
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

A Network Representation and Algorithm for Task Planning

by

C. Zozaya-Gorostiza, C. Hendrickson

EDRC-12-08-87

December 1986

A Network Representation and Algorithm for Task Planning

by

Carlos Zozaya-Gorostiza and Chris Hendrickson

December 1986

Abstract

An activity planning algorithm based on a network representations of conditions and

actions is presented. The algorithm performs backward expansions on each desired

condition in order to express them as a combination of initial conditions and actions. A

global problem network of actions and conditions is used to represent the history of

successful condition expansions. This representation maintains consistency and

improves the efficiency of the search procedure. Interpretation of this problem network

leads to an actions network from which feasible plans are directly obtained. The network

algorithm was implemented in LISP and is applied here to solve blockworld problems

similar to those found in the artificial intellience planning literature. However, the

algorithm and the network representation are general and intended to be used as an

analytical tool in planning systems that formulate sequences of multiple actions.

University Libraries
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

Introduction
In a certain and closed environment, planning may be conceived in its pure form as a

search problem. Given an initial state of conditions, the purpose is to find a sequence of

actions that will lead to a final state of desired conditions. In a closed environment, the

available operators are known in advance along with their required pre-conditions and

effects. In a certain environment, the resources required by an operator and the state of

the world resulting from application of an operator are predictable. Examples of such

environments include blockworlds with robot manipulators [Winston 84] or control

problems involving sequencing analysis tools or decision points.

In this paper, a network representation and algorithm for project planning are

presented. In common with other planning models [Sacerdoti 85, Tate 77], this model

involves backward expansion of desired conditions into pre-conditions through the

introduction of pre-defined operators. However, in contrast to other planning models,

the global problem network representation includes different nodes for conditions and

operations. As a result, the global problem network is a bipartite graph, and efficient

algorithms can be devised to obtain alternative project plans accomplishing desired

goals from the global problem network of conditions and actions. These alternative

plans can then be evaluated or further manipulated using standard scheduling

procedures.

The network representation provides a tool for analyzing the interactions among

competitive operators. It belongs to the general class of systems that formulate

sequences of actions such as NOAH [Sacerdoti 85] and NONLIN [Tate 77], in contrast to

those that adopt a myopic or opportunistic scheduling mechanism such as MOLGEN

[Stefik 81a, Stefik 81b] and Hearsay-ll [Earman 80]. However, the network

representation could also be integrated into more general planning expert systems such

as OMS [Hayes 85] that repeatedly formulate useful sequences of actions within a global

opportunistic heuristic planning process.

The discussion is focused on the network representation and on the plan extraction

only in this paper. In the next section, some artificial intelligence (Al) planning models

relevant to the planning algorithm are reviewed. The following section describes the

operations used in forming the global problem network and then extracting an activity <

network. The next section presents examples in a simple blockworld. A concluding

section summarizes the characteristics of this planning model and contrasts it with

existing architectures.

Some Al Representation Models for Planning

NOAH

NOAH stands for Network Of Action Hierarchies. The system was developed after

ABSTRIPS [Sacerdoti 74] and combines declarative and procedural knowledge in a

framework that Sacerdoti describes as a Procedural Net [Sacerdoti 85, Sacerdoti 77]. Its

main application has been to problems involving movements of blocks. The planning

process proceeds by creating a small initial network in terms of general actions and

expanding it successively until the plan has been expressed in simple operations or

primitives. A description of the global state of the system is contained in a world model.

The world model is modified each time the plan is detailed in order to register those

changes resulting from inserting actions to the plan. Below we describe the components

of the procedural net representation.

Nodes of the procedural net represent actions. There are five different types of nodes:

1. GOAL nodes, used to represent actions whose preconditions are false in the
world model.

2. PHANTOM nodes, used to represent actions whose preconditions are
already true in the world model.

3. ANDSPLIT nodes, used to indicate points of the procedural net where an
action can be divided into more detailed activities that may be done in
parallel.

4. ANDJOIN nodes, used to indicate points of the procedural net where an
action is accomplished when all the different detailed activities have been
done.

5. PLANHEAD NODES, used to indicate the beginning of a procedural net.
Some changes to the world model are stored in the body of a PLANHEAD
node.

A node of the procedural net may contain the following parts:

1. A verbal description of the goal to be achieved (this is only for goal nodes).

2. Preconditions that have to be true in order for the action to be performed.

3. The body of the node.

This is a piece of code that specifies a sequence of actions that when
executed sequentially have the same effect as the node. This is procedural
knowledge used to create a more detailed plan. When expanding a node,
NOAH assumes that every action of the body contains preconditions that
have to be true in order to accomplish the final action.

4. Add and Delete lists.
Contains a list of changes to be performed to the world model. The world
model is maintained using two models: a global model and a distributed
model. The global model contains those expressions that have not changed
since the beginning of the planning process. When a expression in the world
model changes, its new value is placed in the add-delete lists of the causal
node; the aggregate of such changes forms the distributed model. The
original expression is stored in the PLANHEAO node.

The planning process of NOAH consists of the following three tasks:

1. Expand each node of the procedural net.
Each node is expanded into a set of children nodes. Children actions are
specified within the body code of the parent node. Those nodes whose
conditions are already true in the world will be expanded as PHANTOM
nodes; other children nodes are expanded by creating goal actions.

2. Apply critics to the new detailed procedural net.
The main purpose of critics is to avoid conflicts and redundancies in the new
procedural net. There are six types of critics in NOAH: resolve conflicts (a
precondition of a node is deleted by another parallel node), use existing
objects (bind formal objects only when choices are defined), eliminate
redundant preconditions, resolve double-cross conflicts and optimize
disjunctions.

3. Update the world model by adding and deleting objects from the world
model.
Using the add-delete lists of the new nodes in the expanded procedural net,
both models of the world are maintained.

These three tasks are repeated until the plan has been decomposed into primitive actions

and the plan is at the greatest detail.

NONLIN

NONLIN is a planning system developed by Tate [Tate 77] for assistance in the

formulation of project networks. It is an evolution of INTERPLAN, a planning system very

similar to NOAH [Tate 74, Tate 75]. Tate identified some weaknesses of NOAH and

created a Task Formalism (TF) for implementing a more powerful system. TF is a purely

declarative description of the actions in a hierarchical fashion and is implemented using

operator schemas. Tasks are decomposed into subtasks and each subtask is assigned a

condition. Conditions are of each of these types:

1. Unsupervised Conditions. These conditions have to exist before a task is
finished, but are the responsibility of other actions.

2. Supervised Conditions. These conditions have to exist before a task is
finished and are the responsibility of the action being considered.

3. Use-when Conditions. These conditions are static in the sense that they do
not depend on any action. However they must hold before an action is
executed.

During the planning process, it is common to find that an action can be performed in

two or more different ways. NOAH expanded nodes in a predetermined manner.

Therefore, it required specific knowledge in the description of the nodes [Stefik 81b].

Besides, NOAH did not keep track of the choice nodes and this caused expansion

decisions to be irreversible. Search trough the solution space was incomplete and some

easy problems could not be solved. NONLIN solves this problem using a decision graph

for backtracking when choice decisions lead to a dead end.

Nodes in Tate's network are similar to those of NOAH's Procedural Net. However, they

have some other attributes in order to record interactions between each'node and its

neighbors. Node components are: (1) Node number, (2) Node type (goal, action or

phantom), (3) Pattern, used to look for expansion instructions, (4) Predecessor nodes, (5)

Successor nodes, (6) Node context, (7) Parent node, and (8) Node mark, used to answer

questions about node relations.

A Planning Model
The planning algorithm proceeds by searching backwards on each final condition until

it is expressed in terms of actions and true conditions (figure 1). At the beginning, the

user specifies the initial and final states using sets of conditions. Each final condition is

expanded by adding links to a global problem network of conditions and actions. Once

this network has been fully developed, an activity network is obtained. This final network

represents the precedences of the required actions. One or more feasible plans may be

obtained using this network. Each one is obtained doing a topological sort of the final

action network.

Start

Read Set of Final and
Initial Conditions

Take a Final Condition |

Expand this Final Condition

T Is this Condition True

Is Set of Final
Conditions Empty ?

L

STOP, Problem is
Infeasibie

Interpret Final Network
of Conditions and Actions
to obtain Network of
Actions

A
Obtain PLAN by doing a
topological sort in the
Network of Actions

End

Figu re 1: Overview of the Planning Algorithm

Expansion of a condition

The core of the planning algorithm is the expansion of false conditions into true ones.

This is done by following the recursive algorithm shown in figure 2.

When a condition is expanded it is considered as an effect condition. The first step of

the algorithm consists of identifying the set of actions that may produce the desired

effect. This task is done by obtaining instances from the table of abstract

[Pre-conditions, Action, Effects] (PAE) triplets. Each row of this table describes the

preconditions and the effects of a particular action. Abstract actions are translated into

concrete actions when they are bound to specific objects.

Set Precondition
to be a new
Effect Condition
and apply
algorithm
(recursion)

Effect Condition

Look for Actions
that may cause this
Condition

Take an Action

Get the Set of
Preconditions for
this Action

Take a Precondition

Is this Precondition
fully expanded ?

Add Links and Nodes
of this Action to the
Network

Are there more possible
Actions for the Effect
Condition ?

1
Is this Precondition
equal to True ?

N

Have all Preconditions
been fully expanded ?

The Effect Condition
cannot be achieved

Figure 2: Algorithm for Expanding an Effect Condition

The second step of the algorithm consists of testing each one of the concrete PAE

triplets to find a feasible action. A given action can only be accomplished if all its

preconditions are true. It is enough that one of them is false to discard this action. This

requirement is important because it provides criteria for controlling the expansion

process. When a precondition is found to be false or when the action being considered

is infeasible, other actions are sought that may produce the desired effect. The algorithm

is recursive because each precondition may require its own expansion before its value

(True or False) is determined. Time stamps could be added to conditions in this process

to represent changes in conditions over time if necessary.

Criteria for Controlling the Expansion Process

During the planning process, a condition may appear as an effect or a precondition of

one or more actions. For efficiency, expansion of a condition should be done only once.

This requires use of information about the status of the expansion process in order to

avoid repetitions and to maintain consistency. The criteria that controls the expansion

process checks first if an action is feasible or not, and then determines if there are

preconditions that need to be expanded.

An action is infeasible if either:

• It negates a condition already assumed to be true in the expansion process
• If one of its preconditions is already in the expansion path

Figure 3 shows how this criteria is used. Initially, we have a set of final conditions that

have to be accomplished. The set of actions that may be done for this purpose are

Action 1 and Action 2. Action 1 can be done only if Conditions 1, 2 and 3 are all true.

Suppose that the value of Condition 1 is not determined yet. Then we look for feasible

actions to produce this effect, and we find that Actions 3 and 4 may be used. Action 3 is

feasible only if neither of its preconditions (4, 5) are equal to the conditions in the path to

the final condition (Final, 1). Similarly, Action 5 is feasible only if it does not negate the

conditions previously defined in the tree (Final, 1, 2, 3, 4, 5) and if neither of its

preconditions (8, 9) is equal to the path conditions (Final, 1, 4). Action 4 is infeasible

because it negates Condition 3.

The expansion process continues until a feasible action is executable. This happens

when all its preconditions are true. The value of a precondition is true if:

• It is a condition of the initial state
• It has already been expanded successfully and is part of the global network

of actions and conditions

8

Final Condition

Condition
8

Action 2

Future Expansion

Condition
9

Condition
10

Figure 3: A Tree is Produced when Expanding a Final Condition

The value of a precondition is false if:

• It has been expanded unsuccessfully. This means that there are no feasible
actions that may accomplish it

If a condition has no value, it may be expanded only if it has not already been expanded

in the tree of the same final condition.

Interpretation of the Global Network of Actions and Conditions

When an action is executable, the links associated with its PAE triplet are added to the

global network of the problem and the positive effects are set to true. In the global

network, each action is surrounded by conditions, and each condition is surrounded by

actions, as shown in Figure 4. The global network has to be translated into a new

network where the nodes are actions and the links represent precedences.

Condition

Condition

Figu re 4: Structure of the Global Network of Actions and Conditions

In order to formulate an actions-network, the relationships between neighbor actions

have to be studied. The possible relations that may exist between two neighbor

conditions are shown in Figure 5. Case 1 occurs when the condition between the two

actions is an effect of Action 1 and a precondition of Action 2. Action 1 should be

performed first in order to produce the precondition for the other action. Case 2

represents the situation where a condition is a precondition for both actions. No

precedence relationship may be established in this case. Case 3 occurs when Action 1

negates a precondition of Action 2. In this case Action 2 should be done before Action 1

because if Action 1 is done first the condition would be negated and Action 2 could never

be done. The exception of this situation occurs when the condition is a final condition.

Given that there is at most one node in the global network for each final condition, a third

action is required in order to reestablish the final condition after action 1 has negated it.

Action 2 can be done then before or after action 1.

Examples of the Planning Algorithm in the Blockworld
Domain

Introduction

Consider the problem of having a set of blocks in a certain initial position and wanting

to move them to a different position. We want to know what sequence of actions we

should perform in order to achieve the desired position. There are rules about the type

and applicability of operators that constrain the set of actions that may be performed at

each step of the planning process. This problem is commonly known as a blocks world

problem. Further, suppose that we have that all the blocks are of equal shape and that

10

CASE
GLOBAL NETWORK OF
ACTIONS AND CONDITIONS

FINAL NETWORK
OF ACTIONS

ACTION 1 f-^TcONDITION}-*(ACTION Z

ACTION 1 MA CONDITION]5*--£ ACTION 2

ACTION 1 tmJ CONDITION

ACTION

Not Final

CONDITION h**' ACTION 2

NONE

NONE

Figu re 5: Obtaining Precedence Relationships among Neighbor Actions

they have a cubic form. We describe a certain position of the blocks with only two types

of conditions:

LCIeartopX
This condition is true if there is no other block on top of block X.

2 . 0 n X Y
This condition is true if block X is on top of block Y.

For example, Rgure 6 shows drawings of several possible accommodations of the

blocks A, B and C, with their respective description using the two types of conditions. In

this simplified problem, no distinction is made with respect to left or right (horizontal

axis). The table where blocks are located is assumed to be large enough to

accommodate all blocks in a horizontal position.

Once the conditions have been specified, the set of possible actions needs to be

identified. Again, we will simplify our problem to include only two types of actions:

1. Clear X
Take block on top of block X and put it on the table.

ZPutonXY
Put block X on top of block Y.

11

c

A B

A

C

B 301
(ON C A) (ON A C) (CLEARTOP A)

(CLEARTOP C) (ON C B) (CLEARTOP C)

(CLEARTOP B) (CLEARTOP A) (CLEARTOP B)

Figu re 6: Two types of conditions are used to describe the positions of
the blocks

The next step is to interrelate actions and conditions. We identify a set of preconditions

and effects for each action. In our example, we will consider the following precondition-

action-effect (PAE) triplets:

1. Action: Clear X
Preconditions: There must be one and only one block on top of block X (say
that this block is block Y).
Effects: Reset to false the condition Y is on top of X and indicate that X is
now clear on the top.

2.A£tifln:PutonXY
Preconditions: Both blocks have to be clear on the top. We are not
constraining X to be on the table.
Effects: Y is no longer clear on the top, because block X is now on top of
block Y.

Figure 7 summarizes these PAE triplets.

Preconditions

(ON Y X)

(CLEARTOP Y)

(CLEARTOP X)

(CLEARTOP Y)

Action

(CLEAR X)

(PUTON X Y)

Effects "

NOT (ON Y X)

(CLEARTOP X)

NOT (CLEARTOP Y)

(ON Y X)

Figu re 7: Table of abstract PreconditionsAction-Effects triplets for blocks
world problems

12

Figure 8 presents the results of applying two different operators to the same state of the

world. The set of operators that may be applied to a particular state of the world depends

upon the true conditions that describe this state.

BEFORE ACTION

C

A

(PUTON C B)

AFTER

C

B

(CLEAR A)

Figu re 8: Changing from one state of the world to others using actions

First Example: A Three-Blocks Problem

The problem is stated as follows:

With Initial Conditions

(On C A)
(Cleartop C)
(Cleartop B)

Achieve

(On A B)
(On B C)
(Cleartop A)

The algorithm starts by expanding the final condition (On A B), as shown in Figure 9.

Given that this condition is not in the global network and that it is not an initial condition,

we look into the table of abstract PAE triplets for possible actions. The only possible

action is (Puton A B), with precondition (Cleartop A) and (Cleartop B). Condition

(Cleartop A) is not an initial condition and is not in the network, therefore we expand it.

There are two possible actions: 1- Action (Clear A), with preconditions (Cleartop B) and

(On B A) of which one is already satisfied; and 2- Action (Clear A), with preconditions

(Cleartop C) and (On C A), both of which are initial conditions. This second action is

chosen, and the enclosed tree is joined to the global network.

Once the final condition (On A B) has been satisfied, the next final condition (On B C) is

13

Initial

Figure 9: Expansion Tree of Final Condition (On A B)

expanded. There is only one possible action: (Puton B C), with preconditions (Cleartop

B) artd (Cleartop C), both of which are true. This tree is added to the global network. The

third final condition (Cleartop A) is already in the global network, therefore it is not

expanded again. Figure 10 shows the global network for the problem.

The next step is to interpret this network. Starting with action (Clear A) we see that its

effect (Cleartop A) forms the preconditions of action (Puton A B). According to case 1 of

Figure 5, (Clear A) should be done before (Puton A B). Continuing with action (Puton B

C) we see that it negates the condition (Cleartop C), a precondition of (Clear A). Using

case 3 of Figure 5 (Clear A) has to be done before (Puton B C). Finally, (Puton A B)

negates (Cleartop B), a precondition of (Puton B C). Using case 3, (Puton B C) has to be

done before (Puton A B). Figure 11 shows the actions-network for this problem. The

only feasible plan is (Clear A), (Puton B C), (Puton A B).

14

Final

Final

Initial Initial

Figu re 10: Global Network for the Three-Blocks Problem

Figu re 1 1 : Actions-Network for the Three-Blocks Problem

An Example with Double-Cross Conflicts

Corkill [Corkill 79] refers to the problem shown in Figure 12 as an example with double-

cross conflicts. He proposed to work with two parallel processors that would send

messages to each other indicating when they may proceed and when they should stop.

Corkill's work represents an extension to Sacerdoti's NOAH.

When we solve this example using the network algorithm^we find the global network of

actions and conditions shown in Figure 13. The corresponding actions-network is shown

in Figure 14. A topological sort of this network reveals that there are multiple possible

plans as long as the precedences are not violated. For example, we could do (Clear A)

15

c

A

D

B
PLAN

0

A

C

B

Figu re 12: Example with Double-Cross Conflicts

and (Clear B) in parallel and then (Puton C B) and (Puton D A). One might argue that

either (Clear A) or (Clear B) is an extra action, because the action (Puton X Y) leaves also

the block below X clear on the top. However, this effect was not included in the table of

abstract PAE's and this is why both Clear actions appear in the plan.

Final

Final

Initial

O
Initial

Figu re 13: Global Network for the Example with Double-Cross Conflicts

16

Figu re 14: Actions-Network for the Example with Double-Cross Conflicts

An Infeasible Example

Suppose that we want to solve the following problem:

With Initial Conditions Achieve

(Cleartop A) (On A B)
(Cleartop B) (On B A)

This problem is infeasible because either block A is on the top of block B or Block B is

on top of block A. This example produces the actions-conditions network shown in

Figure 15. Interpretation of this network leads to the final actions-network shown in

Figure 16. Topological sort of this network is impossible, because there are cycles in the

network. Therefore the problem cannot be solved.

A Six-Blocks Problem

In order to illustrate the application of the planning algorithm to problems with more

that four blocks, the example shown in Figure 17 was solved. Initially, this problem was

given to a forward-search program that was unable to find a successful plan. After 100

node expansions, early v/rong decisions had not yet been corrected.

Figure 18 shows the global network of actions and conditions for the problem. This

network is a small part of the network with all possible combinations that could be

obtained.

Figure 19 shows the actions-network for the problem. Again, the action (Clear F) is

introduced because the side-effect (Cleartop Z) of the general action (Puton X Y) was not

included in the table of abstract PAE's triplets. With this restriction, the actions-network

contains the minimum number of actions that have to be done.

17

Final

Final

Figu re 15: Global Network with Actions and Conditions for the Infeasible
Example

Figu re 16: Actions Network for the Infeasible Example

PLAN

c
B

Figu re 17: Example with Six Blocks

18

Final

ON E

Final

ON E D

Figure 18: Global Network of Actions and Conditions

An Example with more Actions

The table of abstract PAE's may be modified in order to introduce new possible block

movements. One possible action is to move two blocks at the same time and to put them

on top of a third one. We can call this action Doubleput, and define the following PAE

triplet:

• Action: Doubleput X Y Z
Preconditions: Block X is on top of block Y; block X is clear on the top and
block Z is clear on the top.
Effects: Block Z is no longer clear on the top. Block Y is now on top of block
Z.

19

Figu re 19: Actions-Network for the Six-Blocks Example

Figure 20 shows a three-blocks problem that was first solved with the original table of

PAE's and then with the enlarged one. When only one-block movements are allowed, the

resulting plan is:

(Clear A) > (Clear B) > (Puton B C) > (Puton A B)

When two-blocks movements were allowed, the algorithm gave the global network shown

in figure 21. Interpretation of tis network leads to the plan with minimum actions:
(Clear A) > (Doubleput A B C)

PLAN

Figu re 20 : Three-Blocks Example with Two-Blocks Movements

20

Final

Final

ON A B

Initial

| CLEARTOP C

Initial

Figu re 2 1 : Global Network for the Example with Two-Blocks Movements

Conclusions
Relationships with Other Models

The main differences of the network algorithm with respect to the procedures found in

other planning systems such as NOAH and NONLIN are the following:

1. In the network algorithm, both conditions and actions are nodes of the same
network. In NOAH and NONLIN, preconditions and effects are part of each
action node's body. With this representation a set of critics has to be used to
solve the conflicts occurring among the different actions. The network
representation does not require of these critics.

2. In the network algorithm, a direct interpretation of the Global Network leads
to the Actions Network. Only the relationships among each action and its
neighbors have to be identified. This reduces the number of possible
relations that have to be studied. In NOAH, the set of possible conflicts that
have to be solved is not well defined.

3. The network of actions obtained using the network algorithm can be used to
generate several feasible plans. This is different from NOAH's approach
where only a first feasible plan is obtained.

It is important to note that the recursive implementation of the condition expansion

procedure may not lead to the optimum plan when cost or other action information are

incorporated. The only heuristic that was incorporated consisted or ordering the set of

Preconditions-Action-Effects triplets with respect to the number of preconditions

satisfied. Best-first search or other search strategies could be implemented by labelling

21

expandable conditions.

Assumptions

The planning algorithm is based on the following assumptions:

1. Closed Planning Environment: The system has pre-defined knowledge about
all possible operators or actions. The planning problem consist of
formulating an appropriate sequence of these operators rather than creating
new operators.

2. Permanent States: States do not change during time if no operators are
applied to the world model.

These assumptions are strong, and it would seem that few problems embody these

characteristics. However, our belief is that complex planning problems can be

decomposed into subproblems where these assumptions are appropriate. Elaborated

planning systems such as OMS [Hayes 85] and MOLGEN [Stefik 81b] also perform on a

closed planning environment. MOLGEN has a predefined set of operators structured

hierarchically, and OMS has a pre-defined set of Knowledge Source Activation Records

(KSARs). We do not know about an automated planning system truly capable of creating

innovative actions.

Extensions

The presentation of the planning algorithm contains no discussion about the following

important aspects of the planning process:

• Uncertainty of information: It has been assumed that the outcome of each
operator is predictable.

• Completeness of information: A full description of the world model was
available at any point of the planning process.

• Heuristics for action choice: The choice of an action during the backward
expansion process was done in terms of feasibility. No considerations about
desirability among possible actions were done.

• Multi-planning Control: The discussion was centered on the expansion of a
single goal (set of states). However, the planning process involves multiple
goals.

These aspects are out of the scope of this document. They will be treated in future

research, when the network representation and planning algorithm are incorporated into

CONSTRUCTION PLANEX, a major planning expert system for construction project

22

planning [Hendrickson 86].

23

[Corkill 79]

[Earman 80]

[Hayes 85]

[Hendrickson 86]

[Sacerdoti 74]

[Sacerdoti 77]

[Sacerdoti 85]

[Stefik 81 a]

[Stefik81b]

[Tate74]

[Tate75]

[Tate77]

[Winston 84]

References

Corkill, D., "Hierarchical Planning in a Distributed Environment,"
Proceedings of the Sixth International Joint Conference on Artificial
Intelligence, pp. 168-175,, 1979.

Earman, L.D., Hayes-Roth, F., Lesser, V.R. and Reddy, D.R., 'The
Hearsay-11 Speech-understanding System: Integrating Knowledge to
Resolve Uncertainty," Computing Surveys, Vol. 12, pp. 213-253,1980.

Hayes-Roth, B., "A Blackboard Architecture for Control," Artificial
Intelligence, Vol. 26, pp. 251-321,1985.

Hendrickson, C.T., Zozaya-Gorostiza C, Rehak, D., Baracco-Miller,
E. and P. Lim, An Expert System Architecture for Construction
Planning, Technical Report EDRC-12-07-87, Engineering Design
Research Center, Carnegie Mellon University, Pittsburgh, PA., 1986.

Sacerdoti, E.D., ''Planning in a Hierarchy of Abstraction Spaces,"
Artificial Intelligence, Vol. 5, No. 2, pp. 115-135,1974.

Sacerdoti, E.L., A Structure for Plans and Behavior, Elsevier-Holland,
New York, 1977.

Sacerdoti, E.L., "The Nonlinear Nature of Plans," Proceedings of the
Fourth International Joint Conference on Artificial Intelligence,
pp. 206-214,1985.

Stefik, M.f "Planning with Constraints (MOLGEN: Part 1)," Artificial
Intelligence, Vol. 16, No. 2, pp. 111-140,1981.

Stefik, M., "Planning and Meta-Planning (MOLGEN: Part 2)," Artificial
Intelligence, Vol. 16, No. 2, pp. 141-170,1981.

Tate, A., INTERPLAN: A Plan Generation System which can deal with
Interactions between Goals, Technical Report MIP-R-109, Machine
Intelligence Research Unit, University of Edinburgh, 1974.

Tate, A., Using Goal Structure to Direct Search in a Problem Solver,
unpublished Ph.D. Dissertation, Machine Intelligence Research Unit,
University of Edinburgh, 1975.

Tate, A., "Generating Project Networks," Proceedings of the Fifth
International Joint Conference on Artificial Intelligence, pp. 888-893,
1977.

Winston, P.H., Artificial Intelligence, Addison-Wesley, Publishing
Company Inc., Reading, Mass., 1984.

