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Abdgract

Differential - algebraic optimization problems arise often in chemical engineerting
processes. Current numerical methods for differential - algebraic optimization problems
rely on some form of approximation in order to pose die problem as a nonlinear program.
Herewe explore an appropriate discretization and formulation of this optimization problem
by considering stability and error properties of implicit Runge * Kutta (IRK) methods for
differential « algebraic equation (DAE) systems. From these properties we are able to

enforce appropriate error constraints and method ordersin a collocation based nonlinear
programming (NLP) formulation.

After demongtrating the IRK properties on a small DAE system, we show from
variational conditionsthat optimal control problems can have the same difficulties as higher ~
index DAE systems. This is illustrated for a number of small chemical engineering
optimization examples that exhibit higher index characterigtics. For these cases the NLP
formulation in this paper yields efficient and accurate solutions.




L Introduction

The determination of optimal control profilesis of major importance for process
applications. Examples within chemical engineering include problemsin reactor design,
process startup, batch process operation, etc. However, solution of optimization problems
with differential and algebraic equation modehstiD remainsa diflBeniltproblem. At present,
optimization problemswith T 1 algebraic equations can be solved in a straightforward
way as nonlinear programs. On die other hand, unconstrained problemswith differential
equation models can be handled through die calculus of variations. However, models that
combine both of these features are currently optimized by imposing some level of
approximation to the problem. The purpose of this paper is to develop and discuss a
nonlinear programming formulation that leads to the accurate solution (within an e
tolerance) of the general differential-algebraic optimal control problem.

Current methodsfor handling these problems either apply an approximation to the
control variable profileor to both the state and control profiles. A sraightforward approach
adopted by Sargent and Sullivan (1977) is to parameterize the control profile (e.g.
piecewise constant) over variable-length finite elements and to solve the differential
equationswith this parameterization. A nonlinear programming algorithm isthen applied to
the control parametersin an outer calculation loop. Similar strategies have been proposed
by Ray (1981) and Morshedi (1986). This" feasible path" approach requiresthe repeated
and expensive solution of the differential-algebraic eqautions. Also, Sate variable inequality
constraints cannot be handled in a graightforward way. Finally, the quality of the solution
is strongly dependent on die parameterization of the control profile.

Early studies with the second approach, parameterization of both the state and
control profiles, werereported by Neuman and Sen (1972), Tsang et al (1974) and Lynn et
al (1971). Here state and control profiles and diedifferential equationswer e parameterized
using some method of weighted residuals(eg. orthogonal collocation). This leads to a
large nonlinear program (NL P) with algebraic equality constraints. However, since NLP
algorithms wer e less developed at that time, this approach was ether inefficient when
compar ed tofeasible path methods, or wasr estrictedto specialized (e.g. linear) problems.

With advancesin NL P methods through the development of Successive Quadratic
Programming (SQP) and MINOS, these NL P's could be solved more efficiently and could
handle nonlinear state and control profile constraintsin a sraightforward manner. Biegler
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(1984) demondrated this approach on a small batch reactor problem. Renfro et al (1987)
solved much larger problemswith orthogonal collocation on finite dementsand piecewise -
congtant approximations to the contral prafile. In order to obtain accurate finite ement
solutions, however, Cuthrdl and Biegler (1986,1989) imposed additional condraintsin
the NL P formulation in Older to enfor ce accurate sate profiles. They classfied therole of
finite dementsin termsof knot locations (over which dieerror wasequidigributed, hence
minimiTfri) and breakpointsthat allowed for contral profile discontinuities. Thisled to a
formulation that enfor ced the accurate solution of thedifferential equationsand allowed for
a general description of the control profile. In this paper we explore the theoretical
development of these finite dement congraints and present a formulation that leads to
arbitrarily accurate gate variable and control variableprofilés Herefinitedementssrveas
decison variablesin the optimization problem and are Smultaneoudy required to satidy
approximation e'ror congraintsand to locate contra profilediscontinuities

This formulation will be consdered from the perspective of a discretized ™
Differential-Algebraic Equation (DAE) sysem. Recent approximation error and sability
results by Petzold and coworkers will be tailored to optimal control problems and
incorporated into the NLP. The next section will review the equivalence between the
variatibnal conditionsfor genera optimal contra problemsand die Kuhn-Tudker conditions
for the corresponding NLP formulation. Section 3 then discusses recent stability and
approximation error results for Runge-Kutta methods (including collocation methods)
ipplied to DAE systems. In particular we will discuss the appropriate selection of
collocation methods for higher index (i.e., more difficult) DAE systems. The following
section then discusses how these higher index DAE systems arise in optimal control
problems with path condraints and sngular arcs. Section 5 presents the solution of a
number of higher index optimal control exampleswith our approach. Hereit is shown that
arbitrarily accurate solutions can be found with our NLP formulation. Finally, section 6
summarizesdiepape and discusses approachesto dealing with lar ge-scale optimal control
problems.
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2. Analysis of the Opdmalhy CoatKlitiwnsfor Optimal Control Prow ems

In this section we briefly review the equivalence between the calculus of
variations and the math programming approach. Special casesfor optimal control problems

such as singular arcsand path congtraintswill be discussed after this section. Consder the

following general problem: b

Min ¥(z(b)) + J *( z(t),ii(t)) dt
u(t).x(t) )

SL 2(0 « F(z(t), u(t))
g(u(t),et)) ~ O
gr(z(b)) £ O
2@ = g -
z(t)- £ zt) ~ z(t)"
u)t A ou £ u®’
where:

Y (z(b)) * component of objective function due to final conditions
I

<J>(z(t)su(t))dt = component of objective function due to integral of

gate and control vectors
g « inequality design congraint vectors
z(t) « stateprofilevector
u(t) « control profiles
gj « final conditionsinequality congraints
ZA S frwtifti condition for ttfttf vector

z(t)"; z(t)Y « sateprofile bounds

u(t)L, u(t)‘J * control profile bounds

Thevariational conditionsfor Aisproblem are

—_— = 0
® du - du du




w 22 L %F L L% A= 0
oz oz oz

© g (u(), z(v)) < 0

(d) M@® g@(t)) = 0, M@n=20

© z@® =F (z0,u®) , 2@ =z
® An=12E By,
oz o0z
where M(t) and A(t) are adjoint functions for the constraint g (u(t), z(t)) < 0 ,and
the ODE model respectively. Note that these conditions form a DAE system. Here the
algebraic relation (a) is used to determine the optimal control profile. Also, when
constraints (d) are active, these additional algebraic conditions can cause an additional
degree of difficulty in the solution of the DAE system. This difficulty is classified by the
index of the system and is considered later. Finally, if (a) is not explicitly a function of u,
then singular arcs can be encountered for the DAE system. _
Kreindler (1982) showed that the above equations are stronger necessary

conditions than those presented in Bryson and Ho (1975). Cuthrell and Biegler (1987)
showed the similarity between the solution solved with a nonlinear programming
formulation and the corresponding variational conditions of the optimal control problem.
The Kuhn - Tucker conditions for the DAE's discretized with finite element collocation are
considered next.

Here we include the integration lengths, AQ; , as decision variables in order to
find the breakpoints for control profile discontinuities. Later, in section 4 we also impose
constraints for the approximation error. The nonlinear program to be solved by applying
collocation on finite elements now has the following form:

NE K
Min Y (z f)+ EFZI w;jtb(zij,u;j.Aai)

zj;, ujj, Aa;
s.L. T(t) = Zka @) - F( 2z, u5; Aogt;) =0
g (z;, u;5,4a;) <0
gf (Zf) <0




210 20 =0

Zio- 2k (@) =0 i= 2, NE
NE _
z; g (Opgyy) =0
zli? < z;; < v
L
uij < uij < Wy
Aaf < Aai < AdF
f Actj = CGTom!
i=1

where i isthe element, and| isthe collocation point. Also, Ac" are finite element

lengthsi =1,..., NE , Zf isthevalue of the state at the fina time, and the
congtraint gf is evaluated at the find time.

Notethat z”, u* are collocation coefficients for the state and control profiles. -

As shown in Cuthrell and Biegler (1989), the optimality conditions for the NLP
can be smplified to the following equations:

od(t; j) aF {;

Bzij 32

i . d
@ )) 1. + Ayt + (a—g) Hj =0

ij zij
i-1 i
M@ = A (@)

These equations (a) are the discrete analog of the adjoint equations. Then the discrete
analog of thevariational conditionsfor the control variables are given in (b):

aP(t;; oF (1;
(b) () “"( (p)l "'(_)uq-
al.lij al.lil' au,_J
Thefinal and initial conditionson the adjoint variablesare
(9] a_‘}'. + .% H - A (a ) = O
az{ | 32r 1 k+1 NE+]

(d) Xys1 (@™ =0 if zo not specified




The feasibility conditions for the ODE and the problem constraints are:

(e) ik+!(tij) 'F(zij' uij.tij) =0 , 10 529

4@ - *Lii(@) 0= 2 NE

(0 g(zijui)™ o©
(@ gofuf) * 0

hy ki-mj 2 O

T

® ~"¢guU™)) = O
B (g2
f)) - 0 |

For optimal control problems, numerica difficulties are encountered for problems
that have control profiles with state path constraints enforced and/or singular arc
segments. These characteristics can be classified by considering properties of DAE
systems. In the next section we define the index of aDAE system and relate this to optimal
control problems.

3. Definition of Index and Impact on Solution of DAE's

Implicit in the solution of the nonlinear programming formulation for the optimd
control problem is an accurate gpproximation to the solution of the differential equations.
Here we assume that the finite eements are kept sufficiently small so that the locd error is
controlled within the element. However, it has recently been pointed out (Petzold (1982))
that numerical problems can occur with discretized differential equations solved in
conjuction with the algebraic equations. Methods can fail due to incorrect error control
stratégi es or instabilitiesresultingfiromthe error propagation during the integration. These
numerica problems are characteristic of classes of DAE's and can be classfied by the index
of the system.
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Congder the semUxplicit form described by Petzold and LBtsedt (1986) and
Brenan(1983):

u = gt) ' = E P/ (})
0 ) -
> p m
Now the difficulty of solution can be characterized by dieindex of the system, which is
simply the number of times Ac algebraic equations of the system must be differentiated in

order to obtain a gandard form ODE system. As an example, consder the mechanical
system of a smple pendulum pictured in Figure 1.

P
X

Fidire 1, Peadulum Sudiem

For the case of a unit mass on a Unit length of siring, the following system of equations
deribethemodd:

- u VY

; m oV (b)

¥ TX © @
\; g-iy (d)

1 ©

x(O) (}, '

y(©) * yo
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Thisisan index three system because (€) must be differentiated (and ODE's substituted)
threetimestoyield afirst order ODE in T. Thefir st differentiation yields:

0 « xu + yv (f) Index 2
Differentiating (f) gives:
0 « -T+yg+u+v? (g) Index 1

And differentiating *pflfa Ifaristo‘i

t « 3vg-2Tux-2Tvy (h) Index O

Using the index 0 formulation ; one can solve this problem with any sandard ~

ODE solver once consistent initial conditions have been specified ( Pantelides (1988)). The
solution of thisproblem in the higher index forms has been studied for linear multistcp
methods such as the BDF (backward - differentiation formulas) first proposed by Gear
(1971) and currently used in codes such as DASSL (1982) and LSODE (1980).
Convergence proofs have been established for fixed step-size BDF methods for index 2
and index 3 problems by Petzold and L otstedt(1986) and Brenan and Engquist (1985).
Theory for variable step-size BDF for index 2 systems was established by Gear et al
(1985).

Runge-Kutta methods for DAE's have been studied by Petzold (1986),
Marz(1981), Brenan and Petzold (1987), and Burrageand Petzold (1988). Petzold showed
that the Runge-K utta methods can suffer order reduction for index e’ne problems. Brenan
and Petzold (1987) studied the order, stability, and conver gence of implicit Runge-K utta
(IRK) methods applied to differential-algebraic systems. Burrage and Petzold (1988)
established die convergence and stability properties of index 1 systems solved by IRK
methods. For example, two point orthogonal collocation falls into the class of IRK
methodswhich are stableand have good error control for index 1 systems.

The higher index problem is of concern, however, becauseit is often desirable to
solvethe DAE system directly rather than die differentiated form. Moreover, for optimal
control problems, the solution may be governed by different sets of constraints over




different parts of the trajectory and thereformulation is difficult to implement Also the
differentiation may introduce additional constants of integration which may not remain
fnvariant under integration. Asan example, consder theindex 1 problem

2
0o _ R 1
SR A ¥ )]
which can bedifferentiated to obtain:
y - * @

Even with the correct initial condition y(0) « 0, integration errors due to truncation and

roundoff errors could cause the numerical solution of (4) to differ from that of (3). We

would also prefer to use the formulation of the DAE'sin the higher index form because this-
isthe natural satement of the physical models.

Finally, the nonlinear programming formulation of the optimal control problem
requires a self-starting method. Consequently, the properties associated with Runge-K utta
methods are especially useful to us. In particular, the method we have chosen to discretize
the differential equations is orthogonal collocation on finite elements. The method must
possess strong stability properties and control the local integration error because the
gability of the method and thelocal error determinethe global error. Since collocation isan
implicit Runge-K utta method, we can directly apply their stability and error properties for
index one and higher s'&/stems (Petzold(1986), Brenan and Petzold(1987),' Burrage and
PetZold (1988)). The next section will briefly review these properties. Thisisnecessary in
order to determine what order method (i.e., number of collocation points) is needed to
obtain a stable and accurate solution for different classes of optimal control problems.

3-1 ReviewoT Runge-KuttaAnalysis:

The gandard Runge-K utta analysis sartswith the consderation of an initial value
problem:

y«f(t.y), yto)«y(O) )




10

The s-stage Runge-K utia method applied to (5) yields

.
Yi«ya+ hXajf(tydcih,Y;), «=1. . °
=1

Yoe1 = Yo + B2 bif (t54c;h, Y) ©)
j=1

where

' ) : ..
A= (aij) LIt . et the Butcher block coefficients

ewv ¢ (1. . . 1)T, unit vector
h « step length of integration

For example, the 2-stage Gauss - Legendre method (2 point orthogona collocation) is
represented by the following Butcher block notation:

3-V3 1 3-¥3 1
6 4
cl A 3+13 3+V3 1 1
3 6§ 4 4
1 1
® I 2

Now the local error N8 Peen shown by Petzold (1986) - to be O(h“™) for index one

systemsif and only if
bTA" V- 1» j= 1k, )

For the above two point orthogona collocation method it is easily shown that the Butcher
block coefficients satisfy the error relationship (7) for k, * 2. For higher index systems,
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we need to consider the stage order or algebraic order of the method. Here the stage order
k is the largest integer w that satisfies the following tests:

& k1 ok .
C(w) : Za;jcj =c;/k , i=1l,..5 ®
=
k=1,..w
-, kil
Bw): 3b¢ =1/k , k=l..W ©
=1

If C(k;)and B (k) hold for the Runge-Kutta method with s stages then it has a stage
orderk; and the local erroris O (h" 1) . For collocation the stage order is the number
of internal points and C(w) and B(w) are self-generating ( Burrage and Petzold (1988)). -

Therefore, collocation methods have stage order k;and the stability and error
relationships developed by Brenan and Petzold (1987) can be used to predict the integration
error and stability behavior of the system. First let us consider the error relationship for the

_local error. The general relationship is:

d, ,=0(h* ™ H0 (h% ™Y 4 40 (h*= 1)

where v = the index of the system

and k, , = the largest integer k that satisfies the following tests.
bTA%ey = bTATCT/ (v-1)! 1,2, V-1
bTAC = i (i) cerenee(i-V #1) jmv,vél,..k

Specifically , for index 2 systems , the algebraic order k satisfies:

bA” em= bTA°2c‘
ba%ki= i i=2.3,...k

And for index 3 systems
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bVZey« bW

T 1 T 32
bVeu« bVclj
bVV« i(i-l) 1«3,4,..kK

Then thelocal error for index one and index zero systemsis simply the last term
for d,,, and the higher index systemstermsareadded asrequired Thus, by noting that the
stage order for collocation methods isthe number of internal points, one can find die local
order of the errorsfor thefollowing methods:

Index 1. Two-point collocation - O (h****'v O (h?)
Index 2. Three-point collocation- O Ch %~ - O(h®)
Index 3. Four-paint collocation - O (ht° "'~ . O (h°)

Theseresultsarevalid for A-stable and L-stable collocation systemsin that these systems
satisfy the tests outlined above. Note that thereisan order reduction in the local error for
the higher index systems. Let us now consider the stability of the methods. Brenan and
Petzold (1987) developed the general stability relation for theerror propagation from step
tostep:

env = (1-bTA: cm)eqqy - BTA IS, - 5:‘: -

, ELyTAM G, 05 4+ ernt)

1
i-1 h

where 8g.v « perturbations dueto roundoff error and machine precision:

They defined a stability congtant r, as

re=1- bTA'!eM _
and * |r] < 1.0 for strict stability.

For two point orthogonal collocation, the value of |r|«1.0 because
b"A*'ey = 0. Note that this does not satisfy the sufficient strict stability condition of
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Ir| < LO. However* further work by Bimage and Pttzold (1988) showed this method to
be gablefor index 1 systemsand proved the conver gence propertiesfor linear congant
coefficient sysemsof index 1. Also, index 1 sysems have been shown to be gable and to

not suffer any order reduction for semi-explicit sygems (Roche (1987), Deuflhaid et al.
(1985), and Griepentrog and Man (1986)).

Notethat for thelocal enor analysis, three point collocaticm wasfound to satisfy
theindex 2 order tests and four point was found to satidy iheindex 3 tests. Also, two -
point collocation failed the index 2 tests . Note that orthogonal and non-orthogonal
collocation will satidfy the local enor tests because die butcher block coefficients axe self
generating for collocation. However, the difference between die methods (orthogonal and

non-orthogonal ) becomes apparent when computing the stability coefficient. The
T -1 T -1

orthogonal rootswill yidd b A ey« 0 for two and four points andb A ey= 2 for
three point collocation. Thiswill causethe methodsto be A-gable (|r| « 1.0), but not
L-gable. However, L-gtable methods can be achieved by usng the Legendrerootsin the

A-gtable method and, in addition, applying a collocation point at the end of the dement.
T -1

Thisleadstob A ey« 1and |r| « O- (Recall that a method is A-stable if it stably

integratesthetest equation y = Xywhere X isacomplex number with-negativereal part
Themethod isL-gableif Acmethod isA -stableand  fimgeoa)*_« p a1 * 0)

With the gability resultsand local eror estimates, one can etimate the global
eror for an implicit Runge-K utta method as shown by Brenan and Petzold(1987). The

order isof O (h*°") for all solvablelinear congtant coefficient systems of index £ v. The
congant coefficient order ko is given by

kc.v = min (k. kl.i -v+2)
1gisv
where

ky tofteoderofilr ciirthaltethe parely differcatial part of the sysiem
k,; isthealgebraicorder.

For optimal control problems, the solution trajectories could be composad of
mixed index portions due to the exisence of path congraints and sngular arc sections.
When ahigher index section existsin conjuction with lower index sections, then theerrars
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will be different and an error control strategy will have to be able to control the different
order of errorsfor the different indices.

From theoretical properties developed by Brenan and Petzold (1987), systems of
equations of higher index can now be considered by choosing die appropriate method and
by coo tralling theintegr ation «™r, T te minimum woy iinwivexe for these methodsarelisted
below:

1. Index 1 problems- two point collocation
2. Index 2 problems- threepoint collocation
3. Index 3 problems- four point collocation

Note that for higher index systems, care will have to be exercised to prevent the error
propagation from the index variable. These inaccuracies will, with enough integration ~
steps, cause the solution to become ungtable. Here either an L-stable method could be used
for the solution and/or a separate error control strategy for theindex variable could be used
to control theerror if die number of ementsin the higher index portion is small.

32 Numerical Experiment:

The stability and error properties of Brenan and Petzold (1987) areverified in this
subsection using the pendulum problem. Herethe " true™ solution was generated by
using the index zero formulation and solved with LSODE. The system of differential
'equations was integrated forward in time, using a constant integration step size of 0.005
from a set of consistent initial conditions;

xp= 1.0 y0«0.0,y0*0-0OtVo«0.0f U;«0.0,T,«0.0.

Further, two point collocation was used for the index 1 system, achieving a
solution that matched the index zero solution, but it failed for theindex 3 formulation as
predicted by Brenan and Petzold (1987). On die other hand, four point ( non-orthogonal,
L - stable) collocation was found to solve the index 3 formulation. However, when
orthogonal roots (A-stable method) wer e used, theemir propagation caused the solution to
become ungtable astheintegration proceeded forward. The non-orthogonal roots remained
stable because the L-stable method effectively damps out the error propagation for each
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finitedement Theseresults CTadle 1) follow the gability properties shown by Brenan
andPetzold (1987). '

Tablel Pendulum Reaults

after 100 dements
Index X y u Vv T
0 0.391044 0.920376 -3.91109 1.661727 27.086565
1 0.391048 0.920369 -3.91104 1.661734 27.086487 +
3 0.391048 0.920369 -3.91104 1.661736 27.086496 *
3 0.391048 0.920369 -3.91106 1.661705 31.684719 e*

after 2000 elements | -
0 0.275085 0.961419 -4.175598 1194742  28.294455
3 0.275087 0.961419 -4.175598 1.194749 28.294575 *
3 -0.137607 0.951803 40924.18 -283047 1.068€l2 **

Key + two-pointA-gable (orthogonal)
* four point L-gable ( nonorthogonal)
+* four point A-gable (orthogonal)

TheA-gablecasesareobtained by usng orthogonal collocation, and theL-gable
casesareobtained by also collocating at theendpoint Notethat dieeror propagatesin the
algebraic (or control) variable and astheenor growswith timeit causesdie differential
variablestobecomeungable(asshown by theA-gablecasewhen theintegration required
adggnificant number of dementsfor thetotal integration period-For fidsj«>blem theeror
propagation did not cause solution problemsuntQ after the20* dement). Theabove results
wer e obtained by car eful sdection of afixed integration step size (h«0-005 ).

I nthe next section wt will investigate tie Smilarity between path congtraints and
gngular arc conditionsfor optimal control problemsand die index problem for solving
DAE systems. We will congder path congraints and sngular arcs from a variational
gandpoint and show how these conditionscan arisein amath programming formulation.
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4. DAE DifBcultioin Optimal Control

Bryson and Ho (1975) developed the casefor an equality path constraint asap'”
order statevariable congraint when the equation isafunction of statesonly (the controal is
implicit in theequation). Condder the atevariablecondraint:

S(xst) -0 (10)

For this condition to hold for a section of the path, t© £ t £t itstime derivative along
that section of the path mugt vanish:

as=25. . 25 f(x.u.t) s. o | (»)

. at 8x

-

Now the order (p) of (11) isdefined as the number of times that (11) hasto be
differentiated in order torecover the dependence of thecontrol, u. For aDAE system, the
corresponding constraints will occur when a path constraint, g(z,u) £ 0, becomes
active,; e.g., when a satereachesone of its bounds. As discussed earlier, the index of the
problem is p+1, which is the number of differentiationsrequired to obtain a differential
equation for the control variable. To control theintegration error and maintain the stability
of the solution, we need to anticipate that higher index constraints may become active and
thus use the appropriate level of discretization for the collocation constraints. As mentioned
in the previous section, die appropriate number of collocation pointsper element aswell as
the use of an A-stable ((orthogonal collocation) or an L-stable ( additional collocation point
at the end of the element) form can be applied once theindex of die algebraic constraints
hasbeen analyzed.

A less obvious instance of higher index algebraic constraints occurs when
singular arcs are present Normally, this can occur with-variational problemswhich are

linear in the control variable. To see die influence of sngular axes, consider the following

simpleoptfmal control problem (Bryson and Ho (1975)) with a single control profile:

Min @(x,)

st x«f(x)+g(x)u (12)
to£t £t
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Here dieHamiltonian islinear in u and assumed tobe non-linear in x *
H«XT[f(x)+g(x)u] | (13)

Necessary conditionsindude

dH T

—«Xg(x)«O

du * (14)
T T

TX «-[X (fs + guu)] (15)

X (t) «-(0Ox) (16)

Notethat equation (14) doesnot detenninethe control u (X, X') but it may be possibleto_
find u(t) over afinitetimeperiod sothat (14) issatisfied. I thishappens, then

T
d oH T. o
—— w Ag+ A g
dt 3y

- ) (17)
3

= 0

Qubdgituting (12) and (1S) into (17) yidds

it SAFg.i>E + Zarg
dx ox

* du dx
T
X q(x)«0 as
og of
where q(x)= B:f - 'a_;‘

Notemat thetermsin n cance each other o weareforced to takethe second derivative of

BH\ _
\rga~ in order torecover u:
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2 T
d° oH T. =: Tdq T of og
—(—) = A q+ A q=A—f+gu)-A (—+
& ou At ha At RS
Tdoq, of Toq og
= A(—f- ) +4( -—=9q) (19)
x e wm
Then
T
o ox ox i xr(aq agq) 0
= —g-—=q) ¢
NERES o’ o
g 9
ox  ox ©0)

Therefore, singular arcs that occur for the above type of problems would be at least index

3 because at least three differentiations of 23 are required to obtain an expression for -

du
u . From a DAE standpoint, we can examine equation (a) for the first order variation in the

control . Note that when the Hamiltonian is linear and singular arcs exist, the quantity

dF (0
( d

)X is equal to zero. On the other hand, if this quantity is not equal to zero, the
u

control will be on one of the bounds. Here, the index of the system is one because we have
an active inequality constraint in u. Finally, even though we have potential for the singular
arc to exist, it does not mean that the singular arc will be on the optimal trajectory since
second order conditions ( Legendre - Clebsch ) must be satisfied ( Lewis ( 1980)).

In closing this section, a natural question to ask is:

Why isn't the problem reformulated as a lower index form where the stability concerns and
error propogation concerns are not an issue ?

The answer is that the constraints would have to be differentiated explicitly to
obtain the form of the equations with the control appearing in the equations. It is not
desirable to use the differentiated form because, over the solution trajectory, different
constraints may be active and we do not know , a priori, where the higher index constraints
will be active. Also, the issue of numerical errors from using the differentiated form would
have to be considered. We would therefore like our method to be robust so that
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reformulation of the problem will not berequired during the solution of the optimal control
problem.

5. Dement Placement to Control Approximation Error

In the previous section, die NL P and variational formulations wer e shown to be
equivalent as long as the elements were sufficiently small to allow for an accurate
discretization. To ensure this, weinclude the element lengths asdecision variablesin the
NL P formulation and E*M additional inequality constraintsto keep the flpp2almtion error
small. Note that discontinuous control profiles are allowed at die end of each element
Thus, any element may determine an optimal breakpoint location as long as it is small
enough to satisfy the error congraints.

To derive the error approximation constraints, we consider the discussion in _

Russell and Chrigtiansen (1978) of various strategies for adaptive mesh selection to solve
two-point boundary value problems. Here, aresidual based criterion was developed for
collocation methods which is effective for finding die eement locationsor breakpoints

( switching times). The criterion is useful for index one or index zero problems where all
the errors are of the same magnitude. (Thereis no order reduction due to a higher index
variable being present) Thecriterion isbased on evaluating aresidual at a non-collocation
point for an error estimate:

le(t)[[«Cr (tac)h+O(h ™)

«O(hS

where h «step length (L e. element length)
r(t,) «resdual evaluated at a non-collocation point

Wecomputeiheresidual at anon- collocation pointswithin the element (we used
the endpoint ) by extrapolating die states and controls to that point. To illustrate the
procedur e, owiiAvte! die two-point collocation case shown in Figure 2.
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For each differential equation equality congraint,

Zj = F(Zi,Adj, u) 2D

we congtruct the resdual at another point by extrapolating the states found from the
solution of the collocation equations in the element. Here the extrapolated derivative is
given by:

Aajri = £—+(T=1) 2? (22)
j«o dt

and theright hand side terms can be calculated by using the states and controls extrapolated

to the point of interest
k

Zjp = ;(JQ_‘=1> Zj-ij | (23)
J-

vjg = iTj (v=1) u;y;
=

where
8j ,Yj = Lagrangepolynomial basisfunctions evaluated at x = 1.

X s normalized length along dement i-1.

Thereddual for each differential equation isthen evaluated asfollows:




21

k ’
Ac,ti= 2.z; 0-A0,F (2;p u;0
3o (24)

Next we choose an error norm to control the overall error within the dement for all the
differential equations. We found the sum of the squaresto be effective:

Moveran & %i (1'12 Aa) £ E
" (25)

We can cither enforce this inequality congtraint in the optimization formulation
directly , or monitor theresdualsin an outer loop and take corrective action asrequired to
ensure an accurate solution. Note that this enforcement is only effective for index one
problems. However, for higher index problems, the order of the error is reduced. This
reduction in the order of the approximation error particularly affects the accuracy of the"
higher index variables, i.e., those variables for which no differential equations appear.
Here, adifferent error control strategy isrequired for the control of the integration error of
the higher index variables. For optimal control problems, thisvariable is usually the control
variable. Here we use an error control strategy based on derivative information which can
also be found in Russell and Chrigtiansen (1978). The highest nonzero derivative of the
approximate solution, v(x), boundsthe approximation error by the following reation:

llew |l < ceuf™y ||V |

For example, with four point collocation, we required the third derivative of the control
profile to be less than a tolerance. This can be enforced as an algebraic congraint on the
control profile.
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6. ExampleProblems

In this section, examples art presented which demondrate that mathematical
programming using SQP (with finite eements using orthogonal collocation for the
discretization ) can obtain accurate numerical solutionsfor higher index optimal control
problems. The key to obtaining resultsfor die higher index sysemsis to contral the
integration error asdiscussed in die previous section, thusensuring that die sate profiles
areacauratefor the next clement For the higher index sysems* theintegration error was
controlled through enforcement of resduals at a noncollocation point Additionally, for
gngular arc segments, the integration error control requires enforcement of a condraint
relating directly to the control variable. Werequirethat the control profile be of an order
such that its k™ derivative would be less than a tolerance. The enforcement of these
condraints, along with the proper order of the collocation method for the index of the
problem, was used to obtain satiactory contra profiles For index one problems it was
not necessary to directly enfor ce theresidual congraints, provided that the dementswere™
monitored and kept sufficiently small.

6.1 Index OneProblems-Batch Reactor Problems

Thefirg exampleisthe batch reactor examplefound in Ray(1981) and discussd
by Biegler (1984) and Renfro (1987). This problem is of interest because the control
pr ofile becomes saturated and moving eementsarerequiredto find the exact profile. The
optimal control problemis

st -%—)Y:
2= (u)y,
yl(o)- 1, 73(0)'-0
O£ u £5

Thisproblemisindex 1 because onedifferentiation isrequiredto obtain an expression for
U from the optimality conditions. T he stability results presented earlier indicate that two-
point collocation should achievedie solution within agood accuracy. Sincetheproblem is
linear in the sates , we solve for die gates within each dement for a set of control
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variables. Figure 3 showsthe control profile (usng two - point collocation) and Table 2
summarizesthe contral profile.

¢
1
5 -
i
E 3 « Contrd Var.
2=
1 -
L
0 e I S At A———— R
2.716-20 2.00e-1 4.00e-1 6.006-1 8.006-1 1.0064-0
TIm6
Eigure 3, Optimal Temperature Profile
ExampleNo. 1
Table2 Example# 1 Results
Element Aa, Control variables Residual
inclement
Uy U2
1 .15932 76175 .80922 2.7987C-7
2 .16496 .85010 .92967 1.2399e-6
3 16338 - .98663 1.8042 1.5999¢-6
4 15218 1.1839 13547 5.3628e-6
5 13024 14785 1.7303 7.7268e-6
6 .08931 19519 2.3354 & 5961e-6
7 .04655 2.6572 - 3.0419 7.6322e-7
8 .02193 33327 3.7057 5.7064c-8
9 01776 4.0033 4.4000 3.8208e-8
10 .05432 5.0 5.0 13414C-5
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Thesolutionrequired S iterationstoreach aKuhn-Tucker tolerance of 10" with
the objectivefunction being ayied of 0.57353. TheCVI (contral vector iteration) result
was 037349 and the CVP (contrd vector parameerization) result was036910for thecase
of a garting profile of u « 1.0 ( Biegler (1984)). The dements were allowed to vary
dightly and theresdual errors were smply monitored. Tea dements wererequired to
obtatn acontrd proftiewith the saturatfon portfon pcny exhibiteo™

The second exampleis also found in Ray (1981) and isan index one problem
with nonlinear satesand controls. Renfro (1986) solved risproblem by usng piecewise
congtant controls and by scaling the problem to avoid numerical difficulties. Wedid not
need to apply thisregrictionto the solution of theproblem. Theproblem isabatch reactor
with temperature asthe contra variable The objective function isthe maximization of one
of the products after afixed reaction time. Thisexample consder sdiefollowing reaction:

ALLB B

The problem is nonlinear in the rate equations for the concentration of A. By
letting the followingr epr esent the concentration of A and B (Cj « [A], co«[B] ), the

optimal contra problem becomes:
Max c2(1.0)

s.t. d{% - -k, (T)c?

A -MT)c?-ka(T)C,
Ki(T) = Ay et AT i=1,2

€ (0=1.0. c,<0)«0
208 £ T £ 398

Figure4 showsthe solution obtained usng two-point collocation. Table 3 summarizesthe
results.
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Table 3 Example #2 Results

Element Aa; Control variables Residual

in element

U uy
1 0281 3919 3754 1.14e4
2 0318 366.6 357.0 7.08¢-6
3 0856 3529 3474 4.05¢-5
4 0792 3442 340.2 3.29¢-6
5 .1997 338.2 3354 3.78e-5
6 3094 333.6 3314 3.48¢-5
7 256 3299 328.0 1.68¢-6
8 009 3269 325.0 4.48¢-13

This solution required 88 iterations to achieve a Kuhn - Tucker tolerance of 107
with an objective function of 0.610767. Renfro obtained his solution in 14 iterations
(objective function of 0.610 ) but did not find the steep portion of the profile. To show that
the objective function is fairly flat, our method also found a solution (objective function of
0.606) in 11 iterations with a Kuhn - Tucker convergence of 10°¢, Figure 4 compares this
solution with the steeper profile.
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400

380

Temperature
«*- Temperature*

360 +

Tempersture

340 =

320 v
2.71e- 20200e 1 400e 1 600e 1 800e 1 100e+0
Time
Eioure4, Comparison of Solufion Levels )
Example No. 2

The above example problems achieve good solutions with die error being controlled within
the elements asanatural consequence of using orthogonal collocation at Gaussan roots. As
discussed above, index 1 problemsalso pose no stability problemsfor our method.

62 Index Two Problemsand Higher-Influence of Path Constraints

Thenext two systemsart presented toillustrate that our method can handle path
congraints. Thefirst system isdiscussed by Neuman and Sen (1973), Mehra and Davis
(1972), and Jacobson and L ele (1969). Herewe consider two examplesthat become index
two and index threewhen thepath congraintsareactive. Thefirst exampleis

Kfing _lf'[ [:m] [2 g][*x] e eee
o [l - B AIRD <12

x; € 8(t-05)%-0.5

i - 13
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Thissystem was solved by using three - point collocation and fixing the elements.
The element length was kept small by using twenty equally spaced elements over the
integration length. It was not necessary to allow the dementsto float becausethere were
no discontinuities in the profiles and the elements were sufficiently small to construct
accurate profiles. Also, the control profile had an algebndc constraint included so that its
2nd derivative waslessthan atolerance.The control profileand path oonstndnt profile are

shown below.

CONTROL VAR,

20

* CONTROL VAR

104 v ¥ Y Y P — v
2.718-20 2.00a-1 4.00e-1 6.00e-1 8.008-1 1.006+0

TIME

- X2
% PATHCONSTR
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Notefrom Figure 5 that the path condraint is active over eight of the elements,
from time t=0.28 to t*0.70. The next exampleis based on the same problem formulation as
above except that theinequality is subgituted by thefollowing index three path constraint:

X« £ 8(t-0.5)%-0.5

Again, theedement lengths wer e fixed and three point collocation was used for the solution
presented in Figures7 and 8.

v.1

*+ CONTROL V.1

- L | Y 1 . ] . LI h LJ v
2.71#-20 2.00#-1 4.00ft-1 6.00*-1 8.00ft-1 1.00e+0
TIME

Figure 7. Control Profile Example#4
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2
1=
= 4 = X1
=% PATHOONSTR
0
r
-1 v L] v ) v L) v ¥ M 1 M

0.0 0.2 0.4 0.6 0.8 1.0 1.2

TIME
Eigure 8 StateProfile Example#4

Note from Figure 8 that the path congtraint is only active at one point of the
trajectory ( t=0.5). This allows three point collocation to find the solution because the
higher index portion does not propagate into the index one portion of the system. The
objectivefunction valuesare summarized in Table 4.

Table4 Minimum Valuesof Objective Function

Source Index 2 Problem . Index 3 Problem
Jacobson and Lele 0.164 0.75

(1969)

Mehraand Davis 0.178 0.79

(1972) ' :

Neuman and Sen 0.16946 0.6894

(1973)

am* osthO0 0.1696 ‘ 0.7368

Neuman and Sen and lacobsen and L ele obtained lower objectivefunction values because
they found only approximate solutions and did not enforce error constraints for these
profiles. On the other hand, by using the derivative constraint on the control profile,
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extrapolating the control variablestotheinitial and endpoints, and by bounding these points
through inequality constraints, we wer e able to enfor ce die accuracy conditions over the
entiretrajectory.

For the second system, consider the problem of starting and stopping a car in
minimum time for a fixed distance ( 300 units). The problem was described in Cuthrell and
Biegler (1987) and isgiven by:

Min <Ktf)

st ij * 2y - MO) «0, 70 -0
Zi - u 2,8 -0 , 7z (t"-300
2EUEl

This problem isindex 1 because one differentiation is needed to obtain an _
expression for u (from the active inequality congtraint bounding u). The analytical solution
Is the expected bang-bang solution shown in Figures 9,10 and 11. Using a two point
collocation method in the NL P formulation leadsto a solution thai matchesthese results.

Next we place apath congraint on die problem by setting an upper bound on the
speed of 10 units. When this speed limit comes into effect, the problem becomes index 2
for that portion of the solution trajectories. The problem isindex 2 because the speed
cannot exceed 10 units and the control has to be adjusted accordingly (note two
differentiations are needed to obtain U from 2\ « 10). The analytic solution profiles for
thisproblem are shown in Figures 12,13, and 14. Noticethat the path constraint for ces
the control off of the bounds even though the problem islinear in the states and the control.
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However, if a two point collocation formulation is used without contralling the
resdual error, one obtains the unsatisfactory profile as shown in Figure |IS. Adding the
residual congtraints as inequalities to the formulation leads lo a numerical solution that
matches the analytical result Note that we solved a mixed index 1 - index 2 system by
enforcing error congtraints using two point collocation, which does not have the stability
properties for index 2 systems. Thereason is that the analytical solution is approximated
exactly by the polynomials . Thus, there is no error to propogate over the index two
portion, which actually consists of only one element

2
| HL
J 0 - —a—
@ y e Acc.(S.L)
I .1 o » Ace. Non-es.
1 .
2 -
'3 v L) — ) b )
0 10 20 30 40
Tim*
| lon Profile - Nonres
ExampleNo. 5

63 Index ThreeProblem « Singular ArcExample

The final example is a catalyst mixing problem of Ounn & Thomas (1964) that
was solved analytically by Jackson (1968). For a sufficient reactor length, the system
admitsa singular arc segment to dieoptimal contitd profile. The problem description is:
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Max Pt) <« l-x(t™-y(t ,t( goedified

sit. _dd_ - u(kzy -klx)
‘l\:
*g-  « -u(kay.kix).(l-u)ksy
x(0) « 1.0
y(0) « 0.0

TheHamiltonian for thissygem s

H-XACkjy-M) + X [(kix-kay)-(I- u)ksy]

and theadjaint equationsare

X5 =-ukp(X1-XA)  +(1-u)ksX

Takingthefird timederivativeyields

Edl-(g_l:‘] -kat>.<-’\ X-X"y) « O

which doesnat exhibit any control dependence

The ssecond timederivativeis

d2 JdH y . oy .
--(-——) Kl XAX + Xokyi @ (Akay + A, kay ) 1
d® du.

from which one can obtain the control asin die general derivation ¢ equation (20). The
problem isindex 3 over thedngular arc section. Theanalytical solutionisshownin Figure
16. The solution trajectory is comprised of mixed index portions with thefirst and lagt
trgectories being the sectionswherethe control ison thebounds The middle section isa
sgngular arc section with an index of three. This problem poses a severe test for the
optimization code because of theindex problems
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Table6.0 Mixed Catalys Results

Atti

07924
05750
29830
29311
27182

Contrads in dement Final
»i Uz Residual
10 10 2.241e-5
10 10 7.075e-7
2264 2267 1.320e-10
2252 2249 4.360e-1
00 00

1.006e-8

& Control var.
- Analytical

Error
Tolerance

2.5¢-5
9.0e-7
9.0c-11
9.0e-11
L 9e-8

Because the singular segment is of index thrte» ahigher order collocation method

should be applied to solve this problem. Moreover, if a large number of elements are
required todescribethe singular segment, thismethod shewM bel”stabk in order tolimit
growth of the propagation error. To test these conditions, we attempted to solve this
problem using only two point collocation and by controlling dieintegration error in each
element As shown in Figure 16 and Table 6, we achieved a solution only by specifying
different error tolerancesin each element These werefound by trial and error until the
solution matched the analytical profile. Note that very tight enor tolerances needed to be
specified for the singular segment Other attempts would either fail or converge to sub-
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optimal solutions. Next, we consdered four-point collocation usng Gaussan roots(the A-
gable case). Agéin, we enforced the error condraintsin the formulation but failed to
achieve the optimal solution. ( Herewe garted with aflat profile of u « 0-2 and equally
spaced dementsover theintegration length). Ingead, weenfor ced an additional congraint
onthecontral profileby requiringthethird derivativeoftiiecontrol profiletobelessthan a
tolerance. As discussed in section 5, this condraint was suggested in Russell and
Chridiansen (1978) and isdirectly related to the approximate error in the contral profile.
With die addition of this congraint, we achieved anumerical solution usng the GAMS
IMINOS optimization sysemsthat matched theanalytical pr ofikta Figure 16. Note that by
contralling theintegration e'ror on diecontrol variablethis issmilar to DAE approaches
that enfor cedifferent eror contral drategiesfor thehigher index variables.

As with the index three path condraint problem, the sngular segment was
approximated only by a single element Thusthe A-gtable four point collocation method™
produced a solution because there wasno propagation of eror in theindex 3 portion. An
alternative approach would be to apply an L-gable collocation method to solve this
problem. Four point collocation (using thethree point orthogonal A-stablerootswith the
endpoint for die collocation points) was used to test the L-gtable method The bass
functionsval ueswer e changed tor eflect the L-gableroots, and the GAM SMINOS sysem
was used to achieve the solution matching the analytical. However, in order to obtain
conver gence, theerror tolerance for theintegration error enforced by die evaluation of a
resdual at anon-collocation point wasrdaxed Thiswasnecessary becausethefour point
L -gablemethod isless accuratethan thefour point A-sablemethod

Finally, we converted die catalyst problem from an index three problem to an
index zero problem by parameterizing die control profile as variable length piecewise
congants. Thisapproach isvalid for thisproblem becausedieform of theoptimal control
profile is also piecewise constant In fact, if die numerical difficulties caused by higher
index systemsprevent die solution from cxmvcer A g for the general polynomial fonn of the
control profileoutlined earlier, then onecould alwaysaobtain a satisactory feasble garting
point for the gencndpolyiK mialfonn by par " eterizing the coatrol profile. The solution
using thisapproach alsomatched the analytical solution within numerical tolerances (see
Figure16).
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7. Conclusons

Thispaper presents a general method for obtaining optimal contraol profiles by
numerical methodsthat arearbitrarily accurateand match analytical solutionswhben they can
be found. This approach uses a math programming technique for the solution by
discretizing the differential equations using orthogonal collocation on finite dements.
L agrange polynomials are used to congruct the approximations to the continuous model
and theresulting set of algebraic equationsis solved aspan of the nonlinear program. This
wofk isdifferent from earlier weak using collocation tofind thesei” ofilesin that it directly
usestheintegration error information to congruct accurateprofiles.

Difficulties in solving sets of differential - algebraic equations that result from
variational conditions can be classfied by the index of the syssem to be solved These
difficulties are associated with local error and stability properties of the integration
method when higher index conditionsexist in thesystem. Here collocation was shown to~
possess A-dableaswell asL-gable propertiest degpending cm thelocation of diecollocation
points. Also, an appropriate number of collocation pointsneedsto beusad to over come any
potential order reduction from higher index systems. For optimal control problems, we
show that these higher index conditions occur from active date variable congraints or
sngular arcs. Thus, by choosing an appropriate order for the collocation method,
reformulation of theproblem isnot necessary when these higher index conditionsbecome
activeinthesystem.

The method was demondrated on index one, two, and three systems. For index
one systems of batch reactorswith nonlinear contral profiles, die control profiles were
continuousprofiles. Thus, it waspossibletolet diedement lengthsvary dightly between
upper and lower boundsrather than directly enfor cing theresidual constraintson die math
program. Theresdualsweremonitored asthe dement lengthsvaried to account for steep
profiles. Implicit in this approach is a sufficient number of eements to allow for an
accur ate solution. Also, two path condraint problemsof index twowereconsdered The
fim can befor mulated asasmpteQP with the path constraint active over a large portion of
diecontral profile. Herethe solution was achieved with fixed e ement lengths. The second
examplecondder smovement of avehiclein irdniimun tuneto cover afixed 46%E"f with a
gpeed limit path congraint Thisproblem hastwo switching times (or two discontinuities
in the control profile) as the path congraint was encountered. For successful solution,
resdual errar condraintshaveto bedirectly enforced in themath program.
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Finally, two index three systems were solved. Again, the first system was a
simple QP with the index three system resulting from an active path constraint . However,
the higher index constraint was active at only one point, and therefore the stability and error
reduction issues were not a factor in the solution of the problem. The last example, finding
the optimal mixing policy of catalyst for two reactions in a fixed length of a tubular reactor,
was difficult to solve because of the existence of a singular arc in the optimal control
profile. It was necessary to directly enforce the residual error constraints as well as an
error constraint on the control profile, becanse of the higher index conditions due to the
singular arc.

The above problems are small problems taken from the literature to demonstrate
the validity of our approach. Future work will deal with larger chemical engineering
systems (such as batch distillation systems ) which will require decomposition techniques
to obtain solutions. The Range and Null space decompositon technique ( Vasantharajan and ~
Biegler (1988)) for Successive Quadratic Programming will be exploited for this purpose.
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