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ABSTRACT

In this paper the problem of optimally redesigning an existing process to

increase its flexibility is addressed A general strategy which first determines the

optimal parametric changes and then identifies the optimal structural modifications is

presented. For linear models basic analytical properties of flexibility are presented

with which very efficient reduced LP and MILP formulations can be developed for

parametric and structural modifications. Also, trade-off curves relating flexibility to

retrofit cost can easily be generated to provide information on the cost of flexibility.

Examples are presented to illustrate the proposed procedures.
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SCOPE

Chemical plants are usually faced with uncertain conditions during their

operation. These uncertainties can correspond to variations either in external

parameters, such as quality of the feedstreams, product demand, enviromental

conditions, or to internal process parameters such as transfer coefficients, reaction

constants, physical properties. Clearly chemical plants must exhibit good operability

characteristics in order to effectively handle these uncertainties.

One of the important components in the operability of chemical plants is

flexibility, since it is related to the capability of a process to achieve feasible

operation over a given range of the above stated uncertain conditions. Although

safety, reliability and dynamic considerations clearly also play an important role, the

first important step to enhance the operability characteristics in a plant is to provide

for greater flexibility in the operation.

Most of the previous work in process flexibility has concentrated on the

problem of designing and synthesizing new chemical plants (Saboo et «/, 1984 [1 ] ,

Floudas and Grossmann, 1986 [ 2 ] , Bingzen and Westerberg, 1986 [ 3 ] , Chen and

Prokopakis, 1985 [4]) . However, the problem of redesigning systematically an

existing process flowsheet to increase its flexibility has not fully been addressed yet

(e.g. see Swaney and Grossmann, 1985 [5 ,6] , Linnhoff and Smith, 1985 [ 7 ] ,

Kotjabasakis and Linnhof, 1986 [ 8 ] , Calandranis and Stefanopoulos, [9]) . The main

difficulty that arises in this problem is the one of how to decide which parameter

and/or structural changes are required \n the existing process so as to increase its

flexibility with the least investment cost. Furthermore, a proper trade-off between

flexibility and investment cost must be established.

This paper will present a systematic approach to tackle the problem of

optimally redesigning an existing plant in order to increase its flexibility. The main

items in the suggested approach ar% the following :

• Systematic procedure for handling parametric changes of the design
variables.

• Embedding strategy for handling simultaneous structural and parametric
changes.



• Procedure for developing trade-off curves between cost and flexibility.

The proposed approach will be restricted to the case when the performance of

the chemical plant is described through a linear model. As will be shown in this

paper, basic properties of linear models can be effectively exploited so as to

perform the above tasks with very efficient LP and MILP formulations.

CONCLUSIONS AND SIGNIFICANCE

In this paper the problem of redesigning the linear model of an existing

flowsheet in order to achieve a desired degree of flexibility has been addressed.

Taking advantage of some important analytical properties that hold for linear

systems, a very efficient MILP formulation has been developed which avoids the

need of solving complex embedded optimization problem. Based on this formulation,

two algorithmic procedures for determining parametric changes have been presented.

As has been shown, these procedures can be extended to handle structural

modifications, as well as for generating trade-off curves that provide information on

the cost of flexibility and which can help to establish a proper degree of flexibility.

Three example problems were presented to illustrate the potential of these

formulations.

The significance of this work lies on the fact that it provides a systematic and

rational approach to guarantee optimal redesign for improving process flexibility in

linear systems.



PROBLEM DEFINITION

The specific problem which is to be addressed in this paper can be stated as

follows:

A linear model of an existing flowsheet with fixed equipment sizes and fixed

structure is given. Nominal values together with expected deviations are also given

for a set of uncertain parameters. The problem is then to determine minimum cost

modifications for redesigning the flowsheet so as to increase its flexibility index

In this work the flexibility index as proposed by Swaney and Grossmann [S]

will be adopted as the quantitative measure for flexibility. This index provides a

measure of the feasible region of operation. Specifically, an index value F<M impliee

that a design can handle the specified expected deviations in the uncertain

parameters; a value F<1 represents the maximum fractional deviation of expected

parameter deviations. This index accounts for the fact that the process can be

adjusted during operation through control variables.

It will be assumed in this paper that for the retrofit design the value of the

index of flexibility F can be specified as a fixed value (typically F»1), or more

generally that it must be determined by establishing a trade-off between cost and

flexibility. The case when revenue considerations are also taken into account will be

reported in a future paper [10].

As stated above, the performance specifications of a chemical process for

feasible operation ere assumed to be described by a linear model. This model will in

general consist of a set of equations and inequalities (see Appendix A). For

convenience in the presentation, however, it is assumed that the equations are

eliminated so as to lead to a set of reduced linesr inequality constraints of the

following form :
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The vector of design variables d defines the equipment sizes. The vector z of

control variables stands for the degrees of freedom that are available during

operation, and which can be adjusted for different realizations of the uncertain

parameters. 0 is the vector of uncertain parameters with nominal value 0* and

expected deviations A0* . Ad' in the positive and negative directions. The region of

guaranteed feasible operation of the uncertain parameters will then be defined in

terms of the flexibility index F by :

T<F) • { e | e" - FA*- * e s e" •

where, for convenience. 0" is assumed to be a feasible operating point in the

existing design. The case when 8* is an infeasible operating point requires a slight

modification of the procedure presented in this paper and is discussed in

Pistikopoulos and Grossmann [11].

The following general strategy is proposed to improve the flexibility of an

existing flowsheet that is represented by a linear model with uncertain parameters:

1. Set a value for the flexibility target Fv (e.g. F'*1)

2. Evaluate the flexibility of the existing design. If the flexibility index F is
greater or equal than F\ stop. Otherwise go to step 3.

3. Determine whether only changes in equipment sizes is all that is required
to meet the flexibility target. If yes. determine the optimal parametric
modifications and stop. Otherwise go to step 4.

4. Determine the optimal structural and parametric modification to meet the
flexibility target.

5. Determine the trade-off curve of retrofit cost versus flexibility target. If a
new flexibility target is selected go to step 3.

Note that the basic idea in this strategy is to decompose the problem by trying

to determine first in step 3 parametric changes if they can be found. In the case
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when this is not possible, the strategy will try to identify required structural changes

in step 4. The strategy as stated cannot necessarily guarantee the global optimum

solution. However, as will be shown in this paper, it provides a framework for a

better understanding the role of parametric and structural changes. Furthermore, it

will be shown that by exploiting the linearity of the model very effective methods

can be developed, with which in fact it is possible to consider simultaneous

parametric and structural changes.

FORMULATION FOR PARAMETRIC CHANGES

For a given flexibility target F\ the question that arises in the third step of the

proposed strategy is the following: which are the optimal modifications to equipment

sizes for the given flowsheet structure in order to achieve a desired degree of

flexibility! Or in other words, which are the optimal parametric changes of the

design variables? The problem posed in this question can be represented

conceptually in the following way:

min I Investment cost for changes 1
Ad L JAd

(1)
SX f

where

• Ad : vector of changes in the design variables d.

• investment cost for chmgee : involves a cost model related to the changes
of the design variables Ad.

• F* : represents the prespecified target for flexibility ; it usually equals to
one to ensure that the design will meet the expected deviations.

The above problem may have no feasible solution because the only way to

attain the desired flexibility target might be through structural changes. In this case

one can formulate the problem of determining the largest flexibility that the particular

process flowsheet structure can have; that is

• maxF (2)
Ad



It should be noted that F1"*" can be regarded as a structural flexibility index, in

the sense that according to (2) it indicates the maximum flexibility index that a given

flowsheet structure can have when only changes in sizes of equipment are

considered.

In order to develop a specific mathematical formulation, assume that fixed

charge cost models are used for the investment cost. Problem (1) can then be

formulated as:

min cTw • BTAd
w.Ad

s.t. F a F1 (3)

HJ.'w. £ Adt £ U .V , w.«0,1, i«1,r

where the flexibility index F is determined from the MILP problem (see

Grossmann and Floudas, 1986 [12]h

F » min i
9.z.i.s..\..v.

s.t. s • f (d.z.0) * 0 j € J

J

j € J
• U ( 1 • y. ) i 0

6" - i A$• * 6 i 6* * i A6'
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0 ; y. * 0.1 ; X. . S, 2 0 j € J

In (3) the fixed cost charges c are associated with the vector of binary

variables w, while fi is the variable-size cost coefficient. The vector of changes in

the design variables can be set as Ad - Ad* • Ad\ where Ad\ Ad" are the positive

and negative changes of d respectively. These changes are bounded by U", U\ i*1,.,r.

where r is the number of design variables.

In (4), S represents the fractional deviation of the parameters, s are slack

variables, X. are lagrange multipliers associated with the adjustment of control

variables z to minimize constraint violations; y. are binary variables that determine

the n+1 active constraints that limit flexibility, where n is the dimensionality of the

vector z (see [12] for details)

Problem (3) is clearly a very difficult mixed-integer embedded optimization

problem since it has as a constraint problem (4). As will be shown in the next

sections, however, problem (3) can be greatly simplified by replacing problem (4) with

a set of linear constraints. Since the basic treatment of problems (1) and (2) are

similar, only the detailed analysis of (1) will be presented. The final result for (2) will

be stated later in the paper.

ACTIVE SETS

The mathematical formulation in (4) involves through the binary variables yJ the

selection of the particular set of n*1 active constraints that limits flexibility in the

design (see Appendix A for treatment of equations). In order to eliminate the explicit

use of the binary variables y, assume that all the candidate sets of n*1 active

constraints in (4) are identified a priori (see Appendix B). The index set for each of

these active sets of constaints will be denoted by JA
fc, k-U.n^.

Since a given candidate set of active constraints JA
k implies a particular

selection of the binary variables y, problem (4) reduces for each active set k as:



Sk * min i
i.i.6

s.t. Md.z.0) • 0 j 6 J/ (5)

0" - 6 &8Z $ Z 9" + i A6\ 6*0

where Sk can be regarded as the "flexibility index" associated to the set J *; i.e. it is

the maximum fractional deviation of the parameter for the constraints in that active

set.

Since the solution ik in (5) must satisfy the constraint 3k S F\ to satisfy F 2

Ff in problem (3), the following equivalent problem can be considered:

min cTw • £TAd
w,Ad

s-t. S* * F1 . k»1,..nAS (6)

-U"w. ^ Ad. £ U.\v. w.«OJ i«1.r

d, • d(
f • Ad.

where 6k is given by problem (5). Although the binary variables y of problem

(4) have been eliminated in formulation (6), the problem still represents an embedded

optimization problem; i.e. it has as constraints problem (5) for each active set k.

In the following sections, however, it will be shown that problem (6) can be

written explicitly as single optimization problem by representing (5) through a single

linear equation.
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PROPERTIES FOR LINEAR CONSTRAINTS

In this section it will be shown that 6k as given in problem (5), can be

expessed as a single linear equation in terms of Ad. In order to show this result it

will be convenient to reformulate (5) as the equivalent problem [5]:

5* * min 6

s.t. fk(6.d) = 0 (7)

6" - i £kd' * 6 £ d" • i A0*

where fk{6,6). the feasibility of design d at the parameter value 6 is given by:

f k(d.d) * min u (8)
z,u

s.t. Md.z.0) £ u j 6 JA
k

Qualitatively, (7) determines the shortest distance to the boundary of the

feasible region f*(d,0)»O, where fHd.S) as given by (8) represents the adjustments of

control variables z to minimize the maximum violation of the constraints.

For a given active set JA
fe the function fHd.S) has three important properties :

PROPERTY 1 : jk is only % function of d and 6, independent of the control

variables z, and is given by:

(9)

where 2^ V* • 1. A. X k -,-JL • o
1 o z

Provided that each nxn square submatrix of the partial derivatives of the

constraints f., j6JA
k with respect to the control z is of rank n, then the Kuhn-Tucker
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conditions of (8) yield the square system of equations

(lO.b)

The above system of equations is a linear system because for the linear case

—i is constant. Also, from the above assumptions (10) is a non-singular square
Ox

system of (n*1) equations involving (n*i) unknowns in the lagrange multipliers X * (X *

£ 0). Hence, the X* are uniquely defined for each active set, and furthermore, they

are independent of d and 9.

Furthermore, consider the Lagrangian of the function f*<d,0) in (8h

Lk (u,z,X) « u" • 21 V <Vd#z#t f ) m "k) (11)

Under the assumption of convexity, at the optimal solution (Bazaraa and Shetty, 1979,

[13])

f*(d,0) • C (u\z\X#) (12)

Substituting (10.a) and (11) into (12) leads to:

>) (13)

which then proves the statement in property 1. Also note that from (lO.b) it

follows that ~5—*0; •••• f^9) is independent of z.

PROPERTY 2 : For a given active set JA
k the critical direction for the parameter

deviations A0efc is independent of the design variables d.

The critical direction for the parameter deviations, A0*k, must satisfy the

inequality (*^-)T Adck > 0; i.e. it is the direction along which there is an increase in

the function fk{4.0).
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Consider from (13) the partial derivatives of the function fk in 6 :

X* — (14)
30 ;eJA

k 30

If we take into account that for the linear case ^4 is constant, and that the
30

multipliers Xk are independent of d and 8. then the partial derivative of fk with

respect to 8 is clearly invariant to the design variables cL This partial derivative can

be used then to predict a priori the critical parameter deviation for the given active

set k.

For the case of independent uncertain parameters, the critical direction A0 c-\

i=1,.,p can then simply be obtained as follows :

(a) if —I— < 0 => A0e* » A0*
30

i

05)

(b) if — > 0 => A0e>* » A0*

In this way every parameter 8% associated with an active set k can be expressed in

terms of 6 and the critical direction as:

0. * 8" • t A 0 t ° * i«1...p (16)

PROPERTY 3 : The flexibility index ik of a given active set JA
k varies I/nearly

with the changes of the design variables Ld.

By making use of (13) and (16), problem (7) can be written as :

J* • min i
1.6.8

s.t. f*i6.8) • 21 x' * <d.z.0) • 0 (17)

8 • 8* • i Atf ° i«1,-,p
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where the X.k are obtained from (10).

Note that in (17) the dependence of z has been eliminated due to property 1. It

is also interesting to see that (17) involves only equalities and that the degrees of

freedom are given by dim{d>. The latter follows from the fact that there are 1 •

dim{0} equations, and that I. d, 6 are the variables. This would suggest that for a

given value of &\ say at d*dc, 6k can be expressed as a linear function of Ad

through the Lagrangian of (17).

First note that by using (13) Sj* can be determined from the linear equation:

As for the Lagrangian of (17), it is given by:

L" * S • vk

The stationary conditions of this Lagrangian are :

Multiplying equation (21) by A0,***. adding over i and combining it with equation

(20), the following expression can be obtained for the multiplier rk :

3 f
-1 n_ (22)

With this multiplier, one can calculate the sensitivity coefficients *.k,defined as

the partial derivatives of the flexibility index i* with respect to the i'th component

of the vector d of the design variables; namely :
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• d d. 7 7 d d,

Since from (17) the multiplier r*»- -3—5-. it follows from (13) and (23) that

.Z, V |^ W (24)

Further, since the above sensitivity coefficients are constant, the flexibility

index of a given active set k can be written as:

ik « i\ ^2 ,̂M Ad, ks1-nA$ ( 2 5 )

where 3o
k is the flexibility index for the existing design d* and can be determined

from (18).

This then shows that for a given active set, where the partial derivatives of f

with respect to z are linearly independent, i* as given in problem (5) can be

expessed by (25) as a linear function of Ad in terms of the sensitivity coefficients

a in (24). These coefficients can clearly be determined with simple calculations.

It should be noted that wh«n the assumption of linear independence does not

hold, the expession in (25) can still be obtained through the direct numerical solution

of problem (5), or equivalently from problem (4) at a given active set. Let X*be the

multipliers of the equations in problem (5). Then :

(26)

where X = -
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REDUCED FORMULATIONS

The importance of equation (25) is that problem (6) can be greatly simplified

since it can be formulated in terms of the changes of the design variables Ad. and

the flexibility index 6* for each active set k. Specifically, problem (6) reduces to the

MILP

min cTw • /JrAd
w,Ad

s.t. 6* * Ff

k»1,.,n_

( P C )

U* wt £ Ad £ U.* w. #

kZ0. Ad€Rr

By applying a similar procedure to problem (2) for finding the structural

flexibility index, it can be shown that it can be reduced to the following LP:

F™ • maxF
Ad

sx F i 3*

* \

3 ^ 0 , Ad6FT

Note that both problems are no longer embedded optimization problems, and

that the sizes of (PC) and (PF) are small since they involve only one equation for

each active set k, and ik and Ad as variables. The next section will show how (PC)

and (PF) can be incorporated in algorithmic procedures for determining parametric

changes to improve flexibility.
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ALGORITHMS FOR PARAMETRIC CHANGES

Based on the properties and the condensed formulations presented in the

previous sections, two algorithms can be developed to find the optimal parametric

changes or maximum structural flexibility index The first algorithm is suitable for a

modest number of active seta and assumes linear independence of the partial

derivatives of the constraints f, j € JA
k with respect to the control z. The steps in

this algorithm are as follows :

ALGORITHM 1

STEP 0 : Specify the flexibility target F* and

find tha flexibility index F of the existing flowsheet

If F i F\ stop.

STEP 1 : Identify all the n^ active sets (see Appendix B).

STEP 2 : For each active set J A \ k - i^n^:

a. Calculate X k by solving the linear system of equations in (10h define p*
as in (13).

b. Obtain the critical vertex direction A0,*-* from tha signs of the gradient

of fk with respect to $ aa In (151

c Calculate the multiplier ** from aquation (22).

d. Calculate tha sensitivity coefficients #(
k from aquation (24).

a. Obtain tha flexibility index J*# for tha existing design d8 from tha linear
aquation in (181

STEP 3 :
(a) Solve the MILP problem (PCX

(b) If the MILP solution is feaeible, tha new vector of the design variables will

be given by

d* • Ad
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where d* is the vector of existing design variables.

(c) If the MILP is infeasible the maximum structural flexibility can be

determined by solving the LP problem (PF).

An important feature of this algorithmic procedure is that, by taking advantage

of the analytical properties that hold for the linear case, it requires just a sequence

of simple algebraic calculations and the solution of a reduced MILP \n step 3. It

should be noted that this MILP may be reduced to an LP problem if fixed charge

costs are not considered.

The drawbacks of the above procedure lie on the possible combinatorial

problem related to the identification of the possible active sets in step 1, and to the

assumption of the linear independence in the gradients of the constraints. These

limitations can be overcome with a second algorithm in which the MILP for th*

flexibility index in (4) is solved succesively to identify only these active sets with J*

£ F \ and to obtain the values of the multipliers X.

ALGORITHM 2

STEP 0 : Specify the flexibility target Ff, set k»1.

STEP 1 : Solve (4) to obtain i\ J A M i

If i% * F\ stop.

STEP 2 : (a) Set k « k • 1

(b) Add an integer cut to (4) (see Appendix B) to exclude JA*"\ and solve the

MILP in (4) to obtain l\ JA*. \

(c) If Sk £ F* go to step 3; otherwise go to 2(a)

STEP 3 : Calculate the sensitivity coefficients <xk from

T t i>1-r ( 2 e>
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STEP 4 : (a) Solve the MILP (PC).

(b) If feasible solution , set d*"" » d€ • Ad, go to step 1.

(c) If no feasible solution, solve problem F"1** in (PF), stop.

It should be noted that in step 2(b) X is obtained from the dual prices

corresponding to the first set of equations in the MILP problem in (4). Furthermore,

the set JA
k is defined by the binary variables y that take a value of one in (4). It

should also be observed that usually there is no need to explore all the possible

combinations nAS of the active sets in this algorithm. The reason is that in steps 1

and 2 only the active sets with &k £ F* are determined. On the other hand the price

one has to pay with this scheme is that additional iterations might be required as

indicated by step 4<b) in which the flexibility index must be evaluated for the design

modification due to the fact that not all active sets are explicitly considered in (PC).

TRADE-OFF CURVE FOR COST vs. FLEXIBILITY

In the algorithmic procedures described in the previous section, the flexibility

target F1 is specified at a fixed value, usually 1.0, to ensure that the design will meet

the expected deviations of the uncertain parameters.

In this section it will be shown that an additional advantage of these

algorithms is that they can be easily extended for the construction of a trade-off

curve of cost vs. flexibility that provides information on the cost of flexibility. To

show how this extension can be performed, assume that the MILP in (PC) reduces to

the following LP by eliminating the fixed-cost charges:

min

{27)

In order to develop a trade-off curve of cost vs. flexibility (27) must be solved

parametricaily in terms of F\ This might in principle require the solution for a very

large number of values of F'. However, this can be avoided as follows.
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Problem (27) can also be rewritten as the following maximization problem

<28)

S . t . a mmmm

-« * *% (b>

where a is a scalar.

If we consider the dual problem of (28), it is of the fo l lowing form :

rrjin

k 1

/ "

where

/ i k vector of multipliers of inequalities (a) in (28)
p the multiplier for the single inequality (b) in (28)

It should be noted that / is the cost of flexibility, because it represents the

change of the cost with respect to the change of the flexibility target F\ Also, it

should be noted that the trade-off curve relating flexibility to cost will be a piece*

wise linear function where each segment is characterized by different limiting active

sets identified by the multipliers ?k. This would then suggest that for generating the

trade-off curve of cost versus flexibility it suffices to identify the break points in

the curve.

Based on (29) the procedure to generate the break-points in the trade-off curve

is as follows :

1. Pick as a starting point for Ff the flexibility index of the existing process.
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which corresponds to Ff * min So
k

2. Solve the dual problem (29) to evaluate the multipliers / i \ which will
provide the information of which active sets are the limiting ones, and the
value of p. which will correspond to the cost of flexibility.

3. Do range analysis (see Schrage. 1984, [15]) at the solution of (29) to
determine what is the allowable increase JF for F1 such that the
multipliers //* will remain unchanged (i.e. same limiting active sets and
therefore constant value for p).

4. Set the new break point F' = <Ff)QL0 • 6F and go to 2.

From the above it is clear that by solving a sequence of dual problems in (29)

coupled with the range analysis* the break points of the different segments in the

trade-off curve are identified. Furthermore, each segment has a slope given by />, the

cost of flexibility. Thus, only a finite number of points will be considered without

having to explore the infinite number of values for F\ Finally, in order to avoid

possible problems of degeneracy solving the dual problem (29) in step 2, the value

of F* should be set Ff » Ff • « where < is a small number (e.g. € * .001).

For the case when fixed-cost charges are included in the MILP problem (PC), a

similar but somewhat more involved procedure is required to generate the trade-off

curve as shown in Appendix C

EXAMPLES

Two examples will be considered to illustrate the application of the proposed

algorithmic procedures for parametric changes.

The first one will be small linear example, which will serve as an illustration of

the procedure of algorithm 1. Additionally, the trade-off curve relating flexibility to

cost will be constructed to illustrate the procedure described in the previous section.

Example 2 will correspond to the linearized model of a flowsheet problem, where due

to the large number of possible active sets, algorithm 2 will be applied.
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EXAMPLE 1

Consider that the specifications of a design are represented by the following

inequalities :

ff * z - 9 • dt - 3 d2 £ 0

f2 » -z - 9/3 • d2 + 1/3 £ 0 (30)

These inequalities involve a single control variable i. two design variables d ,

d2 and a single uncertain parameter 9 specified within the range 0£ 9 £ 4.

Its existing design is d t
f * 3 and d2

§ • 1. By examining the plot of the function

f(6,z.d) for the existing design in Fig. 1 (ii), it is clear that for 0 £ 8 £ 1 there is

infeasible operation, whereas for 1 £ 9 £ 4 there is feasible operation. Then the

question to be answered is what are the appropriate changes of the design variables

di and d2 in order that the new design be feasible for the whole operating range of

the uncertain parameters 8.

Applying the procedure of algorithm 1, the following results are obtained:

Step 1 : Since n*1«2. two active sets can be identified from the following two

equations in (10) : (i) Xf • X2 • X3 • 1 and (ii) Xl - X2 • X3 * 0. The first active set

JA
! involves ff and f^ and the second one JA

2. involves f2 and f%.

Step 2 (i) : Por active set JAM1.2) the multipliers X^X,1 calculated from (10)

yield X1
1«X2

1*.S. Since from (13) the function f1«2[1-tf ]/3, the critical direction

corresponds to the lower bound 0°«O. The value of v1 calculated from (22) is

*1«-.75. With this, from (24) the sensitivity coefficients <r^*-.27S, <r2
1*.75 w% obtained.

Finally, the value of a^'O.S from (18K

Step 2 tii) : For active set JAMZ3) the multipliers X2
2,X}

2 calculated from (10)

yield X2
2=X3

2*.5. Since from (13) p'*[0-4]/3, the critical direction corresponds to the

upper bound 0c2*4. The value of r2 calculated from (22) is *2*-1.5. With this, from

(24) the values of the sensitivity coefficients * *• *3
2»-.75 are obtained. Finally, the
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value of 5 2*1 from (18).

Step 3 : Assuming cost coefficients c^c^O, flx
mfl2

m<\0* problem (PC) can be

formulated as the following LP :
min dOAd, • 10Ad2)
s.t. .5 - . 3 7 5 ^ • .75Ad2 * 1 (3D

1 - .75Adi - .75Ad2 * 1

The solution to the above LP is Ad^Ad * 1.335. This means that in order to

achieve flexibility greater or equal to one ( i.e. feasible operation for the whole

operating range OS8£4 ) at minimum cost, both design variables should be increased

by 1.335 taking the values :

[ d , * " « 4.335 . 6™ » 2.335 ]

The effect of the redesign over the existing system can be seen in Figure 1.

Figure I.iii shows the feasible region of the redesigned model and in Figure Liv its

corresponding function f is plotted, whereas Figures I.i and 1.ii show the feasible

region and the function f for the existing design.

It should be noted that the most economical feasible redesign corresponds to

the one where both the design variables should change in such a way that the

flexibility index for both the active sets will be equal to one.

It should also be noted that if problem (PF) is solved, the flexibility index F is

again equal to 1 ( i.e. Fmmm • 1 ), but a different redesign is obtained with [ d i'*
w«i2,

d2
NCW«6.16 ]. Figure 2 shows its feasible region. The above result clearly indicates

that there are usually alternative values of the parametric design variables to achieve

a flexibility index F • 1.

Finally, to illustrate the development of the trade-off curve, the LP in (31) is

rewritten as :

max MOAd, - lOAd^
s.t. .375Ad1 - .75Ad2 • a £ 0.5 (32)

- .75Adf • .75Ad2 • « £ 1
- * S - F1

Its corresponding dual will be :
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min 0.5/i| • /*2 - Pfp
s.t. .375,, - .75^2 * -10 (33)

-.75,1, • .75^ * -10

Applying the procedure for constructing the cost curve, the following results are

obtained :

• For FM).5O1 (current flexibility index) (33) yields /#,* 13.33 and ^0 and a
value of 13.33 for the cost of flexibility p. which remains constant doing
the range analysis up to F'*0.75. This indicates that for the range of 0.5 £
F1 £ 0.75 only active set (1) is the limiting one and the corresponding
segment for this range starts from (0.5,0.0) and ends at (0.75,3.33) at the
cost vs. flexibility curve.

• Setting (F^^'O^SI , active sets (1) and (2) become both limiting with
/i,s56, ,2*27.33 and the value of the cost of flexibility p yields 93.33. This
indicates that for the range F* £ 0.75 the slope of the second segment is
significally increased, due to the fact that both design variables d, and d2

must be changed, whereas for the first segment only a change in d is
required. The second segment starts from (0.75,3.33) and passes through (1,
26.66) at the cost vs. flexibility curve. The resulting trade-off is shown in
Figure 3.

EXAMPLE 2

The flowsheet of a chemical process is presented in Figure (4). It involves a

PFR reactor, where a reaction of the form A • B takes place and a fractionator

(separation column), which separates the final product from the top whereas recycles

to the reactor the unreacted A. Two pumps are used; one for the feedstream and one

for the recycle stream. The feedstream contains both A and B. Some purging also

exists in the recycle stream for control purposes. Sizes and cost data of the existing

design are given in Table 1.

Three uncertainties are involved in the description of this system : one in the

fraction of B in the feedstream with nominal value of 0.05 and deviations 0.045 in

both directions; the remaining two in the reaction rate constants k, and k2 with

nominal values 0.2 s'1 and 0.1 s"\ respectively, and corresponding deviations 0.05 s*1

and 0.02 s'\
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The linearized model of this process at the nominal operating conditions

involves 18 equations and 9 inequalities in 21 unknowns. Elimination of the state

variables (see Appendix A) leads to 9 inequality constraints with 3 control variables,

the pressure P and the temperature T of the separation column, and the flowrate of

the feedstream F,N. Also there are 3 design variables, the volume V of the PFR

reactor and the powers Wt° and W2° of the two pumps. The flexibility index for the

existing design is 0.31. Therefore, a redesign is required to increase the flexibility

index to a value of 1.

From Appendix B, it can be determined that the number of possible active sets

for this process is 25. However, if one applies the procedure of algorithm 2 only

two active sets must be considered. These involve two design variables: the volume

V of the reactor and the power W}° of the pump of the recycle stream. Using the

cost data in Table 1 the solution obtained is a change only of the volume V from

7.5 to 14.64 m3 with a cost for the modification of $714,000. Therefore, the

flexibility of the linearized model of the process flowsheet in Figure (4) can be

increased from 0.31 to 1.0 at minimum cost by adding a reactor in series with a

volume of 7.14 m3.

It should be noted that if a nonlinear calculation of the flexibility index is

performed for the redesigned process (see Grossmann and Floudas, 1986, [12]) the

value obtained is 0.8. This result simply indicates that the linear model has only

provided an approximate solution to the nonlinear model of the process flowsheet

Finally, applying the procedure for constructing the trade-off curve yields the curve

shown in Figure 5, which has a cost of flexibility of 10.3x109 $/F. Note that in this

case there are no break-points as there is only one active set defining the curve.

STRUCTURAL MODIFICATIONS

The third step of the proposed strategy deals with the problem of modifying

appropriately the flowsheet structure in order to achieve the flexibility target.

For linear models, the above stated problem can be addressed through a direct

extension of the mathematical formulation of the MILP in (PC). This extension



25

involves first the development of a general superstructure for the possible structural

modification alternatives. By modelling the superstructure with the MILP in (PC), the

resulting optimization problem will tackle both the problems of parametric and/or

structural modifications for increasing the flexibility of a given linear process model

at a minimum cost.

One of the questions that obviously arises is how such a superstructure can be

developed in a systematic way. A possible "building" criterion for the superstructure

can be based on the design variables d associated with the critical active set found

in problems (PC) or (PF); structural modifications are to be assigned for these design

variables that give rise to a nonflexible behaviour.

The following example problem will serve as a motivating illustration of the

ideas on structural modifications for linear systems.

EXAMPLE 3

The block diagram of the chemical complex considered in Grossmann, Orabbant

and Jain [14] is presented in Figure 6. The economic data for this chemical complex

are shown in Table 2, and its six capacity variables for the existing design appear in

Table 3. Five uncertain parameters have been considered corresponding to a demand

of chemical G in the local market (dy), and upper bounds for purchases of chemical A

and B and sales of chemical I and G in the international market (6^ B%. 0y dA

respectively). The nominal values and the expected deviations of the uncertain

parameters are given in Table 4.

This system can be described with thirteen linear inequalities and five control

variables, with an upper bound of 1287 possible active sets. For the existing design,

the flexibility index is calculated to be Fw«0.32, which clearly indicates that redesign

is required for the system to handle the expected deviations of the five uncertain

parameters.

Algorithm 2 has been applied to this problem. Only four active sets

identified by solving succesively the MILP in (4) with integer cuts and up to the point
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where the active set leads to Sk * 1. The constraints in the active sets involved only

three design variables df, d4, df. Applying the MILP in (PC) it was determined that

only one change is required, namely the design variable d§ from its existing value of

40 Kg/hr to 60 Kg/hr with a cost for the modification of $44.6x10*. Therefore, the

flexibility of the chemical complex in Figure 5 can be increased from 0.32 to 1.0 at

minimum cost by expanding the capacity in process 6 up to 60 Kg/hr.

Suppose now that the largest increase in capacity that can be achieved by

redesigning the existing process 6 is 50 Kg/hr. Then, problem (PC) becomes infeasible

for the flexibility target Ff»i. Applying problem (PF) the maximum structural flexibility

yields a value of 0.67 IP"*1 • 0.67). Therefore, doing only parametric changes it is

impossible to meet the flexibility target of 1.0. and hence some structural

modification must be considered. The solution of (PF) provides the information that

design variable df is the only one associated with the critical active set. Therefore,

applying the "building" criterion for the superstructure, a structural modification is to

be proposed around process 6 (d§), which is responsible for the inflexible behaviour

of the system.

A new alternative process 6*. which produces J from I is considered in parallel

to the existing process 6. This is a more efficient process than 6 because it requires

lower operating cost ($/Kg) as it appears in Table 2. Applying the MILP in (PC2) the

result indicates that the new alternative process 6A should be selected because it can

handle the whole range of expected deviations for the uncertain parameters. The new

redesign of the complex exhibits a flexibility index of 1.0 for a capacity of 60 Kg/hr

of process 6A with a cost for the modification of $150x10*. Therefore the flexibility

of the chemical complex can be increased from 0.32 to 1.0 by replacing the existing

process 6 with new process 6* of capacity 60 kg/hr.

This example shows how a superstructure might be derived in order to tackle in

an efficient way the problem of simultaneous parametric and/or structural

modifications for improving process flexibility.
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APPENDIX A. TREATMENT OF EQUATIONS FOR IDENTIFYING ACTIVE SETS

The physical performance of a chemical process in the steady-state can be

described by the following set of constraints

hid.z.x.0) * 0 (AD

g<d.z.x.0) £ 0

where h is the vector of equations (i.e. mass and energy balances or equilibrium

relations) which hold for steady-state operation of the process, and g is the vector

of inequalities (i.e. design specifications or physical operating limits) which must be

satisfied if operation is to be feasible.

In order to identify the possible active sets in (A1) it is required to eliminate

the equalities to obtain the stationary conditions of problem (8). In order to obtain

equation (1O.b), this elimination can be done as follows :

The stationary conditions of fid.z.0) with equalities are of the form (see

Grossmann and Floudas (1986)h

(I) / V / h • XT V / g • 0T

(A2)

(ii) / V / h • XT V / g « 0T

From (A2)(i) the multipliers / can be obtained from:

/ • - [ V.T h ] " [ XT V / g ] (A3)

Substituting (A3) into (A2XH) leads to:

[ - VJ h ( V / h ) - V / g • V / g ] XT - 0T (A4)
which are precisely the stationary conditions in (lO.b).
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APPENDIX B. lOENTIFICATIOM OF ACTIVE SETS

All the potential active sets nAJ in problem (4) are given by those combinations

of the binary variables y. j€J which have n+1 non-zero components and satisfy the

following equations in problem <4h

\ ' V, j€ J (BD

y, • n • 1

j€J

To identify the potential active sets it is convenient to define matrix which will

have as components the signs of the gradients V Md.z.0). That is.M

r 1 •< > 0

-1 if -Ji- < 0

df,
0 if Z-1- " 0

(B2)

Any active set can be obtained by solving the following MILP

min 0T y

S.L A y • 0 (B3)

J^ y • n • 1 y • 0.1 j€J
j€J J '
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However, since all the active sets must be identified the following procedure

can be used :

• Step 1 : Set k»1.

• Step 2 : Solve the MILP in (B3) to obtain the solution yk. If there is a
feasible solution define the active set JA

k*{j/y * S U . If there is no feasible
solution, stop.

• Step 3 : Add to the MILP the integer cut

•

to exclude the active set JA
k for the next solution. Set k=k+1, return to

step 1.

It should be noted that for problems of small size the list of active sets can

simply be obtained by exhaustive enumeration.
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APPENDIX C. TRADE-OFF CURVE FOR COST vs. FLEXIBILITY - MILP case

In this Appendix* it will be shown how the trade-off curve of cost vs.

flexibility can be obtained when fixed cost charges are included in (PC). A typical

trade-off curve for this MILP problem is shown in Figure C1. It exhibits two

important features : (a) it is discontinuous at the break points defined by the change

of the limiting active sets; (b) it might be piecewise continuous within the region

characterized by the same limiting active sets due to a change of the design

variables to be modified.

The above features suggest that for generating the MILP trade-off curve it

suffices to identify the points of discontinuity (i.e. change of the limiting active

sets), as well as the possible break points within the region associated to a given

active set. This set of points will be denoted by F' with cost z', j* 1,2 The

following procedure is proposed :

1. Set l*\. j - 1 . F'-F1.

2. Solve MILP problem (PC) to identify its corresponding active sets J , and the

nonzero changes of the design variables Ad, i€l. where J^»{ kl JA
k limiting active

set}, and lJ*{il w.*1). Set optimal objective function value to zj.

3. For the nonzero changes of design variables I* apply the procedure for the LP

case to identify the allowable increase 3F' for FJ. This corresponds to doing range

analysis at the solution of the dual of the following problem (CD :

4» In order to determine the increase JF" that is due to a change in other

design variables for the same active set in Jr. solve the following MILP problem :
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mm z
w,Ad,<5F

" S A cw •
i 1

s.t. P

w - T w i I' - 1
T

(C2)

[cw ] i z>

- U" w £ Ad wt .

5. (a) If 5F"< 5F-, set F'*'»FJ*3F". z '^z".

(b) If iF"*3F\ set P"'P*iFX'l*\. j»j

*'«{il w«1), j«j

i. go to step 2

i. go to step 3.



f

33

Figure C-1: Typical trade-off curve-MUJ> case
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Table 1: Existing Design and cost data for example 2

Design variable

V

w o

Existing value

7.5 m1

22.0 kW

15.5 kW

Cost coefficient

10.000 $/mJ

8,000 $/kW

6,500 S/kW
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Table 2: Economic data of chemical complex for example 3

Investment cost (10*$)

Process Operating cost ($/Kg) fixed variable

1 0.1 45.3 0.90

2 0.12 45.2 1.15

3 0.15 48.1 1.64

4 0.12 23.3 1.27

5 0.28 46.2 1.31

6 0.35 32.8 2.23

6A 0.25 33.0 2.00
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Table 3: Existing design for example 3

design variable capacity (Kg/hr)

d, 100

d2 150

d, 80

d4 120

d, 100

de 40
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Table 4:

Nominal values and deviations of the uncertain parameters

in example 3

(kg/hr) (kg/hr) (kg/hr)

Parameter Nominal Value Positive Deviation Negative Deviation

* , 10 5 5

02 200 50 50

*3 50 15 15

d4 50 10 10

05 50 10 10


