\)/2K, which approaches 1/2 as K increases. 

9. Discussion 
Most recent work on wait-free synchronization has focused on the construction of atomic read/write registers 

[5,9,24,25,29,30,31,33]. Starting with "safe" bits for which overlapping read and write operations have 
unpredictable effects, these papers describe a sequence of algorithms for constructing wait-free implementations of 
read/write registers providing successively stronger guarantees, culminating in algorithms that permit multiple 
concurrent readers and writers, an impressive achievement. 

Nevertheless, reading and writing to individual registers is not the level of abstraction at which most programs are 
written. Wait-free synchronization will be useful in practice only if it is possible to construct wait-free 
implementations of objects with richer semantics than registers, objects such as test-and-set registers, stacks, queues, 
file system directories, databases, etc. It is known, however, that atomic read/write registers have few, if any, 
interesting applications in this area [21]. Using atomic read/write registers, it is impossible to construct a wait-free 
implementation of: (1) common data types such as sets, queues, stacks, priority queues, or lists, (2) most if not all 
the classical synchronization primitives such as test-and-set, compear e-and-swap, and fetch-and-add, and (3) such 
simple memory-to-memory operations as move or memory-to-memory swap. 

One way to interpret these impossibility results is that atomic read/write registers are a computational dead-end, 
and that wait-free synchronization is unrealizable by machine architectures in which processes communicate by 
reading and writing shared memory locations. The results in this paper suggest an alternative position. If one can 
achieve consensus, one can transform a sequential implementation of any object whose operations are total (i.e., 
defined in every state) to a wait-free linearizable implementation [21], where each operation requires at most n 
rounds of consensus. In the same way, the randomized consensus protocol presented here can be used to transform 
any sequential object implementation into a randomized wait-free implementation, where each operation has 
expected running time polynomial in the number of processes. In short, wait-free synchronization is indeed 
realizable under conventional architectures, provided the wait-free guarantee is probabilistic in nature. 
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