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process flowsheets have been of interest to process engineers for the

past 25 years. Here we review earlier optimization strategies and

emphasize more recent strategies based on Successive Quadratic

Programming (SQP). These strategies allow the simultaneous solution and

optimization of the process model and thus lead to significant

reductions in the computational effort for an optimization study.

Several examples are presented to define the optimization problem and

demonstrate the performance of the simultaneous strategies. Finally,

some open research questions are described and future directions in

process optimization are briefly discussed.
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SUMMARY

Application of Successive Quadratic Programming strategies to

process optimization has reduced the computational effort by more than

an order of magnitude over conventional methods and now creates the

potential to make simulator-based optimization with complex process

models a powerful tool. This report describes the process optimization

problem with a simple flowsheeting model and briefly discusses the

infeasible path approach, which permits simultaneous recycle

convergence and optimization with SQP. Several improvements to the

infeasible path algorithm are then outlined that include better gradient

calculation and scaling strategies, a more efficient line search function

and more reliable performance through intermediate recycle convergence.

These concepts are applied to a large-scale process problem and

resulting improvements are demonstrated. Finally, we present a brief

discussion of open research questions and directions for future research.



INTRODUCTION

With the application of computers in process engineering,

flowsheet models, i.e. steady-state process models of chemical

processes, have been developed and widely used in the chemical

industry. These flowsheeting packages or process simulators very

successfully predict the accurate behavior of a process' steady-state

behavior, and are flexible in describing general-purpose processes. A

number of process simulators are widely used by chemical and

engineering companies (see [21] for a comprehensive list.), and these

find frequent use in evaluating and improving proposed process designs,

monitoring and analyzing the performance of existing designs and in

guiding the redesign or retrofit of inefficient existing processes.

The structure of these simulators is highly modular and this makes

it easy for the engineer to quickly set up a flowsheet and choose a set

of physical property and equipment performance models of appropriate

accuracy and complexity. Almost all commercial process simulators have

a structure that is termed sequential modular. Here, instead of

specifying the full process model as a single set of nonlinear equations

that need to be solved, calculation usually proceeds in the same way

that material flows in the process. Process equations are grouped

according to the particular unit operation they describe and require

inputs that characterize the normal operating behavior of a process. For

example, simulators require that the flowrates of raw materials be

specified rather that the production rate. While this mode allows for the

easy construction, modification and use of process simulators, the rigid

input-output strategy also leads to inefficient calculation strategies for

design and optimization. For example, almost all chemical processes

require recycle streams to achieve high conversion of raw material to



streams and input equipment parameters. This may, of course, require

some iteration on the equations within each unit Here we use the same

notation as in Figure 1 for the mass flowrates of the streams.

Superscripts indicate flowrates of individual component flows within

these streams. Grouped according to their respective unit operations, the

equations are as follows:

1. Reactor Equations: (These nonlinear equations must be solved

iteratively within the reactor module.)

F/ = FA + RA - k|(F||
AF/

F / = F / + R9 -

F/ = Rc - (M/M^k^F/F/JV/ i /F / - *, ( F / F / ) V^/F,2 + kj (M^

F/ = R' + [(MyMB)k t(F^F^ - ICi(M/Mc)(F/Fj|
c)]V/>/F||

a

F f = R1 + (M /M )k (F CF §)V/>/F f

kf = A§ exp ( - E / R T ) i = 1, . . . 3

2. Heat Exchanger Equations: (In this problem the energy balance is not

required so the equations are trivial)

Fo
l = Fm

4 i = A,B,C,E,P,W

3. Decanter Equations: (Here a perfect separation for the waste product

is assumed.)

w o w
i = A,B,C,E f P

V
4. Distillation Column Equations: (Only the product is separated

overhead. Some product is retained in the bottoms stream.)

F P = F ' - 0 . 1 F e F ' = 0
* s s p

F i
1 = Fs* i = A,B rC,E

F/ = 0.1 F/

5. Flow Splitter Equations:
F ; = ,p.«

i = A,B,C,E,P



6. Recycle (or Tear) Equations: (In all sequential modular simulators,

these tear equations complete the mass balance and make up the outer

calculation loop.)

R1 - Rfl = 0 i = A,B,C,D,E,P

The objective function is given in terms of the net sales minus

fixed charge, raw material, utility and waste disposal costs. This is

normalized by the plant investment cost to give an annual rate of

return. Using the cost coefficients, C., in [23] gives the following

objective function:

Additional kinetic parameters as well as more information on the

objective function can be found in the supporting references

[1,9,11,17,20,23]. In addition, the following inequality constraints are

imposed:

580 <> T < 680

0 £ Fp < 4763

nonnegativity on all flows

For fixed feeds and p. any three of the above variables can be

selected as decision variables for optimization. Because the above

models are restricted to input-output form, however, only certain

decision variables are available. For this example a typical choice of

decisions is reactor temperature (T), reactor volume (V) and split fraction

(if). We denote this vector of decision variables x.



Note that the simple models given above can be replaced module

by module by much more complex ones without disturbing the other

modules or the overall calculation sequence of the flowsheet. It is easy

to see that with complicated thermodynamic and unit operations models,

the simulation may consist of many thousands of variables and

equations that may be totally transparent to the user. In fact, the only

variables that need to be known for overall flowsheet convergence are

the recycle flow rates. We denote the vector of tear variables (R) as y,

the corresponding calculated variables (FT) as w(y) and define the

flowsheet convergence problem as:

Solve: h(y) = y - w(y) = 0

Since all other variables need not be accessed explicitly and

equations are buried within their appropriate models, only very simple

algorithms (such as direct substitution) are generally applied for recycle

convergence. The structure of the optimization problem is therefore:

Max

s.t. g(x) < 0

where it is required that the equations h(y) = 0 are solved for

every evaluation of the functions jt(x) and g(x).

Typically a process optimization problem with the above structure

can be very time-consuming to solve if complex process models are

used. Early studies applied direct search methods (e.g. Hooke-Jeeve,

Complex search or adaptive random search) to the flowsheet and

required up to several hundred simulation time equivalents to come

close to an optimal solution [1,10,11,13,14,20,23,27]. Friedman and
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Pinder [13] also applied more sophisticated gradient-based strategies to

the flowsheet and found only marginal improvements in performance.

Here in order to calculate gradients, a decision variable is perturbed and

the entire flowsheet is reconverged. Because of slowly converging

recycle solvers, however, this procedure can be very inefficient. Also,

typically loose error tolerances will corrupt the accuracy of the

gradients and lead to poor performance. To get around these problems

with "feasible path" or "black-box" optimization strategies, we develop

a more recent strategy based on reformulating the process optimization

problem.

Infeasible Path Optimization

Instead of considering the simulation problem as a black box, we

would like to incorporate the recycle convergence equations directly into

the optimization problem. By formulating the problem as:

Min ^(x,y)

s.t. g(x,y) j£ 0
h(x,y) = y - w(x,y) = o

we have combined the optimization loop and the most slowly

converging calculation loop. This occurs of course at the expense of

increasing the size of the optimization problem. To solve this nonlinear

programming problem, we choose an algorithm that requires few

function calls (these require evaluation of complex flowsheet models)

and does not need to converge the equality constraints completely for

intermediate function evaluations.

Here, the Successive Quadratic Programming (SQP) algorithm

appears to be the method of choice. Numerous studies indicate (see

[16,22]) that it generally requires the fewest function evaluations. Also,

inequality and equality constraints are linearized at each iteration and



converge as progress is made toward the optimum. To illustrate this

method in the context of flowsheet optimization, consider the contour

plot in Fig. 2a. Here we consider an idealized flowsheet in the space of

x and y where the tear constraint, h(x,y) = 0 is represented as a solid

line. With the "black box" approach the optimization proceeds in the

space of x and the simulation operates in the space of y with x fixed,

as seen in Fig. 2a. Note that the vertical steps in this figure represent

computationally expensive simulations. On the other hand, the infeasible

path approach with SQP requires setting up and solving the following

quadratic program at each iteration:

min
d

s.t . g(x*,y') + Vg(x',y')Td < o

h(x',y4) + Vh(xf,y')Td = 0

in the space of x and y. The solution of the quadratic program

determines a search direction, d. A line search that minimizes some

merit function determines a step size along this direction for the next

point. To construct the quadratic program, function and gradient

information must be evaluated from the flowsheet. These require single

flowsheet passes for each function evaluation or gradient perturbation.

The Hessian matrix, B, is approximated using quasiHMewton updating

formulae and needs no additional information from the flowsheet.

Kaijaluoto [17] applied this strategy to the Williams-Otto process

in the previous section, and required less than 10 equivalent simulation

times to optimize the process. In previous studies several hundred

simulation time equivalents were typically required. Even from poor

starting points (as given in [23]) we found this strategy to perform

efficiently and reliably on this problem.
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However, a number of issues need to be considered in

implementing this approach to more complex process models.

Performance of the strategy can be influenced by methods for

calculating gradients, problem scaling, and the choice of the merit

function used in the SQP algorithm. Moreover, some safeguards need to

be enforced because the infeasible path method may choose a point

which may cause an error in the simulator. Such a failure can be

disastrous as the user is then left with neither an optimal nor a feasible

point. These issues are explored in the next section.

IMPROVEMENTS AND ENHANCEMENTS TO THE INFEASIBLE PATH

APPROACH

Here we consider a number of options for improving the

efficiency and reliability of the infeasible path approach. Following this

section we present a process case study that summarizes the effect of

these enhancements.

Gradient Calculation Strategies

The most straightforward way of calculating gradients is simply to

perturb the decision (x) and tear variables (y) and execute a full

flowsheet pass with the recycle streams torn. Some computational

savings can be had by realizing that many of the decision variables

(such as in Fig. 1) require only partial flowsheet perturbations. In the

implementation within the sequencing routine of a process simulator,

this strategy, termed direct loop perturbation [3,5], is very easy to

implement.

A potentially more accurate and efficient strategy requires

gradients to be calculated module by module [3 ] . Here block Jacobians
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and intermediate gradients can be evaluated for each module and the

desired gradients for the tear and decision variables can be obtained by

chainruling the individual Jacobians. From Figure 1 it is easy to see how

this strategy leads to a reduction in the number of module evaluations.

For example, evaluation of the gradient with respect to reactor volume

requires only perturbation of the reactor module along with chainruling

of existing Jacobians, rather than perturbation of the entire flowsheet.

Improving the accuracy of flowsheet gradients has also been the

subject of several studies [3,5,17]. Here the chainruling strategy offers

an advantage because analytic gradients and Jacobians (which are

available for simple modules) can be substituted for module

perturbations. Also Kaijaluoto [17] considered choosing an appropriate

perturbation size by balancing roundoff and higher order Taylor series

error. Estimation of these errors, however, requires additional flowsheet

perturbations or more knowledge of the process simulation problem.

Finally, an analysis of errors resulting from different gradient calculation

approaches can be found in [ 3 ] .

Choice of a Line Search Function

This aspect of the infeasible path approach is rooted in theoretical

properties of the SQP algorithm. Using an analogy to Newton's method

for solving nonlinear equations, it is often necessary to have some

control over stepsize to enforce global convergence from poor starting

points. Close to the solution, however, the rate of convergence can be

poor if full steps are not taken along the search direction. The original

line search (or merit) function developed for SQP is the exact penalty

function [15,22]:



VI

P(x,y) = ^(x.y) «• *(Ig.(x.y)4 * I | h.(x,y)

where g. (x,y) = max(O,g (x,y)) and a is a penalty parameter. Using

this function to determine a stepsize along a QP-generated search

direction, one is guaranteed, under mild conditions, to converge to at

least a local optimum from any starting point. However, the function

may lead to small stepsizes and slow convergence when close to the

optimum.

Several remedies have been proposed for the problem of slow

convergence. Along with a number of researchers [24], we have

replaced the exact penalty function with an augmented Lagrange

function:

L'ix.y) = fkx.y) + uJg{x.y\ + vThix.y) + (a/%\ \g^h\ \2

where the multipliers u and v are calculated by the quadratic

program. As shown in [4,24], this function preserves the global

convergence property but also allows full steps to be taken in a

neighborhood about the optimum.

As wil l be illustrated later, the exact penalty function can lead to

poorer performance as the optimum is approached. This is especially

true if errors exist in the gradients and the problem becomes i l l -

conditioned. Because of theoretical properties of the augmented

Lagrange function, we obtain better performance of the algorithm near

the optimum as a result of its accepting full steps generated by the

quadratic program [4 ] .

Scaling of the Optimization Problem

The solution to the quadratic program (QP) at each iteration of
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SQP is invariant to changes in the scaling of variables or objective and

constraint functions. Moreover, the quasi-Newton updating formula for

calculating the Hessian matrix, B, is also scale invariant. Consequently,

scaling the process optimization problem needs to be motivated by only

two concerns.

First, despite the scale invariance properties of quadratic

programming, gradients may vary over several orders of magnitude and

thus make the problem ill-conditioned. This could lead to QP solutions

that are corrupted by roundoff error. In solving linear equations and

linear programs several variable and function scaling algorithms have

been developed that attempt to improve the conditioning of the

problem. However, numerical tests of these algorithms (see [26]) do

not reveal significant advantages in performance. Instead, the choice of

a good scale factor seems largely to be problem dependent. To deal

with ill-conditioned QP's we calculate the condition number of the B

matrix at each iteration. For high condition numbers we can assume the

problem is poorly scaled and thus rescale to improve performance.

Also, variable scaling can greatly influence performance of SQP

through initialization of the B matrix. Here the B matrix is an estimate

of the Hessian of the Lagrange function and proper initialization should

be based on second derivative information at the starting point. Since

this information is frequently too expensive to calculate, the B matrix is

usually set to the identity matrix, although through variable scaling this

matrix can implicitly be set to some other diagonal, positive definite

form. However, without some knowledge of higher order derivatives,

this choice is arbitrary. To somehow reflect the nature of the problem

variables we have adopted the heuristic of normalizing the variables by

their bounds, once these are chosen appropriately [4]. As will be seen
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this strategy works well even compared with problems where the scale

factors were chosen by trial and error.

Intermediate Convergence to Aid SQP Performance

As mentioned above, certain safeguards need to be imposed as a

result of moving in an infeasible space. One option that has been

applied with some success is the use of a trust region [12] in the early

stages of the SQP algorithm. Also since the estimate of the Hessian is

initially poor, it seems reasonable to limit the length of the search

direction and let successive points build up the approximation of the

Hessian. Chen and Stadtherr [8] report some numerical tests of this

strategy for process optimization.

Another option is to remain on or close to the feasible space.

Here it is possible to solve the full quadratic program at each iteration

but to apply a few iterations of the recycle convergence algorithm (with

X fixed) before proceeding to the next QP subproblem. A pictorial

representation of this procedure is given in Fig. 2c. The intention, of

course, is that full or partial convergence will improve poor starting

points and lead to fewer iterations. Moreover, since the full QP is

constructed, the gradients with respect to x will be more accurate than

with a "black box" method, where the flowsheet is reconverged for

each perturbation. Biegler and Hughes [7] developed two feasible variant

strategies that use full flowsheet convergence between SQP iterations.

More recently, Kisala et al [18] reported some cases where partial

convergence could be more advantageous than either infeasible path or

full intermediate convergence. Finally, Lang and Biegler [19] developed

an algorithm that includes systematic ways of performing partial

convergence along with a more efficient Broyden convergence algorithm.
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CASE STUDY OF IMPROVEMENTS TO INFEASIBLE PATH

To demonstrate the effect of some of the improvements described

above, we consider a comprehensive flowsheet optimization problem.

Figure 3 shows a flowsheet for the propylene. chlorination process.

Propylene feed is mixed with the recycle loop and with chlorine feed.

The mixture reacts in gas phase to form allyf chloride as well as

heavier chlorinated products and hydrogen chloride. The reactor effluent

is cooled by a quench loop which also stops the reaction. After further

cooling the stream is separated in a distillation column to remove HCI,

chlorine and propylene overhead. The bottoms product, consisting of

chlorinated compounds, is further separated into allyl chloride product

and dichlorinated byproducts. In the recycle, HCI is recovered in a

scrubber/dryer system from propylene and chlorine as boiling

hydrochloric acid. The remainder is then vented to minimize buildup of

impurities and recycled back to the feed.

This process was simulated on SPAD, a sequential modular

simulator developed at the University of Wisconsin. The process models

were of intermediate complexity and are made up of several hundred

equations. More details of the process model and parameters can be

found in [4,6]. Because the model deals with an existing process the

optimization problem is posed as:

Max {Sales - Raw material}

s . t . product purity £ 99%
pressure increase across recycle compressor £ 10 psi
reactor inlet temperature £ 90 F

mass and energy balances must be satisfied
(recycle equations are converged)

Nine decision variables are selected for this optimization problem.

These are indicated by the circled variables in Fig. 3. A complete
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description of the optimization problem along with starting points,

product prices and performance statistics can be found in [6]. It is

instructive to consider how the performance of the optimization strategy

changes as a result of the improvements described above.

The original application to this flowsheet used the SQP algorithm

with an exact penalty function. A good scaling vector was determined

by trial and error and a direct loop perturbation strategy was used to

calculate the gradients used in the QP. The resulting formulation required

45 simulation time equivalents (STE's) to reach the optimum. With more

careful attention paid to the accuracy of the derivatives the performance

was improved to 34 simulation time equivalents. In the same study, two

feasible variant algorithms were applied. These differed from each other

only slightly and both required convergence of the flowsheet at

intermediate points between SQP iterations. This safeguard allowed

faster convergence and despite the exact penalty line search function

and inefficient derivative calculations, both feasible variant approaches

required the equivalent time of only 29 simulations.

On closer examination of these results, one sees that, while

excellent progress is made initially, several iterations are required in the

neighborhood around the optimum before convergence occurs. This may

be due to inexact gradients and their use in evaluating the Kuhn-Tucker

tolerance, as well as the slow convergence properties of the exact

penalty line search. To remedy this situation the chainruling strategy

outlined above was used for gradient calculation [3]. Here analytic

Jacobians are supplied for mixers, splitters and the compressor units.

Thus, this strategy leads to more accurate derivatives with fewer

module perturbations. The result is that the infeasible path algorithm

now requires only 23 STE's to reach the optimum.
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Replacing the exact penalty function with the augmented Lagrange

line search function given above also makes a substantial difference.

Because this function allows full SQP steps to be taken in the

neighborhood of the optimum, the slow convergence noted before can

be eliminated. Applied to this problem from the same starting points as

for the previous cases, we now require only 13 equivalent simulation

times for optimization. Finally, as a result of the heuristic scaling

algorithm sketched above, performance of the infeasible path algorithm

is improved even further; only 9 simulation times are required [4].

The improvements demonstrated with this case study, along with

later work on strategies that use partial intermediate convergence [19],

have recently been implemented on the FLOWTRAN process simulator

[25]. Developed by the Monsanto Co. and continously used and

updated since 1966, this simulator has been used widely in industry and

academia, and is currently a valuable teaching tool in many chemical

engineering curricula. The optimization implementation on FLOWTRAN is

fairly transparent to the user, allows easy specification of the process

optimization problem, and is flexible enough to accommodate a number

of optimization strategies including infeasible path with partial or full

intermediate convergence. This implementation has been used to solve

over a dozen new optimization examples as well as the propylene

chlorination problem described above. Some of these examples have

been reported in [19]. Here one sees that the optimization results are

still consistent with the above case study. Even on fairly large

problems we are able to obtain optimal solutions within ten simulation

times.

PROBLEMS FOR FUTURE CONSIDERATION
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The SQP based optimization strategies described above allow

much more flexibility and efficiency for process flowsheeting. Naturally

this leads to a number of questions that need to be considered for

further improving the optimization strategy. A partial list of these is

given below.

Larger Problems

Many chemical processes involve a large number of chemical

components; including these components in the optimization problem

still may lead to a prohibitive amount of work in calculating gradients.

Here although the "Mack box" strategy may be more efficient than the

infeasible path strategy in this case, both optimization strategies are

too expensive for these problems. An open question is whether

systematic ways exist for combining or eliminating unnecessary

components (e.g. those that do not participate in reactions and are

easily separated) and still guarantee convergence to the flowsheet

optimum.

Modules that have Differential Equation Models

Although these models are self-contained within modules and can

be treated normally, these models can be extremely time-consuming

because they frequently require complex physical property calculations

at each integration step. An example of this occurs when the reactor

model in the Williams-Otto flowsheet is replaced by a packed bed

model. Because of these issues it may be useful to include convergence

of these difficult and time-consuming models in the optimization loop.

Typically, higher order methods can then be applied since they require

fewer integration steps and fewer function evaluations. A preliminary
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study that outlines this approach is presented in [9]. For models that

require complex thermodynamic calculations, it is demonstrated this

approach has the potential to improve the efficiency by an order of

magnitude.

Formulation of Process Optimization Problems for more Efficient

Solution

The infeasible path optimization strategy is but one way of

improving performance through different and more flexible formulation

of the process problem. In addition, several systematic ways need to be

explored that include exploiting linear functions wherever possible (e.g.

mass balances and stream flows). This reduces the work required for

gradient calculation and by the optimization algorithm. Further knowledge

of the process can be applied in choosing appropriate decision variables

and good initial values for them. Finally, the optimization problem needs

to be modeled so that nondifferentiabilities and discontinuities present

in process and cost functions are avoided or eliminated. Otherwise,

these difficulties can be serious obstacles to obtaining successful

solutions to process optimization problems.

CONCLUSIONS

Compared to earlier strategies which require up to several hundred

equivalent simulation times to reach an optimal solution, SQP-based

strategies offer clear advantages and thus make frequent and efficient

process optimization studies possible. In fact, these methods also offer

the possibility of using fairly rigorous models for the on-line

optimization of operating plants.

After describing the structure of steady-state process optimization
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problems using a very simple process model, we sketched the

application of the SQP algorithm for simultaneous convergence and

optimization. A number of factors were then considered that led to

improvement of the optimization strategy. These include more efficient

and accurate methods for gradient calculation, better merit functions for

choosing stepsizes and simple, heuristic scaling strategies. In addition,

the advantages of intermediate recycle convergence were outlined.

Recent studies indicate that for poorly initialized starting points and

badly scaled problems, full or partial convergence can lead to more

efficient and reliable performance. Finally, for demonstration purposes,

these concepts have been implemented on FLOWTRAN, a large-scale

commercial process simulator.

However, a number of open questions remain in process

optimization. These include handling problems of large size and model

complexity. Also many questions regarding the appropriate formulation

of process simulator-based problems for more efficient solution have

yet to be explored. These represent interesting and fruitful areas for

future research.
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Figure Captions

1. Flowsheet of Williams - Otto Process

2a. Black Box Optimization Strategy

2b. Infeasible Path Optimization Strategy

2c. Intermediate Convergence Optimization Strategy

3. Flowsheet for Propylene Chlorination Process
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