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A b s t r a c t 
Large production systems (rule-based systems) continue to suffer from extremely slow execution 

which limits their utility in practical applications as well as in research settings. Most efforts at 
speeding up these systems have focused on match or knowledge-search parallelism in production 
systems. Though good speed-ups have been achieved in this process, the total speed-up available 
from this source is not sufficient to alleviate the problem of slow execution in large-scale production 
system implementations. Such large-scale tasks can be expected to increase as researchers develop 
increasingly more competent rule-based systems. 

In this paper, we focus on task-level parallelism, which is obtained by a high-level decomposition 
of the production system. Speed-ups obtained from task-level parallelism will multiply with che 
speed-ups obtained from match parallelism. Our vehicle for the investigation of task-level 
parallelism is SPAM, a high-level vision system, implemented in a production system architecture. 
SPAM is a mature research system having over 600 productions, with a typical scene analysis task 
having between 50,000 to 400,000 production firings and an execution time of the order of 10 to 100 
cpu hours. 

We present a characterization of task-level parallelism in production systems and, from that, select 
an explicit, data-driven approach for exploiting task-level parallelism. We describe a methodology 
for applying the chosen approach to obtain a parallel task decomposition of SPAM and to arrive at 
our parallel implementation, SPAM/PSM. We present the results of that implementation that show 
near linear speed-ups of over 12 fold using 14 processors and that point the way to substantial speed-
ups from task-level parallelism. 

1. I n t r o d u c t i o n 
Large production systems (rule-based systems) continue to suffer from extremely slow execution 

which limits their utility in practical applications as well as research settings. Most efforts at 
speeding up these systems have focused on match, i.e., knowledge-search, parallelism in production 
systems [3, 5, 7, 15, 20, 21]. Though good speed-ups have been achieved in this process, the total 
speed-up available from this source is limited. Therefore, match parallelism alone will not alleviate 
the problem of slow execution in production systems. 

In this paper, we focus on task-level parallelism, which is obtained by a high-level decomposition 
of the production system. Speed-ups obtained from task-level parallelism will multiply with the 
speed-ups obtained from match parallelism. Our vehicle for the investigation of task-level 
parallelism is SPAM [12, 13, 14], a high-level vision system, implemented in a production system 
architecture. SPAM is a mature research system having over 600 productions, with a typical scene 
analysis task requiring between 50,000 to 400,000 production firings and an execution time of the 
order of 10 to 100 cpu hours 1 . Unlike most other production systems examined for studies in 
parallelism, it has embedded in it a large computational demand related to the vision task that it 
performs. This task-related computation is separate from the computation performed for knowledge-
search in the system. This is evident in the large RHS processing time for this system. While many 
production systems spend up to 90% of their time in knowledge-search, SPAM spends only about 
30-50% of its time there. 

l T h e s e measurements are taken from the Lisp-based version of OPS5 running on a VAX/785 processor. 
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In this paper, we show that the opportunities for task-level parallelism in SPAM are high and 
provide a much larger payoff in speed-up than match parallelism. We present a methodology and a 
set of principles to arrive at a suitable parallel decomposition of the SPAM task that results in near 
linear speed-ups of over 12 fold using 14 processors on a 16-processor shared-memory 
multiprocessor. Our results also indicate that a potential speed-up of 50 to 100 fold may be 
achievable due to task-level parallelism. We further show that match parallelism, when used in 
conjunction with task-level parallelism, gives another multiplicative factor of speed-up which is 
proportional to the size of the match component in the overall execution time. In the SPAM system, 
this additional multiplicative factor is around 1.5 to 2. 

This paper is organized as follows: Section 2 provides some background about production systems 
and SPAM, the image interpretation system that is the focus of our analysis of task-level parallelism. 
Section 3 discusses match parallelism and task-level parallelism in production systems. We describe 
a new organization to compare previous work in task-level parallelism along several independent 
dimensions. Section 4 discusses the implementation methodology used to determine appropriate 
levels for task-level parallelism. We also describe a set of experiments and measurements on SPAM 
that allowed us to select an appropriate grain of decomposition. These techniques should be 
applicable to the analysis of other large production systems for evaluating the opportunities for task-
level parallelism. 

A new system, SPAM/PSM, resulted from the application of this methodology and its 
implementation is described in Section 5. Section 6 presents a detailed analysis of the results of 
experiments across several dimensions including grain of decomposition, speed-ups due to processor 
allocation for match-level and task-level parallelism. Finally, Section 7 presents a summary of our 
research results and Section 8 discusses some issues for future work. 

2. Background 
In this section we provide a brief overview of OPS5 and SPAM. SPAM is implemented in OPS5, 

hence the description of OPS5 will be useful in understanding some of the issues in how SPAM 
represents knowledge about spatial and structural constraints used in computer vision. Besides 
providing background information, this section introduces the terminology that will be used in the 
rest of this paper. 

2.1. OPS5 
An OPS 5 [2] production system is composed of a set of if-then rules, called productions, that 

make up the production memory, and a database of temporary data structures, called the working 
memory. The individual data structures are called working memory elements (WMEs), and are lists 
of attribute-value pairs. Each production consists of a conjunction of condition elements (CEs) 
corresponding to the if pan of the rule (also called the left-hand side or LHS), and a set of actions 
corresponding to the then part of the rule (also called the right-hand side or RHS). 

The CEs in a production consist of attribute-value tests, where some attributes may contain 
variables as values. The attribute-value tests of a CE must all be matched by a WME for the CE to 
match; the variables in the condition element may match any value, but if the variable occurs in 
more than one CE of a production, then all occurrences of the variable must match identical values. 
When all the CEs of a production are matched, the production is satisfied, and an instantiation of the 
production (a list of WMEs that matched it), is created and entered into the conflict set. The 
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production system uses a selection procedure called conflict-resolution to choose a production from 
the conflict set, which is then fired. When a production fires, the RHS actions associated with that 
production are executed. The RHS actions can add, remove or modify WMEs, or perform I/O. 

The production system is executed by an interpreter that repeatedly cycles through three steps: 
1. Match 
2. Conflict-resolution 
3. Act 

The matching procedure determines the set of satisfied productions, the conflict-resolution 
procedure selects a single instantiation, and the act procedure executes its RHS. These three steps 
are collectively called the recognize-act cycle. 

2.2. SPAM: A Production System Architecture For Scene Interpretation 
SPAM [12, 13, 11] is a production system architecture for the interpretation of aerial imagery with 

applications to automated cartography and digital mapping. It tests the hypothesis that the 
interpretation of aerial imagery requires substantial knowledge about the scene under consideration. 
Knowledge about the type of scene — airport, suburban housing development, urban city — aids in 
low-level and intermediate level image analysis, and will drive high-level interpretation by 
constraining search for plausible consistent scene models. SPAM has been applied in two task areas: 
airport and suburban house scene analysis. In the remainder of this section we describe the SPAM 
architecture, and give run-time statistics that lead us to focus on one phase for our studies in 
parallelism. 

Phase 4 
(MODEL) 

Phase 3 
(FA) 

Phase 2 
(LCC) 

Phase 1 
(RTF) 

Model Generation 
and 

Evaluation 
/ 

Functional Area 
/ 

Local Consistency 
/ 

I iegion-to-Fragment 
/ 

Segmentation Regions 

Figure 2: Interpretation phases in SPAM. Figure 1: Aerial image of San Francisco Airport 

As with many vision systems, SPAM attempts to interpret the 2-dimensional image of a 3-
dimensional scene. A typical input image is shown in Figure 1. The particular goal of the SPAM 
system is to interpret an image segmentation, composed of image regions, as a collection of real-
world objects. For example, the output for the image in Figure 1 would be a model of the airport 
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scene, describing where the runway, taxiways, terminal-building(s), etc., are all located. SPAM uses 
four basic types of scene interpretation primitives: regions, fragments, functional areas, and models. 
SPAM performs scene interpretation by transforming image regions into scene fragment 
interpretations. It then aggregates these fragments into consistent and compatible collections called 
functional areas. Finally, it selects sets of functional areas to form models of the scene. 

As shown in Figure 2, each interpretation phase is executed in the order given. SPAM drives from 
a local, low-level set of interpretations to a more global, high-level, scene interpretation. There is a 
set of hard-wired productions for each phase that control the order of rule executions, the forking of 
processes, and other domain-independent tasks. However, this Mbottom-upM organization does not 
preclude interactions between phases. For example, prediction of a fragment interpretation in 
functional-area (FA) phase will automatically cause SPAM to reenter local-consistency check (LCC) 
phase for that fragment. Other forms of top-down activity include stereo verification to 
disambiguate conflicting hypotheses in model-generation (MODEL) phase and to perform linear 
alignment in region-to-fragment (RTF) phase. 

SPAM Phase RTF LCC FA MODEL Total 

Total CPU Time (hours) 1.5 144.5 7.3 0.71 154.01 

Total Productions Fired 11274 185950 10447 3085 210756 

Effective Productions/Second 2.08 0.357 0.397 1.20 0.380 

Total Hypotheses 466 N/A 44 1 N/A 

Table 1: San Francisco Airport (log #63) 

SPAM Phase RTF LCC FA MODEL Total 

Total CPU Time (hours) 2.5 17.9 7.3 0.33 28.03 

Total Productions Fired 18319 .32751 1483 1516 54069 

Effective Productions/Second 2.03 0.508 0.056 1.27 0.536 

Total Hypotheses 247 N/A 57 1 N/A 

Table 2: Washington National Airport Gog #405) 

SPAM Phase RTF LCC FA MODEL Total 

Total CPU Time (hours) 0.25 4.12 2.33 0.33 7.03 

Total Productions Fired 4713 36949 1503 3774 46939 

Effective Productions/Second 5.24 2.30 0.160 3.02 1.85 

Total Hypotheses 199 N/A 27 1 N/A 

Table 3: NASA Ames Moffett Field (log #415) 

Another way to view the flow of processing in SPAM is that knowledge is used to check for 
consistency among hypotheses; contexts are created based on collections of consistent hypotheses, 
and are then used to predict missing components. A collection of hypotheses must combine to create 
a context from which a prediction can be made. These contexts are refinements or spatial 
aggregations in the scene. For example, a collection of mutually consistent runways and taxiways 
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might combine to generate a runway functional area. Rules that encode knowledge about runway 
functional areas may predict that certain sub-areas within that functional area are good candidates 
for finding grassy areas or tarmac regions. However, an isolated runway or taxiway hypothesis 
cannot directly make these predictions. In SPAM the context determines the prediction. This serves 
to decrease the combinatorics of hypothesis generation and to allow the system to focus on those 
areas with strong support at each level of the interpretation. 

Tables 1, 2, and 3 give statistics for run-time and number of production firings for each 
interpretation phase in SPAM for each of the three airports used in this study: San Francisco 
International (SF) , Washington National (DC), and NASA Ames Moffett Field (MOFF) . It is 
interesting to note that LCC and FA phases account for most of the overall time in a complete run. 
Further, within these phases much of the RHS evaluation is performed outside OPS5 using external 
processes. For example, FA spends much of its time doing RHS evaluation outside of OPS5. RTF, 
on the other hand, spends most of its time within the traditional OPS5 evaluation model and 
consumes less time than FA, even though it executes a comparable number of productions. It is also 
clear from these tables that the application of spatial constraints in LCC makes it by far the most 
expensive phase in terms of amount of time spent, number of productions, as well as number of 
production firings. 

During the LCC phase, knowledge of the structure or layout of the task domain (i.e. airports or 
suburban housing developments) is used to provide spatial constraints for evaluating consistency 
among fragment hypotheses. For example, runways intersect taxiways and terminal buildings are 
adjacent to parking apron are examples of the kinds of constraints that are applied to the airport 
scene segmentation. It is important to assemble a large collection of such consistency knowledge 
since the results of these tests are used to assemble fragment hypotheses found to be mutually 
consistent as contexts for further interpretation within the functional area phase. 

As a result of this preliminary analysis we decided to focus our initial efforts on the parallel 
implementation of the LCC phase. Another rationale for this approach is the observation that this 
phase has the largest potential for growth. If a single new scene primitive is added within the RTF 
phase, many constraints may be added in the LCC phase in order to describe the spatial relationships 
(and constraints) between each of the other primitives. For these reasons, we believe that as new 
knowledge is added to the existing SPAM system, the proportion of time can only increase in the 
LCC phase. 

3 . Sources of Parallelism in Production Systems 
There are two sources of parallelism in production systems: match parallelism (MP) and task-level 

parallelism (TLP). In this section we first discuss existing results in match parallelism. We then 
discuss task-level parallelism and introduce a taxonomy for describing various approaches to 
achieving effective speed-ups. 

3.1. Match Parallelism 
In general, production systems spend most of their time (> 90%) in the match phase of the 

recognize-act cycle. This makes it imperative that we speed up the match as much as possible. In 
the past few years, an increasing number of researchers have explored many alternative ways to 
speed up the match in production systems using parallelism [3, 5 ,7 , 15,17, 20, 21]. 

Our own efforts in speeding up the match have culminated in ParaOPS5 [7, 9], a highly optimized 
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C-based parallel implementation of OPS5 for shared memory multi-processors. ParaOPSS 
represents our current technology for achieving match parallelism within systems such as SPAM. 
This implementation parallelizes the highly efficient Rete [4] match algorithm. ParaOPS5 exploits 
parallelism at a fine granularity: subtasks execute only about 100 instructions. ParaOPS5 has been 
able to provide significant speed-ups for OPS5 systems that are match-intensive. Figure 3 shows the 
speed-ups achieved with our current implementation for three different match intensive systems: 
Rubik, Weaver and Tourney. The speed-ups are for an implementation on the Encore Multimax and 
are reproduced from [7]. Though Rubik and Weaver are seen to achieve good speed-ups, the speed­
up in Tourney is quite low. The speed-ups are a function of the characteristics of the productions in 
the production system (see [6, 7].) 

Figure 3: Speed-ups for OPS5 on the Encore Multimax [7]. 

Although systems such as ParaOPS5 have achieved good speed-ups, the total possible speed-up 
via MP in current production systems is limited (only 20 to 40 fold [5]). This limit is imposed by: 

1. The recognize-act cycle ofOPS5: The OPS5 model requires a synchronization in it's 
resolve phase. Thus MP is limited to individual cycles; we cannot extract MP across 
cycles. 

2. Limited match effort per cycle: In every recognize-act cycle, only a limited number of 
productions are affected, i.e., the match effort per cycle is also quite limited. 

Furthermore, MP is based on the assumption that the match phase dominates the entire 
computation. However, it is possible that the system under consideration is embedded in some other 
computationally demanding environment. In such cases, it is necessary to parallelize the rest of the 
computation besides match. Consider a system that spends only 50% of its time in match. Even if the 
match is made infinitely fast, the total speed-up possible will be only a factor of two (Amdahl's law). 
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3.2. Task-Level Parallelism 
The limitations of match parallelism described in the previous section encourage the investigation 

of task-level parallelism. TLP has also been referred to as application parallelism [5], concept 
parallelism [ 18 ] , and parallel rule firings [ 8 ] . The idea is to use knowledge about the problem 
domain to create a task decomposition suitable for parallel execution. Our choice of the term TLP 
for this source of parallelism is partly historical and partly dictated by the inadequacy of the other 
terms to cover the kind of parallelism provided by production systems like Soar [10]. 

A system exploiting TLP would be implemented on top of a system exploiting MP. The speed-ups 
obtained from these two sources can be independent and therefore multiply. We can understand 
TLP by considering the possible dimensions in which TLP can be divided. These dimensions are: 

• Synchronous/Asynchronous: Synchronous production-firing systems always require a 
synchronization in the resolve phase of the recognize-act cycle. All the productions are 
matched in parallel. In the resolve phase, one or more of the productions are selected for 
firing. In the act phase, the selected productions are fired in parallel. 

In asynchronous production-firing systems there is no requirement for a synchronization 
in the resolve phase across processors. Thus, these systems do not have distinct match, 
resolve and act phases across the parallel system. 

Synchronous systems are less capable of handling variances in processing times for 
subtasks [16]. As shown in [16], given a fixed amount of work, in the presence of 
variance, a synchronous system quickly reaches saturation speed-ups, while an 
asynchronous system can continue to exploit linear speed-ups. So, in a production 
system embedded in an computationally intensive environment, if executing the RHS of 
certain productions takes much longer than others, the performance of the synchronous 
system will degrade heavily. However, synchronous systems may be preferred in the 
development and debugging stages. 

• Implicit/Explicit: The parallelism is implicit if the system or the compiler has to extract 
parallelism out of the existing OPS5 code. This requires an analysis of the interference 
caused by firing productions in parallel. Thus, this is taking a dusty deck view of OPS5 
programs. 

Explicit parallelism refers to providing explicit information to the system for exploiting 
TLP. Thus, the system may be supplied with the information that certain parts of a given 
task can be solved in parallel, or that certain productions can always be fired in parallel. 
In implicit parallelism, if the system engages in extracting this parallelism at compile-
time, then its extraction of parallelism has to be very conservative, as the variable-
bindings are unknown. If parallelism is extracted at run-time, then there are overhead 
costs payed at run-time. These overheads are sequential, and hence can cause 
considerable slowdowns. A system for exploiting explicit parallelism is able to avoid 
these problems. 

When the parallelism is implicit, the granularity is usually at the level of productions; it 
seems difficult to discover a higher level of granularity with implicit parallelism. With 
explicit parallelism, the user has the freedom to choose the right granularity. The level 
of granularity is a complex tradeoff of the number of processors available, architectural 
parameters, variances, data structures and task management overheads. We will discuss 
the granularity issue in detail in Section 4. 
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• Rule distribution/working memory element distribution/No distribution: This separation 
is related to the implementation of a parallel rule firing system. In the implementation 
of a parallel rule-firing system, it is possible to distribute the productions (rules) among 
processors, where each production set has its own conflict set. This distribution could 
be done automatically or with the help of the user. However, optimal distribution of 
productions among processors is a difficult problem. 

A second approach is to allocate all the productions to each processor; the working 
memory elements are then distributed among the processors. A third approach involves 
no distribution at all. Here, the parallel rule-firing is built into the control structure of 
the system. 

Table 4 shows the various dimensions and the classification of various parallel rule-firing systems 
along these dimensions. These dimensions will help to investigate the TLP in SPAM/PSM. The table 
uses the names of authors to represent systems that do not have any names. Superscripting each 
system name, we indicate the third dimension that classifies the type of distribution used: rule-
distribution, working memory element distribution, or none. 

The SPAM/PSM system is the system described in this paper, we will discuss our design choice in 
detail in Section 4. These dimensions are not intended to be binary; rather, different systems could 
take different positions along a continuum in these dimensions. However, in the interests of clarity, 
the table makes a binary division. For instance, the system in [18] is classified as using implicit 
parallelism — however, it uses some explicit parallelism. It should be noted that except for Soar and 
SPAM/PSM, all other systems present simulation results on mini-production systems (with 50 or less 
productions). 

Dimensions Synchronous :: Distribution Asynchronous :: Distribution 

Implicit Ishida & 
Stolfo [8] :: 
Oshisanwo & 
Dasiewicz [18] :: 

Rule 

Rule 

Explicit Soar [5] [10] :: None SPAM/PSM WME 

Table 4: Dimensions of task-level parallelism. 

4. Implementation Methodology 
In this section, we develop a methodology for applying task-level parallelism within the context of 

SPAM. We use knowledge about the task domain to specify several hierarchical task decompositions 
of the problem in which parallelism can be exploited. Thus, the characteristics of the SPAM task fit 
the requirements for exploiting task-level parallelism along the explicit dimension described in 
Section 3.2. 

As described in Section 2.2, we will concentrate on the local-consistency phase (LCC) of SPAM for 
parallelization 2. The LCC phase applies geometric knowledge (constraints) from the selected 
domain to the set of interpretations made from the dataset. This application of geometric knowledge 

2Since the analysis is performed using the original, expensive Lisp-based SPAM system, we have 
representative subset of the three airport datasets to drive the analysis. 
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can be logically decomposed into several levels, where the tasks within each level are independent 
and can be performed in parallel. This is illustrated in Figure 4. 

Grain of 
Computation 

Phase 

Icon Description 

Level Four — N — - - V 
Complete Phase 

Entire Class Check 
Level Three i li - ^ n r i r — 1 Group of Ruleset Executions 

Level Two » i T T i r n n ' Single Ruleset Execution 

Level One 
ÍIIDÓÍDDÍOáallDDIIÍDÍÍIGÍDIIÍ0DÜÍMJn¡ÍD' Single Constraint Check 

Figure 4: Levels of processing in SPAM LCC. 

These levels of decomposition are described below: 

• LCC Phase: At the highest phase level, the computation is for the entire LCC phase. 
• Level 4: The phase level computation may be decomposed into tasks at Level 4, where 

each task applies multiple constraints to a single class of objects. For instance, a task 
may apply multiple constraints to all objects of class terminal building. 

• Level 3: A single task at Level 4 may be decomposed into multiple tasks at Level 3. A 
task at Level 3 applies multiple constraints to a single object within the class of objects 
selected at Level 4. For example, a Level 3 task may apply multiple constraints to a 
single terminal building object 

• Level 2: A single task at Level 2 involves applying a single constraint to a single object. 
Thus, a task at Level 2 may apply a constraint such as, access roads lead to terminal 
buildings, to a single terminal building chosen for a task at Level 3. 

• Level 1: A single task at Level 2 may have several components to check in applying a 
constraint to an object. Thus a constraint such as, access roads lead to terminal 
buildings, requires several roads be checked against the terminal building. A task at 
Level 1 would perform one of these constraint components. 

Within a level, each task involves the firing of from 3 to 100 productions. As mentioned in 
Section 3.2, an implicit approach to extracting parallelism would make it difficult to obtain 
parallelism at a higher level of decomposition than individual production firings. Therefore, for this 
application, an explicit approach to parallelism is more appropriate. 

With an explicit approach to parallelism, the choice of the right level of decomposition, or the 
right granularity, for parallelization must be made. This choice is determined by several factors: 

1. Task granularity: As the average time per task gets smaller, task management 
overheads will have a greater impact and communication overheads and system 
resource contention will become more of a bottleneck. 

2. Ratio of tasks to processors: The achievable parallelism is bounded by the number of 
available processors. At lower task to processor ratios, a large variance in task 
processing time will have a negative impact on processor utilization and the speed-ups 
obtained from parallelism. With higher ratios, the impact is less pronounced. 

3. Coefficient of variance: Defined as a/|i, this provides a means of normalizing, for 
different levels of decomposition, the effect of variance in task granularity on 
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processor utilization. A high coefficient of variance will reduce processor utilization, 
resulting in lower speed-ups. This effect is more severe in synchronous systems. 

4, Decomposition effort: This is a somewhat subjective measure. Proceeding down the 
hierarchy of levels, each task at the current level must be decomposed into several 
tasks at the next level of granularity. Usually, more work is required to specify the 
decomposition and design an implementation at the lower levels. The benefits of the 
additional parallelism that can be achieved at a lower level relative to the effort 
required must be assessed. 

In order to choose the right level of decomposition at which to parallelize the SPAM LCC phase, we 
instrumented the SPAM system to obtain measurements at each level for the number of tasks and 
their run-time average, standard deviation, and coefficient of variance. The results of these 
measurements for each of the three airport datasets is presented in Tables 5, 6, and 7. 

Level Average 
time per task 

(sec) 

Standard 
deviation 

(sec) 

Coefficient 
of variance 

Number 
of tasks 

Level 4 875.27 525.92 0.601 9 

Level 3 65.65 29.51 0.449 120 

Level 2 20.90 8.48 0.406 377 

Level 1 0.489 0.0782 0.159 16104 

Table 5: Average, standard deviation and coefficient of variance for SF. 

Level Average 
time per task 

(sec) 

Standard 
deviation 

(sec) 

Coefficient 
of variance 

Number 
of tasks 

Level 4 1308.66 641.72 0.490 9 

Level 3 78.51 30.48 0.388 150 

Level 2 24.04 9.51 0.396 490 

Level 1 0.430 0.0677 0.157 27399 

Table 6: Average, standard deviation and coefficient of variance for DC. 

Level Average 
time per task 

(sec) 

Standard 
deviation 

(sec) 

Coefficient 
of variance 

Number 
of tasks 

Level 4 165.60 121.20 0.732 9 

Level 3 20.07 8.02 0.399 74 

Level 2 5.57 2.43 0.436 268 

Level 1 0.349 0.0455 0.130 4274 

Table 7: Average, standard deviation and coefficient of variance for MOFF. 
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Using information from Tables 5, 6, and 7, the appropriate level of granularity can now be chosen. 
For Level 4, the task to processor ratio is smaller than one, so we immediately rejected pursuing 
parallelism at this level. Levels 3 and 2 are very similar to each other in that they have enough tasks, 
their variances are not large, and the task granularities are much larger than the expected task 
management and communication overheads. Both levels, therefore, seemed to us to be worthwhile 
candidates. Level 3 seemed somewhat more desirable as less effort appeared to be required of us to 
achieve amounts of parallelism similar to that available in Level 2. 

Level 1 was rejected for several reasons. First and most importantly, the additional effort involved 
in decomposing the system at the granularity of Level 1 would not allow us to achieve any more 
parallelism than at Level 2 or 3 because of the limitation on the number of processors. Second, the 
task granularity is much smaller and thus closer to the overheads for task management and 
communication than any of the other levels. Finally, the task to processor ratio is on the order of 
1000. This can have a detrimental affect due to the initialization overhead. Our conclusion, then, 
was to exploit parallelism at the granularity of Levels 2 or 3. 

The decomposition methodology can be summarized as follows: 
• Analyze the baseline system and determine where the time is going. 
• Determine if the explicit dimension of TLP (Section 3.2) is appropriate. 
• Characterize the computation in terms of independent task decompositions at different 

granularities. 
• Obtain measurements of the system characteristics for each level of decomposition. 
• Analyze the measurements to select a level of decomposition for parallelization. 

The second dimension of task-level parallelism addresses the issue of synchronous versus 
asynchronous execution. With an explicit decomposition at Level 3, there is no synchronization 
requirement. Furthermore, asynchronous models help in reducing the impact of variance. We 
therefore decided to decompose the system so as to allow the asynchronous rule-firings. 

The final dimension of task-level parallelism addresses the issue of production versus working-
memory partitioning. We decided to use working-memory partitioning, as this facilitates the explicit 
decomposition at the higher granularity. 

5. SPAM/PSM Implementation 
This section describes the SPAM/PSM system that implements the LCC phase of SPAM described in 

Sections 2.2 and 4. The system is built on top of the ParaOPS5 system described in Section 3.1. 
The SPAM/PSM system is implemented on an 16-processor Encore Multimax, a shared-memory 
multiprocessor based on the National Semiconductor NS32332 processor, rated at approximately 1.5 
MIPS. 

5.1. SPAM/PSM Architecture 
Figure 5 gives a process hierarchy view of the SPAM/PSM system for the LCC phase. Viewed from 

the top level, the execution model consists of a control process, a set of task processes, and a queue 
of tasks to be executed. The size and number of tasks in the queue reflects the level of 
decomposition chosen for the LCC phase. The decomposition of LCC was described in Section 4. 

The control process takes the output from the phase preceding SPAM's LCC phase and builds the 
queue of tasks. It then forks the task processes and, once they have completed all the tasks, collects 
from them the results that will be passed on to the next SPAM processing phase. 
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Figure 5: Organization of the SPAM/PSM system. 

Each of the task processes is a complete and independent ParaOPS5 system. Thus, each task 
process has its own working memory, conflict set, Rete node memories, etc. Each task process has a 
production memory, which represents all the productions in the system, and effectively has a copy of 
the initial working memory supplied by the control process. At system initialization time, each task 
process can also fork a set of match processes (see Figure 5) which will perform the match in 
parallel. 

The work performed by the SPAM/PSM system to carry out the LCC phase involves a task process 
removing a task from the queue and executing its ParaOPS5 system on that task. The task itself is 
just a WME which, when added to the process' Rete network, initializes the production system. 
Thus, each task can be characterized as the execution of an independent OPS 5 program. 

In the absence of the match processes, a task process performs the usual ParaOPS5 role of match, 
conflict resolution, and production firing, to carry out the OPS5 recognize-act cycle. If dedicated 
match processes are present, they perform the match instead, providing a second and independent 
axis of parallelism in the SPAM/PSM system. When there are no productions left to fire, the task is 
complete, and the task process goes to the queue for another task. 

Thus, the SPAM/PSM system realizes our specifications: 
1. Explicit parallelism: The decomposition of the LCC phase is explicitly specified. The 

task queue is initialized with independent tasks, depending on the level of 
decomposition, in the beginning of the run. 

2. Asynchronous production firing: All the task processes are independent ParaOPS5 
systems. Therefore, these processes can fire productions without synchronizing with 
each other. 

3. Working-memory element distribution: Each task process has a copy of the entire set of 
productions. The working memory is distributed among the various task processes. 
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5.2. Measurement Techniques 
The SPAM/PSM system is instrumented to measure the time spent in executing the tasks from two 

of the LCC phase decompositions, Level 2 and Level 3, identified in Section 4. The control process 
previously described is used to monitor and time this processing. Measurement begins at the point 
after which the control process has built the task queue and forked the task processes, and all the task 
processes have performed their initializations. Speed-ups are computed by comparing the measured 
execution time against the execution time of the BASELINE version, which consists of the control 
process, one task process, and no dedicated match processes. 

Because of the 16 processor limit, we measure the effects of task-level parallelism and match 
parallelism in isolation. We allocate one processor for the control process, which is used only to time 
and not to perform tasks, and we allow one processor to the operating system. This permits us to 
vary the number of task processes from 1 to 14 in the isolated measurement of task-level parallelism. 
Next we measure the effect of match parallelism in isolation by using a single task process and 
varying the number of dedicated match processes from 0 to 13. 

We are then able to use these two separate measures of task-level parallelism and match 
parallelism to predict the combined effect of the two. However, with 14 available processors, we are 
able to test only a subset of the possible combinations. For example, 4 task processes, each having 2 
dedicated match processes, uses 12 processors (4 + (4 * 2)). Thus, dedicating 3 match processes 
requires 16 processors (4 + (4 * 3)) and, therefore, cannot be accommodated. 

6. Results and Analysis 
In this section we present the results of our parallel implementation, SPAM/PSM, of the SPAM LCC 

phase run on these three different airport datasets: SF, DC, and MOFF. As described above, the 
speed-ups are obtained for applying task-level parallelism and match parallelism in isolation and 
then for a combination of the two. We obtained results for two of the parallel decompositions, Level 
3 and Level 2, identified in Section 4. 

It is important to note that all the speed-ups are computed against a baseline system which 
represents an optimized uniprocessor implementation of the SPAM LCC phase. The original SPAM 
system is implemented in Lisp, using an unoptimized Lisp-based OPS5. It forks independent 
processes to perform geometric computations in the RHS. We ported the LCC phase of the system to 
C and ParaOPS5 and replaced the forked computational processes with C function calls. This 
baseline system itself provides approximately a 10-20 fold speed-up over the original Lisp-based 
implementation for the LCC phase on the three datasets used here. 

6.1. The Baseline System 
The baseline version of the system uses a single task process to execute all the tasks in the system. 

The results from this version are given in Table 8 and provide a picture of the magnitude of the LCC 
phase. The column marked DATASET gives the name of the airport and the decomposition level 
used. The column marked TOTAL TIME shows the total time to execute all the tasks from the queue 
for the given number of tasks executed. The average time per task is then shown in the next column. 
Finally, we further characterize the LCC phase with the total number of productions fired (PRODS 
FIRED), RHS actions performed (RHS ACTIONS), and changes to working memory (CHANGES TO 
WM). 

execution times in Table 8 provide the basis for computing all of the speed-ups. For a 



MEASURING THE EFFECTIVENESS OF TASK-LEVEL PARALLELISM FOR HIGH-LEVEL VISION 14 

Dataset Total 
time 
(sec) 

Number 
of tasks 

Average 
time per 

task 
(sec) 

Prods 
fired 

RHS 
actions 

Changes 
to WM 

SF Level 3 1433 283 5.07 33475 42383 39116 

SF Level 2 1423 941 1.51 32251 41159 38550 

DC Level 3 988 151 6.55 20059 31205 26714 

DC Level 2 956 490 1.95 19418 30564 26412 

MOFF Level 3 991 209 4.74 22203 23637 23368 

MOFF Level 2 973 700 1.39 21294 22728 22950 

Table 8: Measurements for baseline system on the datasets 3. 
(Represents the optimized, ParaOPS5-based, uniprocessor version.) 

airport dataset, there is a small difference in the total execution time between the two levels of 
decomposition. These differences arise due to the differences in the initial set of productions fired 
for generating the tasks for the two levels. 

6.2. Speed-ups due to Task-Level Parallelism 
The results of applying task-level parallelism are shown in Figure 6. The speed-up curves show 

near linear speed-ups for both levels of decomposition. The speed-ups within a level are almost the 
same among the three airport datasets. The maximum speed-up achieved using 14 processors is 
11.90 fold in Level 3 and is 12.58 fold in Level 2. 

Across the two levels, we see that the curves are consistently better in Level 2, although by only a 
small factor (less than 10%). While the difference is small, Level 3, with its higher granularity, was 
expected to have the edge in speed-up, since its task management overheads would be lower. 
However, the task management overheads in both levels are very low: less than .25 seconds, or less 
than . 1 % of the processing time for all the tasks. Moreover, the coefficient of variance for tasks at 
both levels was seen to be the same in Section 4. 

Further investigation of the individual processing times of the tasks in the queue showed that there 
are a few tasks in each level that have execution times that are an order of magnitude larger than the 
average task in that level. Some of these tasks occur at the end of the task queue and create a tail-end 
effect in which processor utilization is low at the end of the phase. The relative disparity of these 
large tasks is greater within Level 3 and thus accounts for the slightly better speed-ups in Level 2. 

One way to both negate this disparity and reduce the tail-end effect would be to use a separate task 
queue for the larger tasks and process them at the beginning of the phase. This would result in better 
processor utilization and thus better speed-up curves in both levels. SPAM can provide the necessary 
information to indentify the sizes of the tasks. This and other related issues of scheduling tasks are 
subjects for future work. 

>These datasets are larger than those shown in Tables 5,6, and 7. 
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Figure 6: Speed-ups varying the number of task-level processes. 
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Figure 7: Speed-ups varying the number of match processes. 

6.3. Speed-ups Due to Match Parallelism 
Figure 7 shows the results for applying match parallelism to each of the tasks in a parallel 

decomposition for Levels 2 and 3. Match parallelism is obtained by dedicating processes to perform 
the match within the OPS5 recognize-act cycle. Since the baseline version of the system has only a 
task process and no dedicated match processes, it is represented in both graphs at position 0 on the 
horizontal axis. From the graphs, we see that applying match parallelism to the LCC phase yields 
very different speed-up results from those achieved using task-level parallelism. As stated in 
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Section 3, the theoretical maximum speed-up that can be obtained is limited according to the 
percentage of total execution time spent in match. 

The dotted lines on the graphs show the theoretical speed-up limits. For Level 3, these limits are 
1.95, 1.36, and 1.54 for SF, DC, and MOFF respectively. We were able to obtain respective speed-
ups of 1.71, 1.28, and 1.45 which represent 88%, 94%, and 94% of the corresponding asymptotic 
limits. In all three cases, the speed-ups peaked using 6 or less match processes. Similar results are 
shown for Level 2. 

6.4. Multiplicative Speed-ups 
To validate the multiplicative effect of the two independent axes of parallelism [19], the system 

was run using task-level and match parallelism in consort. While the scope of the experiments was 
limited by the small number of processors, the speed-ups obtained in these combined runs were 
consistent with the speed-ups predicted by the multiplication of speed-ups from the two separate 
sources. Table 9 shows the results of some of these combined runs on SF for Level 2. The top row 
of the table varies the number of dedicated match processes from 0 to 5. The left column of the table 
varies the number of task processes from 1 to 7. The first row of numbers in the table gives the 
speed-ups from match parallelism in isolation. The first column of numbers in the table gives the 
speed-ups from task-level parallelism in isolation. 

The table entry at (Task 1 ? Match 0) represents the baseline version of the system. Each of the other 
table entries shows the achieved multiplicative speed-up from the combined sources with the 
predicted speed-up in parentheses directly below. For example, the entry (Task 4, Match^ represents 
the use of 4 task processes with each having 2 dedicated match processes. The achieved speed-up for 
this configuration is 5.82 fold and the predicted speed-up is 5.96 (3.98*1.50). Table entries marked 
with an asterisk could not be measured due to a lack of processors on the machine (see Section 5.2). 
For example, (Task 4, Match 3) requires 17 processors: 1 control process, 4 task-level processes, and 
12 (= 4*3) dedicated match processes. The table shows the achieved speed-ups to be very close to 
the predicted speed-ups. Similar results were obtained for DC and MOFF. 

The speed-up curves for task-level and match-level parallelism graphically indicate that the 
benefits from task-level parallelism are much more significant than from match parallelism. Thus, in 
a setting where the number of available processors is limited, it is best to allocate them to task-level 
parallelism rather that match parallelism. We believe that the potential for additional speed-ups in 
SPAM from task-level parallelism is quite high; an expectation of 50 to 100 fold does not seem 
unreasonable, since: 

1. The tasks within any of the LCC decompositions are independent of one another. 

2. Several hundred tasks are available in Level 2. 

3. The task queue management overheads measured for Level 2 and Level 3 are very low, 
especially with respect to the task granularity, and thus are not a factor. 

The current scheme of decomposition depends on a centralized task-queue for effective 
distribution of tasks among processes. A centralized task queue may become a bottleneck for an 
increasing number of processes; therefore, we need to investigate schemes for effective distribution 
of tasks among processes. 

Though our scheme of parallelization has been presented in the context of non-match-intensive 
system, the scheme is applicable to match-intensive systems as well. In match-intensive systems, 
match parallelism will make a substantial contribution to the speed-ups. 
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Match 0 Match j Match 2 Match 3 Match 4 Match 5 

Task j 1 1.21 1.50 1.60 1.68 1.70 
Task 2 2.01 2.42 

(2.43) 
2.97 

(3.01) 
3.16 

(3.22) 
3.30 

(3.37) 
3.36 

(3.42) 
Task 3 2.98 3.57 

(3.60) 
4.42 

(4.46) 
4.73 

(4.78) 
* 

(5.01) 
* 

(5.07) 
Task 4 3.98 4.73 

(4.81) 
5.82 

(5.96) 
* 

6.37) 
* 

(6.69) 
* 

(6.77) 
Task 5 4.93 5.82 

(5.95) 
* 

(7.39) 
* 

(7.89) 
* 

(8.28) 
* 

(8.38) 
Task 6 5.89 6.98 

(7.12) 
* 

(8.83) 
* 

(9.42) 
* 

(9.90) 
* 

(10.01) 
Task 7 6.70 8.04 

(8.09) 
* 

(10.05) 
* 

(10.72) 
* 

(11.26) 
* 

(11.39) 

Table 9: Multiplicative speed-ups in SPAM/PSM for SF Level 2. 
Parenthesized numbers are the predicted speedups. 

7. Summary and Conclusions 
In this paper we characterized task-level parallelism in production systems along three dimensions 

and, from that, selected an explicit, data-driven, asynchronous approach for exploiting it. The system 
we presented, SPAM/PSM, is a real, computationally demanding, high-level vision system that relies 
on knowledge-based reasoning. With the SPAM/PSM system, we showed that an explicit approach to 
task-level parallelism can yield significant speed-ups. 

The explicit approach relies on knowledge that the system designer has available about the nature 
of the problem. The designer uses this knowledge directly to arrive at a problem decomposition in 
which parallelism can be exploited. The decomposition is made based on the data upon which the 
system must operate and several levels of decomposition are possible. We saw that the choice of the 
correct level at which to exploit parallelism is based upon a number of factors; among these are the 
task granularity, task management and communication overheads, the variance in task processing 
times, and the ratio of total tasks to processors. 

For the SPAM/PSM system we presented a methodology for obtaining a parallel task decomposition 
and arrived at three levels of decomposition. We implemented two of those levels and obtained near 
linear speed-ups with a maximum of over 12 fold using 14 processors. The results obtained indicate 
that speed-ups on the order of 50 to 100 fold from task level parallelism might be realized on a 
machine with a comparably large number of processors. We believe that the success achieved with 
the SPAM/PSM system gives hope to designers of other rule-based systems to realize systems with 
much lower execution times by applying task-level parallelism. Also the potential for very large 
speed-ups indicated here should serve as encouragement to the designers of large-scale 
multiprocessor systems. 

We also obtained results for applying match parallelism to each of the tasks in a parallel 
decomposition. We saw that this speed-up represented an independent axis of parallelism and thus 
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could be multiplied with the speed-up obtained from task-level parallelism. In the airport data sets 
tested, this axis provided a factor of 1.5 to 2 fold parallelism. 

We believe that the explicit, data-driven approach taken here holds better potential for realizing 
task-level parallelism than implicit approaches that attempt to extract parallel rule-firings using a 
task-independent, bottom-up analysis. With these latter kinds of approaches to task-level parellelism, 
there is not enough information available at compile-time to make these decisions and the 
complexity and overhead required at run-time to perform the analysis is prohibitive and does not 
seem likely to yield much speed-up from parallelism. Such parallel rule-firing schemes are still 
constrained by the overall synchronous nature of the OPS5 recognize-act cycle. In addition, the run­
time analysis for parallel rule-firings places another synchronous constraint upon the system which 
presents a further bottleneck to parallelism. The top-down, explicit approach presented here 
achieves parallel rule-firings without this synchronous constraint and the overhead of the run-time 
analysis. Furthermore, the analysis required to arrive at a suitable parallel decomposition is 
straightforward and can be arrived at fairly quickly. 

Finally, the framework for exploiting task-level parallelism presented in this paper seems most 
suitable for parallelizing knowledge-intensive systems that exhibit weak interaction between the 
individual subtasks of the task. This framework is especially useful for systems with a large 
computational demand separate from the demand imposed by match. 

8. Future Work 
In the near future we plan to make our SPAM/PSM implementation a useful tool for SPAM 

researchers. This means partitioning and parallelization of the other phases of SPAM besides the local 
consistency check phase. Moreover, currently, the initialization subphase within the local-
consistency phase consumes a large amount of processing time. We need to optimize and/or 
parallelize the initialization subphase. 

Results from Section 6 show that large amounts of parallelism can be exploited in SPAM, and thus, 
significantly larger number of processors could be employed in exploiting the parallelism. Shared-
bus multi-processors like the Encore Multimax cannot support such a large number of processors. 
We need to evaluate other scalable parallel architectures for exploiting match and task-level 
parallelism in production systems. Toward this end, we are currently investigating implementations 
on message-passing computers; simulation results for production systems on message-passing 
computers [1] have shown positive results. 

Our long term plan is the investigation of task-level parallelism in systems besides SPAM. We hope 
such investigations will help us refine the general methodology for exploiting task-level parallelism 
in production systems. 
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