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Abstract

Differential - algebraic optimization problems arise often in chemical engineerting
processes. Current numerical methods for differential - algebraic optimization problems
rely on some form of approximation in order to pose die problem as a nonlinear program.
Here we explore an appropriate discretization and formulation of this optimization problem
by considering stability and error properties of implicit Runge * Kutta (IRK) methods for
differential • algebraic equation (DAE) systems. From these properties we are able to
enforce appropriate error constraints and method orders in a collocation based nonlinear
programming (NLP) formulation.

After demonstrating the IRK properties on a small DAE system, we show from
variational conditions that optimal control problems can have the same difficulties as higher
index DAE systems. This is illustrated for a number of small chemical engineering
optimization examples that exhibit higher index characteristics. For these cases the NLP
formulation in this paper yields efficient and accurate solutions.



L Introduction

The determination of optimal control profiles is of major importance for process
applications. Examples within chemical engineering include problems in reactor design,
process startup, batch process operation, etc. However, solution of optimization problems
with differential and algebraic equation modehstiD remains a diflBcniltproble
optimization problems with Tw n̂̂ ^nn>r algebraic equations can be solved in a straightforward
way as nonlinear programs. On die other hand, unconstrained problems with differential
equation models can be handled through die calculus of variations. However, models that
combine both of these features are currently optimized by imposing some level of
approximation to the problem. The purpose of this paper is to develop and discuss a
nonlinear programming formulation that leads to the accurate solution ( within an e
tolerance) of the general differential-algebraic optimal control problem.

Current methods for handling these problems either apply an approximation to the_
control variable profile or to both the state and control profiles. A straightforward approach
adopted by Sargent and Sullivan (1977) is to parameterize the control profile (e.g.
piecewise constant) over variable-length finite elements and to solve the differential
equations with this parameterization. A nonlinear programming algorithm is then applied to
the control parameters in an outer calculation loop. Similar strategies have been proposed
by Ray (1981) and Morshedi (1986). This "feasible path" approach requires the repeated
and expensive solution of the differential-algebraic eqautions. Also, state variable inequality
constraints cannot be handled in a straightforward way. Finally, the quality of the solution
is strongly dependent on die parameterization of the control profile.

Early studies with the second approach, parameterization of both the state and
control profiles, were reported by Neuman and Sen (1972), Tsang et al (1974) and Lynn et
al (1971). Here state and control profiles and die differential equations were parameterized
using some method of weighted residuals (eg. orthogonal collocation). This leads to a
large nonlinear program (NLP) with algebraic equality constraints. However, since NLP
algorithms were less developed at that time, this approach was either inefficient when
compared to feasible path methods, or was restricted to specialized (e.g. linear) problems.

With advances in NLP methods through the development of Successive Quadratic
Programming (SQP) and MINOS, these NLP's could be solved more efficiently and could
handle nonlinear state and control profile constraints in a straightforward manner. Biegler



(1984) demonstrated this approach on a small batch reactor problem. Renfro et al (1987)
solved much larger problems with orthogonal collocation on finite elements and piecewise
constant approximations to the control profile. In order to obtain accurate finite element
solutions, however, Cuthrell and Biegler (1986,1989) imposed additional constraints in
the NLP formulation in Older to enforce accurate state profiles. They classified the role of
finite elements in terms of knot locations (over which die error was equidistributed, hence
minimiTfri) and breakpoints that allowed for control profile discontinuities. This led to a
formulation that enforced the accurate solution of the differential equations and allowed for
a general description of the control profile. In this paper we explore the theoretical
development of these finite element constraints and present a formulation that leads to
arbitrarily accurate state variable and control variable profiles. Here finite elements serve as
decision variables in the optimization problem and are simultaneously required to satisfy
approximation error constraints and to locate control profile discontinuities.

This formulation will be considered from the perspective of a discretized
Differential-Algebraic Equation (DAE) system. Recent approximation error and stability
results by Petzold and coworkers will be tailored to optimal control problems and
incorporated into the NLP. The next section will review the equivalence between the
variatibnal conditions for general optimal control problems and die Kuhn-Tucker conditions
for the corresponding NLP formulation. Section 3 then discusses recent stability and
approximation error results for Runge-Kutta methods (including collocation methods)
ipplied to DAE systems. In particular we will discuss the appropriate selection of
collocation methods for higher index (i.e., more difficult) DAE systems. The following
section then discusses how these higher index DAE systems arise in optimal control
problems with path constraints and singular arcs. Section 5 presents the solution of a
number of higher index optimal control examples with our approach. Here it is shown that
arbitrarily accurate solutions can be found with our NLP formulation. Finally, section 6
summarizes die paper and discusses approaches to dealing with large-scale optimal control
problems.



2. Analysis of the Opdmalhy CotKlitwns for Optimal Control ProW

In this section we briefly review the equivalence between the calculus of

variations and the math programming approach. Special cases for optimal control problems

such as singular arcs and path constraints will be discussed after this section. Consider the

following general problem:

Min ¥ ( z ( b ) ) + J *( z ( t ) , i i ( t ) ) dt

u(t).x(t)

S.L 2(0
g(u(t),:

« F(z(t),
e(t)) ^ 0

gf(z(b)) £ 0

z(a) •=

z(t)L

u(t)L

z0

£ z(t) ^

^ u(t) £

u(t))

z(t)U

u(t)U

where:

Y( z(b)) * component of objective function due to final conditions

I < J > ( z ( t ) f u ( t ) ) d t = component of objective function due to integral of

state and control vectors

g « inequality design constraint vectors

z(t) « state profile vector

u(t) « control profiles

gj « final conditions inequality constraints

ZA K frwtifti condition for ttfttf vector

z(t)L
f z(t)U « sate profile bounds

u(t) , u(t) * control profile bounds

The variational conditions for Ais problem are:

du du du
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z(a) = z0

\J) A.(v) = -[ + Mr) t m h
dz dz '

where M(t) and A(t) are adjoint functions for the constraint g (u(t), z(t)) < 0 ,and

the ODE model respectively. Note that these conditions form a DAE system. Here the

algebraic relation (a) is used to determine the optimal control profile. Also, when

constraints (d) are active, these additional algebraic conditions can cause an additional

degree of difficulty in the solution of the DAE system. This difficulty is classified by the

index of the system and is considered later. Finally, if (a) is not explicitly a function of u,

then singular arcs can be encountered for the DAE system.

Kreindler (1982) showed that the above equations are stronger necessary

conditions than those presented in Bryson and Ho (1975). Cuthrell and Biegler (1987)

showed the similarity between the solution solved with a nonlinear programming

formulation and the corresponding variational conditions of the optimal control problem.

The Kuhn - Tucker conditions for the DAE's discretized with finite element collocation are

considered next.

Here we include the integration lengths, Actj f as decision variables in order to

find the breakpoints for control profile discontinuities. Later, in section 4 we also impose

constraints for the approximation error. The nonlinear program to be solved by applying

collocation on finite elements now has the following form:

Min

Cij, Uij, A a ,

s.t r

g ( z i j , u i j , A a i ) £ 0

g f ( z f ) ^ 0
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0

= 0

i= 2, ,NE

Actj =

where i is the element, and j is the collocation point. Also, Ac^ are finite element

lengths i =1,..., NE , Zf is the value of the state at the final time, and the

constraint gf is evaluated at the final time.

Note that z-^, u^ are collocation coefficients for the state and control profiles.

As shown in Cuthrell and Biegler (1989), the optimality conditions for the NLP

can be simplified to the following equations:

(a)

i = 2 NE

These equations (a) are the discrete analog of the adjoint equations. Then the discrete

analog of the variational conditions for the control variables are given in (b):

The final and initial conditions on the adjoint variables are:

= o

(d) Xk+1 ( a ^ = 0 if z0 not specified



The feasibility conditions for the ODE and the problem constraints are:

i ( P - *L+i(a) i = 2 NE

(0 g ( z i j , u i j ) ^

(g) g fUf) * 0

(h) kir • M-ij

T

(i) ^ ( g U ^ ) ) = 0

f ) ) - 0

For optimal control problems, numerical difficulties are encountered for problems
that have control profiles with state path constraints enforced and/or singular arc
segments. These characteristics can be classified by considering properties of DAE
systems. In the next section we define the index of a DAE system and relate this to optimal
control problems.

3. Definition of Index and Impact on Solution of DAE's

Implicit in the solution of the nonlinear programming formulation for the optimal
control problem is an accurate approximation to the solution of the differential equations.
Here we assume that the finite elements are kept sufficiently small so that the local error is
controlled within the element. However, it has recently been pointed out (Petzold (1982))
that numerical problems can occur with discretized differential equations solved in
conjuction with the algebraic equations. Methods can fail due to incorrect error control
strategies or instabilities resulting firom the error propagation during the integration. These
numerical problems are characteristic of classes of DAE's and can be classified by the index
of the system.



Consider the semUxplicit form described by Petzold and LBtstedt (1986) and

Brenan(1983):

Now the difficulty of solution can be characterized by die index of the system, which is

simply the number of times Ac algebraic equations of the system must be differentiated in

order to obtain a standard form ODE system. As an example, consider the mechanical
system of a simple pendulum pictured in Figure 1.

Fie

For the case of a unit mass on a
describe the model:

•
X *•
y mw•

u «
•

V «
1 -
x(0)
y(0)

u
V

-Tx

g-iy
2 2

x • y- »o
* yo

lire 1 Pendulum Svstem

unit length of string, the following system of equations

. W
(b)
(c) (2)

(d)
(0
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This is an index three system because (e) must be differentiated (and ODE's substituted)

three times to yield a first order ODE in T. The first differentiation yields:

0 « xu + yv (f)

Differentiating (f) gives:

0 « -T + yg + u 2 + v 2 (g)

And differentiating *pflfo Ifaris to i

t « 3vg-2Tux-2Tvy (h) Index 0

Using the index 0 formulation t one can solve this problem with any standard

ODE solver once consistent initial conditions have been specified ( Pantelides (1988)). The

solution of this problem in the higher index forms has been studied for linear multistcp

methods such as the BDF (backward - differentiation formulas) first proposed by Gear

(1971) and currently used in codes such as DASSL (1982) and LSODE (1980).

Convergence proofs have been established for fixed step-size BDF methods for index 2

and index 3 problems by Petzold and Lotstedt(1986) and Brenan and Engquist (1985).

Theory for variable step-size BDF for index 2 systems was established by Gear et al

(1985).

Runge-Kutta methods for DAE's have been studied by Petzold (1986),

Marz(1981), Brenan and Petzold (1987), and Burrage and Petzold (1988). Petzold showed

that the Runge-Kutta methods can suffer order reduction for index erne problems. Brenan

and Petzold (1987) studied the order, stability, and convergence of implicit Runge-Kutta

(IRK) methods applied to differential-algebraic systems. Burrage and Petzold (1988)

established die convergence and stability properties of index 1 systems solved by IRK

methods. For example, two point orthogonal collocation falls into the class of IRK

methods which are stable and have good error control for index 1 systems.

The higher index problem is of concern, however, because it is often desirable to

solve the DAE system directly rather than die differentiated form. Moreover, for optimal

control problems, the solution may be governed by different sets of constraints over
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different parts of the trajectory and the reformulation is difficult to implement Also the

differentiation may introduce additional constants of integration which may not remain

invariant under integration. As an example, consider the index 1 problem

0 - y

which can be differentiated to obtain:

y - * (4)

Even with the correct initial condition y(0) « 0, integration errors due to truncation and

roundoff errors could cause the numerical solution of (4) to differ from that of (3). We

would also prefer to use the formulation of the DAE's in the higher index form because this-

is the natural statement of the physical models.

Finally, the nonlinear programming formulation of the optimal control problem

requires a self-starting method. Consequently, the properties associated with Runge-Kutta

methods are especially useful to us. In particular, the method we have chosen to discretize

the differential equations is orthogonal collocation on finite elements. The method must

possess strong stability properties and control the local integration error because the

stability of the method and the local error determine the global error. Since collocation is an

implicit Runge-Kutta method, we can directly apply their stability and error properties for

index one and higher systems (Petzold(1986), Brenan and Petzold(1987), Burrage and

Petzold (1988)). The next section will briefly review these properties. This is necessary in

order to determine what order method ( i . e . , number of collocation points) is needed to

obtain a stable and accurate solution for different classes of optimal control problems.

3-1 Review oT Runge-Kutta Analysis:

The standard Runge-Kutta analysis starts with the consideration of an initial value

problem:

y « f ( t . y ) , y(to)«y(O)
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The s-stage Runge-Kutia method applied to (5) yields

Y i « y n + h X a i j f ( t J l 4 c j h , Y j ) , «=!. s

(6)

where
(bi.

j«lf...«t»

cT« (c r

the Butcher block coefficients

c , )« AeM

ci.
eM • (1 1) , unit vector

h « step length of integration

For example, the 2-stage Gauss - Legendre method (2 point orthogonal collocation) is

represented by the following Butcher block notation:

3-V3 1_
4

3 + V3 1_
4

1̂

1_
4

1
I

1
2

Now the local error
systems if and only if

b T A " V - 1»

has been shown by Petzold (1986) to be O(h k'+1) for index one

C7)

For the above two point orthogonal collocation method it is easily shown that the Butcher
block coefficients satisfy the error relationship (7) for ka * 2. For higher index systems,



11

.eedu.considerftesugeoTderor-gebnicorierofUK^UKAH^e.es^ order

is the Ingest integer w that satisfies *e following leas:

k-l k / lr i . i « (8)A k-l k / lr i . i
C(w) : 2*ijCj -C j / k • l - l , . . .

B(w):

If C (kj) and B (kj) hold for the Runge-Kutta method with s stages then it has a stage
order k] and the local error is O (hk ' ) . For collocation the stage order is the number
of internal points and C(w) and B(w) are self-generating ( Burrage and Petzold (1988)).

Therefore, collocation methods have stage order kj and the stability and error
relationships developed by Brenan and Petzold (1987) can be used to predict the integration
error and stability behavior of the system. First let us consider the error relationship for the
local error. The general relationship is:

where v * the index of the system

k ^ - the largest integer k that satisfies the following tests.

b V c M - bVc" 1 / ( v - i ) ! i -1.2 v-1
l k

Specifically. for index 2 systems, the algebraic older k satisfies:

b V e M

And for index 3 systems
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bV2eM« b W
T -1 T -3 2

bVeM« bVcJj
bVV« i(i-l) i«3,4,...k

Then the local error for index one and index zero systems is simply the last term

for dn,v and the higher index systems terms are added as required Thus, by noting that the

stage order for collocation methods is the number of internal points, one can find die local

order of the errors for the following methods:

Index 1. Two-point collocation - O (h**1 *! V O ( h 0 ) )

Index 2. Three-point collocation - O C h 0 ^ - O(h (3>)

Index 3. Four-point collocation - O ( h ( k ° "! ^ - O ( h ° )

These results are valid for A-stable and L-stable collocation systems in that these systems

satisfy the tests outlined above. Note that there is an order reduction in the local error for

the higher index systems. Let us now consider the stability of the methods. Brenan and

Petzold (1987) developed the general stability relation for the error propagation from step

to step:

-* CM)

i-1 h

where 8B.v « perturbations due to roundoff error and machine

They defined a stability constant r, as

and |r| < 1.0 for strict stability.

For two point orthogonal collocation, the value of | r | « 1 . 0 because

bT A*1 eM = 0. Note that this does not satisfy the sufficient strict stability condition of
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|r| < LO. However* further work by Bimage and Pttzold (1988) showed this method to
be stable for index 1 systems and proved the convergence properties for linear constant
coefficient systems of index 1. Also, index 1 systems have been shown to be stable and to
not suffer any order reduction for semi-explicit systems (Roche (1987), Deuflhaid et al.
(1985), and Griepentrog and Man (1986)).

Note that for the local enor analysis, three point collocaticm was found to satisfy
the index 2 order tests and four point was found to satisfy ihe index 3 tests. Also, two
point collocation failed the index 2 tests . Note that orthogonal and non-orthogonal
collocation will satisfy the local enor tests because die butcher block coefficients axe self
generating for collocation. However, the difference between die methods (orthogonal and
non-orthogonal ) becomes apparent when computing the stability coefficient. The

T -1 T -1

orthogonal roots will yield b A eM« 0 for two and four points andb A eM= 2 for
three point collocation. This will cause the methods to be A-stable ( |r | « 1.0), but not
L-stable. However, L-stable methods can be achieved by using the Legendre roots in the
A-stable method and, in addition, applying a collocation point at the end of the element.

T -1

This leads to b A eM« 1 and | r | « 0- (Recall that a method is A-stable if it stably

integrates the test equation y = Xywhere X is a complex number with negative real part

The method is L-stable if Ac method is A -stable and fimRe0A)^_« p 1 ^ ] * 0.)

With the stability results and local error estimates, one can estimate the global

error for an implicit Runge-Kutta method as shown by Brenan and Petzold(1987). The

order is of O (hkcof) for all solvable linear constant coefficient systems of index £ v. The

constant coefficient order kCt* is given by

where
kd tofteoderofilrciirthalte

is the algebraic order.

For optimal control problems, the solution trajectories could be composed of
mixed index portions due to the existence of path constraints and singular arc sections.
When a higher index section exists in conjuction with lower index sections, then the errors
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will be different and an error control strategy will have to be able to control the different

order of errors for the different indices.

From theoretical properties developed by Brenan and Petzold (1987), systems of

equations of higher index can now be considered by choosing die appropriate method and

by coo trolling the integration «™r Tte minimum wny iinwiw»«* for these methods are listed

below:

1. Index 1 problems - two point collocation

2. Index 2 problems - three point collocation

3. Index 3 problems - four point collocation

Note that for higher index systems, care will have to be exercised to prevent the error

propagation from the index variable. These inaccuracies will, with enough integration

steps, cause the solution to become unstable. Here either an L-stable method could be used

for the solution and/or a separate error control strategy for the index variable could be used

to control the error if die number of elements in the higher index portion is small.

32 Numerical Experiment:

The stability and error properties of Brenan and Petzold (1987) are verified in this

subsection using the pendulum problem. Here the " true " solution was generated by

using the index zero formulation and solved with LSODE. The system of differential

equations was integrated forward in time, using a constant integration step size of 0.005

from a set of consistent initial conditions;

1.0f yo«O.O,yo*O-OtVO«O.Of uo«O.O,To«O.O.

Further, two point collocation was used for the index 1 system, achieving a

solution that matched the index zero solution, but it failed for the index 3 formulation as

predicted by Brenan and Petzold (1987). On die other hand, four point ( non-orthogonal,

L - stable) collocation was found to solve the index 3 formulation. However, when

orthogonal roots (A-stable method) were used, the emir propagation caused the solution to

become unstable as the integration proceeded forward. The non-orthogonal roots remained

stable because the L-stable method effectively damps out the error propagation for each
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finite dement These results CTable 1) follow the stability properties shown by Brenan
andPetzold (1987).

Table 1 Pendulum Results

after 100
Index
0
1
3
3

elements
X

0.391044
0.391048
0.391048
0.391048

after 2000 elements
0
3
3

0.275085
0.275087
-0.137607

y
0.920376
0.920369
0.920369
0.920369

0.961419
0.961419
0.951803

u
-3.91109
-3.91104
-3.91104
-3.91106

-4.175598
-4.175598
40924.18

V

1.661727
1.661734
1.661736
1.661705

1.194742
1.194749
-283047

T
27.086565
27.086487 +
27.086496 *
31.684719 •*

28.294455
28.294575 *
1.068el2 **

Key + two-pointA-stable (orthogonal)
* four point L-stable ( nonorthogonal)

+* four point A-stable ( orthogonal)

The A-stable cases are obtained by using orthogonal collocation, and the L-stable
cases are obtained by also collocating at the endpoint Note that die error propagates in the
algebraic (or control) variable and as the enor grows with time it causes die differential
variables to become unstable (as shown by the A-stable case when the integration required
a significant number of elements for the total integration period-For fids j«>blem the error
propagation did not cause solution problems untQ after the 20* dement). The above results
were obtained by careful selection of a fixed integration step size (h«0-005 ).

Inth tion wt will investigate tie similarity between path constraints and
singular arc conditions for optimal control problems and die index problem for solving
DAE systems. We will consider path constraints and singular arcs from a variational
standpoint and show how these conditions can arise in a math programming formulation.
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4. DAE DifBcultio in Optimal Control

Bryson and Ho (1975) developed the case for an equality path constraint as a p lh

order state variable constraint when the equation is a function of states only (the control is

implicit in the equation). Consider the state variable constraint:

S(xft) -0 (10)

For this condition to hold for a section of the path, t© £ t £ tj t its time derivative along

that section of the path must vanish:

as 25. + 25. f(x.u.t) s. o (»)
* at 8x

Now the order (p) of (11) is defined as the number of times that (11) has to be

differentiated in order to recover the dependence of the control, u. For a DAE system, the

corresponding constraints will occur when a path constraint, g ( z , u ) £ 0, becomes

active, e.g., when a state reaches one of its bounds. As discussed earlier, the index of the

problem is p+1, which is the number of differentiations required to obtain a differential

equation for the control variable. To control the integration error and maintain the stability

of the solution, we need to anticipate that higher index constraints may become active and

thus use the appropriate level of discretization for the collocation constraints. As mentioned

in the previous section, die appropriate number of collocation points per element as well as

the use of an A-stable ( orthogonal collocation) or an L-stable ( additional collocation point

at the end of the element) form can be applied once the index of die algebraic constraints

has been analyzed.

A less obvious instance of higher index algebraic constraints occurs when

singular arcs are present Normally, this can occur with variational problems which are

linear in the control variable. To see die influence of singular axes, consider the following

simple optimal control problem (Bryson and Ho (1975)) with a single control profile:

Min t f

s.t x « f ( x ) + g(x)u (12)
to £ t £ t,
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Here, die Hamiltonian is linear in u and assumed to be non-linear in x

H«X T [ f (x)+g(x)u] (13)

Necessary conditions include

dH T
— « X g ( x ) « O
du * (14)

.T T

X « - [ X ( f s + gxu)] ( 1 5 )
T

X ( tf) « - ( Ox ) (16)

Note that equation (14) does not detennine the control u (x, X ) but it may be possible to

find u( t) over a finite time period so that (14) is satisfied. If this happens, then

3x

Substituting (12) and (IS) into (17) yields

ft.xifg.ix
* du dx dx

T
-X q(x)«0

where

Note mat the terms in n cancel each other so we are forced to take the second derivative of

vT~~' in order to recover u:
du
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4(, \ \ ^ s ) \
di ou dx dx dx

( q) ( g
dx dx dx dx

Then

dx

d* . d* (20)

Therefore, singular arcs that occur for the above type of problems would be at least index
dH3 because at least three differentiations of — are required to obtain an expression for
du

u . From a DAE standpoint, we can examine equation (a) for the first order variation in the

control. Note that when the Hamiltonian is linear and singular arcs exist, the quantity

( ) ^ is equal to zero. On the other hand, if this quantity is not equal to zero, the
du

control will be on one of the bounds. Here, the index of the system is one because we have
an active inequality constraint in u. Finally, even though we have potential for the singular
arc to exist, it does not mean that the singular arc will be on the optimal trajectory since
second order conditions (Legendre • Qebsch) must be satisfied (Lewis (1980)).

In closing this section, a natural question to ask is:

Why isn't the problem reformulated as a lower index form where the stability concerns and
error propagation concerns are not an issue ?

The answer is that the constraints would have to be differentiated explicitly to
obtain the form of the equations with the control appearing in the equations. It is not
desirable to use the differentiated form because, over the solution trajectory, different
constraints may be active and we do not know, a priori, where the higher index constraints
will be active. Also, the issue of numerical errors from using the differentiated form would
have to be considered. We would therefore like our method to be robust so that
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reformulation of the problem will not be required during the solution of the optimal control

problem.

5. Dement Placement to Control Approximation Error

In the previous section, die NLP and variational formulations were shown to be

equivalent as long as the elements were sufficiently small to allow for an accurate

discretization. To ensure this, we include the element lengths as decision variables in the

NLP formulation and E*M additional inequality constraints to keep the flppm* hTmtinn error

small. Note that discontinuous control profiles are allowed at die end of each element

Thus, any element may determine an optimal breakpoint location as long as it is small

enough to satisfy the error constraints.

To derive the error approximation constraints, we consider the discussion in

Russell and Christiansen (1978) of various strategies for adaptive mesh selection to solve

two-point boundary value problems. Here, a residual based criterion was developed for

collocation methods which is effective for finding die element locations or breakpoints

( switching times). The criterion is useful for index one or index zero problems where all

the errors are of the same magnitude. (There is no order reduction due to a higher index

variable being present) The criterion is based on evaluating a residual at a non-collocation

point for an error estimate:

| e ( t ) | | « C r ( t n c ) h + O ( h ^ 1 )

« O(hS

where h « step length (Le. t element length)
« residual evaluated at a non-collocation point

We compute ihe residual at a non- collocation points within the element (we used

the endpoint ) by extrapolating die states and controls to that point. To illustrate the

procedure, owii?vte!r die two-point collocation case shown in Figure 2.
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»ij «ij uij uij uij »ij
zi0 z l i Z2i zi0 z l i Z2» zi0 z l i Z2i

1 * *__ !__* * 1 * * 1

0 1

Figure 2. Two - point collocation

For each differential equation equality constraint,

zj = F (Zi, Adj, u )

we construct the residual at another point by extrapolating the states found from the

solution of the collocation equations in the element. Here the extrapolated derivative is

given by:

Aa i 2 i = £ — ± ( T = 1 ) z? (22)
j«o dt

and the right hand side terms can be calculated by using the states and controls extrapolated

to the point of interest

X j ( t = 1 > zi-ij (23)

where
8 j ,Yj = Lagrange polynomial basis functions evaluated at x = 1.

x s normalized length along dement i-1.

The residual for each differential equation is then evaluated as follows:
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J ' ° (24)

Next we choose an error norm to control the overall error within the element for all the

differential equations. We found the sum of the squares to be effective:

w (25)

We can cither enforce this inequality constraint in the optimization formulation

directly , or monitor the residuals in an outer loop and take corrective action as required to

ensure an accurate solution. Note that this enforcement is only effective for index one

problems. However, for higher index problems, the order of the error is reduced. This

reduction in the order of the approximation error particularly affects the accuracy of the"

higher index variables, i .e. , those variables for which no differential equations appear.

Here, a different error control strategy is required for the control of the integration error of

the higher index variables. For optimal control problems, this variable is usually the control

variable. Here we use an error control strategy based on derivative information which can

also be found in Russell and Christiansen (1978). The highest nonzero derivative of the

approximate solution, v(x), bounds the approximation error by the following relation:

For example, with four point collocation, we required the third derivative of the control

profile to be less than a tolerance. This can be enforced as an algebraic constraint on the

control profile.
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6. Example Problems

In this section, examples art presented which demonstrate that mathematical
programming using SQP ( with finite elements using orthogonal collocation for the
discretization ) can obtain accurate numerical solutions for higher index optimal control
problems. The key to obtaining results for die higher index systems is to control the
integration error as discussed in die previous section, thus ensuring that die state profiles
are accurate for the next clement For the higher index systems* the integration error was
controlled through enforcement of residuals at a noncollocation point Additionally, for
singular arc segments, the integration error control requires enforcement of a constraint
relating directly to the control variable. We require that the control profile be of an order
such that its ktb derivative would be less than a tolerance. The enforcement of these
constraints, along with the proper order of the collocation method for the index of the
problem, was used to obtain satisfactory control profiles. For index one problems, it was
not necessary to directly enforce the residual constraints, provided that the elements were
monitored and kept sufficiently small.

6.1 Index One Problems-Batch Reactor Problems

The first example is the batch reactor example found in Ray(1981) and discussed
by Biegler (1984) and Renfro (1987). This problem is of interest because the control
profile becomes saturated and moving elements are required to find the exact profile. The
optimal control problem is

Max y2O.0)

0 £ u £ 5

This problem is index 1 because one differentiation is required to obtain an expression for
u from the optimality conditions .The stability results presented earlier indicate that two-
point collocation should achieve die solution within a good accuracy. Since the problem is
linear in the states , we solve for die states within each element for a set of control
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variables. Figure 3 shows the control profile (using two - point collocation) and Table 2

summarizes the control profile.

• Control Var.

2.716-20 2.00e-1 4.00e-1 6.006-1 8.006-1 1.0064-0
Tlm6

Figure 3. Optimal Temperature Profile

Example No. 1

Element Aa;

Table 2 Example # 1 Results

Control variables

inclement

Residual

1
2
3
4

5
6
7
8
9
10

.15932

.16496

.16338

.15218

.13024

.08931

.04655

.02193

.01776

.05432

.76175

.85010

.98663

1.1839
1.4785

1.9519

2.6572

33327

4.0033

5.0

.80922

.92967

1.8042
13547

1.7303
2.3354

3.0419

3.7057

4.4000

5.0

2.7987C-7
1.2399e-6

1.5999e-6
5.3628e-6

7.7268e-6

&5961e-6

7.6322e-7
5.7064c-8

3.8208e-8

13414C-5
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The solution required S3 iterations to reach a Kuhn-Tuckcr tolerance of 10"6 with
the objective function being a yield of 0.57353. The CVI (control vector iteration) result
was 037349 and the CVP (control vector parameterization) result was 036910 for the case
of a starting profile of u « 1.0 ( Biegler (1984)). The elements were allowed to vary
slightly and the residual errors were simply monitored. Tea elements were required to
obtain a control profile with the saturation portion pciny exhibited*

The second example is also found in Ray (1981) and is an index one problem
with nonlinear states and controls. Renfro (1986) solved mis problem by using piecewise
constant controls and by scaling the problem to avoid numerical difficulties. We did not
need to apply this restriction to the solution of the problem. The problem is a batch reactor
with temperature as the control variable. The objective function is the maximization of one
of the products after a fixed reaction time. This example considers die following reaction:

The problem is nonlinear in the rate equations for the concentration of A. By
letting the following represent the concentration of A and B (Cj « [A], c2«[B] ), the

optimal control problem becomes:
Max c 2 (1 .0)

s.t.

^ -MT)c?-k2(T)c2

1.0. c2<0)«0
298 £ T £ 398

Figure 4 shows the solution obtained using two-point collocation. Table 3 summarizes the
results.
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Table 3 Example #2 Results

Element Aa. Control variables Residual

in element

1
2
3
4

5
6
7
8

.0281

.0318

.0856

.0792

.1997

.3094

.256

.009

391.9
366.6
352.9
344.2
338.2
333.6
329.9
326.9

375.4
357.0
347.4
340.2
335.4
331.4
328.0
325.0

1.14c-4
7.08e-6
4.05e-5
3.29e-6
3.78e-5
3.48e-5
1.68c-6
4.48c-13

. This solution required 88 iterations to achieve a Kuhn - Tucker tolerance of 10~7

with an objective function of 0.610767. Renfro obtained his solution in 14 iterations

(objective function of 0.610) but did not find the steep portion of die profile. To show that

the objective function is fairly flat, our method also found a solution (objective function of

0.606) in 11 iterations with a Kuhn - Tucker convergence of 10~* Figure 4 compares this

solution with the steeper profile.
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400

380

360

340

• Temperature
«*- Temperature*

320
2.71e-20 2.00e-1 4.00e-1 6.00e-1 8.00e-1 1.00e+0

Time

Figure 4. Comparison of Solution Levels
Example No. 2

The above example problems achieve good solutions with die error being controlled within
the elements as a natural consequence of using orthogonal collocation at Gaussian roots. As
discussed above, index 1 problems also pose no stability problems for our method.

62 Index Two Problems and Higher-Influence of Path Constrain

The next two systems art presented to illustrate that our method can handle path
constraints. The first system is discussed by Neuman and Sen (1973) , Mehra and Davis
(1972), and Jacobson and Lele (1969). Here we consider two examples that become index
two and index three when the path constraints are active. The first example is

KfinJ •« •«• • •«

s.t.

8(t-O5)2-0.5

*i(0)1 [ 0 1
X2(0)J " I -1 J
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This system was solved by using three - point collocation and fixing the elements.

The element length was kept small by using twenty equally spaced elements over the

integration length. It was not necessary to allow the dements to float because there were

no discontinuities in the profiles and the elements were sufficiently small to construct

accurate profiles. Also, the control profile had an algebndc constraint included so that its

2nd derivative was less than a tolerance.The control profile and path oonstndnt profile are

shown below.

• CONTROL VAR

•104
2.718-20 2.00a-1 4.00e-1 6.00e-1 8.008-1 1.006+0

TIME

FieuTt 5. Control Profile Exairrole #3

X2
PATHCONSTR

0.0 0.2 0.4 0.6 0.6 1.0 1.2

6. State Profile Exanrole # 3
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Note from Figure 5 that the path constraint is active over eight of the elements,

from time t=0.28 to t*0.70. The next example is based on the same problem formulation as

above except that the inequality is substituted by the following index three path constraint:

xx £ 8(t-0.5) 2-0.5

Again, the element lengths were fixed and three point collocation was used for the solution

presented in Figures 7 and 8.

• CONTROL V.1

2.71#-20 2.00#-1 4.00ft-1 6.00*-1 8.00ft-1 1.00e+0
TIME

Figure 7. Control Profile Example # 4



29

0.0 0.2 0.4 0.6 0.8 1.0 1.2

X1
PATHOONSTR

TIME

Figure 8. State Profile Example # 4

Note from Figure 8 that the path constraint is only active at one point of the

trajectory ( t=0.5). This allows three point collocation to find the solution because the

higher index portion does not propagate into the index one portion of the system. The

objective function values are summarized in Table 4.

Table 4 Minimum Values of Objective Function

Source

Jacobson and Lele

(1969)

Mehra and Davis

(1972)

(1973)
om* osetuOo

Index 2 Problem

0.164

0.178

0.16946

0.1696

Index 3 Problem

0.75

0.79

0.6894

0.7368

Neuman and Sen and lacobsen and Lele obtained lower objective function values because

they found only approximate solutions and did not enforce error constraints for these

profiles. On the other hand, by using the derivative constraint on the control profile,
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extrapolating the control variables to the initial and endpoints, and by bounding these points

through inequality constraints, we were able to enforce die accuracy conditions over the

entire trajectory.

For the second system, consider the problem of starting and stopping a car in

Biegler (1987) and is given by:

Min <Ktf)

s.t ij *
Zj -

-2 £
u

u £ 1

MO) «0 , z2

- 0 , zj
(0) - 0

t(t^-300

This problem is index 1 because one differentiation is needed to obtain an

expression for u (from the active inequality constraint bounding u). The analytical solution

is the expected bang-bang solution shown in Figures 9,10 and 11. Using a two point

collocation method in the NLP formulation leads to a solution thai matches these results.

Next we place a path constraint on die problem by setting an upper bound on the

speed of 10 units. When this speed limit comes into effect, the problem becomes index 2

for that portion of the solution trajectories. The problem is index 2 because the speed

cannot exceed 10 units and the control has to be adjusted accordingly (note two

differentiations are needed to obtain u from Z\ « 10). The analytic solution profiles for

this problem are shown in Figures 12,13, and 14. Notice that the path constraint forces

the control off of the bounds even though the problem is linear in the states and the control.
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0-

-1-

-2-

-3-

1

W W W | . | .

10 20
TIME

30

• ACCELERATION

40

Figure 9. Analytical Acceleration - Unconstrained Case

• VELOCITY

20
TIME

10 Analytical Velocity - Unconstrained G&se
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400

800

200

100

• DISTANCE

Figure 11. Analytical Distance - Unconstrained Case

I
I

• Aoc. (S.L)

TIfM

Figure 12. Analytical Acceleration -> ConfftTBinffd CrBffC
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|
i

Retire 13. Anaivtical Velocity - Constrained Case

400

300

- • • Di*l(s.l)

100

20
Tbiw

Id Anaivtical Distance - Constraint] Case
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However, if a two point collocation formulation is used without controlling the
residual error, one obtains the unsatisfactory profile as shown in Figure IS. Adding the
residual constraints as inequalities to the formulation leads lo a numerical solution that
matches the analytical result Note that we solved a mixed index 1 - index 2 system by
enforcing error constraints using two point collocation, which does not have the stability
properties for index 2 systems. The reason is that the analytical solution is approximated
exactly by the polynomials . Thus, there is no error to propogate over the index two
portion, which actually consists of only one element

J
CO

i
• Acc.(S.L)
• Ace. Non-res.

10 30 4020
Tim*

Figure 15. Acceleration Profile - Nonresidual case
Example No. 5

63 Index Three Problem • Singular Arc Example

The final example is a catalyst mixing problem of Ounn & Thomas (1964) that
was solved analytically by Jackson (1968). For a sufficient reactor length, the system
admits a singular arc segment to die optimal contitd profile. The problem description is:
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Max P(t) « l-x(t^-y(t^ , t ( specified

s.t. -gj- •

•g- « - u ( k 2 y . k 1 x ) . ( l - u ) k 3 y

x(0) « 1.0
y(0) « 0.0

The Hamiltonian for this system is

H - X ^ C k j y - M ) + X 2 [ ( k 1 x - k 2 y ) - ( l - u)k 3 y]

and the adjoint equations are

X2 =-uk2(X1-X^) + ( l - u ) k 3 X 2

Taking the first time derivative yields

J-katX-^x-X^y) « 0
ou

which does not exhibit any control dependence.

The second time derivative is

) . k 3 l X ^ x + X2kxi •
dt du

from which one can obtain the control as in die general derivation 9 equation (20). The
problem is index 3 over the singular arc section. The analytical solution is shown in Figure
16. The solution trajectory is comprised of mixed index portions with the first and last
trajectories being the sections where the control is on the bounds. The middle section is a
singular arc section with an index of three. This problem poses a severe test for the
optimization code because of the index problems.
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Control var.
Analytical

0.0
0«+0 2e-1 4*-1 6«-1 8«-1 1«+0 U+0

LENGTH

16. Ootimal Mixine Policv

Table 6.0 Mixed Catalyst Results

sner

1
2
3
4
5

it Atti

.07924

.05750

.29830
29311
.27182

Controls
» i

1.0
1.0

.2264

.2252
0.0

in element
u2

1.0
1.0

.2267
2249
0.0

Final

Residual

2.241e-5

7.075e-7

1.320e-10

4.360e-ll

1.006e-8

Error

Tolerance

2.5c-5

9.0e-7

9.0c-11

9.0e-ll

L9e-8

Because the singular segment is of index thrte» a higher order collocation method

should be applied to solve this problem. Moreover, if a large number of elements are

required to describe the singular segment, this method shcwM be I^stabk in order to limit

growth of the propagation error. To test these conditions, we attempted to solve this

problem using only two point collocation and by controlling die integration error in each

element As shown in Figure 16 and Table 6, we achieved a solution only by specifying

different error tolerances in each element These were found by trial and error until the

solution matched the analytical profile. Note that very tight enor tolerances needed to be

specified for the singular segment Other attempts would either fail or converge to sub-
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optimal solutions. Next, we considered four-point collocation using Gaussian roots (the A-
stable case). Again, we enforced the error constraints in the formulation but failed to
achieve the optimal solution. ( Here we started with a flat profile of u « 0-2 and equally
spaced elements over the integration length). Instead, we enforced an additional constraint
on the control profile by requiring the third derivative oftiie control profile to be less than a
tolerance. As discussed in section 5, this constraint was suggested in Russell and
Christiansen (1978) and is directly related to the approximate error in the control profile.
With die addition of this constraint, we achieved a numerical solution using the GAMS
/MINOS optimization systems that matched the analytical profikta
controlling the integration error on die control variable this is similar to DAE approaches
that enforce different error control strategies for the higher index variables.

As with the index three path constraint problem, the singular segment was
approximated only by a single element Thus the A-stable four point collocation method^
produced a solution because there was no propagation of error in the index 3 portion. An
alternative approach would be to apply an L-stable collocation method to solve this
problem. Four point collocation (using the three point orthogonal A-stable roots with the
endpoint for die collocation points) was used to test the L-stable method The basis
functions values were changed to reflect the L-stable roots, and the GAMS/MINOS system
was used to achieve the solution matching the analytical. However, in order to obtain
convergence, the error tolerance for the integration error enforced by die evaluation of a
residual at a non-collocation point was relaxed This was necessary because the four point
L-stable method is less accurate than the four point A-stable method

Finally, we converted die catalyst problem from an index three problem to an
index zero problem by parameterizing die control profile as variable length piecewise
constants. This approach is valid for this problem because die form of the optimal control
profile is also piecewise constant In fact, if die numerical difficulties caused by higher
index systems prevent die solution from cxmvcr^g for the general polynomial fbnn of the
control profile outlined earlier, then one could always obtain a satisfactory feasible starting
point for the gencndpolyiKmialfonn by par^ The solution
using this approach also matched the analytical solution within numerical tolerances (see

Figure 16).
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7. Conclusions

This paper presents a general method for obtaining optimal control profiles by
numerical methods that are arbitrarily accurate and match analytical solutions wbcn tbcy
be found. This approach uses a math programming technique for the solution by
discretizing the differential equations using orthogonal collocation on finite elements.
Lagrange polynomials are used to construct the approximations to the continuous model
and the resulting set of algebraic equations is solved as pan of the nonlinear program. This
wofk is different from earlier weak using collocation to find these i^ofiles in that it directly
uses the integration error information to construct accurate profiles.

Difficulties in solving sets of differential - algebraic equations that result from
variational conditions can be classified by the index of the system to be solved These
difficulties are associated with local error and stability properties of the integration
method when higher index conditions exist in the system. Here collocation was shown to ~
possess A-stable as well as L-stable properties* depending cm the location of die collocation
points. Also, an appropriate number of collocation points needs to be used to overcome any
potential order reduction from higher index systems. For optimal control problems, we
show that these higher index conditions occur from active state variable constraints or
singular arcs. Thus, by choosing an appropriate order for the collocation method,
reformulation of the problem is not necessary when these higher index conditions become
active in the system.

The method was demonstrated on index one, two, and three systems. For index
one systems of batch reactors with nonlinear control profiles, die control profiles were
continuous profiles. Thus, it was possible to let die element lengths vary slightly between
upper and lower bounds rather than directly enforcing the residual constraints on die math
program. The residuals were monitored as the element lengths varied to account for steep
profiles. Implicit in this approach is a sufficient number of elements to allow for an
accurate solution. Also, two path constraint problems of index two were considered The
fim can be formulated as a simpteQ
die control profile. Here the solution was achieved with fixed element lengths. The second
example considers movement of a vehicle in iraniimun tune to cover a fixed 4figffg>ftf with a
speed limit path constraint This problem has two switching times ( or two discontinuities
in the control profile) as the path constraint was encountered. For successful solution,
residual error constraints have to be directly enforced in the math program.
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Finally, two index three systems were solved. Again, the first system was a
simple QP with the index three system resulting from an active path constraint. However,
the higher index constraint was active at only one points and therefore testability and error
reduction issues were not a factor in the solution of the problcnL The last example, finding
the optimal mixing policy of catalyst for two reactions in a fixed length erf a tubular reactor,
was difficult to solve because of die existence of a singular arc in the optimal control
profile. It was necessary to directly enforce the residual error constraints as well as an
error constraint on die control profile, because of die higher index conditions due to the
singular arc.

The above problems are small problems taken from the literature to demonstrate
the validity of our approach. Future work will deal with larger chemical engineering
systems (such as batch distillation systems ) which will require decomposition techniques
to obtain solutions. The Range and Null space decompositon technique ( Vasantharajan and
Biegler (1988)) for Successive Quadratic Programming will be exploited for this purpose.
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