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1. Abstract

Process control research has concentrated on designing controllers to improve the performance of

existing processes. Assuming an optimal but realizable controller, it is intuitively evident that there are"

some inherent limits on how well a process can be controlled (e.g., time delays). This limit suggests that

one can develop an index which measures the "controllability" of a process. We have developed such an

index in this study.

Controllability is defined as the ability of the process to move quickly and smoothly from one operating

condition to another and to deal effectively with disturbances. Our index is defined as the minimum time

necessary to overcome the worst expected disturbance and/or setpoint change. It accounts for the

presence of process time delays and constraints, each of which can profoundly affect one's ability to

control a process. While not a focus of this study, it can also account for nonlinearities.

In our model, disturbances come from a known family of possibilities. Using measurements, the

optimal controller has to decide when disturbances have hit, identify which they are, and determine their

magnitude. With delays disturbances can enter the process well in advance of their detection. Between the

time the controller detects that disturbances have occurred and when it then identifies which they are, the
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controller for our index positions the process to minimize its worst potential performance. With each new

measurement, the controller recomputes its next move and is thus expressed in the form of a multilevel

optimization problem.

A multilevel optimization problem can be very difficult to evaluate. We show how to simplify this

problem for some important special cases.

2. Introduction

Process design is done largely without any consideration regarding controllability. Heuristics such as

overdesign, SISO rules of thumb, and simulation have been used to evaluate controllability, but these

sometimes fail (Holt, 1984). Past experience has shown that understanding the effects of design on

control are desirable. Doyle (Doyle, 1986) has indicated that good control research is not how to design

control systems that can get the best possible performance out of a large MIMO system but rather "the

most important role a control engineer can play in the process industry as a whole is to decide how to

build plants"

It has been shown previously (Morari, 1983) that the best performance that any controller may achieve

on a process (i.e. its controllability) is a function of the process itself. One can evaluate controllability

independent of the controller by using an optimal controller. Morari (Morari, 1983) defines controllability

as "the ability of the process to move fast and smoothly from one operating condition to another and to

deal effectively with disturbances." Controllability is difficult to define mathematically and is dependent

on the specific problem under investigation.

Existing measures can be categorized as steady state or dynamic. Steady state measures include those

based on structural controllability and the relative gain array (RGA). Structural controllability indicates

whether a plant can be taken to the origin from any initial point. It is guaranteed if the rank of the

controllability matrix is full. RGA is a measure of interaction, and it guides the designer into choosing

what are the pairings that minimize interactions of MIMO systems (Stephanopoulos, 1984).

Dynamic measures include Bandwidth, and the process reaction curve for SISO processes. For MIMO

systems, these measures include Minimum Necessary Delay (Perkins, 1985), those based on the Internal

Model Control (IMC) structure (Garcia, 1982), and Singular Value Analysis (SVA) for MIMO systems

Control systems that have large bandwidth are capable of tracking setpoint changes at high frequencies

(Friedland, 1986). The process reaction curve assumes that most processes have a sigmoidal shaped



response curve which can be approximated as a first order process (time constant tG) with a delay fy

An heuristic indicates that for t^ty ratios less than 3, processes have poor controllability and for ratios

greater than 7 processes have good controllability (Reimann, 1986).

The Minimum Necessary Delay is a simple to calculate scalar measure. It indicates the minimum time

after which all outputs can be specified independent of the inputs. IMC was used by Holt (Holt, 1985) to

obtain bounds on the controllability of linear systems. It has been used for systems containing

nonminimum phase elements (time delays and right half plane zeroes). Finally, SVA provides a closed

loop measure of sensitivity of the process to model errors. Processes with small condition numbers (for a

frequency range) tolerate model/plant mismatch better than processes with large condition numbers.

MND and IMC are usually sufficient in the case where the process dynamics are dominated by

nonminimum phase elements since these elements deteriorate the plant the most. However, these methods

are limited to linear systems and cannot handle constraints or measurement delays. Since most chemical

processes are nonlinear, have measurement delays, and operate at constraints for economic reasons, a new

index is needed.

In this research we have developed an index to evaluate controllability in the time domain that can be

used to design and/or retrofit chemical processes for improved control.

3. Description of Index: Properties Desired

As was mentioned above, controllability is very difficult to quantify. There are many aspects to be

considered so that a tradeoff must be made between what can be solved and what is to be solved. We

desire an index that

• is independent of

1. the controller

2. the disturbances/setpoint changes

• and can take into account

1. process constraints

2. nonlinearities

3. time delays

4. model uncertainty

5. stochastic models

The following sections dicuss how some of these properties can be obtained.



3.1. Optimal Controller

We obtain an index independent of the controller by choosing a minimum time optimal controller. That

is, instead of evaluating the process with any number of different controllers, we have chosen the best

controller possible, making the results unique for a given process.

3.2. Disturbance/Setpoint Change

We assume that a set of disturbances and/or setpoint changes that are likely to occur is available. Out of

this set, we pick the worst disturbance to reject or the worst setpoint change to track, whichever results in

the largest minimum time.

3.3. Process Constraints and Nonlinearities

Although the frequency domain is very powerful for analysis, it has its limitations: constraints on the

inputs and states are difficult to handle, the methods are limited to linear systems, and results are

sometimes difficult to interpret Since our problem is formulated in the time domain, it can handle process

contraints and nonlinearities in the model.

Since our problem is formulated in the time domain, adding constraints on the inputs and their

derivatives can be easily done. For example, constraints on the first derivative of the inputs, that is,

constraints on how quickly a valve can open or close, are dealt with by augmenting the states of the

system with these inputs and letting their derivatives become new input variables.

3.4. Time Delays

Time delays are very common in chemical engineering processes. Delays in applying control or in

obtaining measurements can adversely affect controllability. Process delays, in general, deteriorate

dynamic performance, since the controller cannot affect and/or cannot know about the state of the process

immediately. Input delays occur when the manipulated variables cannot affect the process immediately. A

common example of input delays is that of transportation lag, where a fluid takes a finite time (the delay)

to flow through a pipe.

Measurements in chemical engineering are often characterized by time delays (e.g. composition

analysis). These measurement delays deteriorate the attainable controllability in the sense that the

controller only has old information about the state of the process. The controller is not able to react

immediately to a disturbance. The effect of measurement delays on the dynamic performance of the

process has usually been ignored in past indices. Section (6) illustrates how single and multiple input and



measurement delays can be included into our controllability index.

3.5. Mode! Uncertainty

Since all models are only approximations of the true process, the index should also take into account

model uncertainty. Although very important, this aspect has not been studied in this work.

3.6. Stochastic Models

Most chemical processes have disturbances that enter the process in a stochastic manner and

measurements that are corrupted by noise. Systems described by stochastic models will be dealt with in a

companion paper (Carvallo, 1988a).

4. Index Formulation for Case without Delays

Given a set of expected inputs, setpoint changes to track, and disturbances to reject, we define our

index as the minimum time necessary for the process to overcome the worst expected input (disturbance

and'or setpoint change). If delays and noise do not exist, this optimization problem can be formulated,

mathematically in the time domain as the following optimal control problem:

Problem PI

max min *> (1)

r4k£ D uke U

sx xM =f(xk,uk9dk) (2)

*0 8iven (3)

g(tf9xyutf9r) - 0 (4)

h(xk$uk) <S 0 (5)

where the set D contains all possible inputs (disturbances and setpoint changes) coming into the process,

and U is the bounding set on the manipulated variables. More will be said about the form of the

disturbances in the following section. In the objective (1), the outer max operator searches for the worst

disturbance (worst in a minimum time sense), and the inner min operator searches for the optimum

minimum control policy to reject that worst disturbance.

Problem PI is independent of the controller because we have chosen an optimal controller. That is,



instead of evaluating the process with any number of different controllers, we have chosen the best

controller possible, making the results unique for a given process.

This optimal control computation is carried out in the time domain so that constraints, and

nonlinearities can be handled. Constraint (4) may consist of driving the output error to zero (e.g.,

r-Cxt - 0). Also, we almost certainly want the process to arrive and stay at the final condition. This

requirement can be expressed mathematically as xt -f(xt, ut, dt).

If we assume that the nominal point is optimal, then the time to drive the process back to the nominal

point (or to a new nominal point) will result in lost profit. We have chosen minimum time to minimize

this lost profit. Minimum time controllers are usually not implemented in practice because the

computations are difficult. Since we are not doing these computations on-line, computation time is not the

main issue. The authors (Carvallo, 1988b) have developed a mixed integer linear program formulation for

solving efficiently in one pass the minimum time optimal linear control problem.

As defined in Problem PI, the index cannot take into account measurement delays, and/or model-

uncertainty. A method to handle measurement delays will be described in the next section.

4.0.1. Example: Distillation Column

We illustrate with this example the impact of constraints and of different disturbances (here in the form

of setpoint changes at time k - 0) on the time to overcome a disturbance. A continuous linear model for a

high purity binary distillation column was obtained from (Morari, 1988). For a discretization time of 5

minutes, we obtained the following linear discrete model

0.9355 0.0
0.0 0.9355 x k

5.660*10-2 -5.570*10-2

6.978*10-2 -7.068;cl0-2 (6)

where uk and xk are given by [L V]T and \yd xb]
T respectively. L, V, yd, and xb are the reflux and vapor

flowrates, and top and bottom compositions.

For a specific setpoint change from 0 to r, Problem PI is easily formulated and solved as the following

MILP (Carvallo, 1988b)

Problem P2



min tf + t\\u^\x (7)

ukeU

V
v-ls.t. tf - 1 + Y ZW2'"1 (8)

1-1

+ || r-Cxk\\x <. (\Sk\ - X zW +X zW )A/ (9)

k+l + ruk (10)

x0 given (11)

z[i] € (0,1). (13)

Since the discrete minimum time optimal control problem has usually more than one control policy toa

achieve the same minimum time, the term el l^lp with ei\u^\x « tp is added to the objective 7 in order to

pick the policy with the minimum effort. Constraint (9) assures that the final conditions are met only at

the final time tf. The 1-norm used above was chosen for simplicity since the 2-norm would require the

solution of a more complex Mixed Integer Nonlinear Programming (MINLP) problem. The resulting

MILP's were solved using ZOOM with the modeling language GAMS (Kendrick, 1985). Carvallo et. al.

(Carvallo, 1988b) show computational details for solving Problem P2.

Table 4-1 shows the resulting time to overcome different setpoint changes and different bounds on the

inputs. The setpoint changes are for top and bottom compositions. The large difference between the

minimum times for r«(0.02,0.03) and r«(0.02, 0.0) is as predicted by Skogestad (Morari, 1988) The

direction of r«(0.02,0.0) in the disturbance (setpoint) space gives a high disturbance condition number,

indicating difficulty for the controls to handle iL Finally, note with the last three the high sensitivity of the

minimum time to the manipulated variable bounds.



r

(0.02,0.03)

(0.02,0.0)

(0.02,0.0)

(0.02,0.0)

llû ll bounds

1

1

1.5

2

time (minutes)

15

120

60

40

Table 4-1: Computed Minimum Times for Distillation Example

5. Disturbance Model

The objective function (1) of Problem PI requires a search over the disturbances in the set D. However

nothing has been said about the disturbances.

It is not desirable to get an index that works for only one disturbance. On the other hand, it is not

practical to calculate the index for all possible disturbances since that situation is not common. In fields
m

like mechanical and electrical engineering, disturbances are usually assumed as white noise. In chemical

engineering, the mechanism of how the disturbances affect the process is often known (Morari, 1980).

White noise, which can be thought of as an impulse in the time domain, is not very descriptive of

disturbances in chemical engineering, whereas a step is more commonly encountered.

Our controllability index (Problem PI) is based on a worst case analysis. For the disturbances

considered, we want the index to include those disturbances that deteriorate the process the most. Process

control disturbances causing major difficulties are usually of low frequency. We shall therefore assume

that disturbances to be rejected can be modeled deterministically as step changes of unknown magnitude

Based on this assumption, we can define the occurrence of a single abrupt change (step disturbance of

large magnitude) in a process as an event. We can partition the problem type into three classes depending

whether more than one event can occur simultaneously. These three classes are illustrated in figure (5-1)

for a process with two disturbances. Class /, referred as the single-event class assumes that the likelihood

that more than one abrupt change occurring simultaneously is very low, and that one can reject an old

event before facing a new one.

Class // assumes that multiple events can occur simultaneously and that tlic^e multiple simultaneous
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Figure 5-1: Classes of Events for a Two Disturbance Process

events can be rejected before new ones occur. This class we call simultaneous multiple-event. Class ///

allows a second event to occur 6 time units after event 1 and before the first event is rejected. We will not

consider class /// events in this study.

If we consider more than two disturbances, we may construct more hypothetical classes of how the

events may occur. For example, we may consider a combination of classes / and // occurring at different

times. However, more complex cases are less likely to occur and therefore will not be considered.



Computing the index for class / events is simpler than for class // events. For the example shown in

figure (5-1) (2-dimensional disturbance vector), die outer max operator of Problem PI requires solving

only 4 optimal control profiles for class /, that is, two profiles for each disturbance direction. The multiple

event case requires a search over die bounded 2-dimensional space D (shaded region of class // in figure

(5-D).

In the remainder of this paper we shall show how to compute the index for the single-event class of

problems. This class is a fair representation of many control situations in chemical processes. We will

also formulate how to compute the index for the multiple-event class and solve an example with some

major simplifications.

6. Index Formulation for Case with Delays
The solution to the minimum time optimal control problem described in Problem P2, or any optimal

control problem is sometimes misleading, particularly for processes with delays. This is illustrated in

figure (6-1). The control objective is to minimize the Integral Square Error (ISE) for a process to track a,

square setpoint trajectory. The time of the setpoint changes are at future unknown times. The resulting

output profile, shown in figure (6-1.a), has the inputs reacting before they know about the setpoint

changes. Since the controller should not be predicting the setpoint changes which here are our

disturbances, the above performance cannot be achieved. The nonpredicting optimum profile is shown in

figure (6-l.b).

6.1. An Implementable Controller

An optimal realizable controller such as illustrated in figure 6-2 must prevent the control law from

being based on prediction. To prevent prediction we shall see here that we must solve a discrete moving

horizon optimization problem (Jang, 1987). The horizon is usually defined as an on-line tuning parameter

(i.e, when ISE is the objective). Since we use a minimum time optimal controller, the minimum time

necessary to bring die process to the desired final condition is a natural choice for the horizon. The

optional term e l l ^ i « yean be added to the objective function (as in (7) in Problem P2) so that, whenever

more than one control profile can achieve minimum time, the one that requires minimum effort will be

chosen.

As shown in figure (6-3), we obtain measurements every A i ^ ^ time units and compute the uk profile

from the current time k to the horizon tj (current estimated minimum time). We assume the time to

complete these computations is small and can be ignored for chemical processes. The newly computed
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Figure 6-2: Diagram for Optimal Controller

control is applied for tskmeas time units. At this point a revised control is available due to the complenon

of the next measurement and compute cycle. In the limit where Ajfc,,,^ approaches zero (e.g., continuous

measurement), the resulting output profile will approach the output profile shown in figure (6-l.b).
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Figure 6-3: Illustration of Optimal Controller

Based on the above information, after an event has been detected and at each time k, a simple algorithm

for the implementation of our controller is as follows

Algorithm 2

1. Estimate^

2. If dk differs from that used to solve the previous optimal control problem, then solve
Problem PI to reject dt Apply uk from * to ifc+1. Otherwise apply uk from the previous
optimal control problem.

3. Iterate until the terminal condition is reached (zero error at rest).

7. Detection and Identification Times

7.1. Definitions

In order to unify the terminology used when referring to our controller, it is helpful to refer to figure

(7-1). After a disturbance enters the process (defined as time zero), time elapses due to delays and or

process/measurement noise before the controller is able to detect that something has happened (detection

time, tD). After detecting the change, we start discriminating among disturbance models, with their

parameters being estimated simultaneously at a lower level. The time when we know exactly which

disturbance (model) entered the process is the identification time (f/). Following t[y we can bnng the

process to the desired terminal state in minimum time, u

In making the index independent of the controller, we need an optimal control!^ rhat will calculate the

smallest r^possible. Times tD and tj are fixed for linear systems. For nonlinenr - >icms, one may be able

to affect tD% fy, and />by manipulating u^ making the problem more involved.
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Figure 7-1: Detection, Identification, and Rejection of an Event

1.2. Control Strategy

There are three intervals that we need to consider in order to determine the optimal controls: from the

time the disturbance occurred (initial time) until it is detected, between detection and identification, and

after identication.

12.1. Initial Time to Detection
«

In the interval between 0 and tD there is zero control action since the disturbance has not been yet

detected.

12.2. Between Detection and Identification

The control policy for the interval between tD and tj is more difficult to define because the actual

disturbance that entered the process is not known and therefore cannot be rejected. After the event has

been detected, and before we can identify which disturbance entered the process, we have several options

for control: (i) do not do anything, (ii) make a move assuming that of all the possible disturbances, the

worst has entered the process, or (iii) drive the process to a position that will be in the best worst1

position, i.e., that no matter which disturbance is identified, the worst time taken to recover from the

current time k to y is the least it can be.

The following example illustrates why controller (iii) is the correct one. Assume that two disturbances

dl and &- are such that they can only be rejected by controls that have an opposite effect on the process

That is, the controls needed to reject dl and & in minimum time drive the process in opposite directions

Also, assume that d2 takes much longer to be rejected. If dl enters the process, controller (ii) will try to

reject d2 from tD to tj. After dl is identified, the process will be far away from the terminal state.

If d2 enters the process, controller (i) will not move from tD to tf. When d2 is identified (ome r7).

controller (i) will take longer to reject dl
9 than if controller (iii) were applied. Controller (iii) will place
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the process in such a way that at time tj it will typically but not always reject dl and d2 at the same

minimum final time tp

One may argue that both controllers (ii) and (iii) will tend to reject the worst disturbance out of the

given set of possible disturbances. The important difference is that the worst case controller (ii) will

concentrate on the worst disturbance alone. Even though controller (iii) will tend to reject the worst

disturbance, it will not overreact to it It will keep the process prepared to react to any of the possible

disturbances, and not die worst disturbance alone.

Figure (7-2) illustrates controller (iii) for a two output (y[l] and y[2]) dynamic process with output

measurements delayed by 6[1] and 5[2], and subject to three possible events (dl
f d

2, and d3). At time

zero, the process is at rest at the origin. Since measurements are delayed by 5[1], the event will be

detected at tD «8[1]+1. Further, let us assume that the event can be identified at r7»5[l]+2 so that

tj-tD = 1. Assume that from tD to tl we do not know which of the three events occurred (possible events

obtained from section (7.3.2). We need to calculate the controls uk (k-tD = tf-l) that will place the

process in such a position that the maximum time to recover from any disturbance to the origin will be the

least it can be.

For the example illustrated in figure (7-2), at time k-tD this controller can be expressed

mathematically as follows for a linear problem:

Problem P3

min max min t?f (14)

—m

*•'• K^ - (y^)A*?+Yv'-Jruj (is)

s.t. 3c£+1 - <D *£ + r « £ + A3? (16)

xm
Cx « 0 (17)

xm A3? (18)
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Figure 7-2: Output Profiles for Three Different Disturbances

(19)

where * - /^, 3^ are the possible disturbance estimates at time k, t™f is the minimum time that it would

take the process to recover from disturbance 3£, U£J (£ < / < t™j) are the controls to reject 3£\ and x£

(k < I < t™f) are used to model the effect of 3^ on the states. Note that Problem P3 assumes that all

disturbances occur at time zero.

The objective function (14) of Problem P3 was obtained as follows. The inner min operator in (14)

calculates the controls u£J [k < I £ t™f) to reject each possible disturbance 3^. The inner max operator in

(14) will pick the disturbance out of all the possible disturbances m that takes the longest to be rejected.

Finally, the outer min operator chooses the current control uk that minimizes the time for the system to

recover from the worst disturbance.

All constraints in Problem P3 are for each disturbance a£\ Constraint (15) gives the m different initial

conditions for the m different discrete models (16) resulting from using the same control uk from ktok-hl.

For the more general case where k > tD, that is, when tf > rD+l, the controls Uj in (15) have already been
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applied from earlier steps j for tD£j< k.

The terminal constraints (17) and (18) require that the system be back at the nominal point (17) at rest

(18). Constraint (19) defines bounds on all manipulated variables.

The objective function (14) of Problem P3 is very difficult to solve as formulated. Fortunately, it can be

reformulated as a simpler MHJP as follows. The max operator in the objective (14) of Problem P3 will

pick up the worst disturbance (3™°™*) for the process to recover in minimum time f̂ rs*. The process will

then recover from the other disturbances (m * worst) at the same time or faster. For those disturbances 3^

for which t™f < t^rst we can in principle find a set of controllers a£J from t£Jst - 1 ^ to t^st so that the

process will remain at rest. We can then define a common final time at each time k (iJT*) and simplify

Problem P3 to the following MILP

Problem P4

min (20)

s.t.

- X z\J]

z{j] e (0,1).

(21)

(22)

(23)

(24)

(25)

(26)

For the more general problem with t{ > tD+l, the controller algorithm can be summarized as follows.

for
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1. Obtain all possible disturbances 3£ consistent with the measurements.

2. Solve for the control policy uk and u^, so as to minimize the worst time to recover from 3£\

3. Apply uk from k to *+l.

723. After Identification

The controller for the interval between tj and y is given by a minimum time optimal control problem to

reject the identified disturbance. The controller chosen for the interval between tD and tf may contain the

control policy for the interval between tj and u If not only one more minimum time optimal control

problem must be solved.

7.3. Detectability and Identifiability

We make the assumption that a past state of the system is known. This assumption requires that at

some earlier time we observed the state of the system in the classical sense. We further assume we have a

perfect model of the process - i.e., we are dealing with a deterministic model.

From the point where we know the state, we can in principle keep track of all inputs uk into the system."

Further if the measurements allow us to identify exactly all the disturbances which have occurred, we can

maintain our knowledge of the states by stepping the model forward in time using these inputs and

disturbances. With delayed measurements, we cannot compute exactly the current state; however, we can

compute past states up to the point for which we have been able to identify the disturbances which have

occurred.

We are assuming in this paper that all disturbances can be characterized with a finite (small) number of

parameters. For example a Class / disturbance which is a step will be characterized by its time of

occurrence and by its magnitude.

We assume a linear discrete models with delays in the measurements

(27)

where k is the current time. Since any known state can be made the origin of the model, we assume xk and

uk are all zero until the disturbance occurs at time £=0.
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7 J.I . Disturbance Detection

We now discuss a method to determine detection times for model (27).

A disturbance is detected when any of the current measurements becomes nonzero. We can find tD[m]

mathematically as follows. We first calculate the nfi1 measurement profile j£ given that d^d* occurs at

time 0. This profile can be calculated from (27) recursively, and is given by3

fi-*k*" (28)

where matrix

- 0 0 £ k [ ]

(29)

The detection time for each disturbance d" is given by

(30)

s.t. ibfli > o

which cannot be earlier than 5[1] 4-1. Detection of d" occurs at the first time k when it is not in the null

space of ©£.

73.2. Disturbance Identification

We will now discuss how to determine the identification time and of the magnitudes and times of

occurrence of the possible disturbances in the interval from tD to tJt We define a disturbance as being

identified when we can determine it uniquely from the measurements. We assume that any disturbance

that enters the process can be identified when all measurements are available. Therefore, an upper bound

on tj is given by 5[ng] +1.

Figure 7-3 defines identification times for a process where the output profiles y™ are given by (28) and

(29). It illustrates that there may be a period after the detection time for which different disturbances have

3The profiles y™ in (28) and throughout this section assume that uk = 0 in (27). However, our results are also valid for uk * 0
since for linear systems we can redefine yk and xk so that they are independent of uk.
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identical profiles. The end of this period is the identification time, and it may be different for each

disturbance. For example, if d3 enters the process, it will be identified 1 time unit after tD but if either dl

or d2 occur, they will be identified only after 6 time units because until then they cannot be distinguished

from each other.

time

Figure 7-3: Output Profiles for Different Disturbances

We can find tj for a disturbance cF as follows. The disturbance is identified when the nd+1 parameters,

corresponding to the time of occurrence of the disturbance and the elements of the vector Jm, can be

determined uniquely from the available measurements. However, since we can precompute tD[m] for

each disturbance from the previous section, we can calculate the time of occurrence for each disturbance

from (30). Thus we only need to compute nd parameters uniquely at tj.

Since there are nd parameters to be identified, if rank(C{A) > nd then r7 = tD = 5[1] +1. If

rank(Ci ^) < nd>one m u s t obtain new measurements.

Define
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(3i)

with

T ( 3 2 )

The identification time tl occurs at the minimum time k such that the rank of ©sn i+i * is greater than or

equal to nd.

Finally, we determine the magnitudes of the possible disturbances from equation (31).

7.4. Multilevel Index Formulation

We can formulate the index as a multilevel optimization problem based on the controller of section.

(7.2). At each level (time) the control policy for the next sample period is computed.

Figure (7-4) is useful in order to develop our multilevel formulation. We assume that the disturbance

enters at time k - 0, that it will be detected at time tD » 3, and that it will be identified at time tj = 5. From

0 to tD - 3, uk - 0 since the disturbance has not been detected. From tD « 3 to r ;-1 « 4, possible

disturbance estimates 3^ are available at each time (level) k. We calculate controls from Problem P4 in

order to drive the process in such a way that the worst time to recover from 3^ is the least it can be. The

controls uk are calculated and applied at each time k. Note that at k * tj— 1 * 4, as shown in figure 7-4,

worst ^ At /k = 5, the disturbance is identified and one final optimal control problem solution discovers

the remaining controls uh 5 £ k £ tj and our index, y.

Figure (7-5) shows the resulting multilevel formulation for finding the index where D is the disturbance

search space. It can be easily extended to include more levels. Also, note that prediction is avoided since

controls at lower levels (earlier times - e.g., u^) are fixed at higher levels (future times) and therefore

cannot be used to reject disturbances at future times (i.e., 3^).

Since the index in figure 7-5 is highly embedded, it is difficult to compute as shown. Also, the presence

of binary variables at the lower levels of the formulation makes the writing of necessary conditions for

optimality difficult. We will solve it by an exaustive search on the set D.
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Figure 7-4: Illustration of Multilevel Formulation

8. Single-event Case with Measurement Delays

As mentioned before, the single-event disturbance model (class I) is a realistic one for many chemical

processes. Given that only one of the disturbances has "hit" the process, we need a method to estimate the

following about the disturbance: the time at which it can be detected, the time at which it can be

identified, and the magnitudes and times of occurrence of the possible disturbances in the interval from tD

to tj. We then use this information and apply the controller from section 7.2.
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Figure 7-5: Multilevel Formulation for Single-event Index
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Once the controller is designed, the index in Problem PI is calculated by finding the disturbance, out of

the allowed set D, that gives the worst minimum time to be rejected. If there are nd disturbances, at most

2nd control profiles have to be solved. For linear systems whose manipulated variables are bounded

symmetrically (upper and lower bounds have the same magnitude), only nd control profiles have to be

solved.

8.1. Detection and Identification

For class / disturbances, a lower bound for the detection time tD is 5[1] + 1. We can express the output

profile y™ at time k - 5[ 1 ] + 1 by substituting dn^a^em for the disturbance in (28) or

ys[\)+i - (C{A)[m]d[ml (33)

where (Cx A)[m] is the mm column of the matrix C{ A. Since class / disturbances only occur at the axis of

the set D, the condition tD > 8[1] +1 can only occur when the null space of CjA is aligned with the axis.

4

Identification times and disturbance estimates can be obtained from section 7.3.2. We estimate the

magnitudes of the possible disturbances from equation (31) with (f* » a%em.

Equations (28) and (29) can be used to define processes for which disturbances take longer to be

identified. For example, for d[l] and d[2]t we can define

Ayk(l92) = yl
k-y

2
k ( 3 4)

where

and A[m] is the mm column of A. We can substitute (35) into (34) to obtain

- A[2M2]).
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We want processes such that A>^(1,2) - 0 for large k. A trivial solution results when any two columns of

A are dependent, i.e., when A[i] - <xA(/] for some cc The nontrivial solution comes from solving

- 0 (37)

where v is any nonzero vector. An example of a process with the above properties is one with two

dynamically identical units in parallel (see example in section 8.3).

8.2. Method to Compute the Index

The formulation in figure 7-5 can be used to calculate the index for Class / problems as follows. The

disturbance search space D is defined as in class / of figure 5-1. Also, we substitute the disturbance

estimates at each time k with 3J1 - o£em.

Another feature of Problem P4 can be used to simplify the formulation in figure 7-5. It applies to

processes for which (37) holds. For such processes, the control policy between tD and tl is the same t

regardless of what disturbance entered the process because the same disturbances <%=o%em will be

estimated between tD and tj independent of which event occurred. Since it is also reasonable to assume

that the detection and identification times are the same for all disturbances, the index will be given by the

^calculated from Problem P4 at time k - r ; - 1 - 5. This is true because the disturbance(s) picked up by

the outer max operator in the objective function (1) is also the worst disturbance(s) picked up by the max

operator in the objective function (14) of Problem P3. If we let a ^ - a j 1 - ^ in the formulation of figure

7-5, we can obtain the index from the following formulation
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max min t^nt +1

deD u»u?,eU

s.t.

l*~y

(0,1).

(15,1 -
ye S, jt

(38)

where the controls uk are computed for 3 £ Jfc ^ 5.
m

Since a search is required in at most 2nd disturbances, we solve the index by assuming a disturbance

and find the minimum time to reject it. We then pick the worst minimum time as our index.

8.3. Example

We will calculate the controllability index for the process shown in figure (8-1). The process consists of

two first-order units in parallel (1,2) whose outputs feed another first-order unit (3). Each unit has time

constant 1 and is fed by a manipulated variable uk and a disturbance dk For a discretization time of 0.5,

the following discrete linear model can be used to describe the above process

0.6065 0.0000 0.0000
0.0000 0.6065 0.0000
0.3032 0.3032 0.6065

0.3935 0.0000 0.0000
0.0000 0.3935 0.0000
0.0902 0.0902 0.3935

1.0
1.1
1.0

JCj. +

0.3935 0.0000 0.0000
0.0000 0.3935 0.0000
0.0902 0.0902 0.3935

uk

(39)

where states 2 and 3 are used as measurements and are delayed by 3.5 and 0.5 time units respectively. We

will find that tD-2 and / / -8 for this example. We can tell from x[3]k at *»rD = 2 time units that a
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Figure 8-1: Process for Example 1

disturbance hit, but only after receiving the measurement on x[2]k at £ - iy -8 time units can we decide

which disturbance hit.

Since d[l] and d[2] give the same output record y\ from tD - 2 to r7= 8 as given in (37), we can

simplify the required computations using (38) as our controller. Also, we can eliminate d[3] as a possible

worst disturbance candidate to compute the index since it can be identified at k « 2. In order to find the

index, we then need to compute the two optimal control profiles to reject d[\] and d[2] since the upper

and lower bounds on uk are identical.

If we assume that the magnitudes of d[l] and d[2] have maximum values of 0.9, the resulting indices

with corresponding worst disturbances are as follows. For controller (iii), disturbances d[\] and d[2] are

the worst disturbances and the index is 5. The worst case controller (ii) gave an index of 6 and was caused

by disturbance d[2]. Finally, for an optimal controller without an estimator, the index was 6.5 with d\ 1 ] as

the worst disturbance. One can see that controller (iii) performs best as expected, and the controller

without an estimator performs worst. If the disturbance estimates changed in the interval between tD and

tj9 we would use the formulation in figure 7-5 in order to calculate our index.
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9. Multiple-event Case with Measurement Delays

Computing the index in Problem PI for class // where multiple disturbances occur simultaneously is

more difficult. In the single-event case the outer search on the index (outer max operator in objective (1))

is done for nd disturbances only. In the multiple-event case we need to search the ^dimensional space

for the worst disturbance (shaded region in figure 5-1, class II). The single-event index (ISE) is therefore a

special case of the multiple event index (I^£) so that ISE £/^/£.

The outer search for the worst disturbance can be simplified as follows. Since bounds on the

disturbances are usually available, and the global solution to Problem PI will be given by disturbances at

the bounds, we can reduce the search space to the boundary of D. Further, we can discretize this outer

boundary and define the set of all discrete points as D*. The more discretization points we use, the more

disturbances that need to be evaluated and the more accurate the index will be. We would then be

interested in a discretization such that a finer mesh will not affect our index.

The objective 14 of Problem P3 requires estimates of all possible disturbances at each time k. This

estimates result from a search in the ^dimensional space for all possible disturbances 3£. Following, we

will formulate the problem and due to the low likelihood that two or more abrupt events will occur

simultaneously, we will solve an example with a simplified instance of the multiple-event class.

9.1. Detection and Identification

The inner search is simplified as follows. The controller from section (7.2) must be solved to reject any

disturbance from the set D*. This controller needs all possible disturbance estimates 3^ between tD and r;.

These possible disturbances are determined similar to class /. Detection and times are equal to 5[ 11-1 for

all disturbances except for the one which lies on the null space of CyA. tD and tf can be obtained from

sections (7.3.1) and (7.3.2) respectively. In the interval from tD to r7, we will estimate all possible

disturbances from (31).

9.2. Method to Compute the Index

The multilevel formulation shown in figure (7-5) can also be used for class // disturbance models The

main difference is that D is changed to D* where D* is defined as the discretized boundary of rhe

disturbance search space. An example with a multiple-event disturbance follows.
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93. Example: CSTR

A nonlinear continuous dynamic model for the Continuous Stirred Tank Reactor (CSTR), shown in

figure (9-1), is given by (Hicks, 1971)

c , '

ex—-
c . T

Figure 9-1: Continuous Stirred Tank Reactor

c - (cy-c)/9-r

f - (Tf-T)/Q+J7-au(T-Tc)

7 =300(e-252(V7)c

(40)

where c, cy are the outlet inlet concentrations, T, T* are the outlet inlet temperatures, 6 is the reactor time

constant, 7 is the reaction rate, / is the heat of reaction constant, and a is the constant for heat convection.

Substituting the following normalized variables

• C/Cf, - cficfs = u

x[2] u[2] = i/e (41)

r-7lc
fs

where Cfs is the steady state value for cy, in (40) gives
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ill] - u[2](d[l]-x[l])-r

42] - «[2] (42] - 42]) + r - au[ 1] (x[2] -yc) (42)

For the steady state,

41]-0.408126

42] = 3.297630

[]1.00000

42] -3.29763

a- 1.95X10"4

«[1] -757.86

u[2]« 0.099 (43)

and for a discretization time of 0.5 time units, we may obtain the following linearized discrete model

.8834 -.0623

.0659 .9439
1.244-10"6 .2784

-3.769-10"5 .0101
.04657 -.00159
.00168 .04812 (44)

The controls are constrained by

-757.86 S u[l]k < 742.14

-0.099 £ u[2]k £ 0.201.
(45)

Let us further assume that there are delays on both meaurements so that the detection time is 2 time units,

and the identification time is 8 time units. Our objective is to calculate the minimum time necessary to

reject step changes in the feed disturbances, and to bring the process to rest

In order to simplify the solution to the problem, we will use an unique estimate of the disturbance at

each time, from the available subspace of d. A unique estimate of d can be obtained using equation (28).

For example, an estimate of d that minimizes its 2-norm is the orthogonal projection which is given by the

pseudoinverse (Morari, 1980)

3* = ikftflkT^kf1- (46)

The estimate 2^ from (46) is by no means optimal and results in an upper bound for the actual index.

Using (46), instead of solving for a more complex minimum recovery controller at each time (Problem

P3), we solve for a minimum time optimal controller to reject the disturbance estimate 2^.



29

In order to compute the index, we discretized the outer boundary of D with only 4 disturbances. Table

9-1 shows final times for each of the four step disturbances using (46) and without using an estimator.

The upper bound on the index as predicted by a controller without an estimator is 18.5. With an optimal

controller that uses (46) to estimate d at each time (level), the upper bound is lowered to 17.5. The worst

multiple-event disturbance was d » (0.59,0.58). Note that the final times are considerably smaller when

(46) is used.

tf

-0.99 0.58 9 10.5

-0.99 -0.59 9.5 16

0.59 0.58 17.5 18.5

0.59 -0.59 12 16

0.58

-0.59

0.58

-0.59

9

9.5

17.5

12

l final time without estimator

Table 9-1: Computed Indices for CSTR Example

10. Stochastic Disturbance Model

We have assumed that an infrequent disturbance enters the process as a step of unknown magnitude at

time zero. Disturbances that enter the process can be identified after nd-n +1 samples in most cases,

since there is no noise in the process. When the disturbances enter the process in a stochastic manner, it is

more difficult to detect and/or identify them. Once we detect the disturbances, the computed controls will

be a function of the statistical information available. We have developed a methodology to compute the

index for stochastic step inputs.

We set up the problem as follows. We assume that both states and process measurements are excited by

noise. Also, we add a function to the state model that contains the set of expected abrupt changes that may

occur (i.e., step disturbances) at unknown times with unknown magnitudes, as follows

xM = <&xk + Tuk + AU[mfka + wk (47)
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where vk and wk are independent zero-mean white noise processes with E(wkw^) = Qk and E(vkv^) « Rt

AU[mfka is the disturbance model, U[mfk is a unit step function for disturbance m having occurred at

time 6, and a is the magnitude of the step. One may also add a similar function to the observation vector

in order to model sensor failure and/or measurement bias. Also, U[mfk is not limited to step changes.

Using the above disturbance model, we developed a method for linear discrete time systems, to

estimate our index. We first estimate the detection time tD and identification time tf. We then use

statistical information (i.e., likelihoods and probabilities) to determine optimal control policies between tD

and tj. We use a controller similar to that in Problem P3. The results will be shown in a companion paper

(Carvallo, 1988a).

11. Conclusions and Future Work

We have developed an index in the time domain which measures the "controllability" of a process. Our

index is defined as the minimum time necessary to overcome the worst expected disturbance and/or

setpoint change. It accounts for the presence of process time delays, nonlinearities and constraints, each,

of which can profoundly affect one's ability to control a process.

A simple formulation to include process constraints, nonlinearities and input delays for evaluating the

index was developed. It was shown that single measurement delays are easy to handle, but that including

multiple measurement delays into the formulation is much more involved. The optimal controller was

constrained in such a way to prevent prediction of events. The index was formulated as a multilevel

optimization problem, where at each level the control policy for the next sample period is estimated.

The evaluation of this index is a difficult task in particular for nonlinear systems. One can attack the

problem by assuming a disturbance and/or setpoint change, and then solving the inner problem

sequentially. For linear systems, each becomes a mixed integer linear program. Since this computation is

not to be done on-line, computing time is not the main issue.

The linear problem to handle stochastic inputs was defined, and its solution will appear in a separate

publication. Finally, including uncertainty in the evaluation of the index is a difficult task, and this

problem should be addressed further.
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12. Nomenclature

C coefficient matrix relating states to measurements for linear system model

Cx coefficient matrix relating states **_g[|] to measurements for linear system model

dk disturbance variable vector at time k

U[m]k « G£* estimated magnitude for the nfi1 step disturbance in class / problems

cF1 rrfl1 step disturbance vector

3£ m* step disturbance vector estimated at time k

step disturbance estimate at time k requiring longest recovery time

f step disturbance identified at time tj

D set of all possible disturbances and setpoint changes

D* set of points on the boundary of the disturbance space D

ei column vector with all elements zero except its /<th element equal to one

/ function for state propagation in nonlinear dynamic process

g equality constraints for nonlinear dynamic process

h inequality constraints for nonlinear dynamic process

ISE, IME controllability indices for single- and multiple-event disturbance problems

number of discrete time units between measurements

discretization time for discrete model

M upper bound on MILP constraint in problems P2 and P4

nd> nr> nx> ny dimension of disturbance, setpoint, state and mearsurement vectors respectively

nbinary number of binary variables in minimum time MILP model
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^5 number of measurement delays

Qk variance matrix for white noise process wk

r vector of setpoints

Rk variance matrix for white noise process v^

Sk index set defined in minimum time MELP model

tD time at which existence of disturbance(s) is detected

tj time at which actual disturbance is identified

tr final time

tG time constant for approximating a process response curve

t™j final t ime computed at t ime k to reject dis turbance m

ty time delay for approximating a process response curve

uk control variable vector at time k

u£i control vector computed at time k to reject disturbance m for time / greater than k +1

U set of allowed controls

U[m]k unit step disturbance m occurring at time 0

vk, wk zero mean white noise processes with variances Rk and Q^ respectively

xk state variable vector at time k

x^i state vector computed at time k which predicts effect of d[m] for time / greater than

k+1

y^ measured variable vector at time k

y™ predicted measurement variable vector at t ime k for dis turbance m occurring
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vector of measurements from time k to time k+p

Subscripts

vector of binary variables in minimum time MILP model

vector of binary variables estimated at time k in multilevel formulation of figure (7-5)

indices (defined by context)

value at (discrete) time k or /

m disturbance models index

max maximum value

min minimum value

Greek

Z[m]k estimated magnitude for the mth step disturbance in class / problems

a unknown magnitude for step disturbance in stochastic model

"meas
vector of delay times on measurements v

Difference operator (e.g., Ay(l,2) - yk-y\

very small positive scalar

Matrices for state propagation for linear, time invariant, discrete model

matrix relating measurements to disturbance m occurring at time 6[m]

matrix containing yk from time k to time k+p
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