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ABSTRACT

An improved outer-approximation algorithm for MINLP optimization is proposed
in this paper which is aimed at the solution of problems where convexity conditions may
not hold. The proposed algorithm starts by solving the NLP relaxation. If an integer
solution is not found, a sequence of iterations consisting of NLP subproblems and MILP
master problems is solved. The proposed MILP master problem is based on the outer-
approximation/equality-relaxation algorithm and features an exact penalty function that
allows violations of linearizations of nonconvex constraints. The search proceeds until no
improvement is found in the NLP subproblems. Computational experience is presented
on a set of 18 test problems The results show that the proposed method has a high degree
of reliability for finding the global optimum in nonconvex problems.




Introduction

There has been recently an increased interest in the development and application of
nonlinear optimization algorithms that can handle both continuous and integer variables,
especially of the 0-1 type. These problems, which are commonly referred to as mixed-
integer nonlinear programming (MINLP) problems, have many applications in engineering
design, planning, scheduling and marketing. Often the corresponding MINLP models exhibit
special structures (e.g. graphs, networks, separable functions) that can be effectively
exploited for developing specialized solution procedures. However, it is also very often the
case, particularly in engineering design, that nonlinearities in the continuous variables do
not exhibit any special form since they result from complex engineering models. Thus,
there is clearly a strong motivation to develop MINLP algorithms that that are not overly
restrictive in the assumptions of the form and properties of the functions that are involved.

Among the general purpose algorithms for MINLP, we can cite branch and bound
(Beale,1977; Gupta, 1980), Generalized Benders Decomposition, GBD, (Benders, 1962;
Geoffrion, 1972), the Outer-Approximation/Equality-Relaxation Method, OA/ER (Duran
and Grossmann, 1986; Kocis and Grossmann, 1987), and the Feasibility Technique
(Murtagh and Mawengkang, 1986; Mawengkang, 1988). The branch and bound method has
the drawback that it can require the solution of a large number of NLP subproblems in the
search tree, unless the NLP relaxation is very tight. GBD has the advantage that one can
exploit more readily special structures in the NLP subproblems, but has the drawback that
it may require a significant number of major iterations where NLP subproblems and MILP
master problems must be solved successively. The OA/ER algorithm has the advantage that
it typically requires only few major iterations, but has the drawback that the size of its
MILP master problem is considerably larger than in GBD. Finally, the Feasibility Technique
requires the least computational expense since it is based on the idea of finding a feasible
integer point that has the smallest local degradation with respect to the relaxed NLP
solution. However, it has the drawback that it does not guarantee optimality. Other related
procedures for MINLP have been reported by Yuan et al. (1987) who extended the OA
algorithm for convex nonlinear 0-1 variables, and by Floudas et al. (1988) who applied
partitioning of variables in GBD to induce convex NLP subproblems.

The branch and bound, GBD and OA/ER algorithms require that some form of
convexity assumption be satisfied in order to guarantee that they can find the global
optimum of the MINLP. On the other hand, the OA/ER algorithm, which tends to be the most
efficient method when the NLP subproblems are expensive or difficult to solve, is the most
stringent in terms of convexity requirements. In particular, the OA/ER algorithm relies on
assumptions of convexity of the functions fand g and also the quasi-convexity (resp. quasi-
concavity) of nonlinear equality constraints, h (Kocis and Grossmann, 1987). When these
conditions are met, the algorithm will determine the global optimum. Otherwise, the
linearizations of the master problem can cut into the feasible region of candidate integer
points which may result in sub-optimal solutions (Kocis and Grossmann, 1988a).

To overcome this problem, a two-phase strategy was proposed by Kocis and
Grossmann (1988a) where in the first phase the OA/ER was applied. In the second phase,
linearizations of nonconvex functions are identified by local and global tests so as to relax
the master problem. This scheme proved successful in locating the global optimum in about
80 % of test problems. The implementation of the local and global tests is, however,
somewhat difficult and they are not guaranteed to identify all the nonconvexities.




Motivated by observations with our experience in solving MINLP problems, it is the
purpose of this paper to develop a new variant of the OA/ER algorithm which does not
require the explicit identification of nonconvexities. As will be shown, this can be
accomplished with a new MILP master problem that incorporates an augmented penalty
function for the violation of linearizations of the nonlinear functions. Furthermore, the
proposed algorithm (AP/OA/ER) has the important feature of not requiring the
specification of an initial set of 0-1 variables since the algorithm starts with the solution
of the relaxed NLP problem. Also, if appropriate convexity conditions hold, the AP/OA/ER
algorithm has embedded the OA/ER algorithm. Numerical results are reported for a set of
18 test problems which arise in engineering design. Although convergence to the global
optimum cannot be guaranteed, the numerical results suggest that the proposed algorithm is
not only computationally efficient, but also very robust for finding the global optimum
solution.

Outline of the AP/OA/ER Algorithm

We consider here the MINLP (mixed-integer nonlinear program) of the form:

Min z a=C"y Hhf(x)
st. Ay +h(x) =0
By +9(x):S0
Cy +Dx <0
xes < ={x€ R":x"Ex<x"} (P)

ye Y ={0,1}"

Here, x denotes the vector of continuous variables and y denotes the vector of binary
variables corresponding to logical decisions (e.g. the existence of units). The functions f, g
and h are defined over appropriate domains and have continuous partial derivatives. The
matrices A, B, C and D have compatible dimensions. For each fixed binary vector y*, we
assume that the corresponding NLP (nonlinear program):

Min z:=c'y*+f (x)

st. Ap< +h (x) =0
By +g x)<0
Cy" +Dx =<0 [P(y")l
XE€X = {xe R":x'<xsx"}

satisfies any of the constraint qualifications (Mangasarian, 1969) so that the solution
vector is a KKT (Karush-Kuhn-Tucker) point.

The algorithm that we propose involves the following steps :




1. Solve the NLP relaxation of (P) withy €Y, ={yeR" Oxy=<e},

0 0
where e is the unity vector, to obtain the KKT point (x‘:y )- if y is integer, stop.
Otherwise, go to step 2

1
2. Find an integer point y with an MILP master problem
that features an augmented penalty function to find the
minimum over the convex hull determined by the half-spaces

at the KKT point (x"y°) .

3. Solve the NLP [P(y")] at y* to obtain the KKT point ( x V) »

2
4. Find an integer point y with the MILP master program
that corresponds to the minimization over the intersection
of the convex hulls determined by the half-spaces of the

. 0 1
KKT points aty andy

5. Repeat steps 3 and 4 until there is an increase in the

value of the NLP objective function. (Repeating step 4 means augmenting
the set over which the minimization is performed with additional
linearizations - i.e , half-spaces - at the new KKT point).

The above algorithm is in the spirit of earlier algorithms proposed by Duran and
Grossmann (1986) and Kocis and Grossmann (1987), but there are some important
differences.

In both the previously cited algorithms it was assumed that an initial integer point

y was supplied so that steps 1 and 2 were absent. Also, the termination criterion used in
these algorithms, viz:

r

5 . Repeat steps 3 and 4 until the objective function of the
MILP was greater than or equal to the lowest value of
the objective function among the previously solved

NLP minima at fixed values of the integer vector y .

is different from the one proposed here.

While the OA/ER algorithm has proved to be quite successful in solving a variety of
problems (Kocis and Grossmann, 1989), its major limitation has been that it relies on
assumptions of convexity of the functions as discussed previously.

For the algorithm proposed here, no assumptions concerning convexity of the
functions in the MINLP are made. The main idea relies on the definition of a new MILP
master problem the uses a linear approximation to an exact penalty function (Zhang, Kim




and Lasdon, 1985), and therefore allows violations in the linearizations of the nonlinear
functions. The algorithm is also based on extensive computational experience that has
confirmed the desirability of starting with the solution of the relaxed NLP and the use of

termination criterion 5 instead of 5. The algorithm embeds the OA/ER algorithm in the case
the assumptions concerning convexity of the latter are fulfilled. Although the proposed
method has no theoretical guarantee of finding the global optimum, it was able to locate
global optima in virtually all test problems despite the presence of nonconvexities in the
MINLP problem. Our experience includes solving some challenging problems in distillation
column design

The following sections describe the three major items of the proposed algorithm:
starting point, MILP master problem and the termination criterion. Implementation of the
algorithm is discussed and numerical results are also presented.

Starting point

Both Generalized Benders Decomposition (Geoffrion, 1972) and the OA/ER
algorithm (Duran and Grossmann, 1986; Kocis and Grossmann, 1987) assume that an

initial integer value y 1is supplied. On the other hand, the branch and bound method (Gupta,
1980) and the feasibility technique of Mawengkang (1988) start the calculations by
solving the relaxed MINLP problem. This means that :

1. The user need not provide an initial integer vector.

2. If the relaxed MINLP provides an integer solution,
further calculations are not necessary.

It is also reasonable to expect that the solution of the relaxed MINLP will provide
very good estimates of the continuous variables and, hence, the linear approximation to the
MINLP at this point is often of good quality.

Thus, we begin computations by solving the relaxed MINLP:

Min z:=c'y+f(x)
s.it. Ay +h(x) =0
By +g X)<0
Cy +Dx <0
xeX ={x€ R":x"sx<x"} (1)

ye Y, ={y€R", 0sy<e}

The solution to this problem may be obtained by any NLP solver such as MINOS, SQP, etc .

0 0 0
Let the solution be (x .y :) If y is integer, we stop. Otherwise, we proceed for the search of
an integer solution. Note that if problem (1) is infeasible or unbounded, the same is true of
the original problem (P). As may be expected, the solution of the relaxed MINLP generally
takes longer time to solve than the time required for the case of a NLP with fixed binary
vector. Also, it should be noted that the NLP solution in (1) is only guaranteed to correspond




to a global optimum if appropriate convexity conditions are satisfied (see Bazaraa and
Shetty, 1979).

Master Problem

. 1 .
If yO is not integer, we wish to find an integer vector y , whose corresponding NLP

solution is a likely candidate to the global optimum of the program (P). For the case where
the objective function is convex and the MINLP has only inequality constraints which are
also convex, the "best" integer point lies in the convex hull determined by the half-spaces

at (x0 yo) (see Duran and Grossmann, 1986). The motivation is to find an estimate of the
KKT point but with integer coordinates.

That is, given

Min 20 :=cTy%+ o
st f(x)- a<0
Ay9 +h(x) =0
By? +g(x)<0
Cy% +Dx <0
xe X={xe R":xt<x<xVU} (2)

the convex hull C(x,a,y) determined by the half-spaces of the KKT point of (2) at y0 is
given by

f(x) + Vi(x0)T(x - x%) - & <0

TO [ Ay0 + h(x%) + Vh(x9)T(x - x°) <0
Byo +g(x0) + Vg(x0)T (x-x0) <0 3)

Cy?+Dx <0

xe X={xe R":xt<x<xV}
where TP is the relaxation matrix of the equations &'y + hj (x) =0, given by

. 0 0
T ={t?}, tQ=sign{Ai }, with i being the Lagrange multiplier of each equation i.

The following proposition can then be established:




Propasition 1: If (x°, a) is a KKT point of (2) at y<, then (x<, a) is a KKT point of
the problem -

Min z:=c'y°+a (4)
with (x°, a) satisfying (3).

Proof: The KKT conditions of (2) are given by :

1-c=0

oVf O) + X >iVhj (x°) +X wVgj (x°) +£ Vidj +p" - pt=0
i i i
AYO +h (x°) =0
By’ +g (x) <0
Cy° +Dx° <0
x"<sx<x"

[f(xO)-ala =0, a=0
[oy° + gi(x)] 15=0, ;20
ey +dxfilv o, was=o

[-xp+xJ; 1pi"=0, pi"20
[x"-XjO 1pi"=0, pi"20

These conditions are also identical for problem (4) at (x°, a) by setting

afyo + hj(x®) + Vhj(x°) "(x - x°) <0 if Aj >0
ajV° + hj(xO) + Vhj(x0) "(x - x°) =0 if Xj<0
Q.ED.

If f and g are convex and tjjhj is quasiconvex (see Bazaraa and Shetty, 1979), then

1
the integer vector y that has the "best" potential for yielding the lowest value for the
objective function is given by the solution of the following MILP (see inequalities (3))

zZI= Min c'y +a
| ©)
st (xccy) e C(x,a,y)n (0,1}"




1
Furthermore, Z provides a valid lower bound to the solution of problem (P) (see Duran
and Grossmann, 1986).

In the general case, where the assumptions concerning the convexity of f, g and h are
not met, we cannot assert that problem (5) will provide a valid lower bound nor that it has
a feasible integer solution even when problem (P) has. To circumvent this problem, we
consider the following MILP with an augmented penalty function :

2% := Min cly +a+w°s® + 2, wPpi + 2, Wi
i i

f(xO) + VF(XO)'(x - x°) - a <s°

s.t.
T[Ay + h &) + Vh(xO)'(x - x°) <p
By +g(x°) +Vg(x0)' (xx0) <q (6)
Cy+Dx<0

xe X={xe R":xLsx<xV}
ye {0,1}" s°20,p20,920

q I 1
: Wj >||ij| are the weights on the slack variables.

where W0>|al “/.MX,

Using a similar argument as before, the following proposition can then be easily
proved:

Proposition 2: If (x°, a) is a KKT point of (2), then it is also a KKT point of (6) at

Thus, problem (6) can be used to formulate a master problem which has the
flexibilty of violating inequalities should this prove necessary when searching for a new

1
integer vector y . We also note that in case the convexity assumptions are met and the
weights are sufficiently large, problem (6) reduces to problem (5) Qualitatively, the
convex hull described by (6) is an expansion of the convex hull determined by (3).

1
Assuming that the integer vector y has been found and its corresponding NLP solved,
2
we need to find a new integer vector y where there is a further decrease in the objective
function. Since an improved representation of the MILP master problem is required, we

. . . . 3} 1 . . .
will consider the intersection of half-spaces at x and x following a similar reasoning as
in the OA/ER algorithm, but the master problem will be defined with an augmented penalty

k 0
function as in (6). More generally, if x ,k =0,1,...K, with x the solution of the relaxed




MINLPandx ,k= 1...K, are the NLP solutions found at the previously determined integer

. . 1.
vectors, the MILP for determining the integer vector yK+ is :

z£ : = Min c'y + <x +£ wgsg + X WE Piy + 2w G
Kk ik ik

subject to :

f(xk) + VF(xk)"(x - xk) - a <SE
Tfl [ Ay + h(xk) + Vh(xk)"(x - xk) <px - «=0,1.... K 7
By +g(xk) + Vg(xk)" (x-xk) <:;q«

Cy+Dx<0
Z yik" z yik <|Bul-1 S k=1,.K
i €By i €Ny

xe X = {xe R"xLsx<xU} vye {0,1}"

Sg.Pik.gi,k* 0 . k=01..K

In the MILP (7) above, integer cuts have been introduced to eliminate the
12, K
previously determined integer vectors y \y ...y from further consideration. Note also that
if convexity conditions hold, then for sufficiently large weights the above MILP reduces to
the master problem of the OA/ER algorithm by Kocis and Grossmann (1987).

Infeasible NLP Subproblems

In the proposed algorithm it is possible that the MILP master problem in (7) may
predict an integer vector yK+1 for which there is no feasible solution in the corresponding
NLP subproblem. In this case there are two possible schemes to handle this problem. One is
to simply disregard the associated infeasible continuous point x~+ifor the linearization,
and just introduce an integer cut for y**! for the next master problem. The other option is
to also add to the master problem the linearization at the infeasible continuous point.
However, since in this case information on the Lagrange multipliers is required to relax the
equations, it is desirable that the equations be satisfied at the infeasible NLP subproblem.
This can be accomplished by reformulating the MINLP problem (P) as (Kocis and
Grossmann, 1987):



Min z:=c'y +f (x)+r|u
st. Ay +h (x) =0
By +g (x)<=u
Cy +Dx <u
xeX = {X€ R":x'<x<x"}
u=0,U€R" (8)
ye {0,1}"

where u is a scalar variable and » is a large positive constant. In this way the idea in (8) is
that if the NLP subproblem has a feasible solution, the variable u is driven to a zero value.
If it is infeasible for the given integer vector, it will determine a continuous point that
satisfies the equations and minimizes the violation of the inequalities. It is clear that care
must be excercised in this reformulation to ensure that these properties in fact hold.

Termination Criterion

The MILP in (7) will not, in general, produce valid lower bounds for the objective
function of problem (P) unlike the convex case (Duran and Grossmann, 1986; Kocis and
Grossmann, 1987). Therefore, we resort to termination based on the progress of the
objective function of the NLP sub-problems. For the case when no integer solution is found

in the NLP relaxation problem, the search is stopped when at iteration k=2, we have

z (y") = z (y™"") assuming the corresponding NLP subproblems are feasible. When this is
not the case, the termination criterion is applied between two successive feasible NLP
subproblems. Interestingly, for the convex case, we have observed that if we use this
criterion for all the test problems we have examined, the global solution is correctly found
in all cases. Hence, this criterion has been adopted in this work. Note that if an integer

knl

0 _
solution y is not obtained in the relaxed NLP, the proposed algorithm would examine at
least two additional NLP sub-problems with fixed 0-1 variables.

Finally, it should also be noted that for the implementation it would always be
possible to use a termination criterion based on the lower bound of the MILP master
problem for those cases when it is known a-priori that the convexity conditions are
satisfied.

Summary of Algorithm
The main steps in the proposed AP/OA/ER algorithm are as follows:

Step 1. Solve the relaxed NLP problem in (1) to determine a KKT
point (x°, y°). If y° is integer, the solution is found, stop.

Otherwise, set K=0, zOLD- 1, and go to step 2.

Step 2. Set up the MILP master problem in (7), and solve to find the integer
vector y¥*!. Set K=K+1.
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Step 3. Solve the NLP subproblem [P(y“*")] to determine the KKT
point (x**, y**1) with objective value zX**. If the NLP is
infeasible set FLAG=0. If the NLP is feasible, set
NEW=zK,1|rLaG=1"

Step 4. (a)lf FLAG=1, determine if zNEY > z°-P: if satisfied, stop.
The optimal solution is z°“P. Otherwise, set z°-P = zNEW
and return to step 2.

(b) If FLAG=0, return to step 2.

It should be noted that the above algorithm will terminate in one iteration if an
integer solution is found in step 1, or else it will terminate after 3 or more iterations when
the termination condition in step 4 (a) is satisfied. Note that in the latter case, N iterations
implies the solution of N NLP subproblems, and N-1 MILP subproblems. Also, as was
mentioned previously, if convexity of the MINLP can be established a-priori, the
termination criterion in step 4 can be replaced by the use of the lower bound predicted by
the MILP master problem as in the OA/ER algorithm.

Computer Implementation

The proposed AP/OA/ER algorithm has been implemented as the program DICOPT++
in the GAMS system (Brooke et al, 1988) for both IBM/CMS and VAX/VMS computers. The
NLP solver used is MINOS (Murtagh and Saunders, 1985). On IBM, the MILP step is
executed by MPSX/370 (IBM, 1979), and on VAX by ZOOM (Marsten, 1986).The authors
may be contacted about the availability of this program.

Computational Results

The AP/OA/ER algorithm in DICOPT++ has been tested on the set of 18 MINLP
problems that are shown in Table 1. Note that in terms of size, these problems involve up to
60 0-1 variables, 709 continuous variables and 719 constraints.

Following is a brief description of the test problems. LAZIMY is a bilinear MINLP
reported by Lazimy (1982). HW74 is a small convex planning problem for the selection of
3 processes by Kocis and Grossmann (1987). NONCON is a small nonconvex MINLP and
CAPITAL is a quadratic capital budgeting problem reported in Kocis and Grossmann (1988).
YUAN is a convex MINLP problem by Yuan et al (1987). Since the problems LAZIMY,
CAPITAL and YUAN exhibit nonlinearities in the 0-1 variables, these problems were
reformulated with additional continuous variables in order to have linear 0-1 variables,
(see Kocis and Grossmann, 1989). Problem FLEX is the MINLP formulation for the
flexibility analysis of a heat exchanger network with uncertain flowrate by Grossmann and
Floudas (1987). REL1 is a nonconvex reliability design problem considered by Kocis and
Grossmann (1989). The three BATCH problems correspond to convexified formulations for
the design of multiproduct batch plants described in Kocis and Grossmann (1988a), while
TABATCH corresponds to a batch design with tasks assignments to be determined.

The last set of 5 MINLP problems correspond to various types of process
applications. Problem UTILRED corresponds to the retrofit of a utility plant where the
replacement of turbines by electric motors is considered (Kocis and Grossmann, 1989).
TFYHEN corresponds to the retrofit of a small heat exchanger network that involves the
aftercooler of a compressor and the reboiler of a column (Yee and Grossmann, 1988).
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EXSFEED and EX5TRAY are distillation column design problems for optimal feed tray
location and number of trays for the separation of toluene and benzene. Finally, HDASS
corresponds to the MINLP model for the synthesis of the hydro-dealkylation of toluene
process developed by Kocis and Grossmann (1988b).

The results in Table 1 were obtained on an IBM-3083 and IBM-3090 computers,
using MINOS as the NLP solver and MPSX as the MILP solver. As can be seen in Table 1, the
computational requirements with the AP/OA/ER are very reasonable. Note that the solution
of 3 problems, NONCON, LAZIMY and EX5FEED, was achieved in one single major iteration
since the integer solution was found in the relaxed NLP. All the other problems required
only between 3 and 5 major iterations, which implied solving between 3NLP/2MILP and
S5NLP/4MILP problems, respectively.

Perhaps, the more significant fact from the results shown in Table 1 is that the
global optimum was found in all cases despite the fact that a significant number of these
problems are in fact nonconvex (11 of 18). Thus, although the proposed algorithm has no
guarantee of finding the global solution, it is clear that the AP/OA/ER algorithm has shown a
remarkable degree of robustness. We feel that this is mainly due to a combination of two
factors. First the initialization with the relaxed NLP which seems to provide very good
linearization points. Secondly, the new MILP master problem which allows if needed the
violation of any function linearization.

Conclusions

This paper has presented an augmented penalty version of the outer-
approximation/equality-relaxation algorithm. The proposed algorithm has as main features
that it starts with the solution of the NLP relaxation problem, and that it features an MILP
master problem with an augmented penalty function that allows violations of linearizations
of the nonlinear functions. This scheme provides a direct way of handling nonconvexities
which are often present in engineering design problems. The proposed algorithm has been
implemented in DICOPT++ as part of the modeling system GAMS. The numerical
performance, which has been tested on a variety of applications, has shown that the
computational requirements of this method are quite reasonable while providing a high
degree of reliability for finding global optimum solutions.
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Table 1
Computational Results with DICOPT++

(Augmented-Penalty/Outer-Approximation/Equality-Relaxation)

Size MINLP Time* %

Problem 0-1 ContV. Const. Iterations* (sec) NLP:MILP
LAZIMI 2 8 5 1 0.22  100:00
HW74 3 9 9 4 2.43 26:74
NONCON 3 3 6 1 0.1 100:00
YUAN 4 4 10 3 1.87 36:64
CAPITAL 10 3 7 4 2.32 22:78
FLEX 4 12 16 3 2.24 46:54
REL1 16 21 18 3 17.9 36:64
EX3 8 26 32 5 3.7 51:49
EX4 25 7 31 5 65.1 9:91
BATCH 24 23 74 3 7.9 70:30
BATCHS 40 33 142 4 24.4 63:37
BATCH12 60 41 218 4 38.5 45:55
TABATCH 24 71 129 3 53.6 53:47
UTILRED 28 118 168 3 41.9 14:86
TFYHEN 30 74 144 3 102.0 20:80
EXSFEED 10 238 239 1 19.2 100:00
EX5TRAY 30 338 467 4 103.6 39:61
HDASS 13 709 719 3 482.0 84:16

* N iterations require N NLP subproblems and N-1 MILP master problems

** Total time NLP:MINOS / MILP:MPSX. All problems on IBM-3083,
except EX5TRAY on IBM-3090




