
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Fast Randomized Consensus Using Shared Memory

James Aspnes, Maurice Herlihy

December 20,1988

CMU-CS-88-205^

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

We give a new randomized algorithm for achieving consensus among asynchronous processes
that communicate by reading and writing shared registers. The fastest previously known
algorithm, due to Abrahamson, has expected running time 2°^\ Our algorithm is polynomial,
requiring an expected 0 (n 4) operations. Applications of this algorithm include the elimination
of critical sections from concurrent data structures and the construction of asymptotically
unbiased shared coins.

This research was partially sponsored by the Office of Naval Research (DOD), under Contract N00014-88-K-0641.
The work of J. Aspnes was supported by a National Science Foundation Graduate Fellowship.

The views and conclusions contained in this document are those of the authors and should not be interpreted as
representing the official policies, either expressed or implied, of the Defense Advanced Research Projects Agency, the
National Science Foundation or the U.S. government.

1

1. Introduction
A consensus protocol is a set of n processors, running asynchronously, that communicate by applying operations

to a shared object The object may be a message channel, an array of read/write registers, or something more
complex. Each process starts with an input value, either 0 or 1, and runs until it chooses a decision value and halts.
A consensus protocol is correct if it is consistent: no two processes choose different decision values, non-trivial: the
decision value was some process's input value, and wait-free: each process decides after a finite number of steps.

Consensus protocols are interesting because they are fundamental to synchronization without mutual exclusion.
The traditional approach to coordinating concurrent access to shared data objects is to rely on critical sections: only
one process at a time is allowed to operate on the object Nevertheless, critical sections are poorly suited for
asynchronous, fault-tolerant systems: if a faulty process is halted or delayed in a critical section, non-faulty
processes will also be halted or delayed. By contrast, an implementation of a concurrent data object is wait-free if it
guarantees that any process will complete any operation in a finite number of steps, independent of other processes'
halting failures or variations in speed. If there exists a consensus protocol for an object X, then one can use X to
construct a wait-free implementation of any concurrent data object whose operations are total [21].

If the shared object X is an array of registers providing read and write operations, then consensus is known to be
impossible [2,12,21,26]. If X is an array of registers providing test-and-set or fetch-and-add operations, then
consensus is possible K veen two processes, but not among three [21]. Nevertheless, in both cases, consensus
among an arbitrary numDer of processes can still be achieved probabilistically. This paper presents two new
randomized consensus protocols, one in which processes communicate by reading and writing shared registers, and
one in which they communicate by applying fetch-and-add operations. The protocols are consistent, non-trivial, and
they guarantee that each process decides after a finite expected number of steps. The only previously known
read/write protocol, due to Abrahamson [1], requires an expected 2°^ operations. Ours is significantly faster,
requiring an expected 0 (n 2) writes and 0 (n 4) reads. The fetch-and-add protocol requires an expected 0 (n 2)
fetch-and-add operations.

The basic idea behind our protocols is quite simple. We first describe a simple protocol that has exponential
expected running time if an adversary scheduler runs the processes in lockstep. Each process flips an unbiased coin
at each round, and the protocol halts when all n processes simultaneously flip the "right" value. The probability of
terminating at any particular round is 1/2", so the expected number of rounds until termination is 2 n . A naive
approach to speeding up the protocol is to replace the n independent coin flips with a single unbiased coin shared by
the processes. Unfortunately, implementing an unbiased shared coin is provably impossible in an asynchronous
system (see Section 8 below), so it would appear that no progress has been made. The key insight, however, is
similar to one proposed by Chor, Merritt, and Shmoys [10]: it suffices to ensure that processes are sufficiently likely
to flip the same value, and that an adversary scheduler has a sufficiently weak influence over which value is chosen.
The heart of our consensus protocol is a weak shared coin protocol that guarantees: (1) processes are likely to
observe the same outcome, (2) an adversary scheduler has only a weak influence over that outcome, and (3) the
protocol has expected running time polynomial in the number of processes.

Consensus is often viewed as a problem in game theory. One side, the processes, tries to achieve agreement
against an adversary scheduler. The processes apply read and write operations to the shared registers, and the
adversary chooses when the operations actually occur. The adversary is extremely powerful: it has complete
information about the processes' protocols, their internal states, and the state of the shared memory. The adversary
is not restricted to polynomial resources, thus it cannot be outwitted by encryption schemes. The adversary cannot,
however, predict future coin flips. Against such a powerful adversary, it may seem surprising that consensus can be
achieved by a simple protocol in polynomial expected time.

University Libraries

Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

2

2. Related Work
Fischer, Lynch, and Paterson [19] show that there is no consensus protocol for two processes that communicate

by asynchronous messages. Doiev, Dwork, and Stockmeyer [14] and Dwork, Lynch, and Stockmeyer [16] give a
comprehensive analysis of the circumstances under which consensus can be achieved by message-passing.
Randomized protocols can achieve consensus when deterministic protocols cannot Ben-Or [3] proposes a
randomized consensus protocol with exponential expected running time that tolerates up to n/5 failures, where n is
the number of processes. A consensus protocol due to Bracha and Toueg Loj relies on probabilistic properties of the
message-passing system.

Loui and Abu-Amara [26] give several consensus protocols and impossibility results for processes that
communicate through shared registers with various read-modify-write ("test-and-set") operations. Chor, Israeli and
Li [12] give two randomized consensus protocols for shared read/write registers, one for two processes, and one for
three processes.1 Their protocols, however, are correct only if one assumes that a process can write a register and
change state in a single atomic transition. They do not work in the model used in this paper, where updating a
register and changing process state are considered to be distinct transitions. Abrahamson [1] gives consensus
protocols for both the "strong" model used by Chor, Israeli, and Li, and the more demanding "weak" model used
here. As mentioned above, Abrahamson's consensus protocol for the weak model has exponential expected running
time.

A number of protocols have been proposed for implementing shared coins in message-passing systems subject to
byzantine or halting failures. Some constructions are direct [4,8,15], and others arise as parts of protocols for
consensus [10], transaction commitment [13], or byzantine agreement [7,10,17,32], The models underlying these
protocols differ from ours by assuming that private channels or encryption can be used to prevent the adversary from
observing certain messages and processes' internal states. Chor and Coan [11] give a randomized byzantine
agreement protocol that does not assume private communication, but restricts when the adversary may exploit
knowledge of the processes' states.

3. Model

3.1. I/O Automata
Formally, we model processes and registers as I/O automata [27,28]. An I/O automaton is a non-deterministic

automaton A with the following components:
• states(A) is a finite or infinite set of states, including a distinguished set of starting states.

• in(A) is a set of input events,

• out(A) is a set of output events,

• steps(A) is a transition relation given by a set of triples (s',ej), where s and s' are states and e is an
event Such a triple is called a step, and it means that an automaton in state s' can undergo a transition
to state 5, and that transition is associated with the event e.

If (s',ej) is a step, we say that e is enabled in s\ I/O automata must satisfy the additional condition that inputs
cannot be disabled: for each input event e and each state s', there exist a state 5 and a step (s'

An execution of an automaton A is a finite sequence s0, eIf sJt en, sn or infinite sequence s0, ev 5 7 , ... of
alternating states and events such that s0 is a starting state and each ($,, e u l , sM) is a step of A. A history of an

The three-process protocol published in [12] has t bug: the termination condition must be strengthened to ensure consistency.

3

automaton is the subsequence of events occurring in one of its executions.

A new I/O automaton can be constructed by competing a set of I/O automata with disjoint output events. A state
of the composed automaton S is a tuple of component states, and a starting state is a tuple of component starting
states. The set of events of S, events(S), is the union of the components' sets of events, and the set of output events
of 5, out(S), is the union of the components' sets of output events. The sets of input events of S, in(S)> is events(S) -
out(S), all the events of S that are not output events for some component. A triple (s' yej) is in steps(S) if and only if,
for all component automata A, one of the following holds: (1) e is an event of A, and the projection of the step onto
A is a step of A, or (2) e is not an event of A, and A's state components are identical in s' and s. If H is a history of
a composite automaton and A an automaton, H I A denotes the subhistory of H consisting of events of A.

3.2. Processes, Coins, and Registers
A process P is an I/O automaton with output events WRITE(P, v, R), READ(P, R), and DECIDE(P, v); input

event RETURN(P, v, R); and internal event COIN-FLIP(P, x), where v is a value, R a register, and x (the value of
the coin-flip) an element of the set {0,1}. The two COIN-FLIP events of a process represent possible results of a
random decision made within the process; if either is enabled in a particular state, the other must also be enabled.
READ and WRITE events are called invocations, and RETURN events are called a responses. An invocation and
response match if their process and object names agree. An operation is a pair consisting of an invocation and the
next matching response. An invocation with no matching response is pending. To capture the notion that a process
represents a single thread of control, we say that a process history is well-formed if every response is immediately
preceded by a matching invocation.

A register R is an I/O automaton with input events WRITE(P, v, R) and READ(P, R), and the output event
RETURN(P, v, R), where P is a process and v a value.

33. Protocols
Let P = { P j , P n) be a set of processes and R = [Rv R m } a set of registers. The protocol <PrR> is the I/O

automaton composed by identifying invocations and responses for processes P p P n and registers R l t R ^ A
protocol history is well-formed if each HI P{ is well-formed, and a protocol is well-formed if each of its histories is
well-formed. We restrict our attention to well-formed protocols.

A protocol history H is sequential if. for each register Rj, H I Rj begins with an invocation and alternates
matching invocations and responses. If we restrict our attention to sequential histories, then the behavior of a
register can be specified in a particularly simple way: the value read is the last value written. Each history H
induces a partial 4 'real-time" order < H on its operations: op0 <H opl if the response for op0 precedes the invocation
for opj. Operations unrelated by < H are said to be concurrent. If H is sequential, < H is a total order.

A protocol {Pj P n ; R l f R m } is linearizable [20] if, for each history H, there exists a sequential history S
such that:

• F o r a l l P ^ H I P ^ S I P ^

In other words, the history "appears" sequential to each individual process, and this apparent sequential
interleaving respects the real-time precedence ordering of operations. Each read or write appears to take effect
instantaneously at some point between its invocation and its response. We restrict our attention to linearizable
protocols.

4

3.4. Randomization
The random non-determinism involved in the choice between COIN-FLIP(P,0) and COIN-FLIP(P,l) has a

different nature from the "ordinary" non-determinism in the protocol. It is possible to make the distinction
formally by placing the other non-deterministic choices under the control of an adversary, a function A which maps
each of the protocol's finite executions s0, eJy j y , en, sn to a set of events enabled in sn, such that for all finite
executions A(£) consists either of a single non-coin-flip event or a pair of coin-flip events representing the two
possible outcomes of a coin-flip at some process. The intent is that the adversary controls which executions are
possible; more formally, we say that an adversary A permits a (possibly infinite) execution 2; = s0, e y , s ; , i f , for
every event e t in t{ is an element of A(s0, elt sI s M) . We write 2 A for the set of executions that A permits,
and Z A s for the subset of 2 A consisting of executions which have s as their initial state.

Let c(£) be the sequence of coin-flip values in It is a straightforward consequence of the constraints on the
domain of an adversary function A that, for each countable sequence C of O's and l's, there exists exactly one
§ A f J(C) in 5 A s such that c(£ A (Q) is a prefix of C. We can think of £ A s as a measurable function from the sequence
space Q, on the set {0,1} to the sequence space 2 of protocol executions.2 We can thus use ^ A s to define a
probability measure on 2 by transforming the probability measure on Q as follows:

^ W = W I ^ (Q e X } ,

(where the probability on the left is defined only when X c 2 is measurable 2). An immediate consequence of the
definition is that PAJX) = 0 for any X which is disjoint from 2 A .

3S. Consensus Protocols
A consensus protocol is a protocol whose processes each have two initial states, corresponding to input values of

0 or 1, respectively, and whose histories all satisfy the following conditions:
1. Consistency. Every DECIDE event in the history has the same value, which must be an input value for

at least one of the processes.

2. Termination A DECIDE event for P must be the last output event of P.

3. Non-triviality. If s is an input state in which some processes start with different values, there exist
adversaries A, B such that P A j ({ £ I £ contains DECIDE(P, 0) for some P}) and P B ,({£ I k contains
DECIDE(P, 1) for some P}) are both non-zero.

The first condition guarantees that the protocol actually achieves consensus. The second condition is not critical
to describing a consensus protocol, but is necessary for identifying when a protocol is finished. The third condition
excludes protocols which achieve consensus trivially by fixing the outcome in advance.

The running time r(H) of a protocol history H is the length of the shortest prefix of H which contains a DECIDE
event for every process in the protocol. The worst-case expected running time of a protocol is given by

oo

max^gf r^(« l f (S) . /J)

which is simply the expected running time of the protocol against the worst possible adversary. If, for some
adversary A and initial state s, the sum in the above expression does not converge, we say that the protocol has an
infinite worst-case expected running time.

2For i detailed discussion of sequence spaces, see [221. We will assume throughout that each branch in ft has weight 1/2, i.e. that our coins
are fair.

5

4. An Exponential Consensus Protocol
% Initially:

r.prefer := ± % preferred value
r.round := 0 % racing counter

% The algorithm
r := [prefer: input, round: 1]
while true do

read registers
if all who disagree trail by 2 AND I'm a leader

then decide(r.prefer)
% Agree with unanimous leaders ...
elseif leaders agree then

r := [prefer: leader.prefer, round: r.round + 1]
% Warn of impending change
elseif r.prefer ~= 1 then

r := [prefer: 1, round: r.round]
% Guess a new value.
else r := [prefer: flip(), round: r.round + 1]
end % if
end %for

Figure 4-1: An Exponential Consensus Protocol
Each process P has a register with two fields:
• prefer, if distinct from ±, is the value P would choose if it were to complete the protocol executing in

isolation,

• and round is a counter that keeps track of the number of rounds P has executed so far.
A process Q agrees with P if (1) both prefer fields are equal, and (2) neither is 1. A process is a leader if its
rounds field is greater than or equal to any other process's rounds field.

The protocol, shown in Figure 4-1, works as follows. Initially, P's register is initialized so that round is 0 and
prefer is 1. Process P starts by setting round to 1, and prefer to its input value. P then enters the main loop
of the protocol. It reads all processes' registers. The protocol terminates if P is a leader, and if all processes whose
round fields trail P's by less than two agree with P. Otherwise, if the leaders agree, P updates its register to agree
with the leaders, increments its round counter, and resumes the loop. Otherwise, if its prefer field is not 1, P
4 'warns" the other processes that it may change its preference by setting prefer to 1 before resuming the loop. If
prefer is already J_, then P chooses a new preference by an unbiased coin flip, increments round, and resumes
the loop.

Although the rounds field is potentially unbounded, larger values are reached with lower probabilities, thus the
likelihood of overflow can be made arbitrarily small.

4.1. Consistency
Let H be a history (sequence of reads, writes, and flips) permitted by a particular adversary. For brevity, we say

that process P prefers v * 1 at round r if P writes [prefer: v, round: r] at some step in H, and that P is
busy at round r if it writes [prefer: ±, round: r] . The first process to prefer v at round r is the one whose
write occurred earliest in H. We use v and v' to stand for the two distinct decision values.

Lemma 1: If P prefers v at round r and v' at round r+1, then some Q * P prefers v' at round / > r, and
Q's write precedes P's write of v'.

Proof: P can change preference from v to v' in one of two ways: if it observes that all leaders agree on

6

v', or if it observes that one leader prefers v and another v'. In either case, some other Q prefers v' at round
r' > r, and since P read that value, Q's write of v' must precede P's.

Lemma 2: If every process that completes round r in H prefers v at that round, then no process prefers a
distinct value at any higher round.

Proof: Suppose not. Let P be the first process in H to prefer v' at round r '>r. Lemma 1 implies that
some Q prefers v' at round r" > r. Since it is given that all processes that completed round r prefer v, it
follows that r">r, contradicting the hypothesis that P is the first process to switch its preference after
round r.

By similar reasoning:

Lemma 3: If every process that completes round r in H prefers v at that round, then no process is busy
at any higher round

Lemma 4: If every process that completes round r in H prefers v at that round, then every process that
completes round r+1 decides v before completing round r+2.

Proof: By contradiction. Any process that decides after round r must decide v, since Lemma 2 implies
it must prefer that value. Let Q be the first process to read at the start of round r+2. Since no other
process has started that round, Q is a leader. If Q fails to decide, or it disagrees with another leader P at
round r+1. The first case contradicts our assumption that Q is the first process to finish round r+1. In the
second case, since Q prefers v at round r, either Q prefers v' * v at round r+1, contradicting Lemma 1, or
Q is busy at round r+1, contradicting Lemma 3.

Lemma 5: If P decides v at round r in H, then no other process prefers v' at round r.
Proof: Suppose not. Let Q be the first process to prefer v' at round r in H. Since P decided v, it must

have observed one of two situations when it last read Q's register: (1) Q prefers v at round r -1 , or (2) Q's
round was r'<r-l .

In the first case, we have the following sequence of steps. P writes [prefer: v, r o u n d : r] , and
later reads [prefer: v, r o u n d : r -1] from Q's register. Before Q can switch its preference,
however, it must set its prefer field to 1 and reread the registers. Q now observes that P prefers v at
round r. By hypothesis, no other process prefers v' at round r, hence by Lemma 2 Q observes that the
leaders agree on v. Q must reset its register to agree with the leaders, a contradiction.

The second case is similar. P sets its register to [prefer: v, r o u n d : r]. P later reads Q's
register, which has round r' <r -1 . Q advances its round to r'+l < r and rereads P's register, observing that
P prefers v at round r. By hypothesis, no other process prefers v' at round r, hence by Lemma 2 Q
observes that the leaders agree on v, and Q resets its register to agree with the leaders, a contradiction.

Theorem 6: This consensus protocol is consistent.
Proof: If any process decides on v at round r, then all processes will prefer v at round r (Lemma 5), and

hence all processes will eventually decide v (Lemma 4).

This protocol can be extended to allow decision values from an arbitrary domain, not just {0,1). Before joining
the protocol, each process writes its initial value 10 a public register. Instead of flipping a coin to change preference,
a process randomly adopts a leader's preference.

42. Running Time
The adversary scheduler can force the protocol to run forever if it can ensure that at each round, two processes

have different preferences.

Let V and V* be the sets of processes that respectively prefer v and v' at round r.
Lemma 7: The set of processes that randomly chose their round r preferences encompasses at least one

o f V a n d V .
Proof: We show that if P and Q belong to V and V , then at least one of the two must have chosen its

7

preference by a coin flip.

Let P be the first process to write a preference, say v, at round r. If P did not choose v by flipping a
coin, men P must have observed that the leaders prefer v. Since P is the first process to enter round r, it
must have observed that all processes at round r-1 prefer v. Let Q be the first process to prefer v' at round
r. If Q did not flip a coin, then it must have observed that the leaders prefer v'. Since all processes at
rounds r and higher prefer v, Q must have observed that all processes at round r-1 prefer v'. Each process,
however, writes out its preference for round r-1 before reading the other's register, thus at least one of the
two must have observed a disagreement before entering round r, and that process must have performed a
coin flip.

Theorem 8: The consensus protocol has a worst-case expected running time of O (2 n) rounds.
Proof: Consider the set of coin flips associated with each round. If the set is empty, Lemma 7 implies

that the processes have identical preferences, and Lemma 4 implies that protocol is about to terminate. If
the set is non-empty, then Lemma 7 implies that all the processes that chose a preference for round r
without flipping chose the same preference, say v. If all the processes that choose randomly also choose v,
then, by Lemma 4, the protocol will terminate. Since there are at most n coin flips at each round, and
since exactly one combination of flips can terminate the protocol, this protocol has expected running time
no worse than 2n rounds. This bound is easily seen to be tight The adversary can run the processes in
lockstep, so that all n processes observe disagreement at each round, and all flip to choose a preference for
the next round.

Corollary 9: The consensus protocol has a worst-case expected running time of 0(2") steps.
Proof: In each round, each process performs at most n READ invocations, one COIN-FLIP, and one

WRITE invocation, for a total of 2n+3 steps. Thus the total number of steps taken per round by all
processors is at most n 2 , giving a maximum total running time of O (n22n) = O (2*) steps.

5. The Weak Shared Coin Protocol
In this section we show how to transform our exponential protocol into a polynomial protocol in which processes

achieve agreement after an expected 0 (n 2) writes and 0 (n 4) reads. The basic idea is to replace the independent
coin flips with a weak snared coin object that, in essence, simulates a coin shared by all processes. The weak shared
coin protocol is parameterized by a value K>1. It has the key property that any adversary scheduler has only a
weak influence over the protocol's outcome:

No adversary can ensure that some process will observe a particular outcome (e.g., heads) with (1)
probability exceeding (AT+l)/2Af.

The bias that can be introduced by any adversary scheduler is thus independent of n, and asymptotically approaches
zero as K increases. We remark that the protocol does not guarantee that all processes observe the same outcome,
but Property 1 implies that they do so with probability greater than (K+\)/2K.

We make the following modification to the consensus protocol. The processes share an unbounded array of weak
shared coins. At round r, instead of flipping independent coins, the processes collectively flip the weak shared
coin.

Theorem 10: The revised protocol terminates in O (1) rounds.

Proof: A process is deterministic at round r if it does not flip a coin at that round. If there are no
deterministic processes, the protocol terminates if all non-deterministic processes randomly choose the
same new preference (Lemma 4). Otherwise, Lemma 7 implies that all deterministic processes at round r
have identical preferences at that round, say v, and that the protocol terminates if all non-deterministic
processes randomly choose preference v (Lemma 4). In either case, Property 1 ensures that the protocol
terminates at round r with likelihood at least (K-\)/2K. The protocol is thus a Bernoulli process with
expected running time less than or equal to 2KI(K-\), independent of n.

The complexity of achieving consensus in terms of primitive reads and writes is thus the complexity of
implementing the weak shared coin.

8

5.1. Implementing a Weak Shared Coin
The weak shared coin protocol is implemented using a shared counter abstraction, whose implementation in

terms of reads and writes is given below. The counter is initially zero, and it provides the following operations:
i n c = p r o c (c : c o u n t e r)

increments the counter,
d e c = p r o c (c : c o u n t e r)

decrements the counter, and
r e a d C o u n t e r = p r o c (c : c o u n t e r) r e t u r n s (i n t)

returns the counter's current value.

The protocol is shown in in Figure 5-1. The processes collectively undertake a random walk: each process flips
an unbiased coin, and depending on the outcome, increments or decrements the shared counter. It then reads the
counter. If the observed value is greater than or equal to Kn, the process decides heads, and if the observed value is
less than or equal to -Kn, it decides tails. Informally, the only way the adversary can influence the outcome of the
protocol is to suspend processes that are about to move the counter in the undesired direction. After suspending n-\
such processes, however, the adversary has 4 4used up" its influence, and the remaining process is free to wander at
random. As K increases, the importance of this bias decreases.

Let H and T be the respective number of heads and tails generated so far.
Lemma 11: If H-T< -(Af+l)/i then all undecided processes will eventually decide tails.
Proof: Since the adversary can suspend at most one write per process, the counter value read by any

process can differ from H-T by at most n -1 . Once H-T falls below -(Jf+l)n, every process that samples
the counter will observe a value less than or equal to Kn.

By similar reasoning:
Lemma 12: If some process decides heads, then at the time of its last read, H-T> (K-\)n.

We can combine these two observations to derive a bound on the likelihood the adversary can force disagreement,
or a desired outcome.

Theorem 13: The adversary can force processes to disagree with probability less than or equal to
(K-D/2K.

Theorem 14: The adversary can force some process to flip heads with probability less than or equal to
(K+\)I2K.

Proof: Lemma 12 implies that no process can decide heads before H-T reaches (K-l)n for the first
time. If, however, H-T falls below -(K+l)n before reaching (tf-l)n, then Lemma 11 implies that no
process can decide heads. If we make the conservative assumption that the adversary can force some
undecided process to choose heads if H-T>(K-\)n, then the value of H-T can be viewed as a random
walk starting at the origin with absorbing barriers at -{K+\)n (all decide tails) and (K-\)n (some may
decide heads). It is a standard result of random walk theory [18;Ch.XIV] that the probability of reaching
(K-\)n before -(tf+l)n is (K+l)f2K.

Theorem 15: The expected running time of the protocol is 0 (n 2) rounds.
Proof: Instead of promoting a particular outcome, suppose the adversary adopts a dilatory strategy,

seeking to prolong the protocol for as long as possible. As noted above, the protocol will terminate
whenever the absolute value of the counter exceeds (Af+l)n, thus the protocol behaves like a random walk
starting at the origin with absorbing barriers at (JT+l)/i and -(Jf+l)n. It is a standard result of random walk
theory [18] that the expected running time of such a walk is (K+l)2n2, i.e. 0 (n 2) .

9

flip = proc{coin: counter) returns (bool)
while true do

if local__f lip () then inc(coin) else dec (coin) end
state := readCounter(coin)
if state >= K*N then return (heads)
elseif state <= -K*N then return (tails)
end

end
end flip

Figure 5-1: The Weak Shared Coin Protocol

6. The Counter Abstraction
The counter implementation is a straightforward adaptation of an algorithm proposed by Lamport [24] for

read/write registers. The counter is represented by an n-element array of registers, one for each process. Each
register has two fields: a count field incremented whenever that process alters the register's value, and a v a l field
representing that process's contribution to the current counter value. To increment or decrement the counter, P
overwrites its register with a new value whose count field is incremented, and whose val field is incremented or
decremented. To read the counter it scans the array twice: if both scans yield identical values, the read returns the
sum of the val fields, otherwise the read is restarted.

Note that the inc and dec operations are wait-free, but readCounter can be starved if it is interrupted by an infinite
sequence of writers. The adversary cannot exploit this property to force the protocol to run forever: after enough
writes, the next reader will drop out of the protocol, and because there are only finitely many processes, it will
eventually be possible for some process to complete a read.

reg » record[count: int, val: int] % Initially [0 , 0]

Inc = proc(counter: array[reg])
r: reg := counter[self]
counter[self] := [r.count + 1, r.val + 1]
end Inc

Dec = proc(counter: array[reg])
r: reg := counter[self]
counter[self] [r.count + 1 , r.val - 1]
end Dec

ReadCounter = proc(counter: array[reg]) returns (int)
scanl, scan2: array[int]
while true do

for i: in l..n do scanl[i] := counter[i] end
for i: in l..n do scan2[i] := counter[i] end
if scanl = scan2 then return (sum (scanl)) end
end

end ReadCounter
Figure 6-1: Implementation of Shared Counter

Each inc or dec translates into to a single write, so the 0 (n 2) expected steps needed to exhaust the random walk
translate into an expected 0(/ i 2) primitive write operations. Each write can disrupt readCounter operations by n-\
processes, and each of these must then undertake n additional primitive reads, thus the O (n 2) expected steps result in
an expected O (n 4) primitive read operations.

10

7. Consensus Using Fetch-And-Add
The fetch-and-add operation [23] atomically adds a quantity to a register and returns the register's old value.

Fetch-and-add solves consensus deterministically for two processes, but not for three or more [21]. Figure 7-1
shows a weak shared coin implementation using fetch-and-add operations. Not surprisingly, fetch-and-add is more
efficient than read and write; it is straightforward to show that this protocol completes in an expected O (n2) total
operations.

flip = proc(coin: register) returns (bool)
while true do

if local_flip()
then state := fetch-and-add(coin, 1)
else state := fetch-and-add(coin, -1)
end

if state >= K*N then return (heads)
elseif state <= -K*N then return (tails)
end

end
end flip

Figure 7-1: The Weak Shared Coin Protocol using Fetch-And-Add

8. Strong Shared Coin Protocols
A strong shared coin protocol is a consistent wait-free algorithm by which n processes agree on a value in

[heads, tails] by applying operations to a shared object. A shared coin protocol is unbiased if both choices are
equally likely; i.e., the adversary has no control over the outcome. A naive solution might have each process flip an
unbiased local coin to choose its input value, and then achieve consensus with the others. Such a solution is heavily
biased, however, since an adversary that 4 4wants" an outcome of heads will run only the processes that prefer heads.
Against such an adversary, this naive protocol will decide tails only if all processes initially flip tails, a probability
of 1/2".

Theorem 16: An unbiased strong shared coin protocol is impossible.
Proof: By contradiction. For any two-process protocol, we construct an adversary that produces heads

with probability greater than 1/2. Assume we have an unbiased protocol, and let P and Q be the two
processes. Define a configuration's bias to be the maximum probability of eventually deciding heads
from that configuration, where the maximum is taken over all possible adversaries. Define a process's
current preference to be the probability it will eventually decide heads if it is run uninterruptedly until it
decides. For an unbiased protocol, the initial configuration's bias is 1/2, as is each process's preference.

Consider the following adversary. Run P until it is about to take a step that changes the current bias.
Such a step must eventually occur, because the protocol cannot run forever. Moreover, that step must be a
coin flip internal to P, since all other steps are deterministic and under the adversary's control. Before the
coin flip, the configuration's bias is 1/2, as are P and Q's preferences. Suppose P's local flip yields heads
with probability A. Let bk (bt) be the bias resulting if P flip heads (tails). Since the protocol is unbiased,
we have:

1/2 = hbk+(l-h)br

implying that one resulting bias is greater than 1/2 and one less. Assume bh> \/2>bt\ the other case is
symmetric. Since Q cannot directly observe P's coin flip, its preference continues to be 1/2.

If the outcome is heads, the definition of bias implies that the adversary can ensure an outcome of heads
with probability bh. If the outcome is tails, the adversary runs Q uninterruptedly until it decides, ensuring
an outcome of heads with probability 1/2. Taken together, the adversary can ensure heads with
probability:

+(1-/0/2.

11

Since bh>\/2, however, this quantity exceeds 1/2, contradicting the hypothesis that the protocol is
unbiased.

Note that this proof makes no assumptions about how processes communicate; they could use read/write registers,
fetch-and-add registers, messages, or other objects.

Although we have shown that the adversary can always introduce some bias, we have given no indication of how
large that bias must be. A shared coin protocol is asymptotically unbiased if the bias introduced by the adversary
can be made arbitrarily small.

Theorem 17: A asymptotically unbiased strong shared coin protocol with expected running time
polynomial in the number of processes is possible using shared read/write registers.

Proof: Have each process choose heads or tails using a weak shared coin, and then run the polynomial
consensus protocol given above. The adversary can influence the outcome by biasing the initial
preferences. If any process prefers heads, the adversary can suspend the others, while if all processes
prefer tails, the adversary has no more control. The likelihood the adversary can force some process to
choose heads in the initial round is thus (K+\)/2K, which approaches 1/2 as K increases.

9. Discussion
Most recent work on wait-free synchronization has focused on the construction of atomic read/write registers

[5,9,24,25,29,30,31,33]. Starting with "safe" bits for which overlapping read and write operations have
unpredictable effects, these papers describe a sequence of algorithms for constructing wait-free implementations of
read/write registers providing successively stronger guarantees, culminating in algorithms that permit multiple
concurrent readers and writers, an impressive achievement.

Nevertheless, reading and writing to individual registers is not the level of abstraction at which most programs are
written. Wait-free synchronization will be useful in practice only if it is possible to construct wait-free
implementations of objects with richer semantics than registers, objects such as test-and-set registers, stacks, queues,
file system directories, databases, etc. It is known, however, that atomic read/write registers have few, if any,
interesting applications in this area [21]. Using atomic read/write registers, it is impossible to construct a wait-free
implementation of: (1) common data types such as sets, queues, stacks, priority queues, or lists, (2) most if not all
the classical synchronization primitives such as test-and-set, compear e-and-swap, and fetch-and-add, and (3) such
simple memory-to-memory operations as move or memory-to-memory swap.

One way to interpret these impossibility results is that atomic read/write registers are a computational dead-end,
and that wait-free synchronization is unrealizable by machine architectures in which processes communicate by
reading and writing shared memory locations. The results in this paper suggest an alternative position. If one can
achieve consensus, one can transform a sequential implementation of any object whose operations are total (i.e.,
defined in every state) to a wait-free linearizable implementation [21], where each operation requires at most n
rounds of consensus. In the same way, the randomized consensus protocol presented here can be used to transform
any sequential object implementation into a randomized wait-free implementation, where each operation has
expected running time polynomial in the number of processes. In short, wait-free synchronization is indeed
realizable under conventional architectures, provided the wait-free guarantee is probabilistic in nature.

Acknowledgment
The authors would like to thank Hagit Attiya for her comments.

12

References

[I] K. Abraham son.
On achieving consensus using a shared memory.
In Seventh ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing. August, 1988.

[2] J.H. Anderson and M.G. Gouda.
The Virtue of Patience: Concurrent Programming With and Without Waiting.
Private Communication.

[3] M. Ben-Or.
Another advantage of free choice: completely asynchronous agreement protocols.
In Second ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing, pages 27-30.

August, 1983.

[4] M. Ben-Or and N. Linial.
Collective coin flipping, robust voting schemes, and minima of Banzhaf values.
In Twenty-sixth Annual Symposium on Foundations of Computer Science, pages 408-416. October, 1985.

[5] B. Bloom.
Constructing two-writer atomic registers.
In Proceedings of the Sixth ACM Symposium on Principles of Distributed Computing, pages 249-259. 1987.

[6] G. Bracha and S. Toueg.
Resilient Consensus Protocols.
In Second ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing, pages 12-26.

August, 1983.

[7] G. Bracha.
An 0(log n) expected rounds randomized byzantine generals algorithm.
In Seventeenth Annual Symposium on Theory of Computation. 1985.

[8] A. Broder and D. Dolev.
Flipping coins in many pockets (byzantine agreement on uniformly random values.
In Twenty-Fifth Annual Symposium on Foundations of Computer Science, pages 157-170. October, 1984.

[9] J.E. Burns and G.L. Peterson.
Constructing Multi-reader atomic values from non-atomic values.
In Proceedings of the Sixth ACM Symposium on Principles of Distributed Computing, pages 222-231. 1987.

[10] B. Chor, M. Merritt, and D.B. Shmoys.
Simple constant-time consensus protocols in realistic failure models.
In Proceedings of the Fourth ACM Symposium on Principles of Distributed Computing, pages 152-160.

1985.

[II] B. Chor and B.Coan.
A simple and efficient randomized byzantine agreement algorithm.
IEEE Transactions on Software Engineering SE-11(6):531-539, June, 1985.

[12] B. Chor, A. Israeli, and M. Li.
On processor coordination using asynchronous hardware.
In Proceedings of the Sixth ACM Symposium on Principles of Distributed Computing, pages 86-97. 1987.

[13] B. Coan and J. Lundelius.
Transaction Commit in a Realistic Fault Model.
In Fifth ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing, pages 40-52. August,

1986.
[14] D. Dolev, C. Dwork, and L Stockmeyer.

On the minimal synchronism needed for distributed consensus .
Journal of the ACM 34(l):77-97, January, 1987.

13

[15] C. Dwork, D. Shmoys, and L. Stockmeyer.
Flipping persuasively in constant expected time.
In Twenty-Seventh Annual Symposium on Foundations of Computer Science, pages 222-232. October. 1986.

[16] C. Dwork, N. L ,nch, and L Stockmeyer.
Consensus in the Presence of Partial Synchrony .
Journal of the ACM 35(2):228-323, April, 1988.

[17] P. Feldman and S. Micali.
Optimal Algorithms for Byzantine Agreement.
In Twentieth Annual ACM Symposium on Theory of Computing, pages 148-161. May, 1988.

[18] W. Feller.
An Introduction to Probability Theory and its Applications.
John Wiley & Sons, 1957.

[19] M. Fischer, N.A. Lynch, and M.S. Paterson.
Impossibility of distributed commit with one faulty process.
Journal of the ACM 32(2), April, 1985.

[20] M.P. Heriihy and J.M. Wing.
Axioms for concurrent objects.
In Nth ACM Symposium on Principles of Programming Languages, pages 13-26. January, 1987.

[21] M.P. Heriihy.
Impossibility and Universality Results for Wait-Free Synchronization.
In Seventh ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing. August, 1988.

[22] J.G. Kemeny, J.L. Snell, and A.W. Kapp.
Denumerable Markov Chains.
D. Van Nostrand, 1966.

[23] CP. Kruskal, L. Rudolph, and M. Snir.
Efficient Synchronization on Multiprocessors with Shared Memory.
In Fifth ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing. August, 1986.

[24] L. Lamport.
Concurrent Reading and Writing.
Communications of the ACM 20(11):806-811, November, 1977.

[25] L. Lamport.
On Interprocess Communication, Parts I and II.
Distributed Computing 1:77-101,1986.

[26] M.C Loui and H.H. Abu-Amara.
Memory Requirements for Agreement Among Unreliable Asynchronous Processes.
Advances in Computing Research.
JAI Press, 1987, pages 163-183.

[27] N.A. Lynch and M. MerritL
Introduction to the Theory of Nested Transactions.
Technical Report MIT/LCS/TR-387, Massachusetts Institute of Technology Laboratory for Computer

Science, April, 1986.

[28] N.A. Lynch and MA. Tutde.
Hierarchical Correctness Proofs for Distributed Algorithms.
Technical Report MIT/LCS/TR-387, Massachusetts Institute of Technology Laboratory for Computer

Science, April, 1987.

[29] R. Newman-Wolfe.
A Protocol for wait-free, atomic, multi-reader shared variables.
In Proceedings of the Sixth ACM Symposium on Principles of Distributed Computing, pages 232-249. 1987.

14

[30] G.L. Peterson.
Concurrent reading while writing.
ACM Transactions on Programming Languages and Systems 5(l):46-55, January, 1983.

[31] G.L. Peterson and J.E. Burns.
Concurrent reading while writing II: the multi-writer case.
Technical Report GIT-ICS-86/26, Georgia Institute of Technology, December, 1986.

[32] M. Rabin.
Randomized Byzantine Generals.
In Twenty-fourth Annual Symposium on Foundations of Computer Science, pages 403-409. October, 1983.

[33] A.K. Singh, J.H. Anderson, and M.G. Gouda.
The elusive atomic register revisited.
In Proceedings of the Sixth ACM Symposium on Principles of Distributed Computing, pages 206-221.

August, 1987.

