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Abstract
The set of Underwood equations developed for the sidestream stripper and the sidestream enricher easily

extend to the Petlyuk configuration. Close scrutiny of these equations shows a family of middle

component split fractions that give rise to minimum reflux. This insight facilitates a two part solution

strategy. The analysis shown here is valid for any multicomponent feed mixture with any number of

middle components.

Introduction

Petlyuk, et. al. (1965), described the configuration shown in Figure 1 as a feasible means to separate

multicomponent mixtures. Until recently, a correct analysis of the Petlyuk configuration has required

equilibrium stage calculations. It would be convenient to have a short-cut method that allows for quick

evaluation of this configuration. Underwood's method (1946,1948), although initially developed for

simple columns, can be extended to the Petlyuk configuration.

An understanding of non-sharp columns is critical to the analysis of the Petlyuk configuration.

Underwood's method was initially extended to non-sharp columns by Shiras, et. al. (1950). In this

analysis a linear system of Underwood equations is solved for the minimum vapor flow rate and the

middle component split fractions. For the analysis of the Petlyuk column, however, it will be necessary

to specify the distribution of some of the middle components. Therefore, a comprehensive form of

Underwood's analysis applicable to the entire range of split fractions is necessary.

Fidkowski and Krolikowski (1986) develop a scheme to find the minimum vapor flow within the Petlyuk

configuration. Their analysis is limited to ternary mixtures. The appropriate vapor flow rate is minimized

subject to pinch point conditions and internal mass balances. The pinch conditions are expressed with

Underwood's equations. An examination of the decision variables and the objective function shows the

location of the optimal solution, and an analytical solution is found. The authors discover that minimum

reflux occurs over a range of the middle component split fraction. Glinos and Malone (1988) also

examine the Petlyuk column with a ternary feed mixture. Examination of the limiting flow conditions

shows the existence of an infinite number of solutions. The authors then formulate several design rules as

to when to favor various complex column configurations.

This paper will develop a generalized approach to the Petlyuk configuration analysis based on

Underwood's original work. There will be no restriction placed on the number of middle components.
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First, Underwood's method for non-sharp columns will be extended to cover the entire range of middle

component split fractions. A level of detail previously unexposed will be brought forth. The solution

methods for side strippers and side enrichers are then applied to the Petlyuk configuration. From this

understanding, regions of minimum reflux can be found. Since the analysis is often difficult, the

development will be done in stages. One and two middle component cases will be shown in detail, and

then generalizations will be made to the n middle component case.

Simple Non-Sharp Columns

In order to understand the Petlyuk configuration, a through understanding of simple non-sharp columns is

necessary. A simple column has one feed (F) and two product streams, the distillate (D) and the bottoms

(£). The components in the feed mixture are ranked in a list according to their volatility, and a light key

and heavy key are designated for the column. Since the column is operated non-sharply, the key

components will not be adjacent Components from the heavy key upward will appear in the distillate

stream. The bottoms stream will contain components from the light key downward. Components that

appear in both product streams are said to distribute. It will be convenient to divide the components into

two sets. The components between the keys shall be designated the middle components (MC), and the

remaining components shall be designated the non-middle components (NMQ. The split fraction for each

component, £,-, is defined as the ratio of molar flow rates of the distillate stream to the feed stream. Thus,

the split fraction can be expressed as

The split fraction represents the recovery of a component in the distillate stream. The Underwood

equations for a simple column may be expressed in terms of split fractions as follows

_ _

Here, q represents the quality of the feed. Underwood has shown that for n components between the keys

there will be n + 1 roots, <j)y, held in common between Equations 2, 3, and 4 such that



aLK

aHK-l > •m-l > aHK

In all situations the composition and thermal condition of the feed will be given. In addition,

specifications of some sort will be made on the product streams. For non-sharp columns it is typical to set

the split fractions of the non-distributing components. Since components lighter than the light key will

appear only in the distillate, their split fractions are set to 1.00. Likewise, the split fractions for

components heavier than the heavy key are set to 0.00. Additionally, bounds are placed on the split

fractions of the key components. That is, the recovery of the light key may be no worse than some lower

bound and the split fraction of the heavy key may be no better than some upper bound

All non-sharp split calculations have two degrees of freedom. If there are n middle components, Equation

3 can be written for each of the n + 1 roots. The light key and the heavy key plus the n middle

components will distribute between the two product streams. Each of the distributing component split

fractions is an unknown. The minimum vapor flow rate, Vm, is also an unknown. For n middle

components there will be n + 1 equations and rt + 3 unknowns. Thus, there will be exactly two degrees of

freedom for any number of middle components. In all situations the split fractions for two distributing

components will be specified and the remaining split fractions and the minimum vapor flow rate will be

calculated.

Shiras, et. al. (1950), extend Underwood's method and find the absolute minimum reflux for simple

columns with n middle components. Initially, all of the relevant Underwood roots are found with

Equation 2. These roots depend only on the feed composition and relative volatility, and therefore they

will be constant. Next, Equation 3 is written for each root. To find the absolute minimum reflux, the split

fractions of the key components are specified at their bounds. The middle component split fractions and

the vapor rate are the unknowns. This is a linear system of equations of the form



(6)

where

«*/*

The solution of this system yields the smallest minimum reflux possible for the column and the split

fractions at which it will occur. Solutions for the Petlyuk configuration, however, will require split

fractions other than the values associated with the absolute minimum solution. It is necessary, therefore,

to be able to analyze non-sharp columns over the entire range of middle component split fractions.

Consider the case where there is one middle component There will be two relevant roots found from

Equation 2 such that aLK > $i > o.MC > <t>2 > a.HK. For this case there will be two specified split

fractions and two unknowns. The goal is to be able to calculate the minimum vapor rate, Vm, over the

entire range of the middle component split fraction £,MC. The absolute minimum vapor rate is found by

solving the following linear system

aMC ~
1

aMC ~
V.

m

(7)

In this system the light key is split from the heavy key with the middle component distributing. Thus, the



key component split fractions are specified to be their bounds and the middle component split fraction is

calculated. Let £ ^ c * be the middle component split fraction that corresponds to the absolute minimum

solution. At this point both Underwood roots are considered active.

Suppose \MC is specified at some value and that this value is less than ^ c * . Since there are two degrees

of freedom an additional specification must be made. It is logical to specify the light key split fraction,

%UP to be its lower bound. Thus, the heavy key split fraction, %HK, and the minimum vapor rate are the

calculated variables. This set of specifications yields the following linear system

1

1

•>HK
ihiK*i-<

y a^ifi

i HK ai - *2

(8)

As the middle component split fraction moves away from %MC* and gets smaller, the heavy key split

fraction will decrease from its upper bound. Thus, the calculated values of %HK will always remain within

its bounds. At some transition point, Z>HK will equal 0.00. Solutions to this system with ^MC less than this

transition value will give %HK less than 0.00. For middle component split fractions less than this transition

point, the heavy key will no longer appear in the distillate stream. It is at this point that <t>2 becomes

inactive and (^ remains as the only active root For middle component split fractions less than this

transition value only a single Underwood equation is needed. The minimum vapor flow rate may be found

by solving Equation 3 with <t>j as the root.

Suppose that %MC is specified at some value greater than £>MC*-

its upper bound. This leads to the following linear system

heavy key, ^HK, is then specified at

y ' ^
itiK^i-h

(9)

In this case the light key split fraction and the minimum vapor rate are the calculated variables. As the

middle component split fraction moves away from %MC* and gets larger, the light key split fraction

increases from it lower bound. Again, the calculated values of \LK will always remain within its bounds.



At some transition point ^ will equal 1.00. At middle component split fractions larger than this

transition value, there will be no light key appearing in the bottoms stream. It is at this transition point

that ^ becomes inactive. For middle component split fractions larger than this transition point the

minimum vapor flow rate may be found by solving Equation 3 with <t>2 as the root.

Calculation of the transition points is straightforward. The point where the heavy key no longer appears in

the distillate stream may be found by solving Equation 7 with %HK set to 0.00. Likewise, The middle

component split fraction at which the light key no longer appears in the bottoms stream can be found by

solving Equation 7 with t,LK set to 1.00. This method also yields the vapor flow rate at the transition

points.

For the one middle component case there will be four regions of middle component split fraction each

characterized by a different set of specifications and active Underwood roots. Table 1 summarizes each

region. The minimum vapor flow rate is a linear function of the middle component split fraction. A

typical plot of these lines is shown in Figure 3. In this figure the minimum vapor flow rate is plotted

against the middle component split fraction. The dashed vertical lines mark the transition points. The

solid lines represent the appropriate function for each region. The slopes for regions I and II will always

be negative while slopes for regions III and IV will always be positive. As the absolute minimum is

approached the slopes get steeper. Regions II and III are typically very narrow. Their width is dependent

on the bounds for the key component split fractions. When the bound for £>LK is set at 1.00 and ^HK is set

at 0.00, all four lines will intersect at the same point. For this situation the four regions degenerate into

two. As the separation becomes less difficult regions II and III become larger.

The linear relationships between the vapor flow rate and the middle component split fraction can be easily

found. Using the information from the calculation of the transitions points, plus the vapor flow rate

associated with %MC = 0.00 and %MC = 1.00, the appropriate slope and intercept can be determined for

each region. It is also possible to derive analytic expressions for each region. These derivations are given

in Appendix A.

Consider the case where there are two middle components. Equation 2 gives three roots such that

aLK > ^l > aMC\ > §2 > aMC2 > ^3 > aHK- F o r ^s c a s e t^ iere w^ ^ t w 0 s p ^ ^ d variables and

three unknowns. Following the pattern for one middle component, there will be six regions over the

range of the middle component split fractions. These six regions are summarized in Table 2. To find the

absolute minimum vapor flow rate the key component split fractions, ^^ and £,HK, are specified at their



bounds. For regions I, II, and III the light key and first middle component split fractions, %^ and

are specified. Moving away from the absolute minimum solution toward smaller middle component split

fractions two transition points are encountered. Initially in region III all three roots are active and

\ unknowns. The following linear system must be solved

1
aMC2 ~

a MC2
(10)

aMC2 ~

At the first transition point ^HK will equal 0.00 and (^ becomes inactive. From this point onward the

heavy key will not appear in the distillate. In region II the unknown variables are £ M C 2 and Vm; the

appropriate system to solve is similar to Equation 8. At the second transition point ^MC2
 w i U equal 0.00

and <t>2 becomes inactive. From this point onward the second middle component will no longer appear in

the distillate. In region I the only unknown variable is Vm. The minimum vapor flow rate may be

calculated from Equation 3 with ^ as the root. In regions IV, V, and VI the second middle component

and the heavy key split fractions, ^MC2 a n d ^>HK> a r e ^ specified variables. Again, two transition points

are encountered moving away from the absolute minimum solution toward larger middle component split

fractions, the first with ^ ^ =1 .00 and the second with ^ C 1 = 1.00. Regions IV through VI have three,

two and one active roots respectively.

For each of the six regions a linear relationship exists that relates the minimum vapor flow rate to the

appropriate middle component split fraction. For regions I, II, and III the minimum vapor flow rate is

dependent on ^ ^ l w ^ e *n regions IV, V, and VI the minimum vapor flow rate is dependent on ^MC2-

Cramer's rule can be used to obtain analytical expressions from the appropriate linear system. Figure 4

shows a typical plot of minimum vapor flow rate against middle component split fraction. Note the

change of scale on the abscissa. For regions I, II, and III the minimum vapor flow rate is plotted against

the first middle component (the specified variable) while in regions IV, V, and VI it is plotted against the

second middle component. The appropriate relationship for each region is shown with a solid line. As

before, the regions adjacent to the minimum (III and IV) tend to be narrow and the slopes of these lines

get steeper as the minimum is approached.



Linear relationships may also be derived between the specified and calculated middle component split

fractions for regions II, III, IV, and V. The six regions may also be represented on a plot of %MC1 versus
as s h o w n in Figure 5. Here the solid line represents the appropriate relationship between \MCl and

The previous cases may be generalized for n middle components. For the absolute minimum solution the

bounds are specified for the key component split fractions. All of the roots will be active. For middle

component split fractions less than the absolute minimum solution there will be n regions. The light key

and first middle component split fractions will be specified in all of these regions. In the region adjacent

to the absolute minimum solution, all of the roots will be active. Moving away from the minimum each

successive region will have one less active root. There will be another n regions for middle component

split fractions greater than the absolute minimum solution. In these regions the last middle component and

heavy key split fractions are specified. The specification scheme for n middle components is summarized

in Table 3.

The ability to formulate and solve simple non-sharp columns is now complete. Since the prefractionator

of the Petlyuk configuration essentially acts as a non-sharp column, this knowledge is necessary for the

following analysis.

Petlyuk Configuration

The Petlyuk configuration (Figure 1) consists of a prefractionator and a secondary column with a liquid

sidestream. A pair of intermediate liquid and vapor streams pass from the prefractionator to the secondary

columa The system has one feed and three product streams which are designated Pv P2, and P3. The

feed composition and quality are given. Specifications are made on the composition of the three product

streams; the compositions of the intermediate streams are unknown. It is assumed that the overall goal of

the system is to separate the feed into three product streams.

Typically, a light key and a heavy key are designated for the whole system. The light key and lighter

components will appear in stream Pv while the heavy key and heavier components will appear in stream

P3. The middle components will appear in stream P2. To accomplish such a separation the prefractionator

must split non-sharply with the middle components distributing.

The Petlyuk configuration is quite complex. The first step in the analysis is to transform the configuration

into something that is easier to handle. To accomplish this goal the secondary column is divided into two



separate columns at the sidestream tray. The new configuration is shown in Figure 2. A side stripper and

side enricher are used in conjunction with the prefractionator. The bottom stream of the side stripper and

the distillate stream of the side enricher together form the liquid sidestream product. Thus, the Petlyuk

configuration can be thought of as the aggregate of a sidestream stripper and a sidestream enricher.

From the understanding of side strippers and side enrichers, the Underwood equations for the Petlyuk

configuration may be written directly (Carlberg and Westerberg, 1988a). The prefractionator is

analogous to a simple non-sharp column with the net product streams Dj and f?j. Thus, the Underwood

equations for the prefractionator are

The prefractionator splits the feed according to the key components with the middle components

distributing between the product streams.

The side stripper is analogous to a simple sharp column with a supertieated feed. Its Underwood

equations are

(16)

The Underwood root for the side stripper is denoted by TI. The side stripper splits its feed sharply

between the light key and the next heaviest component.

The side enricher is analogous to a simple sharp column with a subcooled feed. The Underwood

equations are
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ai

(18)

(19)

Here, \|/ represents the Underwood root for the side enricher. The side enricher splits its feed sharply

between the heavy key and the next lightest component.

The individual column outputs are related to the feed and product streams as follows

<hi = Pu
(20)

bli = %ifi ~ Pu

b3i = P3i

An examination of these relationships reveals that at least as much light key must appear in Dx as there is

specified to appear in D 2 . Likewise, as least as much heavy key must appear in B^ as there is specified to

appear in By These requirements set the bounds for the key component split fractions in the

prefractionator.

In addition to the Underwood equations, there is one constraint imposed on the representation. The mass

balance at the liquid sidestream tray must be satisfied. Specifically,

V2= V3 or L 2 = P2 + L3 (21)

Since the internal vapor flow rates are represented by the Underwood equations, it is more convenient to

use the vapor flow rate mass balance. By adjusting the split fractions of the middle components in the

prefractionator, the internal flows of the side stripper and side enricher can be controlled. The general

scheme of the analysis will be to find middle component split fractions that give rise to vapor flow rates

that satisfy the mass balance. Equations 11 through 19 can be handled by using the techniques for

non-sharp columns and side strippers and side enrichers. Before a solution method can be given, however,

more insight must be gained by a closer examination of the equations.
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Consider the situation where there is only one middle component As the middle component split fraction

increases the feed to the side stripper increases and the feed to the side enricher decreases. As a

consequence, the vapor flow rate at the bottom of the side stripper, V2, m u s t increase and the vapor flow

rate at the top of the side enricher, V3, must decrease. Since V2 and V3 form the mass balance constraint,

it will be convenient to designate these internal flows as the mass balance flow rates. A typical plot of the

mass balance flow rates is shown in Figure 6. Note that the slopes of the mass balance flow rates change

from one region to the next. There will only be one value for the middle component split fraction, \MC\

that will satisfy the mass balance at the side stream tray. The mass balance point can occur in any region;

in Figure 6 the mass balance point is in region I.

The side stripper root will be found in the range aLK > r{ > aMC. This is the same interval as the

prefractionator root §{ for column 1. A close examination of Equations 12 and 14 reveals that these

equations must be the same when (|)1 is active. Hence, in regions I, II, and III, the root r| will be constant

and identical to ^ Since the product specifications are fixed, the vapor rate V2 will be constant over the

same regions. V2 will be an increasing function with respect to middle component split fraction in region

IV. A similar situation occurs between Equations 17 and 13. The side enricher root y and the

prefractionator root <j>2 occur over the same range. When <|>2
 is active, the two equations are the same.

Thus, in regions II, III, and IV, the root y will be constant and identical to <{>2. As a result the vapor rate

V3 will be constant in the same regions. V3 will be a decreasing of ^MC function in region I. The vapor

flow rate at the top of the side stripper, V2, and the vapor flow rate at the bottom of the side enricher, V3,

are proportional to the utility consumption of the Petlyuk column. For convenience, these parameters will

be designated as the utility flow rates.

The mass balance flow rates and the utility flow rates are related as follows. The vapor mass balance at

the feed tray in the side stripper

Vx + V2 = V2 (22)

and the vapor mass balance at the feed tray in the side enricher

V3 = Vl + V3 (23)

may be added together to obtain
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V
2 + V3 = Vx + V2 + V3 (24)

Noting that Vx - V^ is equal to F (1 - q), this equation can be expressed as

F(l-q) + V2 + 73 = V2 + V3 (25)

When the mass balance at the sidestream tray is satisfied, the utility vapor flows are related as follows

F(l-q) + V3 = V2 (26)

As a special case, when the feed is a saturated liquid (q = 1), V2 will equal V3 at the mass balance point.

A typical plot of the utility vapor flow rates is shown in Figure 7.

The mass balance at the sidestream tray must always hold. If the prefractionator is not operated at %MC\

the mass balance may still be satisfied by increasing the reflux or reboil of the side columns as necessary.

If V2 is less than V3$ then additional reflux is required in the side stripper to satisfy the mass balance.

Conversely, more reboil is required in the side enricher if V2 is greater than V3. Figure 8 shows the

feasible mass balance flow rates when the mass balance falls in region I. This set of mass balance flow

rates gives rise to the corresponding utility flow rates shown in Figure 9. A region, rather than a point, of

minimum reflux is present due to the constant portions of the utility flow rates.

The region of minimum reflux may be stated explicitly for the single middle component case. If the mass

balance point, %MQ\ is less than the absolute minimum split fraction, ^C1*, t h e n minimum reflux will

occur from the mass balance point to the transition point between region III and IV. If the mass balance

point is greater than the absolute minimum split fraction, then minimum reflux will occur from the

transition point between region I and II to the mass balance point. In all cases the split fraction

corresponding to the absolute minimum solution will be in the region of minimum reflux. These insights

allow the formulation of a two part solution strategy.

In the first portion, the minimum vapor flow rates for the configuration are found by using the split

fraction associated with the absolute minimum solution for the prefractionator. Initially, Equation 11 is

solved for <()1 and <t>2. Equation 7 is then set up and solved for §MC* and Vv With this split fraction known

the net output streams of the prefractionator are set. Vl can be determined with Equation 13 with either of
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the roots. The Underwood roots for the side columns are found next. Equation 14 is solved for r| and

Equation 17 is solved for y. With the side column roots known the utility vapor flow rates, V2 and V3, are

calculated with Equations 15 and 19 respectively. The larger of these two values will be the overall

minimum vapor rate for the Petlyuk configuration.

In the second part of the solution strategy the extent of the minimum reflux region is determined. The

middle component split fraction is adjusted until the mass balance point, %MC* is found. Before this step

may begin a full characterization of the non-sharp regions in the prefractionator is necessary. Initially a

split fraction is guessed. Depending upon which region the guess may fall into, the appropriate equation

is used to determine the prefractionator vapor flow rate. The Underwood roots for the side columns are

determined and the mass balance flow rates, V2 and V3, are calculated with Equations 16 and 18. If the

mass balance is not satisfied, the middle component split fraction is adjusted and the procedure is

repeated.

The situation for two middle components is similar. For this case there will be three Underwood roots

and six non-sharp regions for the prefractionator. According to the specification scheme, the first middle

component split fraction will be the degree of freedom for regions I, II, and III. For regions IV, V, and VI

the second middle component split fraction will be specified. As before, V2 will increase and V3 will

decrease as the middle component split fractions increase. As shown in Figure 10 there will be one point

that satisfies the mass balance. The corresponding utility flow rates are shown in Figure 11. V2 will be

constant in the regions where ^ is active. This occurs in regions I, II, III, and IV. In regions III, IV, V,

and VI, where <|>3 is active, V3 is constant. The constant portions of the utility flow rates give rise to a

region of minimum reflux. The set of middle component split fractions corresponding to this region can

be seen on a plot of ^ C 2 v e r s u s £A/C1 ^

From these two cases the solution procedure may be generalized for n middle components. In this case

the prefractionator will have AI+ 1 roots and 2n non-sharp regions. For split fractions below the absolute

minimum solution the lightest middle component split fraction is the degree of freedom. For split

fractions greater than the absolute minimum solution the heaviest middle component split fraction is the

specified variable. A general solution scheme may be stated. First, find the absolute minimum solution

for the prefractionator. Use the split fractions found in this calculation to find the remaining component

flow rates in the configuration. Find the roots for the side columns and calculate the utility flow rates.

Take the largest value as the overall minimum vapor flow rate for the configuration. Next, find the extent
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of the minimum reflux region; search over the range of split fractions for the mass balance point Guess

either the lightest or heaviest middle component split fraction. Use the appropriate relationships,

depending upon which region the specification is in, and calculate the remaining split fractions and the

prefractionator flow rates. Find the side column roots and calculate the mass balance flow rates. If the

mass balance is not satisfied, update the split fractions and calculate again. If the mass balance point is

below the absolute minimum solution then the minimum reflux region will extend from the mass balance

point to the transition point between region n+1 and n+2. If the mass balance point is above the absolute

minimum solution then the minimum reflux region extends from the transition point between region n - 1

and n and the mass balance point. Figure 13 summarizes the possible minimum reflux regions.

The following example demonstrates the solution procedure. A six component mixture is to be separated

into three product streams. The feed and product specifications are given in Table 4. The feed is a

saturated liquid, and the products are removed at their bubble points. The specifications show that the

split fraction bound for component A, the light key, is .995; the bound for component D, the heavy key, is

.005. The prefractionator has been characterized and the relationships that govern each of the non-sharp

regions are summarized in Table 5. The absolute minimum solution occurs at %B = .7446 and ^c = .0773.

This set of split fractions is used to solve the remaining equations for the utility flow rates. V2 was

calculated to be 397.0 kg-mol/hr and V3 was found to be 424.8 kg-mol/hr. Thus, the overall minimum

vapor flow rate is the larger of the two values. The middle component split fractions are searched for the

mass balance point. In this example the mass balance point occurs in region V at Z,B = .8556 and

£c = .0836. Since the mass balance point is greater than the absolute minimum point, the region of

minimum reflux extends from the II-III transition point to the mass balance point. Thus, in this example,

the minimum reflux occurs over the range from %B = .7434 and ^ = .0728 to ^B = .8556 and ^ = .0836.

Utility Consumption

The Petlyuk configuration, like other complex column configurations, is more favorable with respect to

first law effects and less favorable with respect to second law effects. That is, the Petlyuk configuration

will consume less utilities but will have a larger temperature drop relative to other analogous

configurations. Pictured in Figure 14 is (a) the Petlyuk configuration, (b) its simple column analog, and

(c) a side stripper/enricher configuration. Each of these configurations will be examined for their first and

second law tradeoffs. In order for all three configurations to be completely analogous, the first column of

configurations (b) and (c) must perform a non-sharp split similar to the prefractionator of the Petlyuk

configuration. The two side columns in (b) and (c) operate sharply. The same separation occurs in each
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analogous column. In this discussion, the condenser and reboiler duties for the analogous configurations

will be denoted with an appropriate prime superscript as shown in Figure 14.

Terranova and Westerberg (1988) show that as the feed to a simple column becomes more superheated,

the condenser duty must increase and the reboiler duty must decrease. Conversely, as the feed to a simple

column becomes more subcooled, the reboiler duty must increase and the condenser duty must decrease.

These insights can be used to show that the side stripper and the side enricher consume less utilities than

the respective simple column analogs (Carlberg and Westerberg, 1988a). Since the Petlyuk configuration

and its simple column analog are the aggregate of these cases, these relationships may be applied here.

Specifically, the following relationships hold between the Petlyuk configuration and its simple column

analog

QC2 < Qc< + QC2 (27)

QR3 < Qn + QR3 (28)

Although these relationships were derived for columns performing sharp separations, they hold for any

set of middle component split fractions as long as they are the same for both configurations. The simple

column analog has additional utility requirements on the bottoms stream of the second column and the

distillate stream of the third column. In terms of the cold utility, the following holds directly from

Equation 27

Qc2 < Qc( + Qci + Qc3 (29)

while from Equation 28 for the hot utility, the result is

QR3 < QRl + Qgl + QR3 (30)

Thus, the Petlyuk configuration will consume less utilities, and hence be more favorable with respect to

the first law, than the analogous simple column configuration.

In the Petlyuk configuration, vapor streams pass between the prefractionator and the secondary column.

For this to occur there must be a slight difference in pressure between the point supplying vapor and the

point receiving vapor. This will occur naturally in this configuration by virtue of the pressure drop from

the reboiler to the condenser. Hence, both columns in the Petlyuk configuration must operate at the same

nominal pressure. As a consequence, there will be a large temperature difference between the reboiler and

condenser. Thus, despite the utility savings, the Petlyuk column is favorable only when there is a wide

temperature range between the heat sources and sinks. Since the utilities must be at more extreme

temperatures for the Petlyuk configuration, these utilities will be more costly. There is also likely to be a
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smaller temperature driving force between the reboiler and condenser and the utilities. Hence, the Petlyuk

configuration requires a sizable capital equipment investment for heat exchange area. A typical T-Q

diagram for a Petlyuk configuration, along with a hot and cold utility, are shown in Figure 15.

For simple columns, liquid streams pass from one column to the next Pumps or valves can be used to

change the pressure of each column. The pressure of each simple column is independent and may be set

so as to minimize the difference between the hottest and coldest point in the configuration. Figure 16a

shows a typical T-Q diagram for the simple column analog. The pressures for the simple columns were

chosen to minimize the temperature difference across the configuration. Thus, simple columns are

favored when there is a narrow range of temperature between the available heat sources and sinks. Heat

may be supplied and removed to the simple columns at less extreme and more cost effective temperatures.

As a variation, the second and third column of the simple column analog may be heat integrated with the

selection of appropriate pressures. In this scheme, the heat given off by the condenser of the third column

is used to drive the reboiler of the second column. The T-Q diagram for this configuration is shown in

Figure 16b. Because QR{ and QQ^ are integrated, this configuration has the advantage of requiring less

total utilities than the simple column analog of Figure 16a. Still, as Equations 27 and 28 indicate, this

scheme will require more utilities than the Petlyuk configuration. As a disadvantage, the heat integrated

simple column design requires a temperature range similar to the Petlyuk configuration.

As a further variation, a partial condenser may be used on the first column. The effect of the partial

condenser will be to decrease the load on the condenser of the first column, £C1' , and the reboiler of the

second column, QR2- The condenser load of the second column, Qc{> w^ increase. The remaining

reboiler loads, QR{ and QR3\ do not change. Thus, the total utility requirements are smaller for this

scheme than simple column designs with a total condenser. Figure 16c shows the T-Q diagram for this

design. Since the heat into the first and second columns does not balance the heat out, these columns are

no longer represented as rectangles on a T-Q diagram. Once again, there is a tradeoff between the total

utility requirements and the temperature at which the utilities are supplied.

As a final consideration, the Petlyuk configuration should be compared to the side enricher/stripper

configuration. In this scheme the reboiler of the side stripper may be heat integrated with the condenser of

the side enricher. This requires a temperature difference between the two streams. Since both side

columns are at the same nominal pressure, a suitable temperature difference will generally occur only

when there are two or more middle components. Unlike the Petlyuk configuration, the side
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stripper/enricher does not have a mass balance constraint. Hence, the configuration may be operated at

any set of middle component split fractions that is desired. The information needed to compare these two

cases is readily found in the mass balance and utility flow rate plots (Figures 6 and 7, for instance). For

any set of middle component split fractions, the T-Q diagram for the side stripper/enricher is constructed

with this information. Such a T-Q diagram, for the case where the middle component split fractions

correspond to the absolute minimum solution, is shown in Figure 17.

Since the region of constant reflux represents the smallest vapor flow rates for the Petlyuk configuration,

it is the area of interest for comparison of designs. Consider the case shown in Figures 6 and 7 where the

set of split fractions that satisfy the mass balance is smaller than the set of absolute minimum split

fractions. Examination of the utility vapor flow rates in Figure 7 shows

Qci = Qci OD

QR3 > QR3" (32)

From Figure 6, the mass balance flow rates indicate

QRI > 2c3" (33)

The difference between these two quantities,

QH = QRI" ~ Qc3" (34)

is the heating requirement that must be made up with hot utilities. By an overall energy balance

Qci" - Qta + QH (35)

Thus, in light of Equation 31, the total utility consumption of the side stripper/enricher is the same as the

Petlyuk configuration in the region of constant reflux. There is, however, an advantage to supplying a

portion of the required heat, QH*, at a lower temperature. For the case where the set of split fractions that

satisfy the mass balance is larger than the set of absolute minimum split fractions, the reboiler load of the

second column, QR{\ is less than the condenser duty of the third column, Qc$'- The additional cooling

requirement, Qc*, is made up with cold utilities. The advantage here is that the cooling may be supplied

at a higher temperature.

In conclusion, these examples point out the tradeoffs between the first and second law. The Petlyuk

configuration and the side stripper/enricher have a first law advantage in that they have low utility

requirements. The Petlyuk configuration has a second law disadvantage because of the large temperature

range of operation. The simple column designs have the opposite characteristics in larger utility

consumption and a less extreme temperature range of operation.
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Nomenclature
Variables

B total molar flow rate of bottoms stream

ty molar flow rate of component i in bottoms stream

D total molar flow rate of distillate stream

dx molar flow rate of component / in distillate stream

F total molar flow rate of feed stream

ft molar flow rate of component i in feed stream

L rectifying section liquid flow rate

L stripping section liquid flow rate

Pk total molar flow rate of product stream k

Pto molar flow rate of component / in product stream k

Qc condenser heat duty

QR rebolier heat duty

q thermal quality of feed stream

R reflux ratio

Rm minimum reflux ratio

S reboil ratio

5m minimum reboil ratio

Tc condenser temperature

TR reboiler temperature

V rectifying section vapor flow rate

Vm rectifying section minimum vapor flow rate

V stripping section vapor flow rate

Vm stripping section minimum vapor flow rate

xDi mole fraction of component i in distillate stream



19

xBi mole fraction of component i in bottoms stream

a, relative volatility of component i

<(> primary column Underwood root ;

£f. split fraction of component i

^A/C* middle component split fraction corresponding to absolute minimum solution

^>MC middle component split fraction corresponding to mass mass balance point

r| side stripper Underwood root

y side enricher Underwood root

Subscripts

HK heavy key

LK light key

MC middle component -- one middle component case

MCI first middle component — two middle component case

MC2 second middle component -- two middle component case

MCn nth middle component

Appendix A

Linear relationships exist between the vapor flow rate and the middle component split fraction in all of

the four nonsharp regions present in the one middle component case. Analytical expressions for these

relationships may be derived as follows.

In region I ^ is the only active root. Equation 3 written with this root is the appropriate relationship. To

show the linearity the middle component term may be pulled out of the summation. Thus, the linear

relationship is given by

Mcff4C % v i%ifjV = — t u r + > (30)

In region II the situation is a bit different. For this region both roots are active and the heavy key split

fraction, \HK} is an unknown. Thus, an expression for the heavy key split fraction as a function of the
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middle key split fraction is needed. To obtain this expression Equation 3 is written twice, once for each

root. The left hand sides of these expressions are equated, and after some algebra the following result is

obtained

**%ft
( }

Equation 37 may be substituted into Equation 3 for either root. When ^ is used in Equation 3 the linear

result is
aHK "

( 3 8 )

The derivation for region III is similar to region II. Here \LK is unknown. The light key split fraction is

related to the middle component split fraction by

Substituting Equation 39 into Equation 3 written with <t>2, the linear result is

Region IV is similar to region I although <J>2 is the active root. Equation 3 written with this root can be

rearranged to obtain

Similar linear expressions may be found for cases with more than one middle component.
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Table 1: One Middle Component Regions

region

(point)

>HK active roots

LB DF 0.00 CALC •l

II LB DF CALC CALC

(min) LB CALC UB CALC

III CALC DF UB CALC

IV 1.00 DF UB CALC

LB = lower bound

UB = upper bound

DF = degree of freedom

CALC = calculated variable
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region

(point)

Table 2: Two Middle Component Regions

tut 'MCI active roots

II

LB DF 0.00 0.00 CALC

LB DF CALC 0.00 CALC

•l

III LB DF CALC CALC CALC

(min) LB CALC CALC UB CALC

IV CALC CALC DF UB CALC

1.00 CALC DF UB CALC

VI 1.00 1.00 DF UB CALC

LB = lower bound

UB = upper bound

DF = degree of freedom

CALC = calculated variable
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Table 3: n Middle Component Regions

region

(point)

•>HK m active roots

LB DF 0.00 0.00 CALC

n-\ LB DF CALC 0.00 CALC

LB DF CALC CALC CALC • •• <j> n + 1

(min) LB CALC CALC UB CALC

n+1 CALC CALC DF UB CALC «> n + 1

n+2 1.00 CALC DF UB CALC

2n 1.00 1.00 DF UB CALC

LB = lower bound

UB = upper bound

DF = degree of freedom

CALC = calculated variable
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Table 4: Example Problem -- Feed and Product Specifications

component a, Pu Pli

A

B

C

D

E

F

ethanol

i-propanol

n-propanol

2-butanol

i-butanol

n-butanol

2.289

1.958

1.089

1.000

0.712

0.476

30.0

30.0

15.0

15.0

5.0

5.0

29.85

0.15

0.00

0.00

0.00

0.00

0.15

29.85

14.925

0.075

0.00

0.00

0.00

0.00

0.075

14.925

5.00

5.00

all flow rates in kg-mol/hr
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Table 5: Example Problem -- Characterization of Prefractionator

Regions Vapor Relationships Split Fraction Relationships

I .0000 <%B< .7317 V{ = -367.7 %B + 399.0 ^ = %D = .0000

II .7317 <%B< .1A2A V{ = -466.2£fl + 471.1 £c = 6.207$fl - 4.541

.0000 < $c < .0728 %D = .0000

III .7434 <%B< .7446 Vl = -484.6%B + 484.7 ^ = 3.82O4fl - 2.767

.0728 <%c< .0773 £D = 4.167£fl - 3.097

IV .7446 < Sfl < .7483 V{ = 1710.4^ - 8.4 ^fl = 10.204^c - 0.045

.0773 < %c < .0777 %A = 12.500^c + .0288

V .7483 < %B < 1.000 Vx = 1466.4^. + 10.6 £B = 18.149^c - 0.662

.0777 < %c < .0916 %A = 1.0000

VI .0916 < %c < 1.000 ^ = 309.3^+116.5 ^A = ^ f l= 1.000
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Figure 1: Petlyuk Configuration
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Figure 2: Equivalent Petlyuk Configuration
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Figure 3: Minimum Vapor Flow Rate as a Function of Middle Component
Split Fraction -- One Middle Component

Tm

VI

ivl *MC2

Figure 4: Minimum Vapor Flow Rate as a Function of Middle Component
Split Fraction -- Two Middle Components
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'MC2

Figure 5: Corresponding Middle Component Split Fractions
Two Middle Component Case
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- • 1

Figure 6: Mass Balance Flow Rates - One Middle Component Case

i in m IV

• * • 1

Figure 7: Utility Flow Rates - One Middle Component Case
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I n m IV

- • 1

Figure 8: Feasible Mass Balance Flow Rates - One Middle Component Case

minfefhix

n iji iv

Figure 9: Minimum Reflux Region - One Middle Component Case
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I n

S

m

\ A

\

IV V VI

*MC2

Figure 10: Mass Balance Flow Rates - Two Middle Component Case

\

I n ni IV V \ VI

M[Cl

Figure 11: Utility Flow Rates - Two Middle Component Case
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'MC2

Figure 12: Minimum Reflux Region - Two Middle Component Case
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1 i I n-1 n : n+1

(b)

n+2

Figure 13: Possible Minimum Reflux Regions -- (a) mass balance point below
minimum solution, (b) mass balance point above minimum solution.
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(c)

Figure 14: (a) Petlyuk Column (b) Simple Column Analog (c) Side Stripper/Enricher
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•HU

Petlyuk
Column

<C2

-cu

Figure 15: T-Q Diagram for Petlyuk Configuration
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(a)

C2

(b)

"C2

(C)

-HU

Q
R1

1 QR2
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Q ' ,

QR3

3

C3

• c u

y R l

1

Q ' .

Q R 1

3

2

•cu

•HU

• CU

Figure 16: T-Q Diagrams for Simple Column Analog
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fR3

CH

•HU

C2
••CU

Figure 17: T-Q Diagram for Side Stripper/Enricher
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