
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Programming in Higher-Order
Typed Lambda-Calculi

Benjamin Pierce Scott Dietzen

CMU-CS-89-111

March 10, 1989

Spiro Michaylov

School of Computer Science
Carnegie Mellon University
Pi t t sburgh, PA 15213-3890

(Also appears as ERGO-89-075)

A b s t r a c t

Typed A-calculi have been objects of theoretical study for many years. Recently,
it has been shown that all the inductively defined types (including numbers,
booleans, lists, and trees, as well as more complex structures like typed terms
and proofs) can be represented in higher-order A-calculi with no built-in types
or type constructors. This raises the possibility of designing practical program
ming languages based on pure typed A-calculi.

This tutorial presents a hierarchy of increasingly powerful languages, beginning
with Church's simply typed A-calculus (F x) and the second-order polymorphic
A-calculus of Girard and Reynolds, and culminating in a fragment of Girard's
o>-order polymorphic A-calculus (F^) . Our focus throughout is on the unusual
style of programming that arises in these languages, where all functions are total
and the primary control construct is iteration rather than general recursion.

This work was supported in part by the Office of Naval Research and the Defense Advanced Research
Projects Agency (DOD) under contract number N00014-84-K-0415 The
contained in this document are those of the authors and . J ^ U S ^ ^ ^
the official policies, either expressed or implied, of DARPA or the U.S. Government. r e p r e S e n t m g

Contents

1 I n t r o d u c t i o n 3

2 T h e S i m p l y - t y p e d A-Calculus 6

2.1 Definitions and Properties 6

2.2 Inductive Type Definitions 11

2.3 Programming with Iterators 15

3 T h e S e c o n d - o r d e r P o l y m o r p h i c A-Calculus 19

3.1 Definitions 21

3.2 Representing FJ Inductive Type Definitions in F 2 23

3.3 The Power of F 2 31

4 T h e Th ird -order P o l y m o r p h i c A-Calculus 33

4.1 Definition and Properties of F 3 33

4.2 Polymorphic Inductive Datatypes 35

4.3 Programming in F 3 36

5 F 3 as a M e t a l a n g u a g e 4 1

5.1 A Simple Representation of F x Terms 41

5.2 A Complete Representation of Fx Terms 43

5.3 Representation of F 2 45

5.4 Representing F 3 in F 4 46

5.5 Alternative Formulations of Term 47

6 T h e o>-order P o l y m o r p h i c A-Calculus 50

6.1 Basic Definitions 50

6.2 Properties of F ^ 53

University Libraries
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

1

2

6.3 Types and Type Inference 54

6.4 as the Basis for a Programming Language 56

A R e p r e s e n t i n g t h e U n t y p e d A-Calculus 59

B S y m b o l s a n d T e r m i n o l o g y 63

C h a p t e r 1

I n t r o d u c t i o n

Typed A-calculi have been objects of theoretical study for many years [10,20,18,53,52,51,
etc.]. One of the earliest results in this area was the demonstration that a wide class of
number-theoretic functions could be defined in the simply typed A-calculus. The basic
trick behind these results was a representation of natural numbers as typed terms (the
so-called "Church numerals"):

0 = Af :Nat - •Nat . Ax:Nat. x
1 = Af :Nat-»Nat: Ax:Nat. f (x)
2 = Af:Nat->Nat. Ax:Nat. f (f (x))

More recently, Bohm and Berarducci [4], and independently Leivant [34], have shown
that any set of inductively defined types 1 can be translated into a set of types in the
polymorphic A-calculus of Reynolds [53] and Girard [18,20]. For example, the standard
inductive definition of the natural numbers

indtype Nat:* wi th
z e r o : Nat
succ: Nat—•Nat

can be translated mechanically into the representation above. This technique makes it
possible to define a host of commonly used data types—booleans, pairs, lists, trees, and
so on—and to express functions over them, even though the pure polymorphic A-calculus
provides no built-in types whatsoever. (Steensgaard-Madsen [55] presents a similar idea.)
Generalizing the technique to higher orders, Pfenning [45] has shown that inductively
defined types with polymorphic constructors in the n i / l-order A-calculus can be translated
into the pure (n + l)'*-order A-calculus. This further expands the class of definable data
structures to include, for example, representations of typed A-terms and proofc in higher-
order logic.

Variants of the second-order polymorphic A-calculus have been used as the foundations of

*Or more technically, any heterogeneous term algebra.

3

4

a number of practical programming languages [7,24], but they are normally embellished
with a number of built-in types and type constructors. In view of the recent work on
representing data structures, it now makes sense to ask whether the pure higher-order
typed A-calculi might form a suitable basis of a practical language for program and proof
manipulation [49].

The pure polymorphic A-calculi all share the property that every reduction sequence ter
minates after a finite number of steps. This implies that only total functions are definable,
and that the familiar control construct of general recursive definition is not available.
Instead, functions must be expressed in terms of primitive recursion (or iteration) over
inductively defined data structures. Our central purpose in this tutorial is to explore the
unusual programming style that arises from these constraints.

Chapter 2 of the tutorial introduces the simply typed A-calculus (called Fx here), reviews
some of its properties, and establishes basic notational conventions. This chapter also
introduces the notion of an "inductively defined type" and shows how values of such types
can be manipulated using a basic iteration construct. Chapter 3 introduces the polymor
phic A-calculus (F 2) , and shows how inductive type definitions over F 2 can be translated
into pure F 2 . Chapter 4 introduces the third-order polymorphic A-calculus (F 3) and shows
how the techniques of the previous chapter can be generalized to allow inductive type def
initions over F 2 to be translated into pure F 3 . Chapter 5 uses the principles developed so
.far to experiment with metaprogramming in F 3—building data structures that can be used
to represent and manipulate terms in F1 and F,,. Chapter 6 completes the hierarchy of
languages by discussing the definition and properties of the o;-order polymorphic A-calculus
(Girard's F^without existential quantifiers). Appendix A presents an extended metapro
gramming example—a representation of untyped A-terms in F 2 . Appendix B summarizes
our notational conventions.

Most sections are supplemented with exercises. We strongly recommend that readers try
working most of these, since it has been our experience that the only way to understand
programs written in this style is to generate a fair number of them. The tutorial is intended
to be self-contained, but the early sections will be easier for readers who are familiar with
the basic concepts of the untyped A-calculus [2,28], or have done some programming in
a A-calculus-based language like Scheme [1,50] or ML [23,26]. Some acquaintance with
polymorphic type systems [8,27,52] will also be helpful. Technical details that may not be
accessible to all of our readers are placed in footnotes.

This document grew out of discussions in the LEAP Working Group at CMU. It reflects
the authors' state of understanding after only a few months of experience in the area,
and hence falls lamentably short of a full treatment of any of the subjects it introduces.
Furthermore, many the technical results that it presents are subjects of intense current
research, which raises the possibility that our present perspective may turn out to be
incorrect or misguided in any number of ways. Still, the document represents a significant
expansion of our own knowledge, and we hope it will be a useful guide for other newcomers.
We welcome corrections and suggestions for clarification.

The other members of the LEAP group—Ken Cline, Peter Lee, and Frank Pfenning—share

5

credit for most of the constructions we describe. We are also indebted to Luca Cardelli, Bob
Harper, John Mitchell, and John Reynolds for helpful discussions and technical guidance,
and to Tim Freeman, Bob Harper, Nevin Heintze, Peter Lee, David Long, and Frank
Pfenning for suggesting improvements to the text.

C h a p t e r 2

The Simply-typed A-Calculus

We begin by defining a simple programming language and studying some of its properties.
We then extend this language with a powerful facility for defining data types inductively.

2 . 1 D e f i n i t i o n s a n d P r o p e r t i e s

The purest form of Church's simply-typed A-calculus [10], which we call F 1 ? may be defined
as follows:

Def in i t ion 2 .1 .1 : The syntax of Fx is given by the following inductively defined
classes:

j .. ^ •T'
e ::= x | Ax : T. e | e e '

where T ranges over types, e ranges over expressions (also called terms), and x
ranges over variables. An expression of the form Ax:T.e is called a A-abstraction;
e e ' is an application.

The language of Definition 2.1.1 is theoretically important because it forms the base of
an infinite sequerce of more and more powerful languages culminating in F^. But from
a practical standpoint, there is a major problem. The equation defining T is an inductive
definition with no base case (no constant types), so the set of types is empty. Furthermore,
since A-abstractions are typed, the set of A-abstractions is empty. In order to do anything
useful with F 1 ? we need to add some primitive types and terms. We do this first in an ad
hoc way, adding a single constant type and some constant terms to Fx to form a language
we call Fi1":

Def in i t i on 2 .1 .2: The syntax of F± is given by the following inductively
defined classes:

T ::= Nat | T—*T'
e ::= zero | succ | i t e r | x | Ax : T. e | e e '

6

7

where T ranges over types, e ranges over expressions, and x ranges over variables.

A typical term of F± is

An:Nat. succ (succ n)

which denotes the function that, given a number, increases it by two. The whole term
is a A-abstraction with bound variable n whose body (or scope) consists of the two nested
applications (succ (succ n)) .

The rest of this section uses to review some notations and conventions of the A-calculus.
(Hindley and Seldin [28] provide a more thorough introduction to the basics of both typed
and untyped A-calculi. Barendregt [2] is an excellent reference on the untyped A-calculus.)
Definitions 2.1.1 and 2.1.2 specify the abstract syntax of Fx and F^; we deal with questions
of concrete syntax and parsing (e.g., precedence and associativity) informally. Following
standard practice, the —• symbol associates to the right and application associates to the
left. Parentheses are used when necessary to override these conventions. The body of a
A-abstraction extends as far to the right as possible—to the end of the whole expression,
or up to an unmatched right parenthesis.

An occurrence of a variable x is bound if it appears in the scope of a A-abstraction with
bound variable x, and free otherwise. A closed A-term is one with no free variables.

The abstract syntax given in Definitions 2.1.1 and 2.1.2 allows us to write meaningless
programs like (succ s u c c) . We focus our attention only on the well-typed terms of each
of the languages we define. We write the type judgment

II h e e T

to indicate that an expression e has type T in the context of the type environment II
(which maps variables to types). To denote an explicit environment II we write a list of
ordered pairs enclosed in brackets and ')', separated by commas. An empty environment
is written as () or is simply omitted. Although II is potentially multiple-valued, we will
think of it as single-valued, and we agree that it is searched from right to left to find the
appropriate pair. We can think of II as being extended to terms if we agree that

n (e) - a where n h e G a .
II[x/T] denotes the extension of the environment II to x such that II(x) = T. By convention
pairs are always added to the right end of II. In cases where e is a closed term or n is
obvious from context we write

e € T.

The symbols V and have intuitively similar meanings, since both declare something
to have a particular type. The difference between them is that V is part of the object
language—it is used within terms to declare the types of bound variables—whereas c e ' is a
notation of the metalanguage used to make statements (e.g., type judgments) about terms.

We formally define the typing of F x

+ via type inference rules. Each of the following rules
has the property that, if the premises are all valid type judgments, then the conclusion

8

is a valid judgment. Within rule names the / stands for 'introduction' and the E for
'elimination.'

(Var) T T F X G T when n(x) = T
• n _ n [x / T 1 h e € T -

(-* E > I l h e e ' e T '
(Zero) n h zero € Nat

(Succ) n h succ e Nat->Nat
/ j t e r \ I I K n G N a t n h z € N a t II h s 6 Nat->Nat
* [n h i t e r n z s 6 Nat

To show how these deduction rules are used, we use them to prove that

An:Nat. succ (succ n) E Nat—>Nat.

(1) ((n.Nat)) h succ 6 Nat->Nat by (Succ)
(2) ((n.Nat)) h n 6 Nat by (Var)
(3) ((n.Nat)) h succ n € Nat by (->E) from 1,2
(4) ((n.Nat)) h succ (succ n) € Nat by (->E) from 1,3
(5) h An:Nat. succ (succ n) € Nat—»Nat by (—•!) from 4

Exerc i s e s 2 .1 .3 :

1. Prove that:
Af: Nat-*Nat. Aa:Nat. i a € (Nat-*Nat)->Nat->Nat

2. Prove that:
Ax:Nat. i t e r x (succ zero) (An:Nat. succ (succ n)) € Nat—>Nat

We define the operational meaning of programs via reduction rules. A (3-redex is a term t
of the form:

(Ax:T.e) a

It is /3-reduced (or just reduced) according to the rule

(Ax:T.e) a e [x / a]
where e[x/a] is the term obtained by replacing each free occurrence of x in e by a, and
renaming any bound variables in e as necessary to prevent capture of free variables in a.

An r)-redex is a term of the form

Ax:T.e x

(where x is not free in e) . It is rj-reduced (or reduced) according to the rule

Ax:T.e x =>n e

(when x is not free in e) .

9

A term e is one-step ^-reducible to e ' if e ' can be obtained from e by a single application
of the rule for /^-reduction to a subterm of e. A term eo is ^-reducible to e n (written
e o =^0 fin) if there is a reduction sequence eo =>p e\ =>@ e2 =>p . . . e n (with n > 0) where
each element one-step ^-reduces to the next. One-step j3-conversion and /3-conversion
are defined similarly, but allow ^-reduction to be applied in either direction. Two terms
are ^-equivalent (written = #) if one can be ^-converted to the other. The definitions of
^-reduction, ^-conversion, and ^-equivalence are similar; the definitions of /^-reduction,
/?7j-conversion, and /^^-equivalence allow the two rules to be intermixed. We often write
just = instead of =pn- A term is in f3r)-normal form if it contains no /?- or T7-redexes.

Throughout this document we frequently blur the distinction between terms and their
denotations. For example, we will speak of an expression like

Ax:Nat. succ (succ x)

as being the function that adds two to its argument, when, more properly, we should say
that the expression denotes this function in some mathematical model we have in mind, or
else that when applied to a term representing a number n, it reduces to a term representing
n + 2.

Terms differing only in the names of bound variables are said to be ot-equivalent. (The re
naming of bound variables within a term is often called a-conversion.) Following standard
practice [2,28], we consider a-equivalent terms to be identical.

Fj and F * share a number of interesting theoretical properties with the other languages
we consider in this tutorial. Perhaps the most important is the fact that only terminating
computations can be expressed:

De f in i t i on 2 .1 .4: A term is strongly normalizable (under a given set of
reduction rules) if every sequence of reductions beginning with that term reaches
a normal form after a finite number of steps. A set of reduction rules is strongly
normalizing if there is no infinite reduction sequence on any term.

T h e o r e m 2 .1 .5: The rules given above are strongly normalizing (i.e., there
is no infinite /^-reduction on any term).

The proof of this theorem for Fj and F̂ ~ is fairly straightforward (see [28], for example).
Intuitively, rj-reduction always decreases the size of a term, while /?-reduction may increase
its size but always decreases the nesting of arrows in the types of bound variables. The
general proof for F n is much more delicate [17,18,19,31].

The next theorem assures us that it does not matter which redexes in a term are reduced
first:

T h e o r e m 2.1 .6: (Church-Rosser) For any well-typed term e, if e =>pn ei and
e =>/3rj ©2 then there exists a term e ' such that e i =>j3rj e ' and e2 =>/3n e' .

10

Together, Theorems 2.1.5 and 2.1.6 guarantee that every well-typed term reduces in a finite
number of steps to a unique normal form. This stands in sharp contrast to the untyped
A-calculus, where non-normalizable terms like

fi = (Ax. x x) (Ax. x x)

are easy to construct [2].

The constant i t e r provides iteration over natural numbers, which can be used to imple
ment all the ordinary primitive recursive functions on numbers. It takes three arguments:
a number x to "iterate over," a number z to be returned in case x is zero, and a function
i to be "iterated" in case x is nonzero. For example:

i t e r x (succ zero) (Ar:Nat. succ (succ r))

The reduction rules for i t e r are as follows.

i t e r zero z e => z
i t e r (succ x) z e (e (i t e r x z e))

Strictly speaking, these should have been included in our discussion above of reduction,
conversion, strong normalization, and so on. But since our main task in Chapter 3 is to
show how inductive types (like Nat) and iteration over them can be eliminated from the
core language, we prefer to discuss them separately. The reduction of an i t e r expression is
guaranteed to terminate (i.e. strong normalization is maintained), since when the second
case applies, the first argument to i t e r is reduced by one. Hence the first case must
eventually apply. It is easy to see that the result will be x applications of e to z. More
graphically, if x is

succ (succ (succ (. . . (succ zero) . . .)))

then i t e r x z e has exactly the same structure as x, with the zero replaced by z and
each succ replaced by e:

e (e (e (. . . (e z) . . .)))

Returning to the example,

Ax:Nat. i t e r x (succ zero) (Ar:Nat. succ (succ r))

denotes a function that returns 2n+l when applied to a number n.

Exerc i s e s 2 .1 .7:

1. Define a function that returns 3n when applied to n.

2. Define a function that returns one when its argument is zero, and zero other
wise.

Similarly, a function that adds two numbers can be defined using i t e r :

Ax:Nat. Ay:Nat.
i t e r x y (Ar:Nat. succ r)

or more simply (by ^-conversion):

11

Ax:Nat. Ay:Nat. i t e r x y succ
Given x and y, the i t e r expression has the effect of taking x successors of y.
This example also illustrates the trick of currying multi-argument functions into single-
argument functions. For example, instead of taking both of its arguments at once, the
curried p l u s function accepts x and returns a function from y to x+y. In general, a
function of n arguments of types Ti, • • •, T n returning an answer of type To has type:

Ti—T 2-> >T n-+T 0

E x e r c i s e s 2 .1 .8:

1. Define a function that sums three numbers.

2. Define a function that multiplies two numbers.

To make our programs more manageable, we allow both terms and types to be abbreviated
by individual symbols. For example:

Binary Fun = Nat—>Nat—>Nat

p l u s 6 BinaryFun
p l u s = Ax:Nat. Ay:Nat, i t e r x y succ

t i m e s E BinaryFun
t imes = Ax:Nat. Ay:Nat. i t e r x 0 (Ar:Nat. p l u s r y)

These abbreviations should be thought of as global macro definitions that can be completely
expanded away without affecting the meaning of any term that mentions them. (They
should not be thought of as global definitions in the sense of ML or Scheme. In particular,
they may not be recursive.)

2 . 2 I N D U C T I V E T Y P E D E F I N I T I O N S

We have seen that F ^ can express some useful programs. But it leaves something to be
desired in the way of available data types. We chose the primitive types and terms some
what arbitrarily and then enshrined this choice in the very definition of the language, with
no provision for extending the available types short of defining an entirely new language.
In this section we take a more general approach, adding to F t a general type definition
facility instead of a particular set of predefined types. We use the keyword indtype to
introduce an "inductively defined" type. The rest of the language remains as before.

12

Def in i t i on 2*2.1: The syntax of F{ is given by the following inductively defined
classes:

P ::= I e | I P
I ::= indtype a : * | indtype a : * wi th C
C ::= x : T | x : T and C
T ::= a | T - > T '
e ::= x | Ax : T.e | e e '

where P ranges over programs, I ranges over (lists of) inductive type definitions,
C ranges over (lists of) constructors, a ranges over type variables, T ranges over
types, e ranges over expressions, and x ranges over variables.
An FJ program consists of a sequence of global indtype definitions, followed by
an expression.

The type of natural numbers can be defined in F[as follows: 1

indtype Nat:* wi th zero:Nat and succ:Nat —> Nat

This is precisely what we had in F^", except that the i t e r of Fj" becomes i t e r N a t [Nat] :

p l u s = Ax:Nat. Ay:Nat. i t e r N a t [N a t] x y succ

Instead of a single i t e r function, Ff has, for each inductively defined type T, an infinite
number of iteration functions—one called i t erT[V] for every type V. (For now, the square
brackets and the type V should be thought of as part of the name of the iterator.) Each
i t erT[V] performs structural induction on elements of type T, returning a value of type V
as the result of the induction.

To illustrate how a different instance of the iteration scheme for Nat might be used, here
is an alternative definition of addition:

p l u s = Ax: Nat.
i t e rNat [Nat Nat]

x
(Ay:Nat. y)
(Ar:Nat—»Nat. Ay:Nat. succ (r y))

This version uses i t e r N a t [Nat—>Nat] to construct a function that applies succ x times
to its argument (y).

An example of a complete program in FJ is:

indtype Nat:* wi th zero:Nat and succ:Nat —> Nat
p l u s = Ax:Nat. Ay:Nat. i t e r N a t [N a t] x y succ
2 = succ (succ zero)
p l u s 2 2

x The * can be ignored for now. It just indicates that we are defining a type. Later on we use indtype
to define more complicated things as well.

13

The definitions of p l u s and 2 are simply abbreviations, as before. We have allowed
ourselves to write these macro definitions at any convenient point in the program text.
However, the indtype definitions at the beginning of a program actually define a global
environment in which the body of the program is evaluated. This points out a major dif
ference between symbols defined as global abbreviations and the types and constructors
introduced by indtype definitions: the latter cannot be expanded away; indeed, they must
appear in fully-normalized programs since there are no primitive datatypes.

Having looked at Nat, we are ready to define the general form of inductive type definitions
and iterators. 2

It is important to distinguish between inductive types and the more general class of reflexive
types. It is not the case that every instance of the indtype syntax actually defines an
inductive type. For example,

indtype T:* wi th
c: (T->T)->T

is reflexive, but not inductive.

Formally, an inductive type definition is one where the type being defined appears only
positively in the types of the arguments to the constructors. The notions of positive and
negative occurrences may be formulated within a pair of mutually-recursive functions: 3

Def in i t i on 2-2.2: The set Pos(JJ) of positively occurring variables in an FJ
type expression U is defined by:

Pos(a) = { a } (where a is a type variable)
Pos(V—W) = Neg{V) U Pos(W)

The set Neg(\J) of negatively occurring variables in a type expression U is defined
by:

Neg(a) = { } (where a is a type variable)
Neg{V->W) = Pos(V) U Neg{W)

A type variable a is said to appear positively in U if a G Pos(JJ) and to appear
negatively in U if a G Neg(\3).

The words "positive" and "negative" come from logic. According to the well-known
"Curry-Howard isomorphism" [29,14, Section 9E] between propositions and types, the
type A —» B corresponds to the logical proposition A D B, which, by the definition of
logical implication, is equivalent to ->A V B. The subproposition A here is obviously in

2 Any many-sorted first-order algebraic signature without LAWS (or "heterogeneous free algebra") CAN be
considered as an inductively defined type [4].

3 The technical intuition behind the definition is roughly AS follows. A data type definition of the form
we have described can be translated into a function on the lattice of types. If the definition has the form
of an inductive type definition, then this function will be covariant, and hence (by Tarski's fixed point
theorem) will be guaranteed to have both a least and a greatest fixed point.

14

a "negative" position—that is, inside of an odd number of negations—if and only if the
whole implication appears inside an even number of negations.

With the notion of inductivity in hand, we can now complete the definition of F[.

Def in i t i on 2 . 2 . 1 , c o n t i n u e d : The general form of an indtype definition is:

indtype T:* with
C i : U u - > U 1 2 ^ . . . ^ U l r i l ^ T

and c 2 : U 2 i - * U 2 2 - > •U2N 2 -*T

and c m : U m i - > U m 2 - > • U m f l m - > T
Note that the type being defined must appear as the rightmost component of the
type of each constructor, and may appear positively (but not negatively) in the

V s -
Each such definition introduces the following globally-bound identifiers:

1. The type T.

2. Zero or more constructors c t . Each c t takes zero or more arguments (of types
UTI • • - Urn,» respectively), and produces a result of type T.

3. An iteration scheme i t e r T [a] with infinitely many instances i t erT[V] , called
iteration operators—one for each type V. An i terTfV] takes one argument
for each constructor of T (in order), and returns a result of type V. More
formally, the type of i t erT[V] is

i t erT[V] E T (Un-*U 1 2 — >Ui n i-^V)
- (u 2 1 ^u 2 2 ^.. . ->u 2 n 2 ^v)

- (U m i - * U M 2 - ^ - - - > U m n m - > V)
-+ V

where U denotes the result of substituting V for all occurrences of T in U.

A l iterator i t erT[V] associates a function building up values of type V with each
constructor for type T. It pulls apart a term of type T, constructor by constructor,
and applies the function associated with that constructor to the arguments, but
only after recursively applying i t erT[V] within them on all subterms of type T.
We can express this as one reduction rule:

i t erT[V] (c t a x ••• a n .) e i • e m

=> e , k i ••• a n .
where c, is the i t h constructor for type T, ai to a n . are its arguments, and e; G U ti

U f n t. —• V is the function corresponding to this constructor, and where a is
the result of replacing, in a, each subterm t of type T with i t erT[V] t ei ••• e m .

15

2.3 Programming with Iterators

Of course, primitive data types other than Nat can also be defined inductively. The type
Bool has a particularly simple form, where all of the constructors are constants:

indtype Bool :* wi th t r u e : B o o l and f a l s e : B o o l

Using i t e r B o o l [Nat] , we can define an "if... then . . . else" construct for choosing between
two numbers on the basis of some test:

i f e J t a t = Ab:Bool. At:Nat . Ae:Nat.
i t e r B o o l [N a t] b t e

(Of course, it is equally easy to define if... then.. .else constructs for selecting between
values of other types. However, a separate definition is required for each one because
at this stage we don't have any way to parameterize functions with respect to types.
Consequently, we use this underscore notation to include the type being returned is part
of the name of the iterator.)

E x e r c i s e 2 .3 .1 : Use i t e r B o o l [Bool] to define the binary and function.

An even simpler data type is Unit, which has just one constructor:

indtype U n i t : * wi th u n i t : U n i t

Unit is often used in statically-typed languages with imperative constructs (e.g., Standard
ML [23]) as the result type of functions that are executed purely for their side effects.

Continuing in the same vein, there is one even simpler inductive type, called Void, which
has no constructors at all:

indtype Void:*

(Obviously, no term in F[can ever have type Void, but that does not prevent us from
defining it.)

E x e r c i s e 2 .3 .2 : Define a type Day with constant constructors sunday,
monday, . . . , Saturday. Write a function weekday e Day-^Bool that returns true
if its argument is in the range monday... f r iday.

A variety of other useful types can be defined if we expand our horizons to include more
complicated inductive definitions. Additionally, it is often important to define destructors
or projection functions-functions that take a term built up using constructors, and pull
it apart.

16

For example, here is the type of pairs of numbers:

indtype Pa irJJat :* with pair_Nat :Nat-+Nat—•PairJJat

The projection functions for Pair-Nat are easy to define by iteration:

1 s t JJat = Ap: Pair JIa t . i t e r P a i r J J a t [Nat] p (Af:Nat . As: Nat. f)
sndJJat = Ap: Pa ir J Ia t . i t e r P a i r JIat [Nat] p (Af:Nat . As: Nat. s)

Similarly, the type of finite lists of numbers is defined by:

indtype L i s t - N a t : * with
n i l JIat: L i s t JIat
cons JIat: Nat—»List JIat—>List JIat

All the usual list manipulation functions can be defined on this representation. For exam
ple:

car-Nat = Al: L i s t JIa t . Ad: Nat.
i t e r L i s t J * a t [N a t] 1 d (Ac:Nat. Ar:Nat. c)

The "default" parameter d is needed so that car will have something to return if it happens
to be passed an empty list.

Ex erc i s e s 2 .3 .3 :

1. Check carefully that the types of the arguments to the iterations in 1 s t JIat
and carJIat correspond to Definition 2.2.1.

2. What is the purpose of the parameter r in the inner A-abstraction above?
Why does it have type Nat?

3. Define an append JIat function that takes two lists of numbers and returns
their concatenation.

4. Define a function mapJIat G L i s t JIat—•(Nat—>Nat)—»List JIat that takes a
list 1 of numbers and a numeric function f, and returns the list formed by
applying f to each element of 1.

Somewhat unexpectedly, the definitior of cdr JIat turns out to be quite a bit more com
plicated than car JIat.

E x e r c i s e 2 .3 .4 : Readers are encouraged to pause here before reading further
and try to see why this is so. What goes wrong with a simple definition of cdr JIat
in terms of i t e r L i s t JIat [Lis t -Nat]? Is there a way to fix it?

The solution introduces a very important trick (important enough to be promoted to a
"technique"), which we will use again and again in the rest of the tutorial. It was first
used by Kleene [9] to define a predecessor function on the Church Numerals, which are
essentially the same as our inductive type Nat. In general terms, it allows us to express

17

every primitive recursive function on an inductively defined type in terms of iteration and
pairing.

First, we define a type of pairs of lists of numbers:

indtype P a i r JListJIat :* wi th
p a i r JLis tJIat : ListJIat—*ListJIat—•Pair .ListJfat

(with projection functions f 8t - L i s t J f a t and snd_List_Nat as above).
The method of iterative definition forces us to start at the end of the list and build our
result backwards. At each successive cons, it is not enough to know the cdr of the second
argument to the cons: we need the second argument itself. But when we finish and return
the final result, it is not enough to have built up a new copy of the list itself: this time
we want the cdr. The trick is to maintain both pieces of information in parallel. We shall
iterate over a 1 G L i s t JJat producing successive pairs of L i s t JIats. The first element of
each pair is the cdr JIat of 1, while the second is 1 itself. A new pair p ' is computed from
the old p by pairing (sndJList JIat p) and (cons JIat c (snd_List JJat p)) . We will
see in Section 3.2 that this corresponds in a fairly natural way to defining a function by
primitive recursion.

cdr JIat = Al: L i s t JJat.
i s t JListJIat

(i t e r L i s t JIat [Pair J - i s t JIat] 1
(p a i r X i s t JIat n i l J I a t n i l J J a t)
(Ac : Nat. A r : P a i r X i s t J I a t .

p a i r J , i s t JIat
(sndJListJIat r)
(consJIat c (sndJList JIat r))))

E x e r c i s e s 2*3.5:

1. What is (cdr JIat n i l JIat)?

2. Define a predecessor function on natural numbers.

3. Define an inductive type of binary trees with natural numbers as leaves. Write
a function that sums the leaves of a tree. Write a function that extracts the
right subtree of a tree.

4. Define a function that, given n € Nat, computes the nth Fibonacci number.

By considering constructors that take functions as arguments, we can expand the space of
definable data types still further. For example, here is the type of arbitrarily branching
finite trees (that is, trees in which each node may have any finite number of children):

indtype Tree:* wi th
empty: Tree
node: Nat -» (Nat-»Tree) -+ Tree

18

A tree may be totally empty, or may consist of a node and n subtrees. In the latter case,
the tree is constructed by specifying n along with a function mapping each natural number
0 < t < n to the t'* subtree.

To provide an easier way of constructing trees, we can define a function b u i l d that takes
a list of trees and constructs a new tree with these trees as children:

b u i l d = A l : L i s t . T r e e .
node

(l e n g t h 1)
(An:Nat. nth 1 n empty)

where nth is the function that takes a Lis t -Tree 1, a number n, and a default Tree to be
returned in case 1 has less than n elements.

Exe rc i s e s 2 .3 .6:

1. Define nth.

2. Write a function that counts the number of nodes in a Tree.

3. Extend the definition of Tree to include a numerical value at each leaf. Write
a function that flattens a tree into a list of the values encountered during a
depth-first left-to-right traversal.

The reader may wonder why have we used the rather complicated notion of iterators
rather than just adding a case construct (a la ML or Pascal) to the language. The reason
is that case is only usable for expressing computations over inductive data types when the
language also has a construct for defining recursive functions (sometimes called l e t r e c
or l a b e l s) . But such a construct would destroy the important property that all F t

programs are strongly normalizing. Iteration, on the other hand, preserves this property.
Primitive recursion, which also preserves strong normalization, could have been built into
the language instead of iteration. But since primitive recursion can be defined in terms of
iteration, we prefer to avoid the extra complication.

C h a p t e r 3

The Second-order Polymorphic
A-Calculus

Consider the following simple functions:

i d JIat = Ax: Nat. x
double JIat = Af :Nat->Nat. Ax: Nat. f (f x)

The first of these denotes the identity function on numbers, while the second takes a
function on numbers and applies it twice. These functions would make perfect sense with
Bool, Pa i r JIat, or indeed any type whatsoever in place of Nat. Unfortunately, to express
the same operations on Bools, another pair of essentially identical functions must be
written. Suppose instead we wanted to define the identity and doubling functions once for
all types. We could start by replacing Nat by a variable, say a,

id_a = Ax:a . x
doub le .a = Af :a-->a. Ax:a . i (f x)

giving two term schemas, each with an infinite number of instances. Now, in each situation
where id_a or double .a is used, a is replaced by some actual type T. Instead we may
extend the language so that a is explicitly abstracted; for example, we think of i d as
a function from types T to terms id_T. To remind ourselves that the argument to this
function is a type rather than a term, we write the abstraction operator with a capital A
instead of the usual A:

i d = A a: *. Ax: a . x
double = A a : * . Af:a—>a. Ax:a . f (f x)

When we want to apply the identity function to an actual (term) argument, we must first
instantiate it to one of its instances by supplying a type argument. Again, to remind
ourselves that this is a different sort of application than before, we enclose type arguments
in square brackets:

i d [Nat] => idJIat
i d [Nat] 5 5
double [Bool] => doubleJJool

19

20

double [Bool] not t rue => true

We say that functions taking type arguments in this manner are polymorphic in that they
may be applied to terms of differing type.

We have extended the language of terms to include polymorphic functions, but have not
considered the corresponding extension of the type language so that such terms may be
given types. What, then, is the type of a polymorphic function? It is something like an —•
type, since it is a kind of function. But again, since it takes a type and returns a term, we
want a different notation from — A l s o , the type of the result returned by such a function
can vary based upon the argument given to it; thus we need an explicit way of indicating
this dependence. We introduce a new symbol A that, like A and A, binds a variable in the
scope of another expression (but is used for describing types instead of terms). Now id ,
which takes a type a and returns a function from a to a, is said to have type Aa.a—•a:

The language we are introducing, generally called the second-order polymorphic A-calculus
(or often just the polymorphic A-calculus, since many authors do not consider related
languages of order higher than two), is explicitly rather than implicitly polymorphic. In
languages with explicit polymorphism, type quantifiers like A actually appear in type
expressions and correspond to actual type abstractions with A. A polymorphic function
must be applied explicitly to a type argument to give a monomorphic instance, which can
then be applied to term arguments. On the other hand, implicitly polymorphic languages
(notably ML [23]) generally omit types from the concrete syntax. Implicitly polymorphic
functions may be applied directly to terms of different types; the task of determining the
intended monomorphic instance is left to the interpreter/compiler. This topic is explored
more fully in Section 6.3.

The polymorphic A-calculus was invented by Girard in 1971 [20,18] and independently
reinvented by Reynolds in 1974 [53]. Girard, a logician, was trying to extend the well-
known Curry-Howard isomorphism between propositions and types [29,14, Section 9E],
by regarding the binding operator A a as a universal quantifier ranging over propositions.
Reynolds, a computer scientist, developed essentially the same system by formalizing the
idea of "passing types as parameters" in a programming language. Second-order type
systems have been the object of much recent research. Reynolds [52,51] and Cardelli and
Wegner [8] have written excellent introductions to the area. (Further readings are cited in
the bibliographies of these papers.)

i d e
i d [Nat] €
double G
double [Bool] €

Aa.a—>a
Nat-•Nat
A a . (a—>a) —>a—»a
(Bool—>Bool) —>Bool—•Bool

21

3.1 Definitions

We now proceed to a formal definition of F 2 .

De f in i t i on 3 . 1 . 1 : The syntax of F 2 (the second-order polymorphic A-calculus)
is given by the following inductively defined classes:

T ::= a | T-+T' | A a : *.T
e ::= x | Ax: T. e | e e 1 | Aa: *. e | e [T]

where T ranges over types, a ranges over type variables, e ranges over expressions,
and x ranges over variables.

As before, A is used to construct functions that can be applied to a term, yielding a
term—i.e., term abstractions—whereas A constructs functions that can be applied to a
type, yielding a term—i.e., type abstractions. The —• is used to represent the type of a
term abstraction (A), while A forms the type of a type abstraction (A). In addition to
applying terms to other terms (term application), F 2 allows the application of terms to
types with the syntax e [a] (type application). As before 7:* simply indicates that 7 is a
type.

The concrete syntax of F 2 follows the same conventions as F x . The —• symbol associates
to the right, and application (of both terms and types) associates to the left. The A and
A operators behave like A in that their bodies extend as far as possible to the right—to
the end of the whole expression, or up to an unmatched right parenthesis.
Type variables are free or bound in the same sense as the term variables of Fx. A closed F 2

term contains no free term- or type variables. A closed type expression contains no free
type variables.

As in the original definition of F x , there are no constant types or terms in F 2 . However,
unlike pure F x , the sets of types and terms of pure F 2 are inhabited (i.e., non-empty)

The F x notions of a-conversion (renaming of bound variables) and /?rj-reduction and con
version are extended to include type abstraction over terms and term application:

(A a : * . e) [T] e[a/T]
(Aa: *. e [a]) => n e (provided a is not free in e)

The appropriate analogues of Theorems 2.1.5 to 2.1.6 also hold for F 2 (though some of the
proofs are significantly more difficult). In particular, every F 2 term is strongly normalizing.

We may define the typing of F 2 formally by extending the type inference rules of F L . The
first three rules (ENV-()), (ENV-term) and (ENV-type) deal with the well-formedness of
environments, and wf(H) is used to say that the environment n is well-formed. The base
case (Tvar) deals with type variables. The two rules (WF—•) and (WF-A) also deal with
the well-formedness of types, and this is how they get their names. The rule (Var) looks
up the type of a variable in the current environment and checks that it is well formed.

22

The remaining four rules (—>I), (—^E), (AI) and (AE) also deal with the correct typing
of terms, and are named according to whether the symbols —• and A are introduced or
eliminated at the type level by that rule. The notation T'[a/T] is the result of replacing
all occurrences of the type variable a in T' with T, while renaming bound variables in T'
to avoid capture. We take "a is not free in IT' to mean that a is not free in any type
expression assigned by II.

(ENV-O) WW)

(ENV-term) • HWJ)

(ENV-type) w/ffila/*)) w h e n a 1 3 n o f c f r e e i n 1 1

(Tvar) W h e n = *

r w p n h - T e * n i - T ' G *
(W F ^ l l h M - e *

when a is not free in II

(Var) U H X I T W H E N = T

(- 1)
n h l € * r i [x / T l l - e € T '

f l h Ax:T.e€T->T'

• n h e e ' E T '

(AI) nhnlS*!ehgeAJ:*.T w h e n a i s n o t f r e e i n 1 1

/ A 1 P . I l h e G Aa:* .T I I H G *
IIhe[T]GT'[a/T]

We give an example of how to use these rules by proving that

double [Nat] succ zero G Nat

where

double = A a : * . Af:a—•a. Ax:a . f (f x)
Note that in this example and the following exercise, we need to make some assumptions
about the types Nat and Bool, since these are not included in F 2 . In particular, we assume
that in all environments we have Nat G *, zero G Nat, succ G Nat—>Nat, Bool G *,
t r u e G Bool and not G Bool—•Bool. Later we will see how they can be defined, but for
now we will treat them as if they were built in.

(1) » / (()) by (ENV-O)
(2) « / (((« , *) }) by (ENV-type) from 1
(3) ((« .*)) r- a e * by (Tvar) from 2
(4) ((a .*)) h a ^ a e * by (WF--•) from 3,3
(5) wff. ((a . *) . (f ,a->a)>) by (ENV-term) from 4
(6) < (a .*) . (f , a ->a)) h a € * by (Tvar) from 5
(7) wf(((a,*).{l.a->a),{l.a))) by (ENV-term) from 6
(8) < (a .*) . (f , a - * a) . (x . a)) r- a € * by (Tvar) from 7

23

(9) ((a , *) , (f , a - + a) , (x , a)) h x G a by (Var) from 8
(10) ((a,*),(l,a^a),(x,a)) h a ^ a € * by (WF—•) from 8,8
(11) ((o , *) , (i , t t - » a) , (x , a)) h 1 € a - + a by (Var) from 10
(12) ((a , *) , (f , a - > a) , (x , a)) h f x € a by (-*E) from 11,9
(13) ((a . *) , (f , a ^ a) f (x , a)) h f (f x) € a by (-*E) from 11,12
(14) ((a , *) , (f , a - 4 a) > h A x : a . f (1 x) G a - > a by (-+I) from 6,13
(15) ((a .*) } I- A f : a - » a . A x : a . f (f x) G (a—•a)-»a—>a by (— 1̂) from 4,14
(16) h Aa:* .Af :a—>a. A x : a . f (f x) G A a . (a - ^ a) - > a - > a by (AI) from 15
(17) h double € A a . (a—>a) —*a—>a by definition from 16
(18) h Nat G * by assumption
(19) h succ G Nat—>Nat by assumption
(20) h d o u b l e [Nat] G (Nat->Nat)-*Nat-»Nat by (AE) from 17,18
(21) h double [Nat] succ G Nat->Nat by (->E) from 20,19
(22) h zero G Nat by assumption
(23) h double [Nat] succ zero G Nat by (-+E) from 21,22

E x e r c i s e 3 .1 .2 : Use the type deduction rules for F 2 to prove that:
double [Bool] not t rue G Bool

3.2 Representing FJ Inductive Type Definitions in F 2

At this point, the reader may be expecting us to reintroduce the indtype mechanism for
defining primitive types and constructors, producing F 2 . But we need not take this step
yet. It is a surprising fact that we can translate any inductive type definition in F] into a
representation in F 2 . More specifically, each type T introduced by an indtype definition
in F{ can be expressed as a closed type expression of F 2 , and each of the constructors of
T can be expressed as a closed term in F 2 .

The formal details of the translation are quite technical (see [3,45,49]), but it is relatively
easy to understand operationally.

Let us begin with the simplest example from F{. The type Void, with no constructors,
was defined by:

indtype Void:*

Without explaining, for the moment, how we arrive at it, let the F 2 type corresponding to
this definition be:

Void = A 7 : * . 7

To justify the assertion that this type "represents" the indtype Void, we show that there
are no closed F 2 terms of type Void. If there is any term of type Void, then there is one
in normal-form. Since Void begins with a A, any closed normal-form term of this type
must be a A-abstraction (this follows from the typing rules):

A7:* . 0

24

where the omitted subterm [7] has type 7. Again, the normal-form theorem tells us that if
there is any term that can take the place of [?], then there is one in normal-form. Hence,
there are three possibilities to consider:

1. [7] is a A-abstraction. But then the type of Q] would be an arrow type (a—•/?, for
some a and /?), whereas 7 is a type variable.

2. Q] is a A-abstraction. But the type of Q] would then begin with a A, while7is a type
variable.

3. [7] is a variable. This variable would clearly have to be of type 7. But the whole term
must be closed, so we cannot use a free variable of type 7, nor does the [7] appear in
the scope of any bound variable of type 7.

Thus there are no normal-form terms—and hence no terms at all—of type Void.

Again on faith, we render the FJ definition

indtype U n i t : * wi th u n i t : U n i t

as the F 2 type

Unit = A 7 : * . 7 —• 7

which has exactly one normal-form instance ((corresponding to the single constant con
structor u n i t G Unit) . As before, any closed normal-form term of type Unit must begin
with a A-abstraction. Then, since the A in the type is followed by an —• (and there are no
variables with arrow type available), the A-abstraction in the term must be followed by a
A-abstraction:

A7:* . Au:7. [7]

Again, [7] must be of type 7. Reasoning as before, we find that this time there is a
normal-form term of type 7 available to fill the place of |T|:

u n i t = A7:* . Au:7. u

Turning our attention to br oleans, we render

indtype Boo l :* wi th t r u e : B o o l and f a l s e : B o o l

as

Bool = A 7 : * . 7—>7—>7

with the two possible normal-form terms of this type being these:

t r u e = A7:* . A t : 7 . A f : 7 . t
f a l s e = A7:* . A t . 7 . A f : 7 . f

Let us consider the definition of the boolean negation function directly in F 2 :

25

not G Bool—•Bool
not = Ab:Bool. A 7 ' : * . A t ' : 7 ' . A f ' : 7 ' . b l / y ' l f ' t '

The reader may feel somewhat overwhelmed by the syntax of the above expression, so let
us attempt to piece together an understanding in stages. The function not takes a boolean
argument and produces a boolean result, so it must clearly have the form

Ab:Bool. (A 7 ' : * . A t ' : 7 # . A f ' : 7 ' . |T])
where [7] has type 7 ' . The bound variables t ' and f 1 are both of type 7' , but we need to
select between them on the basis of b's truth or falsity. The boolean b can be used (as an
iterator) to do precisely this; that is, the boolean term b is represented by a function, and
can therefore be applied to other terms. Since b is either the function t rue or the function
f a l s e , it will select either its first or second argument, respectively. The above definition
swaps the arguments to b, producing the negation of b.

It is often less than obvious that such a function behaves as expected. For example, not
has a large number of arguments and seems to return an expression of type 7 ' , rather than
type Bool. The key is to remember that all functions are curried, and that when not is
applied to an argument, only the first A will be /^-reduced. The arguments 7 ' , t ' and f'
will not be instantiated. Rather, it is the t and f arguments of b that will be replaced by
the outer t ' and f L e t us go through and check that not is in fact correctly typed:

not G (A 7 : * . 7—>7—•7)—+A7*. 7'—>7'—>[T|
G (A 7 . 7—*7—^7)—^7'. 7'—^TT '— '̂y'

since bOy'Uft G 7 '
G (A 7 . 7 - + 7 - ^ 7) - + (A 7 ' . 7 , - + 7 , - ^ 7 ')
G Bool—•Bool

E x e r c i s e 3 . 2 . 1 : Check that the above is valid by performing the /?-reductions
in (not t r u e) .

We have shown the representation of some FJ inductive types as F 2 types and terms, but
we have not said anything about the associated i t e r operators. In fact, the iterators for
FJ indtypes may also be specified within F 2 . In the case of booleans, i t e r B o o l takes a
type 7 (specifying the result type of the iteration), and a Bool, followed by one argument
(of type 7) for each of the constructors t rue and f a l s e :

i t e r B o o l G A 7 . Bool —• -y —̂ T —̂ T
Depending on which constructor was used to produce the Bool, i t e r B o o l returns either
the first argument (when b = true) or the second (when b = f a l s e) :

i t e r B o o l = A 7 : * . Ab:Bool. At '17 . A f ' : 7 . b [7] t ' f'

(Again you might think of i t e r B o o l as an "if... t h e n . e l s e " expression: i f b then t '
e l s e f ' .)

Consider that t r u e and f a l s e are each type-parameterized, two-argument functions, sim
ilar to i t e r B o o l (except that the latter has the boolean argument b). We may use boolean

26

terms directly as iterators by taking advantage of this similar structure; rather than explic
itly abstracting t ' and f 9 as above, we make use of the corresponding t and f parameters
of b. So for b G Bool, we have the following equivalence

i t e r B o o l [7] b = b [7]

because for t f ' G 7:
i t e r B o o l [7] b t ' f' = b [7] t ' f'

In fact, we shall see that this "self-iterating" property of Bools holds in general for the
representation of all inductively defined types. Explicit iterators are, then, no longer
necessary!

As before, we can use iteration to define various functions on booleans. For example, we
may alternatively define not as

not = Ab:Bool. i t e r B o o l [Bool] b f a l s e t rue

or now directly as
not = AbrBool. b [Bool] f a l s e t rue

Although the above is similar to the original definition of not , the two are not ftrj-
equivalent, as the latter does not explicitly set up the 7, t , and f arguments. Rather
the booleans t rue and f a l s e are returned directly.

We may also define binary boolean functions:

or G Bool—•Bool—»Bool
or = Abi:Bool . Ab 2 :Bool . bi [Bool] t r u e b 2

and G Bool—•Bool—•Bool
and = Abi:Bool . Ab 2 :Bool . bi [Bool] b 2 f a l s e

The operation or works by returning true if bi is t rue and b 2 otherwise, while and yields
b 2 if bi is t rue and f a l s e otherwise.

E x e r c i s e 3 .2 .2 : Apply and or or to combinations of t r u e and f a l s e to
convince yourself of their validity. Consider the definition of terms performing
other boolean operations (e.g., xor, i m p l i e s) .

We have asked the reader to accept the translation of inductive definitions on faith, but
now consider it more carefully. In rendering FJ types into F 2 , the primary goal is to
achieve the self-iteration property we have observed in booleans. To accomplish this, term
instances of the defined type must capture the structure of the induction that defined them.
Returning to the natural numbers, we have

indtype Nat:* wi th zero:Nat and succ:Nat—•Nat

rendered as:
Nat = A 7 : * . 7—• (7—>7>—>7

27

For self-iteration, we must be able to specify a type for the result. Hence instances of type
Nat begin with a type abstraction so the terms may be specialized to produce the result
type of the iteration. The first 7 argument corresponds to the zero constructor (of type
Nat), while the 7—>7 parameter corresponds to succ G Nat—>Nat.
Instances of Nat take the following form:

0 = A 7 : * . A z : 7 . As: 7 -^7 . z
1 = A7:* . Az :7 . As 17—>7. s z
2 = A 7 : * . Az :7 . As:7~-»7. s (s z)
3 = A7:* . Az:7 . As 17-^7. s (s (s z))

E x e r c i s e 3 .2 .3 : Verify that all closed, normal-form terms of type Nat have
this shape.

The zero function, zero G Nat, should just produce 0:

z ero = A7: *. Az: 7 . As: 7—»7. z

The successor function, succ G Nat—•Nat, may then be represented by

succ = An:Nat. A 7 : * . A z . 7 . As:7—^7. s (n [7] z s)
or alternatively as

s u c c ' = An:Nat. A7:* . A z . 7 . As:7—^7. n [7] (s z) s
Let us make sure again that these definitions are well typed,

s u c c , s u c c ' G Nat—• A7:* .7—• (7—»7) —>|T|
G Nat—• A 7 : *.7—•(7-^7)—>7

since n [7] (s z) s , s (n [7] z s) G 7
G Nat-»Nat

As with the above definition of not , the arguments z and s are not actually instantiated
when succ is applied to a number.

E x e r c i s e 3 .2 .4 : Check that (succ 0) = 1.

The above definitions of succ and s u c c ' demonstrate how an operation may have two
definitions that denote the same function but are not /3-equivalent. However, in this case
we should not be surprised that the two definitions are not convertible: they are clearly
achieving the same result in two different ways. In the first definition, we replace the z
part of a number by s (z) . Since the arguments to a number are its "zero" and "successor"
elements respectively, we have merely replaced the "zero" element with what is really
"one." In the second definition, we apply an extra s to the "outside" of the number.

We have defined our representation so that the resulting terms serve as their own iterators,
but let us define the explicit iteration schemes for Nat to reinforce this idea. The iterator
over natural numbers is defined polymorphically:

28

i t e r N a t € A a : * . Nat —• a —> (a—>a) —• a
i t e r N a t = A a : * . An:Nat. A z : a . As:a—>a. n [a] z s

As is the case with Bools, we have

i t e r N a t [a] n = n [a]

For the remainder of this text, we will generally avoid explicit iterators since the self-
iterating approach is both simpler and more elegant.

We previously defined the addition of m and n by taking the mth successor of n. Using the
iteration implicit within our representation of Nat, we have

p l u s € Nat —• Nat —* Nat

which may be defined as

p l u s = Am:Nat. An:Nat. m [Nat] n succ

(The final arguments n and succ are substituted for the z and s arguments of m, respec
tively.)

Exerc i s e 3 .2 ,5 : Try adding two small numbers.

Similarly, multiplication may be defined by iterating p lus :

mult = Am:Nat. An:Nat. n [Nat] 0 (p l u s m)

It might help to think of (p lus m) as (An:Nat. p l u s m n).

The following predicate tests for zero:

zero? = Am:Nat. m [Bool] t r u e (Ab:Bool. f a l s e)

Now let us return to the formulation of lists we gave in F{:

indtype L i s t J J a t : * with
n i l_Nat: List_Nat

and cons JIat: Nat —• L i s t JIat —• L i s t JIat

The above is rendered in F 2 as:

L i s t JIat = A 7 : * . 7 —> (Nat—>7—+7) —• 7
n i l JIat = A7:* . An: 7 . Ac : Nat-^7—^7. n
cons JIat = Ax: Nat. Al: L i s t JIat . A 7 : * . An: 7 . Ac : Nat -+7—^7.

c x (1 [7] n c)

We may use the representation to iterate over a L i s t JIat producing its sum:

s u m l i s t € L i s t J I a t —• Nat
s u m l i s t = A l : L i s t J I a t . 1 [Nat] 0 p l u s

E x e r c i s e 3 .2 .6: Render the Tree indtype of Section 3 in F 2 .

General or unrestricted recursion is not available in F 2 , since recursion can be used to
express nonterminating computations and we know that F 2 is strongly normalizing. How
ever, the more restricted mechanism of primitive recursion may be formulated in our calculi.

29

Like iteration, primitive recursion performs structural induction—that is, computation is
guided by the traversal of existing data structure. As these structures are finite, the com
putation must terminate. We only consider primitive recursion over numbers, but other
domains may be formulated analogously.

The primitive recursion scheme on Nats is

f 0 = z
t (succ n) = s n (i n)

for i G Nat—•a, z G a, s G Nat—>ct—>a. Primitive recursion is somewhat more complex
than iteration in that successive values may depend on the value of the predecessor n as
well as the function result (f n) computed from n. It should be obvious that iteration is
a special case of primitive recursion. However, it turns out that primitive recursion may
similarly be derived from iteration.

To implement the primitive recursive functions within F 2 , we require a representation of
pairs. This comes from the need to iterate over s—a function of n and the value of s for n.
The pair data structure makes both these values available to the incremental computation
at each step of the iteration (as in the cdr of Section 2.3).

As with iterators and lists, we may form the family of cartesian pairs. (As is the case with
i t e r , the need for a type family may be replaced with an abstraction, but the reader must
wait for F 3 .)

indtype Pair_tr_r wi th
pair_<T-r: cr—>r—•Pair_<r_r

This may be translated into F 2 :

Pair_a_r = A 7 : * . (a—»r—^7) —>7
pair_<r_r = Ax:<r. Ay.r . A7:* . Ap:tr—>r—^7. p x y

So, for example,

pair_Bool_Nat t r u e 1 = A7:* . Ap:Bool—>Nat—»7. p true 1

In order for our pairs to be of any use, we also need families of destructuring operators:

tstjTjr G Pair_(7_r —• a
istjrjr = Aw:Pair_cr_r. w la] (Ax:(7. Ay:r. x)
snd-o-.r G Pair-O^r —> r
snd-(7-r = Aw:Pair_<7-r. w [r] (Ax:cr. Ay:r. y)

For example:

fs tJBoolJJat (pair-BoolJJat t rue 1)
= (A 7 : * . Ap.Bool—>Nat—>7. p true 1) [Bool] (Ax:Bool . Ay:Nat. x)
= t rue

We may now implement the primitive recursive function f from above as:

30

f = An:Nat. sndJIat .a (n [P a i r J I a t . a]
(p a i r J I a t . a 0 z)
(Aw: Pa ir JIat _a. p a i r JIat . a

(succ (f s t J I a t _ a w))
(s (f s t J I a t . a w) (sndJIat .a w))))

The function f iterates over pairs of the form p a i r JIat _a n (f n):

p a i r JIat . a 0 z
p a i r J I a t . a 1 s 0 z
p a i r JIat _a 2 s 1 (s 0 z)
p a i r J I a t . a 3 8 2 (s 1 (s 0 z))

Abstracting over z and 8, we arrive at a general formulation of primitive recursion over
numbers (Although we would like to abstract over a as well, this is not possible with the
current formulation of pairs.):

primrec_a G a—• (Nat—>a—•a) —»Nat—•a
p r i m r e c a = A z : a . As:Nat—>a—>a.

An: Nat. snd JIat _a
(n [P a i r J I a t . a]

(p a i r J I a t . a 0 z)
(Aw: Pa ir JIat _a. pair-Nat . a

(succ (f s t J I a t . a w))
(s (f s t J I a t - a w) (sndJIat .a w)))

The predecessor function on Nat may now be defined as

pred = primrecJIat 0 (Am:Nat. An:Nat. m)

The pairs within the resulting iteration look like

p a i r JIat JIat 0 0
p a i r JIat JIat 1 ((Am: Nat. An: Nat. m) 0 0)
p a i r JIat JIat 2 ((Am: Nat. An: Nat. m) 1 0)
p a i r JIat JIat 3 ((Am: Nat. An: Nat. m) 2 1)

Notice that our predecessor function is surprisingly inefficient, requiring order n time to
compute pred n. Unfortunately, there is some theoretical evidence that this inefficiency is
inherent.

Exerc i s e s 3 .2 .7:

1. Define the factorial function using primrec.

2. Define a function in F 2 that returns t rue if its two numeric arguments are
equal and f a l s e if they are unequal.

31

After all these examples, the general form of the translation from F[indtype definitions
to F 2 types should come as no surprise. The indtype definition

indtype T:* wi th
C i : U 1 1 - ^ U 1 2 ^ . . . ^ U l n i - > T

and C2:U2i~•U22—• >V2n2-+?

and cm:Umi—>Um 2—> • U m r i m —»T
becomes the F 2 type

T = A 7 : * .

-> (c m : U m i - > U m 2 - > • U m r i m - > 7)
-» 7

where Ut-y denotes the result of substituting 7 for T in Uty.

3.3 The Power of F 2

We have seen that F 2 is sufficient to define the primitive recursive functions, but we have
not discussed how powerful the language is. In fact, the class of functions definable in F 2

is much larger than the primitive recursive functions. In particular, consider Ackermann's
function:

ack O n = succ n
ack (succ m) 0 = ack m 1
ack (succ m) (succ n) = ack m (ack (succ m) n)

Ackermann's function exhibits surprisingly explosive growth and is not primitive recursive
(A proof is beyond the scope of this work, but may be found in [44].) It is not even
immediately obvious that the function is indeed total—that is, that it always terminates.
However, we may argue that it is total simply by the fact that it may be encoded within
F 2 [52]:

ack = Am:Nat. m [Nat—>Nat]
succ
Af:Nat- •Nat . An:Nat.

(succ n) [Nat] 1 f

(In the last line, the unnecessary parentheses indicate that it is the successor of n that is
iterated.) As this is a complex term, we shall attempt to give the reader some insight into
its behavior. For m,n = 0:

ack 0 0 => succ 0 => 1

32

Similarly:

ack 1 1 => (An:Nat. (succ n) [Nat] 1 succ) 1
=> 2 [Nat] 1 succ
=» 3

The situation gets more complex for m, n = 2:

ack 2 2 => (An:Nat. (succ n) [Nat] 1
An':Nat. (succ n') [Nat] 1 succ) 2

=» 3 [Nat] 1 (An':Nat. (succ n') [Nat] 1 succ)
=> ((An3:Nat. (succ n3) [Nat] 1 succ)

((An 2 :Nat . (succ n2) [Nat] 1 succ)
((Ani :Nat . (succ n i) [Nat] 1 succ)

1)))
=> ((An3:Nat. (succ n3) [Nat] 1 succ)

((An 2 :Nat . (succ n 2) [Nat] 1 succ)
3))

=> ((An3:Nat. (succ n3) [Nat] 1 succ)
5)

=» 7

Ackermann's function serves to illustrate more of F 2 ' s power than our previous examples.

C h a p t e r 4

The Third-order Polymorphic
A-Calculus

We have used the polymorphism of F 2 several times now to translate indtype definitions
of data types into their representations as closed polymorphic types. But so far, all of the
data types we have translated have themselves been monomorphic. In order to go beyond
these to "parametric" types like L i s t and Pair , we have to extend our language again,
bringing us to F 3 .

4.1 Definition and Properties of F 3

In a sense, lists and cartesian pairs can be defined in F 2 : for each type a, there is a type
L i s t_a . Similarly, for each pair of types a and r, the type of cartesian pairs of elements
of a with elements of r can be expressed by the inductive type definition

indtype Pair_<r_r wi th pair_<r_r: <j—•r—>Pair_<r_r

which translates, by the usual method, to the following representation in F 2 :

Pair_(T_r = A 7 : * . (a—•r—^7)—>7

But this formulation of pairs is awkward: each Pair_(7_r instance is different from all
others. Whenever we want to use a new kind of pair, we have to write down a new type
definition that is structurally identical to the others. We need to abstract away from the
types of the elements of the pair and write something like:

indtype Pa ir . . .

Of course, Pa i r by itself is not a type. (There are no terms whose type is just Pair: each
pair of terms has type Pair-(j.r for some particular a and r.) Pa ir itself is better thought
of as a "type constructor," a function from types to types. This sort of indtype definition
cannot be expressed in F] , nor to our knowledge can it be represented as a closed type
in F 2 . This motivates our next language extension, which takes us to F 3 . (We will not
bother defining a separate language F 2 this time. It would be very similar to F 3 , so it is

33

34

simpler to begin with F 3 as a whole and then informally characterize the inductive type
declarations that can be represented by closed types in F 3 .)

The main new feature of F 3 is the ability to express functions from types to types. We will
use the same notation as at the term level: the abstraction operator on types is written
A, and the juxtaposition of two type expressions denotes the application of the first to the
second. (As with ordinary terms, application at the type level is left-associative.)

Finally, just as we needed types to make sure that terms involving abstraction and ap
plication were well formed, we now need some notion of the "types" of type expressions
to keep them under control. We call the types of types kinds. There is a constant kind
named *, which is the kind of types of terms; that is, each-well-typed term e has a type a
and the kind of a is *. (Actually, we introduced * in F 2 , where it was the only kind and
therefore could be treated as pure syntax.) If K is a kind, then so is *—>K (the kind of a
type function from * to K).

De f in i t i on 4 . 1 . 1 : The syntax of F 3 is given by the following inductively
defined classes:

where K ranges over kinds, T ranges over types, a ranges over type variables, e
ranges over expressions, and x ranges over variables.

There can be no confusion between A at the term level and A at the type level. The former
takes a term argument and returns a term; the latter takes a type argument and returns
a type. However, the difference between A (on types) and A can be confusing. Type
expressions beginning with A are the types of terms beginning with A (and, of course,
of variables of this type)—that is, the type of functions that take a type argument and
return a term. Type expressions beginning with A, on the other hand, do not correspond
to any terms at all: before they may be the type of a term, they must be applied to
enough arguments to produce a type whose outermost operator is either A or —• , that is,
something of kind *. (It does not make sense f<«r A to be nested within A or —» as the
latter are of base kind *, that is, the types of terms.)

As an example of F 3 , here is an application of an "even more polymorphic" identity function
to some arguments:

(A 6 : * - » * . A < J : * . A x : 0 a . x)
[A<7. L i s t <7]
[Nat]

(cons [Nat] 5 (n i l [Nat]))

(More useful examples appear below!)

An important notion we need to introduce here, corresponding to that of type judgment,
is the notion of kind judgment. We write

K
T
e

* | *->K
a | T—>T' I A a : K.T | Aa : K.T | T T'
x | Ax : T.e | e e ' | Aa : K.e | e [T]

35

n h T G K

to mean that in the context II the type expression T has kind K. We may abbreviate this
as

T G K

when the context II is clear. By analogy with terms, we also write
n(a) = K

or:

II(T) = K

and extend II with the kind of a type variable by writing II[a/K].

4.2 Polymorphic Inductive Datatypes

As before, we think of indtype definitions as adding new constants for types, constructors,
and iterators to a global environment. But now that we know we will be translating them
into simple "macro definitions" of names for closed types and terms in F 3 , we need not
bother to be so formal.

One specific point of informality appears when we need to talk about the "result type" of
the constructors, which is hard because of an asymmetry in the language. In FJ it was
easy because the type of any constructor was just a sequence of zero or more arrows, one
for each argument, with the argument types on the left of the arrows and the result type
on the right of the last arrow. In F j , the type of a constructor may be built up from any
combination of —»s and As. Intuitively, this presents no problem: we can think of —> and
A as being the same sort of constructs (both are type operators) and explain their different
appearances by observing that A binds a variable while —• does not. (In the calculus of
constructions [12], for example, this difference disappears and the two operators correspond
exactly in form.) So we can still think of an innermost or "rightmost" component of a
type. But the notational difficulties involved in giving a completely formal definition of F 2

are formidable.

We need to know how the notion of positivity extends to types containing A:

D e f i n i t i o n 4 . 2 . 1 : The set Pos(\5) of positively occurring variables in an F 2

type expression U is defined by:

Pos(a) = {a} (where a is a type variable)
Po$(V->W) = Neg{V) U Pos(W)
Pos(Aa:K.V) = Pos(V)

The set Neg(V) of negatively occurring variables in a type expression U is defined
by:

Neg(a) = { } (where a is a type variable)
Neg(V-+W) = Pos(V) U Neg(W)
% (A a : K . V) = Neg(V)

36

Another small point that we need to deal with in this definition is that the types given in
an indtype definition may now involve A at the type level, so it only makes sense to talk
about the rightmost component of the normal form of a type expression.

De f in i t i on 4.2*2: The general form of an indtype definition with represen
tation in F 3 is:

indtype T:*—• •* wi th
x i : UX

and x m : U m

where each U,- is an F 3 type expression, the rightmost component (of the normal
form) of which is T applied to n - 1 types, n > 1 being the number of occurrences
of * on the first line. The type variable T may not occur negatively in any of the
arguments to the constructors.
Each such definition introduces the following global constants:

1. The type constructor T.

2. Zero or more constructors x,-. Each x t takes zero or more type and/or term
arguments (as specified by U t) and returns a term whose type is T applied to
ru— 1 arguments.

3. An iteration operator i t e r T , whose type is
i t e r T 6 A a i : * A a n _ i . * . Ar.*—•

T a x . . . a n

— Ui

T a i . . . a n _ i
where U denotes the result of substituting T for all occurrences of T in U.

4.3 Programming in F 3

Now we can complete our definition of Pa ir as an indtype. We know so far that it takes
two types as arguments and returns a type, and therefore that its kind is *—•*—>*:

indtype Pair:*—• *—>* with [7]

Next, we need to define the constructor pa ir . In general, it takes two terms and returns
a pair whose first component has the type of the first term and whose second component
has the type of the second term. But we cannot just write

indtype Pair:*—>*—•* with p a i r : a—•/?—• (Pa ir a j3)

because the type variables a and f3 are unbound: we do not know in advance what the
types of the arguments to p a i r will be. So we take a and /? as extra parameters:

indtype Pair:*—•*—•* with p a i r : A a : * . A/3:*, a—*/?—>(Pair a /?)

37

Whenever we use p a i r we will need to provide four arguments:

p a i r [Nat] [Bool] 5 true

A simple function manipulating polymorphic pairs is the destructor f s t :

1 s t = A a : * . A/3:*. Aw:Pair a /?.

i t e r P a i r [a] [/?] [A<£:*.At/>:*.<£]
w
(A<£:*. At/>:*. Xx:<f>. Ay:i/>. x)

Note that the iterator takes three type parameters instead of just one. The first two specify
the type of the argument to the iterator, which is not just Pair , but Pa ir a /? for some
particular a and Moreover, the third argument is not a type, but a type function with
two arguments (i.e., something of the same kind as Pair) . It specifies how the type of the
iteration's result depends on the types of the first and second projections of w.

Let us translate our "higher-order" indtype definition of Pa ir into a F 3 type definition.
The structure of the translation is a bit different this time, but the intuition is the same.
Pa i r itself is a type constructor, not a type; it should take two type parameters and return
some type based on them. So our first approximation to the translation is

P a i r = Aa:* . A/3:*. [7]

where [7] G *.

Now we can proceed as before. The next argument is a type representing Pair—now of
kind *—•*—•* rather than just *, but playing the same role as before:

Pa i r = Aa:* . X/3:*. AI":*-»*—•*. [7]

The indtype definition of Pair has one constructor, p a i r , which we represent here by an
argument of the appropriate type (with Pa ir replaced by the bound variable T):

Pair = Aa:* . A/?:*. AI":*—•*—•*.
(A<7:* .Ar:* . a—>r-+(T a r))

As usual, we finish by adding "—* Q] " at the end, where [7] represents the type we are
defining. In this case, we must apply the bound variable T to the arguments a and /? to
get something of kind * (just T wouldn't make syntactic sense). Our complete definition
is:

Pa i r = Aa:* . A/?:*. Ar:*—•*_>*.
(A c r : * . A r : * . a—>r—>T a r)
-> (r a /?)

Our next job is to define the constructor p a i r in F 3 . Its arguments are two types, a and
r, and two terms of types a and r, respectively.

p a i r = Aa:*. A T : * . Ax:a . Ay:r . jT]
Because Q] must be something of type Pa ir a r, we can proceed by examining the definition
of Pair . We see that [7] must begin with a type abstraction for the bound variable T,
followed by an abstraction for the bound constructor p:

38

p a i r = A<r:*. A T : * . Ax:<7. Ay:r.
Ar :*—+*—»*.

Ap: (A < 7 , : * . A r ' : * . < r ' ^ r ' - + (r a1 r ')) . Q]

There is only one choice for [7] since it must be of type Terr:

p a i r = ka:*. Ar:* . A x : a . Ay:r.
: *—•*_>* .

Ap: A < r ' : * . A r ' : * . (7 ' — r ' - + (r (j' r ') .
p[<x] [r] x # y

It should be starting to become clear that this sort of definition is not as circular as it
looks, but to emphasize the point once again let us define the destructor f s t without using
the i t e r P a i r operator.

From its type

f s t : A a : * . A/3:*. (Pa ir a /?) -> a

we can see that the outermost part of the definition of 1 s t must be

1 s t = A a : * . A/?:*. Aw:Pair a /?. Q]

where (T) G a. Clearly, to get something of type a we need to do something with w.
Expanding the definition of Pair ,

f s t = A a : * . A/?:*.°
Aw: (A r : * - » * - » * . (A C T : * . AT:*.a—>T-+T<JT) -+ Ta/3) .

•
we see that [7] will take the form w[F]f for some type constructor F whose kind is
and some term f whose type is A<7:*.Ar:*.<7-+r—>Far. The F and f that will do the job
are

F = \<f>:* .\tp:*.</>
f = A<£:*. At/;:*. Ax:<£. Ay:t/>.x

so the final definition is:

f s t = A a : * . A/3:*.

Aw: (A r : * - > * - • * . (A<7:* . A T : * .<7-»r-+(r a r)) —• (r a /?)) .
w [A<£:*. At/>:*.<£] (A<£:*.At/>:*.Ax:<£.Ay:t/>.x)

Exerc i s e s 4 . 3 . 1 :

1. Let x:T and y:U. Show that f s t [T] [U] (pa ir [T] [U] x y) = x.

2. By analogy with f s t , define a destructor snd that returns the second compo
nent of a pair.

3. What happens to the first two arguments of i t e r P a i r when the Y\ version
of f s t is translated into pure F 3 ?

Here is the indtype definition of the type of polymorphic lists:

39

indtype List:*—•* with
n i l : A a : * . L i s t a

and cons: A a : * . a —> L i s t a —• L i s t a

Reasoning as before, we begin its representation as a closed F 3 type with a type abstraction
that supplies the type 7 of list elements, followed by a higher-order type abstraction on a
variable T representing L i s t itself, followed by T7:

L i s t = A 7 : * . A r : * - > * . Q] - * T^.

Now we fill in the constructors n i l and cons , replacing L i s t in their types by T:

L i s t = A 7 : * . Ar:*—•*.
(A a : * . Ta)

-> (A a : * . a -+ Ta -> Ta)
- r 7

The constructors n i l and cons are given by:

n i l = A7:* . Ar :*->*.
An: (A a : * . T a) .
Ac: (A a : * . a -» Ta —• Ta) .

n [7]
cons = A 7 : * . Ax:7. A l : L i s t 7.

A r : * - > * .
An: (A a : * . Ta) .
Ac: (A a : * . a —> Ta —• T a) .

c [7] x (1 [7] n c)
By this stage, the reader should be able to check fairly easily that these definitions make
sense.

The definition of car in Section 2.3 involved a straightforward use of induction on lists.
Unfortunately, the polymorphic case is more difficult. The induction scheme for car is

car n i l [7] d * d
car (cons[7] x 1) d = x

where 7 is the type of the list elements and d is a default element representing the car of an
empty list. This extra parameter is what causes the trouble. By analogy with Section 2.3,
we would like to write:

car = A 7 : * . A l : L i s t 7. Ad.7.

1 C 0]
(A a : * . d)
(A a : * . Ax:a . A t l ' : a . x)

But there is no type expression to put in place of [T) that makes both arms of the iterator
well-typed. Writing A0:*.7 fails for the cons arm; writing \9:*.0 fails for the n i l arm.
Parameterized induction in F 3 always exhibits this difficulty with the typing of extra param
eters. The solution is to reorder the applications so that types are instantiated differently:

40

Exerc i s e s 4 .3 .2 :
Hand evaluate

car [Nat] (n i l [Nat]) 0
and

car [Nat] (cons [Nat] 3 (n i l [Nat])) 0

1. Define the cdr operation on polymorphic lists. (It is a simple generalization
of the F 2 version, since it requires no extra parameters.)

car = A 7 : * . A l i L i s t 7. Ad:7.
(1 [A0:*. 0—0]

(A a : * . Ad:a . d)
(A a : * . Ax:a . A t l ' : a— • a . Ad:a . x))

d

Chapter 5

F 3 as a Metalanguage

Higher-order inductive types appear whenever typed data structures (programs, proofs,
etc.) are to be represented and manipulated by other programs. In this chapter we show
how Fj and F 2 terms can be represented as F 2 data structures and discuss how this
translation can be generalized to higher orders (representing F 3 in F 3 , etc.)

5.1 A Simple Representation of F x Terms

To get some feeling for the technique, we begin with a very simple representation of Fx

terms as an inductive type in F 2 , which, as usual, can be translated into a closed type in
F 3 . (We prefer to use inductive types in this section rather than programming directly in
F 3 because it makes the definitions easier to read.) Term a is the type of data structures
representing Fx terms of type a. In this representation, only applications appear as explicit
constructors in the data structure representing an F x term. Variables and A-abstractions
appear only inside of "rep" nodes at the leaves of a tree of applications:

indtype Term:*—** with
rep: A a : * . a —• Term a
app: A a : * . A/?:* . Term (a—>/3) —• Term a —• Term f3

For example, the Fx term 1

(Ax:Nat. Ay:Nat. p l u s x y) 2 3

Strictly speaking, this is an F + term, not a term of pure F x . For illustrative purposes in the early
parts of this chapter, we blur the distinction between the two languages and assume that types like Hat
are available m F A . The inconsistency will disappear when we extend our representation in Section 5.3 to
include all of F 2 .

41

42

is represented by the F 2 data structure

app [Nat] [Nat]
(app [Nat] [Nat-+Nat]

(rep [Nat->Nat->Nat] (Ax:Nat. Ay:Nat. p l u s x y))
(rep [Nat] 2))

(rep [Nat] 3)

E x e r c i s e 5 .1 .1 : Translate the indtype definition of Term into pure F 3 .

It is already apparent why we seem to need to get out of F 2 in order to represent Fx

terms. All of the inductively defined types that we can translate into F 2 by the techniques
described in Chapter 3 share the property of being homogeneous. For example, every
sublist of a List_Nat is also a Lis tJJat . With terms, this is no longer the case. A Fx

term of type a may have subterms of types ft—>a and /?, for arbitrary /?. To represent such
nonhomogeneous types with inductive definitions, constructors with A-types are required.

Another way of looking at this phenomenon is as follows: in the F 3 representation of
the F 2 type constructor Term, the type operator T is applied to different arguments. In
the representation of L i s t , it was possible to define an infinite set of F 2 types L i s tJJat ,
L i s t J t o o l , etc., each corresponding to an instance of the type constructor L i s t where
the variable T (representing L i s t itself) was applied throughout to exactly one argument
a, making it possible to replace (rex) everywhere by a single type variable 7. We cannot
think of Term in this way.

There may be many representations of a given Fx term as a Term data structure. For
example, the term above is also represented by:

rep [Nat] ((Ax:Nat . Ay:Nat. p l u s x y) 2 3)

This is a common characteristic of all the term representations discussed in this chapter.
However, we can distinguish a "canonical" representation of each Fx term as an instance
of Term by stipulating that any application in the original term that is not in the scope of
any A must be represented by an app node. (So the first representation above is canonical,
and the second is not.)

Formally, we can define the canonical representation | t j n of a term e in an environment
II where the types of e's free variables are given by II. II is a function taking each free
variable of e to an F x type. We write II[x/T] for the environment II' that agrees with IT
everywhere except x, and that assigns x the type T. When II is an environment and e is a
well-typed Fx term of type a (assuming its free variables have the types assigned to them
by II), we write I l (e) = a .

| x j n = rep [a] x where U(x)=a
[A x : a . e] n = rep [a—•/?] (A x : a . e) where Il(Ax:a.e)=a—>/?
je e ' l n = app [a] [/?] [[e]]n [e ']] n where II(e)=a—/? and n (e ') = a

This translation allows us to use the double square brackets as syntactic sugar in F 3 . We
can write F 3 programs like

43

Ax:Nat. cons [Term(Nat)] [x |
(cons [Term(Nat)] [[plus x xj

(n i l [Term(Nat)]))
(letting the typechecker fill in the appropriate environments), instead of:

Ax:Nat. cons [Term(Nat)]
(rep [Nat] x)
(cons [Term(Nat)]

(app [Nat] [Nat]
(app [Nat] [Nat->Nat]

(rep [Nat—>Nat—>Nat] p l u s)
(rep [Nat] x)
(rep [Nat] x)))

(n i l [Term(Nat)]))

Having defined a representation of Fx terms in F 3 , it is natural to ask what sorts of manip
ulations can be performed on this representation. This turns out to be a difficult question,
and we defer a complete discussion until we have fully developed the representation itself
(see Section 5.5). But it is worth noting here that it is easy to define an evaluation function
on this representation:

e v a l € A a : * . Term a —• a
e v a l = Aa: * . At: Term a .

iterTerm [a] [At7:*.<7] t
(A<j:*. Au:a\ u)
(A<7:*. Ar:* . Au:<r—»r. \v:a. u v)

Exerc i s e s 5 .1 .2:

1. Try applying e v a l to the two instances of Term given at the beginning of the
section.

2. Translate e v a l into pure F 3 .

5.2 A Complete Representation of F x Terms

Since app is used to represent applications and rep can be used to represent variables, the
only construct left to consider is A. There are several possible formulations for the lam
constructor (see Section 5.5). This one is due to Pfenning and Lee [49]:

indtype Term:*—»* with
rep: A a : * . a—• Term a
lam: A a : * . A/3:* , (a —• Term /?) —» Term(a —> /?)
app: A a : * . A/?:* . Term (a —• /?) -> Term a —> Term /?

For example, the F x term

44

(Af:Nat-»Nat . f) (Ax:Nat. x)

is represented by:

app [Nat-•Nat] [Nat-•Nat]
(lam [Nat-+Nat] [Nat->Nat] (Af :Nat->Nat. rep [Nat->Nat] f))
(lam [Nat] [Nat] (Ax:Nat. rep [Nat] x))

This representation may be a little puzzling at first. Rather than introducing a data type
for F x variables and having the lam constructor take the representation of a variable (the
bound variable) and the representation of a term (the body of the A-abstraction) as argu
ments, we represent an Fj A-abstraction by a higher-order Term—a function from Terms to
Terms. Intuitively, we have incorporated the notion of substitution (or /^-reduction) as an
integral part of the definition of terms: F x variables have been replaced by F 3 variables.
This method was introduced by Church [10] and appears in the work of Martin-Lof [42],
the "Second-Order Patterns" of Huet and Lang [32], the encodings of logics in Harper,
Honsell, and Plotkin's "Logical Framework" [25], and the idea of "Higher-Order Abstract
Syntax" of Pfenning and Elliott [48].

The revised canonical representation of Fx terms is:

[x] n = rep [a] x where n (x) = a
[A x : a . e] n = lam [a] [/?] Ax:a . [[ej n [x / a] where n[x/a](e)=/?
je e ' 5 n = app [a] [/?] [[e] n | e ' J n where n(e)=a-+/? and n(e ') = a

The definition of e v a l is extended to:

e v a l = Aa: * . At: Term a .
iterTerm [a] [A<r:*.cr] t

(Act:*. Au:<7. u)
(A<r:*. Ar:* . \VL:<T—>T

(Act:*. Ar:* . Au:<7—>r
. u)
. Av:(7. u v)

E x e r c i s e 5 .2 .1 : Translate the Fx term
(Ax:Nat .x) 5

into its representation as a Term. Apply e v a l to the result.

Our original definition of Term in Section 5.1 allowed certain Fx terms—those consisting
only of applications and variables—to be represented canonically, in the sense that there
was a bijection between Fx terms not containing A and instances of Term. We would hope
that our new definition of Term would create a bijection between all the F x terms and
those F 3 terms of type Term where rep is applied only to variables. This is not quite the
case, since two Fx terms that differ only in the names of bound variables will have identical
canonical representations. But if we consider such pairs of Fx terms to be identical, we
can make the following conjecture:

45

C o n j e c t u r e 5 .2 .2: There is a bijection between (a-equivalence classes of)
well-typed terms in Fx and normal-form terms of type Term in F 3 .

The importance of this conjecture is that it does not appear to hold for the versions of Term
without lam. (We can make a similar conjecture for the extensions of Term in Sections 5.3
and 5.4.)

5.3 Representation of F 2

Using the technique that we just applied to A, it is also possible to represent type abstrac
tion and application, giving a representation of F 2 in F 3 .

indtype Term:*—•* with
rep: A a : * . a—•Term a
lam: A a : * . A/?:* , (a —• Term /?) —• Term(a —• /?)
app: A a : * . A/3:* . Term(a —>/?)—> Term a —* Term j3
typlam: A 9 :*->*. (A a : * . Term(9a)) —• Term(Aa:* . 9 a)
typapp: A 9 :*—•*. Term(Aa:* . 9 a) —• A a : * . Term(9a)

The intuition behind the constructors typlam and typapp is exactly the same as for lam.
It is an important characteristic of this representation of F 2 terms that, like variables,
types are represented implicitly: there is no explicit encoding of F 2 types as an F 3 data
structure. Instead, a Term representing an F 2 term of type a has type Term a, where a is
an actual F 3 type. Among the benefits of this approach is the fact that it is impossible to
construct a poorly typed Term. Only well-typed F 2 terms can be represented as instances
of Term. (It is this fact that makes the definition of eva l so simple, since it means that
there is no need to deal explicitly with types, typechecking, or the possibility of failure at
runtime.)

Like lam, the typlam constructor takes a function as its main argument—this time a
function from types to representations of terms rather than from values to representations
of terms. The type of the Term returned by this argument is some function (9 a) of the
type (a) it is passed. The first parameter to typlam specifies this dependency.
Thus, A can be thought of as almost exactly like —>, except that —• does not require this
extra 9 to specify how its right hand side depends on its left hand side. Otherwise the
correspondence between A and —• would be exact.)

Again, typapp is similar to application, except that it needs an extra parameter 0 to
specify the relation between the argument and result types.

46

The extended representation algorithm is:

H n = rep [a] x
[[Ax:a.e]] n = lam [a] [£] Ax:a . Hn[x/«1
[[e e ' l n = a P P [a] [/?] {e]n I*'In
J A a : * . e | n = typlam [6] Aa:*.|[e|n[a/*l
[[e [T] l n = typapp [6] | e j n [T]

where Tl(x)=a
where II[x/a](e)=/3
where n(e)=a—•/? and n (e ') = a
where n(Aa: *. e) = A a : *. 0 a
where I l (e) = A a : * . 0 a

The extended e v a l function is:

e v a l = A a : * . At:Term a .
iterTerm [a] [Act:*.a] t

(A a : * . Au:a. u)
(A<t:*. Ar:* . Au:<r—>r.
(A<r:*. Ar:* . Au:<r—*r,
(A 0 : * - > * . A u : (A a : * .

u)
Av:<7. u v)

© a) , u)
(A©:*->* . A u : (A a : * . © a) . A a : * . u [a])

E x e r c i s e 5 .3 .1 : Translate the F 2 term
(A a : * . A x : a . x) [Nat] 5

into its representation as a Term. Apply e v a l to the result.

5.4 Representing F 3 in F 4

The only difference between F 3 and F 4 is in the kinds that may appear in terms. Whereas
F 3 uses only the kinds * and *—»*, F 4 also allows the kind (*—•*)—•*, the kind of functions
(at the type level) that take type functions as arguments. When we allow type expressions
involving this new kind, it becomes possible to represent F 3 programs using an inductive
type definition in F 3 :

indtype Term:*—•* with
rep: A a : * . a—•Term a
lam: A a : * . A/3:* , (a Term /?) -> Term(a -> /?)
app: A a : * . A/?:* . Term(a 0) —• Term a —• Term J3
typ laml: A © : *—•*.

(A a : * . Term(©a)) -> Term(Aa:* . 0 a)
typlam2: A © : (*—•*)->*.

(A a : * — T e r m (0 a)) —• Term(Aa: *—»* . 0 a)
typappl : A©:*—•* .

Term(Aa:* . 0 a) —• (A a : * . Term(0a))
typapp2: A © : (*-•*)—•*.

Term(Aa:*—•*. 0 a) —• (Aa:*—>*. Term(0a))
Note that since the kind of 0 appears explicitly in the definition of Term, we need to have
two separate cases for typlam and typapp.

47

E x e r c i s e s 5 .4 .1 :

1. Generalize the definitions of J] and e v a l to correspond to this version of Term.

2. In F 6 , functions at the type level may take arguments of any F 4 kind. Write
down a Term representation for F 4 in F 4 . How many cases are needed for
typlam and typapp?

5.5 Alternative Formulations of Term

The higher-order-abstract-syntax-style formulation of lam in Section 5.2 may have seemed
somewhat arbitrary and curious, but it has properties that are not shared by the other
obvious formulations.

Starting from scratch, our first attempt at a constructor for lam might be:

lam: A a : * . A/?:* . (Term a —• Term j3) -> Term(a -» /?)

But this clearly won't work for us because it cannot be part of an inductive type definition
(the variable Term appears negatively). We might then consider two possible patches.

First, we can erase the negative occurence of Term, leaving

lam: A a : * . A/?:* , (a -> Term /3) -> Term(a —• /?)

and rely on our ability to use rep to convert values of type a to values of type Term a
when we're building functions to pass to the constructor. This is the approach we adopted
in Section 5.2.

Alternatively, we can erase the parentheses so that Term remains but is no longer in a
negative position:

lam: A a : * . A/?:* . Term a —• Term /? Term(a —• (3)
This almost corresponds to the syntactic notion that "a A-abstraction of type a—*/? is built
up by taking a term of type f3 and abstracting it over a variable of type a." Following this
intuition, it seems that what we want as the type of the first argument is Var a rather
than Term a: 2

lam: A a : * . A/3:*. Var a -» Term 0 —> Term(a -> /?)
Of course, now we need to know what a Var a is. One sensible choice might be that a
variable is specified by its type and a numeric index (since we need a countable number of
variables of each type):

indtype Var:*—>* with
v: A a : * . Nat —• Var a

2 We could also try to work with this formulation as-is, following the path taken, for example, by LCF [22]

48

The complete definition of Term would then be:

indtype Term:*—+* with
var: A a : * . Var a —* Term a
app: A a : * . A/?:* . Term(a -» 0) —• Term a -> Term 0
lam: A a : * . A/?:* . Var a —• Term 0 —• Term(a —•

This solution corresponds to a "first-order" view of variables: data structures representing
variables appear explicitly in the data structure representing a term. For example, the F r

term

Ax:Nat. x

might be represented in this formulation by the Term:

lam [Nat] [Nat] (v [Nat] 5) (var [Nat] (v [Nat] 5))

E x e r c i s e 5 .5 .1 : How would Af: Nat—•Nat. Aa:Nat. f a be represented
in this formulation of Term?

Appendix A carries out the details of this kind of representation of untyped A-calculus
terms. Unfortunately, the approach used there apparently cannot be extended to the
representation of typed terms. The most important operation on this representation is the
substitution of one Term for a variable of the same type in another Term. But in order to
decide which variables to replace, it is necessary to decide whether an arbitrary var node
is equal to the variable being substituted, which requires an equality test on elements of
Var. This test seems not to be implementable in F^. It is easy to implement a test for
equality between two elements of most inductive types. But a polymorphic equality test, or
equivalently a test for "run time" equality between types, cannot be added to F^ without
losing the strong normalization property. 3

In both of these representations of F x terms, the Fx types are subsumed as F 3 types—there
is no explicit encoding of types as a data structure in their own right. Another formulation
of Term would depend not only on a Var inductive type, but also on an inductive type
called Type, perhaps with constructors t v a r and arrow. This idea is pursued further at
the end of Appendix A.

There are a number of properties that might be desirable in a representation of terms. The
three representations above have different combinations of these properties:

Def inab i l i ty of e v a l . One of the interesting things to do with a data structure represent
ing a term is to evaluate it to produce a value in the metalanguage. The higher-order
representation of terms has this property—indeed, so little work is involved in defin
ing e v a l that one almost feels a little cheated. We do not know how to define this
kind of evaluation function for either of the first-order representations.

3 We are grateful to Thierry Coquand and Christine Paulin-Mohring for pointing this out. The result is
due to Girard [20].

49

Def inab i l i ty of s u b s t i t u t i o n (a n d h e n c e /3-r e d u c t i o n) . As far as we know, there is
no way to define substitution for the higher-order representation of terms. The typed
first-order representation requires an equality test for elements of Var, which we do
not know how to provide. The first-order representation with explicitly encoded
types clearly admits a substitution function.

I n a b i l i t y t o represent i l l - typed t e r m s . One of the most important properties of both
typed representations of terms is that it is impossible to construct a Term data
structure corresponding to a poorly typed term. This eliminates the need to write
typechecking functions for represented terms.

A b i l i t y t o represent t h e w h o l e m e t a l a n g u a g e . Conventional wisdom holds that it is
not possible to write a metacircular interpreter in a typed language. For some
more exotic type systems—systems with reflexive types [36] or where "Type" is a
type [6,35,37]—no complete story has been told.

U n i q u e n e s s of r e p r e s e n t a t i o n . Because of the rep constructor in the higher-order term
representation, there are in general many Terms representing a given term. For the
typed first-order representation, it is easy to see that there is an exact correspon
dence between terms and Terms. For the first-order representation with the encoding
of types in the data structure, the situation in general is turned around: when this
representation scheme is extended tQ F 3 , there may again be many Terms correspond
ing to a given term (since it is possible to represent non-normalized type expressions
in the Term data structure.)

Chapter 6

The o;-order Polymorphic
A-Calculus

We are finally ready to close off our hierarchy of languages by defining F^,, the u;-order
polymorphic A-calculus, and discussing some of its properties.

6.1 Basic Definitions

The language F ^ differs from F 3 , F 4 , etc. only in that the set of legal kinds is larger:

De f in i t i on 6 .1 .1 : The syntax of F ^ is given by the following inductively
defined classes:

(kinds) K ::= * | K—•K'
(types) T ::= a | T->T' | A a : K. T | Aa : K. T | TT'
(terms) e ::= x | Ax : T .e | e e ' | Aa : K. e | e [T]

where K ranges over kinds, a ranges over type variables, T ranges over types, e
ranges over expressions, and x ranges over variables.

Now we can finally list a full set of type and kind inference rules for F^, in much the same
way as we have in previous chapters. The first three rules deal with the well-formedness
of environments, and are named in the same way as before. The next five rules deal with
the well-kindedness (well-formedness) of types. The base case (Tvar) deals with the kind
of a type variable, while the other four, whose names begin with "WF," deal with the
four ways that types may be built up. The next five rules deal with the correct typing of
terms. The base case (Var) ensures that the type of a variable is of kind *. The other four
deal with cases where —• or A is introduced or eliminated at the type level, and are named
accordingly. Finally, the («) rule allows two types that are /^-convertible to be considered
equal. There are two new notions in these rules: T » T' indicates that the type expressions
T and T' are ^-convertible , and T'[a/T] is the result of replacing all occurrences of the

50

51

type variable a in T' with T, renaming bound variables in T' to avoid capture of free
variables in T. In both cases it is necessary to respect the binding constructs A and A in a
type expression. Note that the rules are designed so that for any term e, where e € T with
T some type expression, it is assured that T is actually of kind *. This is usually left to
the (Var) rule, but in the case of the (») rule it must be written explicitly because a new
type expression T is being introduced, which might not be of the same kind as T' although
the two are /Jrj-convertible. Similarly, in the case of (—>I) a new type expression is being
introduced, so we must check explicitly that it is of kind *. We adopt the convention that
any two a-convertible terms or type expressions are considered identical. Furthermore, we
take "a is not free in II" to mean that a is not free in any type expression assigned by II.
(The problem is that a may be free in in which case rebinding a might introduce an
inconsistency. The same is not true of term variables since x can not appear in the range
of n.)
Here are the typing rules:

(e n v - o) i^rw)

(ENv-term) WtfwW)

(ENV-type) w/ffi[a/K]) w h e n a 1 9 n o t f r e e i n 1 1

(Tvar) n^11} v

 w h e n n(a) = K

l y v r ~*f I 1 I - T - > T ' € *

(WF-A) ft\r^Aoi:K/t%** when a is not free in II

(WF-A) II h^AcrK/f * when a is not free in II
(WF ann1! III-T€K-*K* II h T ' € K (Wf-app) n > T t ' € K '

(Var) flfcxi? W h e n = T

/ _ n n i - T e * n [x / T i h e € T -
* ' f l h Ax:T.e<ET->T'

I I h e € T - > T ' I l h e ' g T

(Al) nHl*Kle h € e l J :K .T w h e n a i s n o t f r e e i n 1 1

/ A m n h e g A a l l ' I I I - T € K
n H e [T] e T ' l a / T j

(~ > T T F i e T

We now show how the above inference rules are applied by checking the type judgment
t G Nat, where:

t = (AG:*-»* . A a : * . Ax:©a . x) [A<7:*.<r] [Nat] 5

For notational convenience we use the following abbreviations:

52

t 5

t 4

t 3

t 2

t i

and hence:

= t 2

Ax : 0 a . x
A a : * . t s
A©:*—•*. t 4

t3 [Aa: * . <r]
[Nat]

t = t i 5

At each step of the proof we give the name of the inference rule used, together with the
numbers of the lines of the proof used as premises (in order). When one line follows from
another by application of the above abbreviations we say that it follows "by definition."
Additionally, for brevity we allow ourselves to assume that Nat G * and that 5 E Nat, and
we omit the sections of the proof dealing with the well-formedness of environments.

(1) by (Tvar)
(2) { (e . * - f *) . (< * . *)) h e € *->* by (Tvar)
(3) ((6 . * - + *) , (a , *)) H 6 a G * by (WF-app) from 2,1
(4) < (e . * - • *) . (a , *) . (* . © < *)) h a G * by (Tvar)
(5) ((e , * ^ *) , (a . *) . (x . e a) > h e € * - • * by (Tvar)
(6) ((e . * ^ *) , (a , *) . (x . e a)) H 0 a € * by (WF-app) from 5,4

(7) ((e , * - > *) , (a , *) . (x . e a)) h x G 6 a by (Var) from 6
(8) ((e . * - » *) , (a , *)) h A x : 0 a . x € 6 a - » e a by (^1) from 3,7
(9) ((0 , * - » *) , (a , *)) 1- t 5 G O a - » 6 a by definition from 8
10) ((e , * - * *)) 1- A a : * . t 5 G A a : * . e o - + 0 a by (AI) from 9

11) { (0 , *-+*)) h t 4 G A a : * . 6 a - ^ e a by definition from 10
12) h A9:*—>*.t4 e A 9 : * - > * . A a : * . e a - » 6 a by (AI) from 11
13) H t s € A 0 : * - » * . A a : * . 9 a - » e a by definition from 12
14) {{<?,*)) h a G * by (Tvar)
15) H A<r:*.<7 € *—•* by (WF-A) from 14
16) h t s [A<r:*.«7] G A a : * . (A<7:*.<r)a—•(A<7:*.<r)a by (AE) from 13,15
17) ((a .*)) 1- a € * by (Tvar)
18) ((a ,*)) h a - > a € * by (W F — 0 from 17,17
19) h A c t : * . a - » a » A a : *. (A<r:* .<r)a—>(\<r:* ,<r)a by ^-conversion of types
20) \- A a : * . a—»a G * by (WF-A) from 18
21) f- t3 [Ao-:*.o-] G A a : * . a - » a by («) from 16,19,20
22) 1- t j 6 A a : * . a - » a by definition from 21
23) 1- Nat G * by assumption
24) 1- t 2 [Nat] G Nat-+Nat by (AE) from 22,23
25) 1- t x G Nat->Nat by definition from 24
;26) h 5 G Nat by assumption
[27) h t i B € Nat by (AE) from 26,25
[28) h t G Nat by definition from 27

53

E x e r c i s e s 6 .1 .2 :
Use the deduction rules for F^, to prove that

cons [Nat] 1 (n i l [Nat] 0) G L i s t Nat
(Warning: This will take quite a lot of work.)

The languages Fx, F 2 , etc. can now be defined as restrictions of F^.

De f in i t i on 6 .1 .3 : The kind * has order 1. If the greater of the orders of K
and K' is i, then K—»K' has order t + 1.
The n < / l-order polymorphic A-calculus (F n) consists of those terms of for which
types can be derived using the above rules without mentioning any kinds of order
greater than or equal to n.

6.2 Properties of

We have discussed various properties of the languages in our hierarchy of typed A-calculi.
To summarize, we can state the following theorems for F ^ : 1

T h e o r e m 6 . 2 . 1 :

1. If IT h e G OL then II h a G *.

2. If IT h T G K then T has a unique ySry-normal form.

3. If II h e G T then e has a unique /?r/-normal form.

4. II h e € T is decidable.

Some other interesting properties of F^ are:

• F^j = F^. (Inductive data type definitions whose constructors have types in F^, can
be translated into closed type expressions in F^ [45].)

• F 2 can express every function which is provable total under second-order peano
arithmetic [18,16]. In general, F n can express all functions whose totality is provable
in nth-order arithmetic [19].

• Typed A-terms can be extracted from proofs in higher-order logic [11,47,43]. A
program extracted from a proof in n "'-order logic will be typable in F n .

Strictly speaking, these are conjectures: they have not been proved for the formulation of that we
are using. Our system is intended not as an object of study in itself but as a concrete way of talking about
other systems. For Girard's system [20,18], the appropriate analogues of these statements are theorems.

54

6.3 Types and Type Inference

In order to fit into the "big picture," we consider its relation to other programming
languages along several dimensions.

Impl i c i t v s . Exp l i c i t T y p e s . We have remarked that F ^ is explicitly rather than tm-
plicitly typed: polymorphism is represented by explicit type abstraction (A), and polymor
phic functions must be applied explicitly to a type argument ([]) yielding a monomorphic
instance, which can in turn be applied to term arguments (or further type arguments).
In contrast, types do not appear in the concrete syntax of a purely implicitly typed lan
guage (although they may eventually be derived). We use the terms explicit polymorphism
(or explicit typing) and implicit polymorphism to denote polymorphism in an explicitly or
implicitly typed language, respectively.

Explicit typing offers several advantages over implicit in that types may be given a greater
role than just ensuring the well-formedness of terms. Although an implicitly typed program
may be typable (i.e., well-formed), it may not be the one the author intended. Explicit typ
ing adds an additional level of insurance that the writer's intentions are realized. Explicit
types also serve as formal documentation and can increase the readability of programs.

In reality, explicitly and implicitly typed languages represent a continuum: at one end is
a language.with no types in its concrete syntax (purely implicit); at the other, a language
in which every term has an associated syntactic type (purely explicit). Although we have
classified F^ as explicitly typed, not all terms have explicit types in the concrete syntax.
In fact, it is only the variables bound by A-abstractions that are given explicit types.
Nevertheless, F^ remains explicitly typed because the types of the remaining terms may
easily be deduced from the type information provided (see Section 6.1). In general, type
inference is the process of determining missing type information. Although this involves
only minimal work in the case of F^, type inference is also applicable to implicitly typed
languages in which more or all of the type information is missing. Terms before type
inference may be partially-typed (under explicit polymorphism) or untyped (under implicit
polymorphism), while the results of successful type inference are fully typed.

A downside of explicit typing is that programs may become so verbose as to be unin
telligible. In our development of ack (Section 3.3) one of the steps appeared as follows:

((A n 3 : N a t . (succ n3) [Nat] 1 succ)
((A n 2 : N a t . (succ n 2) [Nat] 1 succ)

3))

The problem with writing the above expression is that each instance of Nat may be deter
mined by context: the iterations produce Nats because their result is a combination of 1
and succ , while the iterations are over Nats because succ is applied first. A remedy to
the redundancy of explicit types is to omit type information when it may be inferred. The
equivalent term without the redundant type information is

55

((Aii3. (succ 113) [] 1 succ)
((A 1 1 2 . (succ n 2) [] 1 succ)

3))

The task of expanding a partially-typed, or "type-elided", term into is called partial
type inference. Enough type information must be included, however, so that "proper"
typings are recreated in the process. (This is further developed below.)

Curry v s . C h u r c h T y p e s . This leads us to a more fundamental difference between
typed languages: What is the role of types? The first or "Curry" view of types is that
terms are initially untyped and types serve merely to group (structurally or behaviorally)
related terms [13]. Central to the Curry view is that untyped terms are meaningful and
may be given a semantics without regard to any associated type. In fact, syntactic and
semantic properties of the language (e.g., reduction) are formulated without types. Gener
ally under such an approach, types semantically characterize terms, perhaps by denoting
components of a mathematical model (e.g., a set). Types which do appear in the syntax
of the language are viewed as meta-syntactic; the V is interpreted semantically (e.g., a
predicate establishing membership within a set). Type inference is viewed as the process of
determining where a term lives, that is, what is the class (type) of its semantic denotation.

In contrast, the "Church" view treats untyped terms as meaningless [10]. Types, in the
Church view, are an integral part of the language. Indeed, the reduction rules are for
mulated with types. Similarly, type inference is defined syntactically. Each of the typed
A-calculi we have described fall into this school. Of course like Curry, the Church approach
admits denotational semantics, but whereas a typical "Curry semantics" consists of one
large domain containing the denotations of all terms, in a "Church semantics" there will
be a family of domains indexed by types.

In the literature, the reader may find the Curry view associated with implicit types and
the Church view with explicit. This is because of the importance of untyped terms within
the Curry approach and of typed terms under Church. However, we wish to emphasize
that they are independent notions: we might imagine a concrete syntax containing types
which are all viewed meta-syntactically (Curry), or a concrete syntax initially free of types,
but for which type inference generates a syntactically complete, fully typed terra (Church).
Curry vs. Church is primarily a philosophical issue, while explicit vs. implicit is a question
of language syntax and implementation. (For further insight on these issues, see Mitchell
and Harper [40].)

P r i n c i p l e T y p e s a n d M i l n e r v s . G i r a r d / R e y n o l d s P o l y m o r p h i s m . We have sug
gested that a type inference algorithm assigns at most one fully-typed term for a given
partially or untyped one. However, this is usually not possible. Existing implicitly poly
morphic languages (notably ML) admit complete type inference algorithms [5,38] that yield
"principle" rather than unique types. A principle type is a type (or type scheme) from
which all other valid typings may be derived by substitution.

56

The "Milner style" polymorphism of ML limits occurrences of universal quantification
(our A) to the top-level or outermost scope of the type. In contrast, the more expressive
"Girard/Reynolds" polymorphism of our calculi does not so constrain types. Milner's
restriction disallows the passing of polymorphic functions as parameters, since nested A's
are required to represent the type of the polymorphic argument. In fact, it is this restriction
which makes the way for principle types. Consider the function double of Section 3. From
an untyped version

A*. Ax. f (f x)

type inference might derive either the original

A a : * . Af :a—»a. A x : a . f (f x)

of type

A a . (a—»a)—»a—>a

or instead

A f : (A a : * . a - > a) . A/?:*. Ax:/?, f [/?] (f [£] x)

which has type
(A a : *. (a - + a)) A / 3 : *.

The second version takes a polymorphic function as an argument, and so is not permit
ted in a Milner style. That the above types are incomparable means that the, richness of
Girard/Reynolds polymorphism does not admit principle types. Furthermore, the decid
ability of type inference mapping untyped A-calculus into F 2 —that is, full type inference
for F 2—remains open [33,39].
The above ambiguity for the untyped double may be removed by including empty type
applications in the appropriate positions, thereby steering partial type inference toward
the desired typing. However, this still does not yield principle types. The expressiveness
inherent in the higher-order nature of Girard/Reynolds polymorphism complicates type
inference: that types may be functions requires higher-order unification to determine the
intended types. In fact, partial type inference [3,41] may be more expensive than full
type inference. Pfenning has shown that partial type inference for the n^-order A-calculus
(in which type applications are omitted but placeholders are left to show where they must
appear) is equivalent to n^-order unification, which is undecidable for n > 2 [21]. However,
Huet's [30] algorithm has proven tractable for realistic problems, and using this, Pfenning
describes a partial type inference semi-algorithm for F ^ [46].

6.4 F^ as the Basis for a Programming Language

We have shown in this tutorial that F^ can be used to express a surprisingly broad range
of computations. Still, it falls short in many ways as a practical programming language.
Pfenning and Lee [49] have studied a number of extensions to F ^ that either make it more
convenient without adding to its power or disrupting its desirable theoretical properties,
or strictly increase its power:

57

• As discussed in the previous section, a good type inference system can enormously
reduce the redundancy and verbosity of programs in polymorphic A-calculi.

• Most functional languages include some form of general recursive function defini
tions. Although we have left it out of our formulation of —partly to highlight
the interesting programming style that arises without it and partly to preserve the
theoretical properties of Girard's system—there is no reason why it cannot be added.

• Some "functional-style" languages also include imperative features like updateable
references and powerful control constructs like exceptions or a "call with current
continuation" operator. It appears possible to add these to F^ as well.

Pfenning and Lee's work is currently focused on a family of languages called LEAP (a
"Language with Eval and Polymorphism"). In addition to some of the ideas mentioned
above, key features include:

• An extension of F^'s polymorphism that makes it possible to write an e v a l function
for an inductive representation of all of F ^ (something that does not appear to be
possible in F ^ itself). Global definitions in LEAP are not considered to be simple
abbreviations (like the ones in this tutorial), but rather global l e t bindings. In
particular, kind variables are allowed to appear free in the right hand side of a global
definition, and these variables are considered generic in exactly the sense of ML's
generic type variables introduced by l e t statements [15]—they can be instantiated
to different kinds at each point where the global definition is used. This introduces
enough "additional polymorphism" to allow the definition of an e v a l function for a
representation of terms essentially the same as that given in Section 5.3:

e v a l = Aa: * . At: Term a .
iterTerm [\<r: *. <J] t

(A<T:*. AU:<T. U)

(A(T:*. Ar:* . Au:<r—*r. \v:a. uv)
(A<7*.*. Ar:* . Au:<7—>r. u)
(A6:K->*. Au:(Aa:K. 6 a) . u)
(A0:K' ->* . Au: (Aa:K' . 6 a) . A a . u [a])

Every time e v a l is used in a program, the appropriate values of K and K' are com
puted by type/kind inference. Looking at the earlier definition of e v a l for F 3 in terms
of F 4 , it is clear that the above is a schema for a definition that would otherwise have
to be infinite.

• Even with a good partial type inference algorithm, the amount of syntactic "noise"
introduced by placeholders for type applications can be substantial. Pfenning and
Lee have introduced a very useful shorthand, which they call "star syntax." When
an identifier is declared on the left hand side of a l e t , it may be annotated with
some number of *'s to indicate how many type parameters it expects. Now when the
defined variable is used (unstarred) elsewhere in the program, the correct number

58

of empty type applications are inserted after it. These empty applications sure then
filled by the partial type inference algorithm, as before.

Appendix A

Representing the Untyped
A-Calculus

This appendix presents a representation of the untyped A-calculus in F 2 . Because it is
homogeneous (in the sense discussed in Section 5.1) the untyped A-calculus should be
easier to represent than the typed A-calculi. This makes it a good starting point for
developing techniques, tools, and intuitions that may perhaps be applied to the more
difficult situations. It also provides a good extended programming example.

We consider the simplest formulation of the untyped A-calculus, with just variables, A-
abstractions, and applications:

indtype Term:* wi th
var: Var —• Term
app: Term —> Term —• Term
lam: Var —• Term —> Term

where natural numbers are used to represent variables:
Var = Nat

Our first task is to implement substitution. This turns out to require primitive recursion
rather than simple iteration, because we need to be able to inhibit substitution in the scope
of a A whose bound variable is the same as the one being substituted.
The iterator iterTerm [Pair-Term] takes a Term to a pair of Terms. The first projection
of the resulting pair is the substituted term; the second projection is the original term. (In
the following, we omit some type tags when it is clear from context how they should be
filled in. For example, write i f e instead of i f eJTerm.)

59

60

subs t i = At:Term. Av:Var. As:Term,
f s t (i terTerm[PairJTerm] t

(Ax:Var.
p a i r

(i l e (• x v) s (var x))
(var x))

(Ar: PairJTerm. As: Pair_Term.
p a i r

(app (f s t r) (f s t s))
(app (snd r) (snd s)))

(Ax: Var. Ar: Pa ir .Term.
p a i r

(i f e (» x v)
(lam x (snd r))
(lam x (f s t r)))

(lam x (snd r)))
)

This version is not quite correct, however: it allows capture of free variables in s by bound
variables in t . To use it safely, we need to first make sure that no such capture can occur,
by a-converting t so that its bound variables all have greater indices than any variable
used in s.

E x e r c i s e A . l : Define a function maxvar € Term—>Var that calculates the
maximum index of the variables used in its argument.

Taking maxvar as given, we can write:

subst = At:Term. Av: Var. As: Term.
s u b s t i (alphaconv t (maxvar s)) v s

To define alphaconv, we need to be able to keep track of the set of variables bound by
enclosing As so that we can decide whether or no' to change the index of a variable when
we come to it. But the iteration construct makes this hard: since it starts at the leaves of
the term and builds up the result, we see the variable at the leaf "before" we get to any
enclosing As. The trick is to have the iteration return not a term, but rather a function
from variables to terms. ("You show me what the bound variables are and I'll show you
what the a-converted term is.")

61

alphaconv = At:Term. Ad:Nat.
(i terTerm[(Var-•Bool)-+Term] t

(Ax:Var. Ab:Var->Bool.
i f e (b x)

(var (p l u s x d))
(var x))

(Ar: (Var—•Bool)->Term. As: (Var—•Bool) —•Term.
Ab:Var-»Bool.

app (r b) (s b))
(Ax: Var. Ar: (Var-•Bool) —•Term. Ab: Var—•Bool.

lam (p l u s x d)
(r (Az:Var.

i f e (= z x)
t r u e
(b z))))

) (Ax:Var. f a l s e)

With substitution under control, it is now fairly easy to define /^-reduction on terms. Of
course, we cannot hope to completely normalize an arbitrary term of the untyped A-calculus
since any attempt to do so may diverge, which would contradict the strong normalization
property of the metalanguage. The following pair of functions implements one-step /?-
reduction of all redices in a term, from bottom to top. (It should also be possible to reduce
just one redex at a time, as defined in Section 2.1, but this seems harder than reducing
several at once.)

The iteration in the first function does not alter the Term except at app nodes, which it
hands off to the second function. This, in turn, does nothing unless the top-level construc
tor of the term on the left hand side of the application is a A abstraction, in which case it
uses subs t to reduce the application to a substitution instance of the body of the A.

b e t a = At: Term.
iterTerm[Term] t

(Ax:Var. var x)
(Ar:Term. As:Term.

betalam r s)
(Ax:Var. Ar:Term.

lam x r)

62

betalam = At:Term. Au:Term.
f s t (iterTerm[Pair-Term] t

(Ax:Var.
p a i r (app t u)

(var x))
(Ar: Pair-Term. As: Pa ir .Term.

p a i r (app t u)
(app (snd r) (snd s)))

(Ax:Var. Ar:Pair-Term.
p a i r (s u b s t (snd r) x u)

(lam x (snd r)))
)

This can easily be extended to perform any finite number of "simultaneous" /9-reductions:

m u l t i b e t a = An:Nat. At:Term.
i terNat[Term] n t be ta

E x e r c i s e s A . 2 :

1. Define an encoding of type expressions in F x as an inductive type.

2. Extend the definition of Term above to a representation of F 1 ? where types
appear explicitly in the data structure (rather than being represented as types
in the metalanguage as in Chapter 5).

3. Define substitution and /^-reduction for this representation of Fx.

4. (Difficult.) Define a typechecker for this representation.

Appendix B

Symbols and Terminology

Notational Conventions
S Y M B O L U S A G E S T Y L E

x, y, map, car, . . . term variables and constants I.e.
L i s t , Bool, Nat, . . . globally-defined types u.c.
a, /?, 0, a, . . . bound type variables of kind * I.e. greek

e bound type variables of higher kind u.c. greek
7 result type of an iteration

u.c. greek

r result type of a higher-kind iteration
p a i r , c o n s , succ globally-defined constructors I.e. spelled-out
p . c , n, s A-bound placeholders for constructors I.e. first letter
K kind variable

Symbols

S Y M B O L M E A N I N G S E E P A G E (S)

= global definitions 6
AxrT.e term-to-term abstraction 6,6,12,21,34,50
e e ' term-to-term application 6,6,21,34,50
T - > T ' type of a term-to-term abstraction 6,6,12,21,34
Fx the simply-typed A-calculus 6
F + F x with primitive types and iteration 6
n[x/a] extension of 11 with the type of a variable 7
n h e e T type judgment 7
= 0 /^-equivalence 8

63

/^-equivalence 8

=>fi ^-reduction 8
»7-reduction 8

e[x/a]
/^-reduction 8

e[x/a] term substitution 8
Fj F1 with inductive type definitions 12
i t erT[V] iteration 12,12
Aa:K.T type-to-term abstraction 19,21,34,50
* the kind of types 21,34,50
A«:K.T universal type 20,21,34,50
e[«] term-to-type application 21,34,50

F 2
second-order typed A-calculus 21
F 2 with inductive type definitions 33,41

F 3
third-order typed A-calculus 34

n[a/K] extension of n with the kind of a type variable 35
IT h T € K kind judgment 35
AarK.T type-to-type abstraction 34,50
T T' type-to-type application 34,50
K-+K' kind of a type-to-type abstraction 34

Mn syntactic sugar for meta-representation 42

F 4
fourth-order typed A-calculus 46

F w
w-order typed A-calculus 50
F^with inductive type definitions 50

« /Jrj-equivalence of type expressions 50
T[a/T'] type substitution 50
LEAP the LEAP programming language 56

65

Type and Kind Deduction Rules

R U L E N A M E P U R P O S E S E E P A Q E (S)

(SUCC) check type of use of succ in 8
(Zero) check type of use of zero in F ^ 8
(Iter) check type of use of i t e r in F t

+ 8
(Var) checks that the type of a variable is of kind * 8,22,51
(—•I) —• introduction in type of a term 8,22,51
(—>E) —• elimination in type of. a term 8.22,51
(Tvar) checks the kind of a type variable 22,51
(ENV-()) asserts than an emty environment is well-formed 22,51
(ENV-term) checks well-formedness of term/type pair in an environment 22,51
(ENV-type) checks well-formedness of type/kind pair in an environment 22,51
(WF—•) checks that —• types are well-formed 22,51
(WF-A) checks that A types are well-formed 22,51
(AI) A introduction in type of a term 22,51
(AE) A elimination in type of a term 22,51
(WF-A) checks that A types are well-formed 51
(WF-app) checks that a type-to-type application is well-formed 51
(«) /^-conversion for type expressions 51

Example Types

N A M E P U R P O S E S E E P A G E (S ~

Nat natural numbers 6,12,26
Bool booleans 15,24
Void type without any elements 15,23
Unit type with exactly on element modulo a-equivalence 15,24
Pa ir JIat pair of natural numbers 16
L i s tJJat list of natural numbers 16
Pa irJLis t JIat pair of lists of natural numbers 17
Tree polymorphic tree 17
Pa i r polymorphic pairs 36
L i s t polymorphic lists 38
Term A-calculus terms 41

66

Example Functions

N A M E P U R P O S E S E E P A G E (S)

i t e r Fx iteration on naturals 6,10
zero zero element of naturals 6,12,26
succ successor function on naturals 6,12,26
p l u s addition of natural numbers 11,12,12,28
t imes multiplication of natural numbers 11,28
u n i t unique object of type Unit 15,24
t r u e , f a l s e boolean constants 15,24
p a i r JIat pair of natural numbers (in F[) 16
f s t JIat first of a pair of natural numbers 16
snd_Nat second of a pair of natural numbers 16
n i l JIat empty list of natural numbers (in F[) 16
cons.Nat cons of a natural number and a list of naturals 16
car JIat car of a list of naturals 16
cdr JIat cdr of a list of naturals 16
p a i r X i s t JIat pair of lists of naturals 16
empty polymorphic leaf node of a tree 17
node polymorphic internal node of a tree 17
b u i l d polymorphic function to construct trees 18
i d polymorphic identity 19
double polymorphic double application 19
i t e r B o o l iteration on booleans 25
not boolean negation 24,26
zero? test for zero on natural numbers 28
and, or boolean conjunction/disjunction 26
i t e r N a t iteration on anturals 27
primrec primitive recursion 30
p a i r polymorphic pairing 36
f s t polymorphic first of a pair 36
snd polymorphic second of a pair 36
n i l polymorphic empty list 38
cons polymorphic list constructor 38
car polymorphic list car 38
cdr polymorphic list cdr 38
rep representation fucntion for meta-programming 41
app meta-level term application 41
e v a l evaluation function for metaprogramming 43
lam meta-level A-abstraction 44
typapp meta-level type application 45
typlam meta-level type abstraction 45
typappl , typapp2 F 2 and F 3 type application in F 4 46
typlaml , typlam2 F 2 and F 3 type abstraction in F 4 46

Concepts

C O N C E P T
S E E P A G E (S)

simply-typed lambda calculus
A-abstraction
application
scope
body
bound
free
type judgment
extension
inference rules
/?-redex,/?-reducible,/?-reduction,/?-conversion
r;-redex,r;-reducible,r;-reduction,^-conversion
/?r7-reducible,^»7-reduction,^f;-conversion
/?T7-normal form
equivalence
a-equivalent
a-convertible
Strong Normalization Theorem
Church-Rosser Theorem
currying
inductive type definitions
global environment
positive occurrence
negative occurrence
underscore notation
polymorphism
polymorphic A-calculus
term abstraction
type abstraction
term application
type application
closed
primitive recursion
type constructor
meta-programming
homogeneous, nonhomogeneous

6
6
6
7
7
7,21
7,21
7
7
8
8
8
8
8
8
9
9
9
9
11
11
13
13,35
35,35
15
20
20
21
21
21
21
21
29
33
41
42

type checking 50
explicit types 54
implicit types 54
explicit polymorphism 54
implicit polymorphism 54
type inference 54
partially typed 54
untyped 54
fully typed 54
Curry view 55
Church view 55
principle types 55
Milner style 55
Girard/Reynolds style 56
partial type inference 55

Bibliography

[1] Harold Abelson and Gerald Sussman. Structure and Interpretation of Computer Pro
grams. The MIT Press, New York, 1985.

[2] Hendrik P. Barendregt. The Lambda-Calculus: Its Syntax and Semantics. North-
Holland, Amsterdam, revised edition, 1984.

[3] Hans-J. Boehm. Partial polymorphic type inference is undecidable. In 26th Annual
Symposium on Foundations of Computer Science, pages 339-345, IEEE, October 1985.

[4] Corrado Bohm and Alessandro Berarducci. Automatic synthesis of typed A-programs
on term algebras. Theoretical Computer Science, 39:135-154, 1985.

[5] Luca Cardelli. Basic polymorphic typechecking. Polymorphism Newsletter, 1986.

[6] Luca Cardelli. A Polymorphic A-calculus with TypeiType. Technical Report DECS-10,
Digital Systems Research Center, May 1986.

[7] Luca Cardelli. Typeful programming. 1989. Unpublished.

[8] Luca Cardelli and Peter Wegner. On understanding types, data abstraction, and
polymorphism. Computing Surveys, 17(4):471-522, December 1985.

[9] Alonzo Church. The Calculi of Lambda-Conversion. Princeton University Press,
Princeton, New Jersey, 1941.

[10] Alonzo Church. A formulation of the simple theory of types. Journal of Symbolic
Logic, 5:56-68, 1940.

[11] Robert L. Constable et al. Implementing Mathematics with the Nuprl Proof Develop
ment System. Prentice-Hall, Englewood Cliffs, New Jersey, 1986.

[12] Thierry Coquand and Gerard Huet. The calculus of constructions. Information and
Computation, 76(2/3):95-120, February/March 1988.

[13] H. B. Curry and R. Feys. Combinatory Logic. North-Holland, Amsterdam, 1958.

[14] H. B. Curry and R. Feys. Combinatory Logic, Volume I. North-Holland, Amsterdam,
second edition, 1968.

69

70

[15] L. Damas and R. Milner. Principle type schemes for functional programs. In Proceed
ings of the Ninth Annual ACM Symposium on Principles of Programming Languages,
pages 207-212, ACM, 1982.

[16] Steven Fortune, Daniel Leivant, and Michael O'Donnell. The expressiveness of simple
and second-order type structures. Journal of the ACM, 30:151-185, 1983.

[17] Jean H. Gallier. On Girard's aCandidats de Reductibilite". 1988. Unpublished notes.

[18] Jean-Yves Girard. Interpretation fonctionelle et elimination des coupures de
I'arithmttique d'ordere superieur. PhD thesis, Universite Paris VII, 1972.

[19] Jean-Yves Girard. Typed Lambda-Calculus. April 1988. Draft book, translated by
Paul Taylor and Yves Lafont.

[20] Jean-Yves Girard. Une extension de ^interpretation de Godel a l'analyse, et son
application a Pelimination des coupures dans l'analyse et la theorle des types. In J. E.
Fenstad, editor, Proceedings of the Second Scandinavian Logic Symposium, pages 6 3 -
92, North-Holland Publishing Co., Amsterdam, London, 1971.

[21] Warren D. Goldfarb. The undecidability of the second-order unification problem.
Theoretical Computer Science, 13:225-230, 1981.

[22] Michael J. Gordon, Robin Milner, and Christopher P. Wadsworth. Edinburgh LCF.
Springer-Verlag LNCS 78, 1979.

[23] Robert Harper. Introduction to Standard ML. Technical Report ECS-LFCS-86-14,
Laboratory for the Foundations of Computer Science, Edinburgh University, Novem
ber 1986.

[24] Robert Harper. Standard ML. Technical Report ECS-LFCS-86-2, Laboratory for the
Foundations of Computer Science, Edinburgh University, March 1986.

[25] Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining logics.
In Symposium on Logic in Computer Science, pages 194-204, IEEE, June 1987.

[26] Robert Harper, David MacQueen, and Robin Milner. Standard ML. Technical Re
port ECS-LFCS-86-2, Laboratory for the Foundations of Computer Science, Edin
burgh University, March 1986.

[27] Robert Harper, Robin Milner, and Mads Tofte. The Semantics of Standard ML: Ver
sion 1. Technical Report ECS-LFCS-87-36, Computer Science Department, University
of Edinburgh, 1987.

[28] J. Roger Hindley and Jonathan P. Seldin. Introduction to Combinators and X-calculus.
Cambridge University Press, 1986. London Mathematical Society Student Texts: 1.

[29] W.A. Howard. The formulae-as-types notion of construction. In J.P. Seldin and
J.R. Hindley, editors, To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus
and Formalism, pages 479-490, Acadmeic Press, London, 1980.

71

[30] Gerard Huet. A unification algorithm for typed A-calculus. Theoretical Computer
Science, 1:27-57, 1975.

[31] Gerard Huet. A uniform approach to type theory. 1988. Unpublished notes.

[32] Gerard Huet and Bernard Lang. Proving and applying program transformations ex
pressed with second-order patterns. Acta Informatica, 11:31-55, 1978.

[33] Daniel Leivant. Polymorphic type inference. In Proceedings of the 10th Annual ACM
Symposium on Principles of Programming Languages, ACM, 1983.

[34] Daniel Leivant. Reasoning about functional programs and complexity classes associ
ated with type disciplines. In Proceedings of the Twenty Fourth Annual Symposium
on the Foundations of Computer Science, pages 160-169, IEEE, 1983.

[35] Per Martin-L6f. Hauptsatz for the intuitionistic theory of iterated inductive defini
tions. In J. E. Fenstad, editor, Proceedings of the Second Scandinavian Logic Sympo
sium, pages 179-216, North Holland, Amsterdam, 1971.

[36] Paul Mendler. Recursive Definition in Type Theory. PhD thesis, Cornell University,
1987.

[37] Albert Meyer and Mark Reinhold. 'Type' is not a type: preliminary report. In
Proceedings of the ISth ACM Symposium on the Principles of Programming Languages,
1986.

[38] Robin Milner. A theory of type polymorphism in programming. Journal of Computer
and System Sciences, 17:348-375, August 1978.

[39] John Mitchell. Type inference and type containment. In G. Kahn, D.B. MacQueen,
and G. Plotkin, editors, Semantics of Data Types, pages 257-277, Springer-Verlag
LNCS 173, 1984.

[40] John C. Mitchell. Polymorphic type inference and containment. Information and
Computation, 76(2/3):211-249, February/March 1988.

[41] John C. Mitchell. Second-order unification and types. June 1984. Unpublished notes.

[42] Bengt Nordstrom, Kent Petersson, and Jan Smith. Programming in Martin-Lof's
type theory. 1988. Draft book. .

[43] Christine Paulin-Mohring. Extracting Fut's programs from proofs in the calculus of
constructions. In Proceedings of the Sixteenth Annual ACM Symposium on Principles
of Programming Languages, pages 89-104, ACM, January 1989.

[44] Rozsa P^ter. Recursive Functions. Academic Press, New York, 1967.

[45] Frank Pfenning. Inductively Defined Types in the Calculus of Constructions. Ergo Re
port 88-069, Carnegie Mellon University, Pittsburgh, Pennsylvania, November 1988.

72

[46] Frank Pfenning. Partial polymorphic type inference and higher-order unification. In
Proceedings of the 1988 ACM Conference on Lisp and Functional Programming, ACM
Press, July 1988.

[47] Frank Pfenning. Program Development through Proof Transformation. Ergo Re
port 87-047, Carnegie Mellon University, Pittsburgh, December 1987. Talk given
at the Workshop on Logic and Computation, June 1987, Pittsburgh.

[48] Frank Pfenning and Conal Elliott. Higher-order abstract syntax. In Proceedings of the
SIGPLAN '88 Symposium on Language Design and Implementation, pages 199-208,
ACM Press, June 1988. Available as Ergo Report 88-036.

[49] Frank Pfenning and Peter Lee. LEAP: a language with eval and polymorphism.
In TAPSOFT '89, Proceedings of the International Joint Conference on Theory and
Practice in Software Development, Barcelona, Spain, Springer-Verlag LNCS, March
1989. To appear. Also available as Ergo Report 88-065.

[50] Jonathan Rees and William dinger , editors. Revised report on the algorithmic lan
guage Scheme. ACM, November 1986. In: SIGPLAN Notices 21(11).

[51] John Reynolds. An introduction to the polymorphic lambda calculus. In Gerard
Huet, editor, Logical Foundations of Functional Programming, Procedings of the Year
of Programming Institute, Addison-Wesley, 1988.

[52] John Reynolds. Three approaches to type structure. In Hartmut Ehrig, Christiane
Floyd, Maurice Nivat, and James Thatcher, editors, Mathematical Foundations of
Software Development, pages 97-138, Springer-Verlag LNCS 185, March 1985.

[53] John Reynolds. Towards a theory of type structure. In Proc. Collogue sur la Pro-
grammation, pages 408-425, Springer-Verlag LNCS 19, New York, 1974.

[54] Richard Statman. Number theoretic functions computable by polymorphic programs.
In 22nd Annual Symposium on Foundations of Computer Science, pages 279-282,
IEEE, October 1988.

[55] J. Steensgaard-Madsen. Typed representation of objects by functions. ACM Trans
actions on Programming Languages and Systems, l l (l) : 6 7 - 8 9 , January 1989.

