
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Efficient Optimization Algorithms for
Zero Wait Scheduling of Multiproduct Batch Plants

by

Deepak B. Birewar, Ignacio E. Grossmann

EDRC 06-61-89
Carnegie Mellon University

EFFICIENT OPTIMIZATION ALGORITHMS

FOR ZERO WAIT SCHEDULING OF

MULTIPRODUCT BATCH PLANTS

Deepak B. Birewar

and

Ignacio E. Grossmann*

Department of Chemical Engineering
Carnegie-Mellon University

Pittsburgh. PA 15213

November 1988/Rev. June 1989

* Author to whom correspondence should be addressed

University Libraries
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

Abstract

This paper deals with the scheduling of multiproduct batch plants consisting of

one unit per stage and involving the production of large number of batches of

relatively few products (e. g. 10-50) with the Zero-Wait policy. An aggregation

procedure based on a compact linear programming model is proposed for determining

the minimum cycle time and the family of schedules with the optimal cycle time. It is

shown that schedules can be easily derived from the LP solution using an aggregated

graph representation. It is also shown that using this representation an approximate

MILP model that yields very good near optimal solutions can be derived for the

makes pan minimization problem and for which very tight bounds can be established.

The insights gained with this approximate method are used to formulate a rigorous

MILP model which can be solved as an LP in most cases. The effectiveness of the

proposed procedures is illustrated with several example problems.

Introduction

This paper deals with the scheduling of multlproduct batch plants consisting of

a sequence of stages, where each stage involves one processing unit. The Zero Wait

policy I ZW 1 for scheduling is assumed which consists of transferring a batch to the

next stage as soon as the processing is completed in the current stage. This type

policy is often used in batch processes. It is also assumed in this problem that the

number of batches to be produced for each product that is specified is large, and that

all products follow the same processing sequence. Fixed processing times and clean-

up times between different products are also given. The objective is then to find a

sequence of batches of products that leads to the minimum or near minimum

makespan (i. e. total time).

Hie above scheduling problem is equivalent to the Jlowshop problem in

Operations Research and has been extensively analyzed in the past; e. g. see Graham

et al (1979), Graves (1981) and Baker (1975). Rigorous optimization of this problem

has been shown to be NP-hard; i.e. the computational time required to obtain a

globally optimal solution may increase exponentially in the number of batches to be

scheduled (Garey et al, 1976). For instance, when this problem is posed as an

asymmetric Travelling Salesman Problem [TSP] (Wismer, (1972), Reddi, (1972),

Gupta, (1976)) its size increases exponentially with the number of batches to be

scheduled due to the required addition of subtour elimination constraints which

ensure that sequences without any subtours axe obtained. Recently, Pekny and Miller

(1988) developed a parallel branch and bound method for the asymmetric TSP

problem with which they were able to solve to optimality problems with up to 3000

batches. However, apart from the fact that this method is computationally intensive

and requires parallel computers, it does not exploit the fact that large number of

batches often belong to much fewer number of products. This fact can be quite crucial

for developing an efficient method as will be seen in this paper.

On other hand there are approximate methods consisting of heuristics or rules of

thumb which provide near optimal solutions with small computational expense (e. g.

see Campbell et al9 1970, Dannenbring, 1977, Panwalker and Iskander, 1977, Ku and

Karimi, 1986, Kurtyan and Reklaitis, 1989). While these methods are fast, their

disadvantage is that they cannot guarantee optimality. Thus, they can sometimes yield

solutions which are relatively far from the global optimum. More extensive review of

the scheduling problem in batch processes is provided by Ku et al(1987).

Birewar and Grossmann (1989) have recently considered the simultaneous

design and scheduling of multiproduct plants, where these authors showed that the

scheduling problem in this problem can be simplified to large extent by choosing an

alternative objective function. In particular, it was shown that the objective of

minimizing Cycle Time [CT 1 is a suitable alternative to the makespan minimization,

especially when the time horizons concerned are long. In that paper it was shown that

this leads to a 0-1 minimax assignment formulation, which was aggregated in the form

linear constraints for the design problem.

This paper will show that the linear constraints for scheduling in the design

problem by Birewar and Grossmann (1989), can be used as a basis to develop a very

compact LP formulation for the minimization of cycle time in multiproduct batch

plants. Since the key idea is to aggregate the batches into the space of products, this

formulation is especially suitable for problems involving many batches belonging to

relatively few products. The solution to the proposed LP model, which may require a

simple procedure for eliminating subcycles, provides a family of schedules rather than

a single solution. It is shown that one or several schedules among this family of

solutions can be easily generated with a graph analysis which can be implemented

very efficiently as an algorithmic method that is suited for automation. Using as a

basis a schedule with minimum cycle time, it is shown how to derive with an MILP

model a schedule with minimum or near minimum makespan for which a very tight

lower bound can be computed. It is also shown that the rigorous solution to the

makespan minimization problem can be obtained with a novel MILP formulation that

can be solved as an LP in most instances. Several numerical examples are presented

to compare the performance of the approximate and rigorous algorithms.

Problem Statement

The problem that will be initially addressed in this paper can be stated as

follows:

Given is a multiproduct batch processing plant with M stages each with one

processing unit per stage. A total of N batches belonging to Np different products are to

be produced using the Zero Wait [ZW 1 scheduling policy. The number of batches r̂ ,

for each product i, i = 1 Npt is specified, as well as fixed processing times ty for

each stage j, j = 1 M, and fixed clean-up times CLN^ for successive products i, k

in stage j. The goal is then to find a schedule with minimum cycle time.

As shown in the following sections, this problem can be effectively tackled with

an LP model that is coupled with a graph analysis procedure. Furthermore, its optimal

solution can be used as a basis to develop very good near optimal solutions for the

makespan minimization problem, and to also motivate the development of a rigorous

model for this problem.

Minimization of Cycle Time

As described by Birewar and Grossmann (1989), in the ZW policy some idle time

may be forced to exist between any two batches due to the rigid nature of this policy.

Let SL^ denote the minimum forced idle time between the batches of product i and k

in stage j. These slack times can be pre-computed for each pair of products as shown

in the example of Figure 1 with non-zero clean-up times. A systematic procedure for

computing these slacks is presented in Appendix I, including the case when nonzero

clean-up times are specified (see Birewar and Grossmann, 1989). The computing effort

required to calculate these slack times for all possible combinations of the products is

very small.

For the ZW policy the optimal cycle time [CT J will in general not be equal to the

minimum cycle time of the Unlimited Intermediate Storage [UIS J policy (see Birewar

and Grossmann, 1989):

\ I »1
CT = JTM (Y t: tg \ (1)

Unlike the UIS case, in ZW policy all the stages including the ones that define

the bottleneck will typically exhibit several non-zero idle times [SL^j]. Thus, the

analytical expression in (1), that defines the optimal processing time in case of the UIS

policy, will provide only a lower bound for the ZW policy. To account for the impact of

the slacks and to aggregate the number of batches in terms of products, the entire

cyclic sequence will be viewed to be consisting of pairs of batches of various products.

For example the sequence M A - A - A - B - C - " can be viewed as consisting of pairs

A-A, A-A, A-B, B-C and C-A. For each possible pair of products, let NPRS^ be the

actual number times that product i is followed by product k (i,k = 1 Np) in the

entire cyclic schedule. For instance in the previous example, NPRS^ = 2, NPRS^ = 1,

NPRSgc = 1, NPRS^ = 1. As every product is manufactured exactly nj times, it will

appear r^ times in the first place and nt times in the second place in the pairs (i,k) of

products that are manufactured during the production run. Therefore, the following

two assignment constraints apply (see Birewar and Grossmann, 1989, for more

details):

(2)

(3)Y NPRS& = nk

The cycle times of each stage CTj, j = 1 ... M, will consist of the batch processing

times of all the products in that stage as in equation (1), plus the contribution of slack

times [SLjig] existing between the batches of various products.

CTj = S "i 'y + X S NPRS* SL% J-U-M (4)

where the overall cycle time is

6

CT 2 CTj j = l.JV/

Minimization of the cycle time CT, subject to the constraints (2) - (4), leads then

to the following linear programming model LP1 :

min CT

s.t.

nk

", N, N>
CT 2 £ «i 'y + X I ^4 SL*j

ST 1=1 hs\

NPRSU £ n(- 1 i=l..JV,

CT 2 0, NPRS& 2 0, if Jfc = 1..JV; .

where the fourth constraint is optional but has been included to reduce the possible

occurrence of subcycles as will be explained later on in the paper.

The linear program LP1 is very compact as it involves only Nj* + 1 continuous

variables and 3NP + M constraints. Thus, the size of this problem remains unchanged

with the number of batches for a fixed number of products Np.

The solution to LP1 provides the values of NPRS^ for various combinations of

products i and k, but due to the aggregation in terms of products, this by itself does

not define any specific schedule. Therefore the solution to LP1 corresponds to an

implicit representation of a family of schedules that exhibit minimum Cycle Time. Any

of these solutions can be chosen based on a secondary criterion, like for instance ease

of implementation of the schedule. Also the schedule that results from this LP is in the

form of a single cycle or several subcycles for the N batches (see section on subcycles).

When a single cycle is obtained, there will be a total of N links among the Np products.

This cycle can be broken so as to select a sequence with minimum makespan among

the N possible sequences that result from breaking one of the N links in the optimal

cycle. Before discussing further this procedure, and some properties of the LP model,

it is first useful to present an example of this formulation and show how it can be

related to a graph representation for deriving a schedule.

Graph Representation

A graph representation is presented in this section that helps to visualize and

select a schedule from the solution of LP1. To facilitate the understanding of this

representation consider the modest sized scheduling example 1 consisting of 30

batches (N = 30) belonging to six different products A to F (Np = 6). The

multiproduct batch plant consists of four processing stages (M = 4) and a schedule is

to be determined to manufacture 5 batches of A, 7 of Bf 3 of Cf 5 of D, 4 of E and 6

batches of F. The batch processing times for products A - F are given in Table I(a).

There are no cleanup times and hence the slack times SL^j between the batches of

product i followed by product k in stage J are given as indicated in Table I(b).

Table n(a) lists the results obtained from the LP scheduling model which

corresponds to a cycle time of 140 hrs. Note that each entry in this table corresponds

to a value of the variable NPRS^, i = l...Np. k = l...Np. This solution indicates that the

optimal schedule for the production is with Mixed Product Campaigns [MPC] since

several product pairs NPRS^ are greater than one for i * k.

The solution for Single Product Campaigns [SPC] can be obtained by specifying

that the optimal sequence will consist of one campaign per product; in other words

that there will be nj - 1 pairs of product i in the sequence. This condition can be

expressed as:

NPRSU = A; - 1 i=l,..JV, (5)SU

Imposing this constraint to problem LP1 defines LP2 :

8

min CT

SJ. T NPRSit = it.

CT * V nf. •̂ + Y y AffWŜ 5L .̂ JM\%...M

NPRSU = n4. - 1 /=1,...JV,

cr ^ a #/>*$* > o, /, * = L.JV^ .

which can be used to find the minimum cycle time for production with Single Product

Campaigns. The optimal solution to LP2 is listed in Table II(b) and has a cycle time of

172 hrs which is 18.6% longer than the CT for the production with the MPC (140

hrs.). These problems were solved on MIcrovax n using the LP solver ZOOM (Marsten,

1986) through the modelling system GAMS (Kendrick and Meeraus, 1985). Problem

LP1 for MPC and LP2 for SPC consisted of 37 variables and 22 constraints. They both

required about 5 seconds of total computational time, respectively. (The total

computational time includes the time for calculating the slacks SL^ for all possible

product-pair combinations using GAMS, and then solving the problem using ZOOM).

The two solutions In Table II represent a family of schedules that exhibit

minimum cycle time [CT]. As seen in Figures 2(a) and 2(b) these solutions can be

represented with a directed graph where the nodes correspond to the products and the

directed arcs are defined by the non-zero values of the variables NPRS^ in Table II.

Note that In this graph the numerical values of NPRS^ can be Interpreted as the

number of links between the nodes of product I and k.

Since the number above the arcs that start and end with the same product

denote the number of batches of that product which will be produced in Single

Product Campaigns, the actual schedule for the SPCs can be derived trivially from

Figure 2(a). For example Figure 2(a) denotes a cycle A - A - A - A - A - E - E - E - E - C

9

- C - C - D - D - D - D - D - B - B - B - B - B - B - B - F - F - F - F - F - F - . Here the

makespan will differ depending on where the cycle is broken to produce a sequence.

For example breaking the cycle between the campaigns of products F and A results in

a successive campaigns of products A followed by E, followed by C, D, B and F in that

order requiring the makespan of 184 hrs. The optimal makespan for this particular

cycle however results from breaking the cycle at a link between products E and

C. This sequence C - C - C - D - D - D - D - D - B - B - B - B - B - B - B - F - F - F - F -

F - F - - A - A - A - A - A - E - E - E - E - has a makespan of 177 hrs. and can also be

shown to be the global solution for the makespan problem as shown later in the

paper.

One of the cyclic schedules for the MPCs in Figure 2(b) can be derived quite

easily from the graph representation as shown in Figures 3(a) to 3(e). Each directed

arc in the graph shows the pair of products that will exist in the optimal schedule and

the number above the arc specifies the number of times that pair will occur in the

optimal sequence. The graph in Figure 203) is an aggregate graph that can be

decomposed into various campaigns to yield a final schedule.

Firstly, figure 3(a) shows that 2 batches of E will be produced consecutively.

Given that the remaining arcs in the graph interconnect different products, there are

in general different ways to derive a schedule. One possibility is as follows. Select a

node with an arc involving fewest number of successive batches and trace a path until

returning to that node in order to complete a loop. The loop with the corresponding

number of successive batches is removed from the graph and defines a campaign. The

procedure is repeated until the nodes and the arcs in the graph are exhausted. The

loops (i. e. campaigns) are then merged into a single cycle. Applying the above

procedure. Figure 3(b) shows that a campaign containing 1 successive batch of

products D - B - will be part of the optimal cycle. Figure 3(c) shows that a campaign of

1 successive batch of products B - F - D - will be part of the optimal cycle too. Finally.

Figure 3(d) shows that a campaign of 2 successive batches of products A - E - B - F

and a campaign of 3 successive batches of products A - C - D - B - F will also be part

of the optimal cycle. These campaigns are then combined as shown in Figure 3(e) so

10

that the total cycle time is still equal to the solution of LP1 (140 Hrs.). Any two

campaigns can be Joined only if both contain a common product. Refer to Figure 3(e).

Campaigns D - B - and F - D - B - can be Joined as shown, at a link between B - D and

B - F, and so on. The final optimal cycle with CT of 140 Hrs is shown in Figure 3(e). A

more systematic procedure based on matrix representation of the solution, that can be

easily automated is presented in the next section before discussing some properties of

the LP model and ways to overcome some potential difficulties regarding subcycles.

Also, it will be later shown how to break cycles to determine an actual sequence.

An Algorithm for Generation of Cyclic Schedules

A systematic method to generate cyclic schedules from the solution of LP1 or

LP2 is presented here. The scheduling problem discussed in the previous section is

used to explain the implementation of this method. Tables m(a) to ni(e) show the

gradual evolution of the schedule to its final form starting from the LP solution. First

the rules to systematically derive the schedule from the LP solution are stated,

followed by the description of their application to the above stated example problem.

The method consists of 4 major rules as stated below. These rules operate on the

solution represented in matrix form as shown In Table H(a) or Ilfb).

• Rule #1: Mark all the diagonal entries in the matrix. They represent the
SPCs in the final schedule. Delete these entries.

• Rule #2: In the resultant matrix, choose one of the smallest entries. Mark
the cell. Determine the product name of that column. Go to the row
corresponding to that product. Pick up an entry (If there is more than one
entry in this column see Rule #3). Mark the cell that is chosen. Repeat
the procedure till the loop is completed, i. e. the entry that was chosen
first is picked again. Now delete the smallest entry from all the marked
cells. The elements of this loop represent the product-sequences that will
exist in the final schedule. The smallest entiy represents the number of
times this product-sequence will exist in the final schedule. Apply Rule #2
until all the entries in the matrix are deleted.

• Rule #3:
• (a) If there is more than one nonzero entiy in the row concerned,

choose the entry that will complete the present loop.

• (b) If none of the entries in that row will complete the loop then pick

11

up the smallest entry.

• Rule #4: The application of Rules #1 and #2 will identify various
campaigns that form the optimal sequence. These campaigns can be
merged together to form one single cycle as follows. Any two subcycles
can be joined at the point where they have a common product. If this
procedure fails to merge all the campaigns into one single cyclic schedule,
then it means that the solution contains subcycles similar to the
subtours encountered in the Travelling Salesman Problem. Refer to the
section on subcycles for schemes to eliminate such subcycles.

The final schedule for the example problem stated in the previous section was

derived using these rules as follows(see also Figs. 3(a) - 3(d) for comparison):

Rule # 1 is applied first. The diagonal entry in row and column of product E is

marked first (Table m(a)). It represents single product campaign of E containing 2

batches. Deleting this entry results in Table HI(b). As there are no more diagonal

entries. Rule #2 is applied. Entry in row of product B and column D is chosen (ROWB

- COLfc). As the column belongs to product Df go to the row of product D. This row

contains only one entry in column B. Pick this entry. Go to row of product B. This was

the row we started with. Hence the loop is complete. The smallest entry is one. Hence

delete 1 from entries ROWB - COI^ and ROWD - COLg. This operation is shown in

Table m(b). The same procedure is applied to the resultant table (Table III(c)). This

contains a cycle F-D-B-. Now entry ROWA - COLg is chosen for the application of Rule

#2. After picking entries ROWE - COL^ ROWB - COL̂ , ROWF - COLA we again come

back to row A. Row A contains entries in columns C and E. The entry in the column E

is chosen as the one that will dose the loop (Rule 3(a)). The procedure is shown in

Table III(d). Application of the Rule #2 again, as shown in Table ffl(e) exhausts all the

batches.

Thus, Rules #1 through Rule #3 are used to decompose the solution to the LP1

into various campaigns. These campaigns can be merged into a single cycle using Rule

#4. Tlie result of applying Rule #4 is shown in Figure 3(e). The LP1, thus yields the

solution:

E-E-E-B-F-A-E-B-F-A-C-D-B-F-A-C-D-B-F-A-C-D-B-F-D-B-D-B^-A-.

12

with to. optimal Cycle Ttoe of 140 his. Note that this Is the same sequence that

was obtained In Figure 3(e) with the graph representation.

Integrality of Solutions

There are two potential limitations in the proposed linear programming

formulations for scheduling. One Is that the solution to LP1 or LP2 may In principle

yield non-integer values for the variables NPPS^. However, when only one of the

stages is constraining the Cycle Time, It can be proved that the values of NPRS .̂ will

be integers by straightforward extension of the proof gjven by Birewar and Grossmann

in their paper on Design and Scheduling of multiproduct batch plants (1989) . In this

case the argument Is simply that when one stage limits the cycle time, problem LP1

and LP2 can be rewritten as assignment problems which have unimodular matrices.

Moreover, since the rigjit hand sides in (2) and (3), the number of batches of each

product, are integer, sufficient conditions are satisfied to ensure the integrality of

variables NPRS^. When two or more stages are constraining, again extending the

proof by Birewar and Grossmann (1989), it can be shown that the objective function

value of relaxed solution UP and of the integer solution will be same. i. e. It will exhibit

zero gap. This implies that since the optimal value of the objective function is known,

then in the event that non-integer solutions arise, the computational effort with

branch and bound to find the optimal solution would be minimal. Given this property

of zero gap, however, one could also resort to a simple trial and error rounding scheme

to obtain an integer solution that has the same cycle time. It is important to note,

however, that among all the examples that we have so far solved, none exhibited non-

integer values for NPRS^ while solving the relaxed UP. Thus, there was no need to

resort to branch and bound enumeration or rounding procedure.

Subcycles

The other potential problem in LP1 and LP2 is that the LP solution might ei

subcycles. As an example consider that the solution predicted by LP1 is as she

Figure 4(a), where there are two subcycles (A-B-C-D and E-F). Since the soluti

d o e s

AP^ " ° fba tchesofthat

to

14

products B and C was broken and new arcs were formed between products B and F,

and E and C. The new sequence is shown in Figure 4(d).

Addition of the 2Np - 2 subcycle elimination constraints in (7) clearly represents a

great reduction in size over the conventional asymmetric TSP formulation for

scheduling (Gupta, 1972) where the number of subcycles elimination constraints is 2N

- 2, where N is the total number of batches. Nevertheless, the formulation can yield a

large linear program if the number of products itself Is very high. To circumvent this

difficulty. Instead of including all the subtour elimination constraints for all non-

empty proper subsets Q of Qp, consider only the constraints for the proper subsets Q

corresponding to sets of products present in the various subcycles in the solution to

LP1 or LP2. That is.

X X * l 2 N \Q\ + IC'I = Np (8)
ieQ '

where S! S^ are the sets of products belonging to the Ns subcycles. Adding (8) to

LP1 or LP2 defines LP3 and LP4, respectively. As an example, in Fig 4(a), there are two

subsets Q; Q = Sj = (A, B. C, D), Q = S2 = {E. F).

The linear program LP3 then ensures that the subcycles 1.2..NS do not occur [Sx

and S2 in the example shown in Figure 41. If the solution to LP3 does not introduce

new subcycles. the procedure is stopped. Otherwise, constraints in (8) for the new

subcycles must be added to LP3 and solved again. This procedure is repeated until the

optimal LP solution contains no subcycles. In our experience with the constraints (6)

in LP1 the solution often does not contain subcycles (see Table VI). When this is the

case, however, typically only one iteration is required with the addition of the

constraints in (8) to eliminate subcycles.

Given that a solution with integer number of batches and without any subcycles

is obtained, tight lower and upper bounds for the makespan minimization can be

obtained as shown in the next section.

15

Approximate Method for Makespan Minimization

Selecting a sequence with smallest makespan within the minimum cycle

solution, will often lead to an optimal or very near optimal solution of the makespan

minimization problem. This result can be verified with a tight lower bound on the

minimum makespan as shown below.

The optimal Cycle Time CT° obtained from the solution to LP1 or LP2. and

possibly with the addition of the constraints in (7) or (8). corresponds to a lower bound

of the total makespan. An improved lower bound can be obtained by choosing the

smallest possible head and tail in any given schedule and by excluding the effect of

largest slack time corresponding to any possible pair of products. Refer to Figure 5 for

a brief explanation of the terms head and tail of a stage.

It is clear from Figure 5 that the total makespan for any sequence will consists of

three parts. First is the maximum of the total processing time required in various

stages (SPT11**), head and tail being the other two parts. Thus we can find a lower

bound on the total makespan by subtracting from optimal cycle time the worst

possible slack for any pair of products and adding the smallest head and the smallest

tail. The worst or highest slack is subtracted from the cycle time to obtain a lower

bound on SPT***. The lower bound on the makespan is then given by the following

equation,

(9)

where S is the set of all product pairs (i,k) existing in the sequence with optimal cycle

time (CT°).

An upper bound for the total makespan can be obtained by selecting a sequence

with the smallest makespan contained in the minimum cycle time solution. This

upper bound will be the sum of the optimal cycle time containing no subcycles (CT°)

and the combination of the head and tail minus the slack of the pair corresponding to

the link that is broken to form the sequence. Note that the tail corresponds to the first

16

product in the broken link and the head corresponds to the last (or second) product in

the broken link.

The link to be broken is chosen using the binary variable YP^. Since only one of

the links in the optimal cycle is to be broken to form a string, the following constraint

applies :

ypit = l (io)

where Sf is the set of all product-pairs (i,k) present in the minimum cycle time

solution.

And the makespan value for sequence will be given by.

The upper bound of the makespan problem, which defines an actual schedule,

can then be determined from the following MILP problem:

min MSU

s.t. constraints (10) and (11)
(MILPl)

MSU Z 0 ; YP& = 0,1 , (ijt) e ?

It should be noted that in general the percentage difference between the lower

and the upper bounds as given by (9) and MILPl will be veiy small. This will be

especially true when the number of batches involved is relatively large as then the

difference between cycle time and the makespan will be small. This MILPl can be

solved in most cases as an UP where the 0-1 variables are relaxed as continuous

variables. Also note that in (MILPl) the number of 0-1 variables is always significantly

smaller than Nj*. A detailed description of the scheduling algorithm for this

formulation is given in Appendix III.

For the example 1 presented in the graph representation section containing 30

17

batches of 6 products, and with MPC's, the bounds as given by (9) and MILP1 were

determined. Both the upper and lower bounds for the makespan of this problem were

found out to be 145 Hrs. (Note that the cycle time CT° is 140 Hrs.), Since the upper

and lower bounds coincide the solution represents the globally optimal makespan.

This sequence is obtained by breaking the optimal cycle in Figure 3(e) at the link

between products E and B. Figure 6(a) shows this schedule in the Gantt chart format.

Figure 6(b) shows the schedule with optimal makespan for the SPCs. This again is a

globally optimal solution to the SPC makespan problem as both the lower and upper

bounds, calculated using (9) and MILP1 respectively, coincide (177 Hrs.). (Note that

the cycle time CT° is 172 Hrs.).

Rigorous Method for Makespan Minimization

In the previous section an upper bound to the makespan was obtained by

selecting from among those sequences that have minimum cycle time. In this section

this restriction will be removed so that the rigorous minimum makespan solution will

be selected from among all possible sequences. The rigorous solution can be found

using an MILP formulation as follows.

Refer to LP1 presented earlier. The variables NPRS^, which must satisfy the

following assignment constraints.

T NPRS& = n, M..M, (12)

NPRS& = nk k=l...Np (13)

will in general define a cycle.

The optimal sequence can be obtained by breaking one of the links between the

successive batches of products in the cycle. Let the binary variable Y^ define the link

that is broken. If the link between batches of products i and k is broken, then the

variable Y^ is equal to one, otherwise it is zero. Exactly one of the pairs that exist in

the cycle is to be selected for the link to be broken. Hence the following constraint

18

must be satisfied:

r» " l 0 4)

Also a link can be broken only if the corresponding pair exists in the cycle.

Therefore, the following constraint must be satisfied:

Y& «S NPRS& ijk = l.JV, (15)

The makespan MS will be consist of head, tail and SPT***, the maximum of the

total processing time required in various stages (see Figure 5). SPT*** will be equal to

the the summation of the various processing times and the slacks that exist between

various product-pairs minus the slack existing between the link (or pair) to be broken

to form the sequence from the cycle. The tail will correspond to the first product and

the head will correspond to the second (or last) product in the pair corresponding to

the broken link. The makespan MS is then defined by the following constraint,

MS 2 | |

The global optimum makespan can then be obtained from the following MILP:

min MS

s.t. Constraints (12), (13), (14), (15), (16), (6) (A//LP2)

NPRSfr 2> 0, Yik = 0,1 , i, k = l...Npf MS 2> 0.

for which it is convenient to consider the addition of constraint (6) to reduce the

possibility of occurrence of subcycles. Also, as in problem MDLP19 MILP2 can be solved

as a relaxed LP in most cases.

19

Note that this formulation yields directly the information on the minimum

makespan sequence since it indicates the number of product pairs (NPRS^) as well

as the location of the link (Y^) that is to be broken in the cycle to obtain the optimal

sequence. It is of course possible to obtain subcycles with this formulation in which

case a procedure similar as described previously in the section on remarks can be

applied.

Addition of constraint (7) to MILP2 yields an MILP problem that will ensure that

the optimal solution does not contain any subcycles. However, addition of constraint

(7) means 2NP - 2 more constraints than MILP2. Hence, constraints similar to (8) can

be used as described previously to eliminate the subcycles. Addition of constraint (8)

to MILP2 yields problem MILP3. Appendix IV summarizes the main steps for the

rigorous algorithm.

As a final comment, note that while problem MILP2 has the advantage of yielding

a rigorous solution, its size is larger than problem MILP1. In particular, problem

MILP2 involves Nj? 0-1 variables while problem MILP1 will usually have significantly

fewer 0-1 variables.

Examples

The effectiveness of the proposed methods will be illustrated with the several

examples presented in this section. It should be noted that all the models presented

here have been implemented in the modelling system GAMS (Meeraus and Brooke,

1985).

Consider the rather large example 2 consisting of 1059 batches (N = 1059)

belonging to a total of 20 products (Np = 20). The multiproduct batch plant involves 8

processing stages. The batch processing times ty. cleanup times CLN^ and the

number of batches n, are given in Table IV. Table V(a) lists the results of the LP1

scheduling model for this problem. The model consisted of 48 constraints and 401

continuous variables. It required 74.87 seconds of CPU time on Microvax n to solve

this problem, flhls computational time includes the time required to calculate the

20

slacks for all possible product-pairs and solve it using ZOOM via GAMS).

Each entry in Table V(a) corresponds to a value of the variable NPRS^. The

optimal schedule for this problem is a Mixed Product Campaign requiring 9017.78

hrs. Figure 7(a) Is the graph representation of the solution to LP1. It can be clearly

seen that there are total of two subcycles in the solution. One subcycle contains

products B and D. The remaining eighteen products belong to the other subcycle.

Finally the subtour elimination constraints in (8) were used in LP3 with constraints

corresponding to Q = {Bf D } and Q = {A to T except for B and D }. The solution to LP3

consisted of one single cycle. LP3 required 82.57 seconds of total computational time.

The solution without any subcycles exhibits the CT of 9018.92 hrs and is listed in

Table V(b). The graph representation can be seen in Figure 7(b). The lower and upper

bounds for the corresponding makespan problem were calculated with equation (9)

and MILPl respectively. The lower bound Is 9034.17 hrs. The upper bound for the

makespan (9040.64 hrs) is obtained by breaking the cycle obtained from LP3 at a link

between two successive batches of D. The solution corresponding to the upper bound

of 9040.64 hrs. which has a maximum deviation of 0.07% from the optimum.

Calculation of the upper bounds by solving problem MILPl using the MILP solver

ZOOM through GAMS required 1.16 seconds of total computational time on Microvax

n. Thus, the approximate method required a total of 158.6 seconds.

Applying the rigorous algorithm to example 2 yields the global optimal makespan

of 9035.92 hrs. The total CPU time required to solve the problem MILP2 on the

Microvax n was 134.96 sec. It should be noted that this problem did not yield

subcycles and its solution was obtained from its LP relaxation. The sequence

exhibiting the global optimum makespan is shown in Figure 8.

Condensed results of examples 1, 2 and other seven examples are presented In

Table VI(a). Note that the first seven examples Involve several hundred batches, while

example 8 consists of a plant with 12 stages and 1,000.000 batches belonging to 15

different products. This example Is of course unrealistic In terms of size, but has been

Included to explicitly demonstrate the capability of the methods to handle very large

21

number of batches. Also note that example 9 consisted of the highest number of

products, i. e. 50. The processing times and clean-up times for the examples are of the

order magnitude of the data given in Tables I and IV.

As seen in Table VI(a), for the approximate method the maximum gap in all

examples with respect to the optimal makespan is less than 0.3%. Note that example 1

has zero gap, while example 2, 4, 6. 7, 8 and 9 have a gap smaller than 0.1%. Thus,

these solutions clearly correspond to very near optimal solutions. In fact, in four cases

(examples 2, 4, 6, 7) they correspond to the global optimum solution. It should be

noted that LPl and LP3 (subcycle eliminating constraints) yielded integer niunber of

pairs of products (NPRS)̂ for all these examples. Also, only 3 out of the 9 examples

needed the cycle breaking constraints of LP3. The rest of the six examples when solved

with LPl yielded no subcycles. Even for the other three examples which needed

application of subcycle elimination constraints, LP3 was used only once for each of

them.

For the case of the rigorous formulation MILP2 only 2 out of 9 examples required

the solution with cycle breaking constraints (MDLP3). The problem MILP3 had to be

solved exactly once for each of them. The rest of the seven examples yielded no

subcycles when solved using MILP2. Also in all cases integer values of NPRS^ were

obtained for problems MILP1, MILP2, and MILP3 through their LP relaxation.

The comparison of the computational time required by the approximate and

rigorous methods is shown in Table VI(b). It can be seen that the total computational

time required for the above nine examples using the approximate method ranged

approximately from 5 to 550 seconds. For the rigorous method it ranged from 7 to

1450 seconds. Also, for the first seven problems (less than or equal to 15 products)

the rigorous method required nearly 50% more CPU time and for example 9 (50

products) the difference increased to 200%. Example 2 was the only one where the

rigorous method required somewhat less time than the approximate method. These

results are interesting in that one would expect the rigorous method to be much more

expensive than the approximate method. However, it seems that aggregation of

22

batches and strong bounds explain the good computational behaviour of the rigorous

model.

Finally, note from Table VII that there is a significant difference between the

global optimum makespan and the suboptimal sequence where simple single product

campaigns are used (in alphabetical order of products). Hence, it is clear that the

proposed methods can yield substantial improvement over intuitive or heuristic

solutions with quite reasonable computational efforts.

Conclusions

This paper has presented approximate and rigorous algorithms for the

minimization of makespan in multiproduct batch plants that are scheduled with the

Zero-Wait policy. It was shown that for the case when many batches are involved in

relatively few products, a very efficient representation can be developed that

aggregates the batches in terms of products. In particular, it was shown that the

problem of minimizing cycle time and its graphical representation yield very useful

insights in the development and effective solution of these algorithms with models

LP1, LP3, MILP1 and MILP2.

Numerical results were reported for problems with up one million batches and

50 products. These were solved to optimality with MILP2 and for near optimal

solutions with LP1, LP3 and MILP1. The approximate algorithm yielded very near

optimal solutions with one half or less of the computational effort of the rigorous

algorithm (MILP2). The computational requirement for the latter was in fact quite

reasonable.

The significance of this paper is that the proposed models constitute highly

effective and efficient scheduling algorithms for a problem that in principle is highly

combinatorial in nature, in fact NP-hard.

Acknowledgments

23

TTie authors would like to acknowledge financial support from the National

Science Foundation under grant CPE-8351237 and for partial support from the

Engineering Design Research Center at Carnegie Mellon University.

24

APPENDIX I: Determination of slack times for LPl

Formulation LPl requires the determination of the slacks of all stages j for all

possible combinations of pairs of Np products. The total number of permutations of

products that is possible when two are taken at a time is given by Nj*. For example,

consider the data given in Table I(a). Here the total number of combinations of

product-batches is 36 (Np = 6) . They are.
A-A, ••• • A-r

B-A. ... , B-F
C-A. C-F (Al)
D-A, ... , D-F
E-A, E-F
F-A. F-F

In order to determine the slacks SL^j the following simple procedure can be

applied for each pair of products 1, k. The batch processing times of product 1 in stage

J (ty). the transfer times to transfer product i to stage J (try) and the clean-up times

between products i and k in stage J (CLN^) are specified.

1. Set the final times Ojj for product i in the M stages {} = I ...M) by the

equations:

£ +trif j=\..M 042)

2. Set the initial times 0'^ for product k in the M stages 0 = 1 ...M) by the

equations:

+ "V + "q j~l..M-l (A3)

3.a) Calculate the differences between initial and final times:

dikj = fy- % J*1~M (A4)

b) Set the time violation d .̂ to

25

dik - jA (dikj) (AS)

c) Set the slacks without the clean-up times. SL^ to

ikj = " dik

d) Set the clean-up time violation CL^ to

e) Set the final slacks with clean-up times, the transfer time etc to

It can be easily verlfled that for the example In Table I(a) the above procedure

yields the slacks shown In Table I(b).

26

APPENDIX n : Detection of Subcyclcs in the LP solution

Solution to LP1, LP2 and LP3 may contain subcycles which may result in the

underestimation of the optimal cycle time- The existence of subcycles in the solution

can be detected using a simple two step procedure presented below. Given are the

values for the variables NPRSlk in the solution to LP1, LP2 or LP3.

1. Draw a directed graph indicating the existence of product pairs in the optimal

sequence. This directed graph will look like the schedule in graph-representation

except for the number of pairs above each arc. Thus the graph here will consist of

nodes representing the products to be scheduled and arcs joining various product if
NPRSik > 0 in the LP solution.

2. Start with any randomly chosen product 1 and merge product 1 and k to form

a new super-product Ik if there is an arc connecting products i and k. Redraw the arcs

accordingly. Merge into this super-product, all the other products connected to it.

Repeat this step till no more merging is possible.

3. If more than one super-products left at the end of second step, subcycles exist

in the solution. Further, the number of super-products left specifies the number of

subcycles in the solution.

Consider for an example, solution to a scheduling LP shown in Figure 4(a).

Application the procedure described above results In two super-products ABCD and

EF. Thus there are two subcycles In the solution. Using the subcycle eliminating

procedure described previously In the paper, results in the LP solution as shown in

Figure 4(b) in graph representation. Applying the Subcycle Detection algorithm

described above results in one super-product ABCDEF, which means that the

concerned solution contains no subcycles.

The procedure described above can be easily automated and identifies subcycles

in very short amount of time.

27

Appendix HI: Approximate Scheduling Algorithm

The scheduling procedure for ZW policy that Is based on the models LP1 and

MILP1 can be summarized as follows for the case of Mixed Product Campaigns :

• Step 1:
• a) Given the batch processing times and cleanup times, determine

the slacks SL^ as indicated in Appendix I.

• b) Given the specific number of batches for each product i ,̂ l«l...
Np, set up and solve LP1 to determine the numbers of successive
batches of various products,

• c) If all the variables NPRS^ are integer go to step 2. Otherwise, use
branch and bound or a trial and error rounding scheme.

• Step 2: Use the Graph representation or the algorithmic procedure to
determine the campaigns that are part of the optimal schedule.

• Step 3: Combine these campaigns to form minimum number of
continuous cycles using Rule #4.

• Step 4: If the solution consists of exactly one cycle then go to step 5. If
there are subcycles in the solution (see Appendix n) add repeatedly the
subtour elimination constraints in (8) until a solution to LP3 does not
contain subcycles. This yields a family of schedules with the cycle time of
CT°.

• Step 5: Solve MHP1 to obtain the best possible solution contained within
this optimal cycle to minimize the makespan. This yields an upper bound.
Note that the equation in (9) can be used to compute the lower bound for
the makespan problem. If both the bounds coincide the global optimum
for the makespan problem is guaranteed.

For the case of Single Product Campaigns problem steps 2 and 3 are not needed.

28

Appendix IV: Rigorous Scheduling Algorithm

The scheduling procedure for ZW policy that Is based on the model MILP2 can be

summarized as follows for the case of Mixed Product Campaigns :

• Step 1:
• a) Given the batch processing times and cleanup times, determine

the slacks SL^ as Indicated In Appendix I.

• b) Given the specific number of batches for each product njf 1=1...
Np, set up and solve MILP2 to determine the numbers of successive
batches of various products, NPRS^.

• c) If all the variables NPRS^ are integer go to step 2. Otherwise, use
branch and bound or a trial and error rounding scheme.

• Step 2: Use the Graph representation or the algorithmic procedure to
determine the campaigns that are part of the optimal schedule.

• Step 3: Combine these campaigns to form minimum number of
continuous cycles using Rule #4.

• Step 4: If the solution consists of exactly one cycle then stop. If there are
subcycles in the solution (see Appendix II) add repeatedly the subtour
elimination constraints in (8) until a solution to MILP3 does not contain
subcycles. This yields a family of schedules with the global optimum
makespan.

For the case of Single Product Campaigns problem steps 2 and 3 are not needed.

29

References

1. Baker, K. R. Introduction to Sequencing and Scheduling:
John Wiley and Sons, 1975.

2. Birewar, D. B; Grossmann, I. E. "Incorporating
Scheduling In The Design Of The Optimal of Multiproduct Batch
Plants".
Como. and Chem. Engg. 1989.13. 141-161.

3. Campbell, H. G . ; Dudek, R. A.; Smith., M. L. "A heuristic algorithm
for the n job m machine sequencing problem".
Manag. Sci. 1970. 16. 630-637.

4. Dannenbring, D. G. "An Evaluation of Flowshop Sequencing
Heuristics".
Manag. Sci. 1977,22,1174-1182.

5. Garey, M. R.; Johnson, D. S . ; R. Sethi "The Complexity of Flowshop
and Jobshop Scheduling".
Math. Oper. Res. 1979,1117-129.

6. Garfinkel, R. S . ; Nemhauser G. L. Integer Programming:
John Wiley and Sons, 1972.

7. Graham, R. L.; Lawler, E. L.; Lenstra, J. K.; Linnooy Kan A.
H.G. "Optimization and Approximation in Deterministic Sequencing
and Scheduling: A Survey".
Anna. Discrete Math 1979,5, 287-326.

8. Graves, S. C. "A Review of Production Scheduling".
Oper. Res. 1981,23, 646-675.

9. Gupta, J. N. D. "Optimal Flowshop Schedules with No Intermediate
Storage Space".
Naval Res. Logis. Qua. 1976,22,235-243.

10. Ku, H. M.; Karimi, I. A. "Scheduling in Multistage Batch Processes
with Finite Intermediate Storage. Part II: Approximate algorithms",
Presented at the Annual Meeting of American Institute of Chemical
Engineers, Miami, FL; AlChE : New York, NY, 1986; paper 72 E.

30

11. Ku, H. M.; Rajagopalan, D.; Karimi, I. "Scheduling in Batch
Processes".
CEP 1987. 83(81 35-45.

12. Kuriyan, K.; G. V. Reklaitis. "Scheduling Network Flowshops
so as to Minimize Makespan".
Comp. and Chem. Engg. 1989, 12, 187-200.

13. Marsten, Roy. In ZOOM User's Manual:
University of Arizona: Tucson, AZ, 1986.

14. Meeraus, A.; Brooke, T. In GAMS:
Development Research Department, The World Bank : Washington,
DC, 1985.

15. Panwalkar, S. S . ; Iskander, E. "A Survey of Scheduling Rules".
Oper. Res. 1977,25, 45-61.

16. Pekny, J. S . ; Miller, D. L "A Parallel Branch and Bound Algorithm
for Solving Large Assymmetric Travelling Salesman Problem".
Internal Report EDRC 05-27-88; Engineering Design Research
Center, Carnegie Mellon University : Pittsburgh, PA, May 1988.

17. Reddi, S. S . ; Ramamoorthy, C. V. "On the Optimal Flowshop
Sequencing Problem with No Wait in Process".
Oper. Res. Q. 1972,21, 323-331.

18. Wismer, D. A. "A Solution of the Flowshop Scheduling Problem with
No Intermediate Queues".
Ooer. Res. 1972,2Q, 689-697.

LIST OF TABLES

Table I : Data for Example 1

(a) Batch Processing Times [t ,j] Hrs.

(b) Slack Times [SL ikj] Hrs.

Table II : Solution to Example 1

(a) Mixed Product Campaigns

(b) Single Product Campaigns

Table III : Derivation of schedule

Table IV : Data for Example 2

Table V : (a) Solution to Example 2 without cycle - breaking

constraints

(b) Solution to Example 2 with cycle - breaking

constraints

Table VI : (a) Results for the scheduling examples (ZW policy)

(b) Comparison of Computational Performances

Table VII : Comparison of optimal solution and simple SPCs

Table I : Data for Example 1

(a) Batch Processing Times [t j j] Hrs.
xN§tagej

Prod, r s .

A

B

C

D

E

F

STG1

6

1

2

8

4

3

STG2

2

5

7

1

1

6

STG3

4

3

3

5

2

2

STG4

1

5

7

2

2

4

(b) Slack Times [S L j k i] Hrs.

"^.Stage j
Pair ik"*V^

A.A

A.B

A.C

A.D

A.E

A.F

B.A

B.B

B.C

B.D

B.E

B.F

1

0

1

0

0

1

0

1

4

3

0

6

2

2

4

0

0

6

3

1

2

0

0

3

5

0

3

2

1

3

3

0

3

1

2

4

1

3

3

4

5

3

5

7

1

4

0

0

2

1

0

0

"V^tage j
Pair iJ^V^

C.A

C.B

C.C

CD

CE

CF

D.A

D.B

D.C

D.D

OE

D.F

1

5

8

5

3

10

6

0

0

0

0

1

0

2

4

2

0

4

7

2

5

0

1

7

4

2

3

3

4

4

2

5

5

2

0

3

3

0

3

4

0

0

0

0

0

0

4

1

4

6

0

3

"V^tage j
Pair i i t *^ .

E.A

EB

EC

ED

EE

EF

F.A

F.B

F.C

F.D

F£

F.F

1

0

0

0

0

0

0

0

5

4

0

5

3

2

5

0

1

7

3

2

0

0

0

2

3

0

3

5

3

6

6

2

6

0

3

5

1

2

4

4

7

4

7

9

2

6

0

2

4

2

0

2

Table II : Solution to Example 1.

(a) Mixed Product Campaigns

NPRS
ik

X
A

B

C

D

E

F

A

5

B

5

2

C

3

D

1

3

1

E

2

2

F

6

(b) Single Product Campaigns

NPRS
ik

X
A

B

C

D

E

F

A

4

1

B

6

1

C

2

1

D

1

4

E

1

3

F

1

5

Table III : Derivation of schedule

(a) Step 1

X
A

B

C

D

E

F

A

5

B

5

2

C

3

D

1

3

1

E

2

F

6 .

Twice a batch of E is followed by another batch of E

[Rule # 1].

Table lll(b) : Step 2

1

\ \ \ \ \ \ \ \

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \

X
A

CS> B XX

C

\ \ D \̂N

E

F

A

v\\\N

\\\N>

5

B

2

C

3

\ \ \ \N

D

13
1

E

2

F

6

One batch of D follows B and one batch of B follows D

[Rule #2J.

Table lll(c) : Step 3

\

\

\
\
\
\\
\
\

\
\
\

\\
\
\

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

\
\\\\\\\\\\\
\\\V ,

\

\

\

0

\W\\\\\\\\\\\\\\\\\\\V

i *

\\w\\v

f
X

A

w B v

C

wDv

E

^ F .x

A

\\\v

\\\v

V B

'//
/A

N

C J

2

C

3

D

1
4-S

3

I'A
A

A
/

o

E

2

F

Once a batch of D follows F, B follows D ,
F follows B in the schedule [Rule # 2].

Table lll(d) :Step 4

\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

ill!

\\w\\\\\\\

I
S ,S\\\\\\\\\\\S

VS.WV

X
\\ B .\>

c

D

\ \ ^ »v

sV p \ \

A

1
\\\v

N

>
B
\

\
\
V

\

3

Ci)

C D

\\w

3

$
E

\\\v

$
F

i
©

i

Twice a batch of B follows E, F follows B, A follows F

and E follows A [Rule #2 , Rule # 3(a)].

Table IV : Data for Example 2

Batch Processing Times [t , }] (hrs)

A

B

C
D

E

LL.

G
H

1

J

K
L
M

N

0
P

Q

R
S
T

1

5.95
8.44
9.80
3.t7
4.23
4.75
2.75
4.42
0.61
9.54
8.63
7.05
8.55
8.48
2.48
9.41
0.42
8.26
7.56
0.60

2

8.43
3.24
9.58
5.00
6.98
6.37
9.15
3.50
6.30
7.22
8.16
4.10
6.25
4.84
9.76
9.39
4.78
1.19
9.60
1.19

3

9.85
2.39
6.07
4.79
2.23
3.42
5.00
0.95
2.30
4.13
0.32
7.37
3.42
4.94
7.35
2.35
8.96
3.89
1.82
9.72

4

9.39
1.54
2.64
4.19
8.14
6.75
6.81
0.28
6.16
8.34
8.99
8.90
6.48
7.03
5.61
5.41
8.08
5.47
6.90
1.03

5

5.76
6.67
0.39
2.17
0.51
6.78
7.31
9.39
5.65
2.22
4.28
1.89
4.65
7.02
3.23
8.89
9.77
5.31
4.67
3.82

6

4.40
3.89
8.88
0.78
5.72
2.66
3.77
5.49
2.73
0.89
9.34
4.81
3.09
8.49
9.12
2.01
2.26
3.54
9.61
7.30

7

8.33
1.65
0.72
3.82
6.95
6.79
8.03
2.84
6.03
9.64
8.01
8.85
4.50
4.52
4.36
8.91
9.52
7.07
0.88
3.35

8

6.68
7.89
5.76
2.80
2.46
9.40
4.09
7.19
3.78
2.61
3.68
7.70
7.36
2.72
0.88
9.68
4.39
8.31
6.56
6.72

n,

80
90
56
27
90
45
35
38
96
84
03
13
09
47
14
92
76
75
49
40

PRODUCT
PAIRS"

A.(A-T)
B.(A-T)

C.(A-T)
D.(A-T)
E.(D-T)

E.B

E.(A,C)

F.(A-T)
G.(A-T)
H.(A-T)
I.(A-T)
J.(A-T)
K.(A-T)
L.(A-T)
M.(A-T)
N.(A-T)
O.(A-T)
P.(A-T)
Q.(A-T)
R.(A-T)
S.(A-T)
T.(A-T)

CLEAN-
JP TIMES

{HRS] *

0.5
0.4

0.3

0.3
0.2

0.2

0
0.4

0.3
0.3

0.4

0
0

0.1
0.3
0.3

0
0.2

0.3

0.1
0

0.1

The clean-up times are equal to zero when the same products follow the other.

Notation : P1.P2 => P1 to P2 ; P1.(P2-Pn) »> P1 to P2 P1 to Pn.

Table V(a) : Solution to Example 2 without cycle - breaking constraints

A
B
C
D
E
F
G
H
1
J
K
L
M

N
0
P
Q
R
S
T

A

79

1

B

89

1

C

47

9

D

1

26

E

15

75

F

10

9

26

G

35

H

9

29

I

1

35
21

40

J

61

23

K

3

L

13

M

9

N

22

3

11

11

0

13

1

P

14
78

Q

1

1

74

R

75

S

35

14

T

37

3

Table V(b) : Solution to Example 2 with cycle - breaking constraints

A
B
C
D

LJJ

F
G
H
1
J
K
L
M
N
0
P
Q
R
S
T

A

79

1

B

88

1
1

C

47

9

D

1

26

E

15

75

F

10

9

26

G

35

H

9

29

I

1

J

3 4 |
21

40

61

23

K

3

L

13

M

9

N

22

3

11

11

0

13

1

P

14
78

Q

1

1

74

R

75

S

35

14

T

36

4

Table Vl(a) : Results for the scheduling examples (ZW Policy)

EX

1

2

3

4

5

6

7

8

9

No. of
Stages

4

8

7

6

6

4

7

12

9

No. of
Products

6

20

10

10

10

10

7

15

50

No. of
Batches

30

1059

73

274

260

344

402

1 x 10*

2392

Cycle T
LP1

1401

9017.78

585

2259.41

2139.061

2530.05*

3472.13'

9415259.42

20272 5*

ime [Hrs]
LP3

9018.92

586

. . .

—

...

9415259.50

—

Makespan B
Lower

[EQUN9J

145

9034.17

604

2272

2146.11

2535.33

3488.68

9415286.0

20290.78

ounds [Hrs]
Upper
[MILP1]

145

9040.64

606

2273.4

2150.82

2535.57

3488.89

9415295.68

20296.41

% GAP2

0

0.07

0.3

0.06

0.2

0.009

0.006

0.001

0.028

Global Makespan
Solution [MILP2]

1453

9035.92

605

2273.43

2149.24

2535.573

3488.893

9415293.02

20295.27

1 Here the solution to the problem LP1 did not contain any subcycles.

2 % Gap - 100 *(Upper - Lower) / Upper

3 Makespan solution obtained by the approximate method matches with global optimum.

Table Vl(b) : Comparison of Computational Performances

1

7

6

4

5

3

8

2

9

No. of
Products

6

7

10

10

10

10

15

20

50

Total CPU "
Cycle Time Minimization

followed by MILP1

5.23

12.66

12.06

15.96

14.84

31.97

121.25

158.6

547.03

fime [sec]1

Globally Optimal
Makespan by MILP2

7.21

16.85

19.19

22.45

21.98

49.8

165.12

134.96

1450.4

The total CPU time includes the time required to calculate the slacks
and the time to solve LP1 with the constraint (6), LP3 or LP4 and MILP1
using the LP solver ZOOM through the interface GAMS on Microvax II.

Table VII : Comparison of optimal solution and simple SPCs

EX

1

2

3

4

5

6

7

8

9

Global Makespan
Solution [MILP2] (hrs)

145

9035.92

605

2273.4

2149.24

2535.57

3488.89

9415293.02

20295.27

Simple SPC1

Makespan (hrs)

186

9451.75

686

2445.7

2272.83

3037.71

3583.84

9549095.87

21966.55

1Here its assumed that all batches of product A are followed by
all batches of product B, followed by batches of C and so on.

LIST OF FIGURES

Figure 1 : Determining the Slacks [SL ...]

Figure 2

Figure 3

Solution in the Graph Representation.
(a) Single Product Campaigns ;
(b) Mixed Product Campaigns.

Derivation of schedule
(a) Step 1
(b) Step 2
(c) Step 3
(d) Step 4
(e) Joining of Individual Campaigns - Step 5

Eliminating the subcycles :
(a) Solution to LP1 in graph representation
(b) Solution without subcycles in graph representation
(c) Schedule according to LP1 [containing subcycles]
(d) Schedule after eliminating the subcycles

Figure 5 : Heads and Tails in a schedule.

Figure 4 :

Figure 6 :

Figure 7 :

Figure 8 :

Optimal Schedules for Example 1
(a) Mixed Product Campaigns
(b) Single Product Campaigns

(a) Solution to LP1 for Example 2
(b) Optimal Cycle for Example 2

Global Optimum Makespan for Example 2
(a) Graph Representation
(b) Detailed Schedule

SLA m = 8.5 Hrs.-AB1

SLAB2 = 2 Hrs.

SLAB3 = 5 Hrs.

4 Hrs.
Stage 1 [

Stage 2

Stage 3 Transfer Time
- 1 Hr.

10 Hrs.

Transfer Time
- 0.5 Hrs.

9 Hrs.

lean-up Time -1 .5 Hrs.

6 Hrs. 3 Hrs.

LEGEND : I I Product A k\\\vj Product B

Transfer Time Clean-up Time Slacks / Idle Time

Figure 1 : Determining the Slacks [S L . . .]

4

O3

Cycle Time = 172 hrs

0
1 ^ D - ^ 1

(a)

Cycle Time = 140 hrs

(b)

Figure 2 : Solution in the Graph Representation.
(a) Single Product Campaigns ;
(b) Mixed Product Campaigns.

Figure 3 : Derivation of schedule,

(a) Step 1

B

Figure 3(b) : Step 2

D F
1

Figure 3(c) : Step 3

B

Figure 3(d) : Step 4

• E - B - F - A - E -

- B - F - A

< •

-C - D - B - F - A -

- C - D - B - F - A -

. C - D - B - - A

L F - D - B

OPTIMAL CYCLE: E - E - E - B - F - A - E - B - F - A - C - D -

- B - F - A - C - D - B - F - A - C - D - B - F

- D - B - D - B - F - A
<

Figure 3(e) : Joining individual Campaigns - Step 5

! ^ A - B - C - D - A - B - C - D - A - B - C - D -

- A - B - C - D - A - B - C - D - A - B - C - D

E - F - E - F - E - F - E - F - E - F

(c)

A - B - C - D - A - B - C - D - A - B - C - D

- A - B - C - D - A - B - C - D - A - B - F - E -

- F - E - F - E - F - E - F - E - C - D

Figure 4 :

(d)

Eliminating the subcycles :
(a) Solution to LP1 in graph representation
(b) Solution without subcycles in graph representation
(c) Schedule according to LP1 [containing subcycles]
(d) Schedule after eliminating the subcycles

Stage 1

Stage 2

Stage 3

Stage 4

Head for
Stage 4

Head for
Stage 3

SPT
MAX

Stage Processing Time [SPT]

Figure 5 : Heads and Tails in a schedule.

= 55hrs.

Tail for
Stage 2

— > " —Tail for
Stage 1

SPT =54hr.
1

SPT2 = 55 hr.

SPT3 = 54 hr.

SPT4 = 52 hr.

D B

F A E E E

145 hrs

LEGEND: B I/V/VJ C

Figure 6 : Optimal Schedules for Example 1
(a) Mixed Product Campaigns.

177 hrs
LEGEND:

Figure 6 (b): Single Product Campaigns.

1 0

CYCLE TIME - 9017.78 Hrs.

Figure 7(a) : Solution to LP1 for example 2.

CYCLE TIME = 9018.92 Hrs.

Figure 7(b) : Optimal cycle for example 2

H 21 (I) 28 (I-R-E-H) 37 (I-R-E-T)

I - R - E - 1 5 (E) - M - 1 0 (F i -

ll (F-L-O-P-N-G-S) - 2 (F-L-O-P-K-N-G-S)

13 (F-N-G-S) F - 12 (N) - 26 (Q) - 80 (A) --

O - P - K - N - G - S -

14 (J-S) J - 61 (J) - C - 47 (C) H -

5 (I-R-E-M-F-N-G-S-J-C-H) 3 (I-R-E-M-F-N-G-S-J-C-H-T)

- | _ R - E - - B ~ 8 9 (B) ~ D - 2 6 (D) - *

MAKESPAN = 9035.95 Hrs.

Figure 8 : Global Optimum Makespan for Example 2
(b) Detailed Schedule

1 0

END

MAKESPAN = 9035.95 Hrs.

Figure 8 : Global Optimum Makespan for Example 2
(a) Graph Representation

