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The application of recently developed pro optimization strategics

is motivated and reviewed from a Newton perspective. Over the past

fifteen yean Newton-type methods have been used to solve difficult

wm îatirpn problems. Similar principles and advantages also extend to

process optimization. Using the Newton framework we discuss recent

to nonlinear pn?tfranwftff>y algorithms and the

to large-scale systems. The improvements in the

| optimization strategy also lead as to consider new and more difficult

IMOOCSS proowcms* Rcocot results idstms to tftrpc of uicse*
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j # opmniZattioti oi processes ̂ wni uiscvGotutt cotutioii models

I • sensitivity of optimal flowsheets
| will be reviewed. Finally future directions will be riwrasysri thai

j address the solution of brgcr aiid nxxc difficult ()pumizaiJoo problems
i
I L Introduction

|
Over the past five years the application of the Successive Quadratic

Programming (SQP) nonlinear programming algorithm by a number of

researchers [7,13,43,44] has led to renewed interest in flowsheet

optimization as an efficient tool for process design and operation. The

key concept to its effectiveness is SQP*s ability to converge equality

constraints as part of the optimization problem. Through the application

of Newun-like strategies for process simulation [14,53,60], limc-

; consuming solution procedures for convergence of nested recycle and

calculation loops, could now be substituted by simultaneous methods

| that easily account for the interactions among different loops. Process

| optimization can be seen as representing the integration of another

| calculation loop; accounting for its "interaction" with the rest of the

< process represents the contribution of the SQP strategies. In a recent

review paper [4], parallels were drawn between the simultaneous

simulation and optimization problem and a number of studies were

summarized for both problems. Here we use the well-known properties

of the Newton method and more recently discovered properties of SQP

to review the work of the last five years from a different perspective.

Moreover, an understanding of SQP's convergence properties also

allows us to analyze newly developed decomposition methods for

large-scale problems and develop guidelines for their further

, improvement.

For flowsheet optimization with conventional process simulators,

most recent studies [15,43,44,46] report some experimentation to

determine tuning parameters to improve problem specific aspects or

optimization, such as variable scaling, flowsheet initialization and the

, use of partial flowsheet convergence. This experimentation may always

be needed for better performance on specific problems, but it is our

hope that better theoretical understanding will eliminate many of the

"tuning" parameters and lead to important generalizations for flowsheet

optimization. As an example of this, recent developments in partial

convergence algorithms will be highlighted.

The capability to do process optimization quickly allows us to

formulate and solve many problems that could not be considered

before. Here, we expand the simultaneous concept to consider problems

with a wider scope. For example, in parallel with algorithms for

process optimization, very powerful strategies have been developed for

heat integration [39,48]. Unfortunately, these only apply to problems

with fixed flows and temperatures, e.g., after the process has been

"optimized". This paper wmamrirr* recent results for simultaneous

heat integration and process optimrniion using process simulators.

This simultaneous concept is also extended to process flowsheets with

differential equation models, such as reactor units. As self-contained

modules these are often expensive to evaluate and are usually not part

of a flowsheet optimization study. On the other hand, interaction

between the reactor and the rest of the flowsheet is frequently the most

significant aspect of an optimtiation problem. Here we outline a

simultaneous approach using orthogonal collocation on finite elements.

and summarize its performance on a small problem.

In addition to extending the simultaneous concept to more difficult

optimization problems, one is often interested in the sensitivity of the

optimal solution to parametric and, possibly, modelling changes. As

with Newton-type methods for simulation, much of this sensitivity

information is already available from the optimization algorithm.

Therefore, it is straightforward to quickly analyze which variables are

locally sensitive to nominally assigned parameters, and for which

others there will be little change.

The last section on future issues deals primarily with the solution of

larger and more difficult optimization problems. To this end,

development and evaluation of large-scale decomposition strategies |

seem to be an important issue. Also the incorporation of problem

structure to improve performance will be a key area in handling more

difficult problems. The brief review in this paper shows that the past

five years have demonstrated the feasibility and effectiveness of these

simultaneous concepts. Future research will help tailor these

simultaneous concepts to develop more powerful algorithms for more

difficult problems.

2. Newton Derivation of SQP

Consider for simplicity an equality constrained optimization problem

of the form:

Min F(z )
z (1)

s . t . h ( z )

\ The first order necessary optimalily conditions for this problem ar •„•

I straightforward:

j V2L(z . v*) - V z F ( z * ) + V 2 h ( z ) v * - 0

h(«*> - 0 ( 2 )
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and a Newton method applied 10 these conditions leads to:

v1) V^td1) j fAx

0 JU
v 1 )

(3)

Here L(z,v) is the Lagrange function and v is the vector of Lagrange

multipliers for h. At the optimum, (z\v*) second order necessary

- conditions require that the projection of V ^ z * . v*) into the null space

of Vs h(z*) be positive sen*4eiinite. Therefore, for some region

around the optimum, the Newton step is equivalent to solving the

following quadratic program:

• i n V2F(* i)Td

a.c . hCz1) +

d is the search dkectJon m z.
- 0

With this

I also easily extended to

to

sing equivalence the Newton concept is

b inequality constraints. g(z) * a In

computing the Newton step, by including inequality

, the quadratic program win identify the correct active set

and satisfy additional complementarity conditions given by the Kuhn-

Tocker conditions. For most engineering problems, however, gradient

evaluation requires ?**fa*r*ti work and second derivative information

is usually too expensive to be calculated. It is therefore desirable to

replace Vn L(z,u,v) by a suitable positive definite approximation

matrix, B\ derived from differences in gradients from point 10 point.

! The following quadratic program (QP) is then solved ac each iteration,

i, to determine the "Newton step" foroptimrration-

•in
d

JdVd

hCz1) +

* 0

- 0

(5)

; In parallel with Newton's method, a number of properties can be

staled to characterize the performance of the optimization algorithm.

Thfsc can be summarized by the following categorici

Local Convergence Properties

For solving nonlinear. equations. h(z) = 0, Newton's method

converges at a Q-quadratic rate in the neighborhood of the solution, i.e:

| | z i + 1 - ,* | | - (Kll.1 - z*||2) (6)
Quasi-Newton methods, on the other hand, are known to converge at

a superlinear rate, and because they do not require derivatives at each

iteration, can have significant advantages over Newton's method. For

the SQP optimization algorithm. Garcia-Patoniares and Mangasarian

[32] snowed that if the actual Hessian matrix, V*a L(z,u,v), is used in

the QP. convergence is. of course, also quadratic in z and v. On the

other hand, if a positive definite quasi-Newton approximation is

substituted for the Hessian, convergence rates are expected to be lower

Han [351, and later Boggs, et al [11], showed that if the actual Hessian

is positive definite at the solution (a very restrictive assumption) then

SQP converges at a Q-superiinear rate. A simpler proof of this

property was later given by Nocedal and Overton [58]. In general,

however, only the projected Hessian is positive definite and using a

positive definite approximation for the/utf Hessian may lead to slower

convergence. Powell [62] showed that by using an update formula that

only approximates the projected part of the Hessian accurately, the

convergence rate is actually two-step superlinear, i.e:

Urn (7)

This implication b important because it means that for general

nonlinear problems only the two step superlinear convergence rate can

be proved. Moreover, in a recent study, Nocedal and Overton [58]

show that if one updates only the projected Hessian (the smaller

positive definite part), convergence OCCUR at the same rate. This may

lead to a strong motivation and justification for decomposition

strategies applied to large-scale optimization problems.

Of course* rales of convergence are only assymptotic properties and

other acton such as appropriate matrix miriilJTation (as for Broydcn's

method) and variable scaling will have significant effects on

pci fouuanrft Nevmhclcn, convergence rate wunams an important

guideline that can be used to motivate more efficient strategies.

Global Convergemce

While Newton's method for nonlinear equations has local quadratic

convergence properties, it is not guaranteed to converge from poor

starting points. To prove global convergence, a unique Newton step

must be calculable at each iteration (the Jacobian must be nonsingular)

and a tnTr*-* decrease should be found at each iteration for some

roerkftmctk»,e^the2-rjormc/thefuncti^ Fortunately,

the Newton step gives a descent direction for this merit function and

thus one has a guarantee (for smooth functions with no singularities)

that a stepsize exists which progresses toward the solution. In the

nrighborhood of the solution, one, of course, expects full Newton steps

to be taken for fast convergence.

With SQP one can draw similar analogies to Newton's method in

order to ensure convergence from poor starting points. Han [36]

showed that the QP solution gives a descent direction for the-exact

penalty function:

(8)
P ( z , n ) - F (x ) + n ( E g j ( z ) + + E|l

where g j U ) + - n a x ( O , g j ( z ) )

Ensuring a sufficient decrease of this function will lead to global

convergence as long as the QP is solvable at each iteration. Several

researchers, however, recognized that this condition may lead to slow

convergence in the neighborhood of the optimum (the "Maratos effect"

[51]). because full steps were not taken. Chamberlain ct al [12]

proposed a modified exact penalty line search (the "watchdog

technique") where a sufficient decrease was required over a sequence

of iterations. Other merit functions and line search strategics have also

been proposed [10, 22, 64] Here, the augmented Lagrange function

appears to be a suitable choice because it is difTcrcnuabk and has the

global convergence property together with allowing full steps in the

neighborhood of the optimum [6, 66]. We have modified this merit

function to the following form:

L * ( z , u , v ) - F (z ) + u T g ( z ) + v T h ( z )
(9)

and developed an adaptive strategy for choosing ihc penally

parameter, r\. Compared to the exact penalty and Watchdog ^(cpsi/c



proccdyna we lave found ntesttMcgylo

[61. Use of this line search function also solves the pathological j

\ me exact penalty function to faiL Finally, the

*egy is straightforward to impknient with

few adjustable panmeters.

SiAfuiarity

Lastly, we mention that the main drawback to Newton's method,

encountering singular lacobian inatrices, sJso hv its parallels in SQP.

This occurs when the feasible region is inconsistem and the QP has no

solution. As with Newton's method numerous "safeguards" are

available that attempt 10 move away from singular points [52,61,65].

In an analogous fashion, safeguards exist for SQP [61 that have the

effect of relaxing the feasmfe region and BUS solving an altered QP.

However, none of these rHswaffun techniques avoid failure for all

i problems. Consider, for example, the problem shown in Figure 1.

| Here, starting at or below point B and applying a relaxation strategy

based on the linearized constraints will lend to a zero solution vector

(U., collapse of SQP at an infeasible point) at some point between

point A and B. This s due to the net that locally, SQP cannot tell

whether no solution exists for this problem or it is simply unable to find

IL Because of this dilemma, it appears unlikely that any safeguard

based on local information can be developed to avoid this problem,

other than by exhaustively restarting the problem.

Figure 1: F a i l u r e of the QP Step

M i n x 2

S . t . 1. - X

1. + X

3. SQP

0.5 + x2fc 0

for Process Optimization Problems

i Having outlined some of the properties and analogies to Newton's

method it is instructive to see how SQP is applied to flowsheeting

problems. This section deals with equation oriented and modular

qmnlatnrs separately as each has unique characteristics that must be

considered for opinurarion. We first begin with modular simulators as

Modular Simulaton

Flowsheeting programs that incorporate process models in black box

or modular form are widely used in the process industries [54].

Because solution strategies are specific to process modules, they can be

individually tailored for robust and efficient performance. On the other

hand, since recycle convergence only uses input-output information

from these imMhi'rf. inefficient and often unreliable algorithms based

on function values are often applied. On the other hand, superior

convergence algorithms, such as Newton's method, require gradient

information which can only be obtained by repeated modular

perturbation*

Despite this drawback. Newton and quasi-Newion methods are often

preferable for simulation, especially if nested recycle loops and design

constraints need to considered. In fact, application of these gradient

strategies over function-based algorithms (like successive

Wcgstcin) is the key difference between newer

lular strategies [14,60] and the traditional sequential j

in [7], process optimization

proMffm with difficult design
ula pproach [54,63]. As

can be thought of as a

constraints, Le. the Kuhn-Tucker conditions. Application of the SQP j

algorithm to this problem can thus be thought of as application of a j

quasi-Ncwton method to satisfy these conditions. For flowsheet I

nprimJTTHinn however, a number of other issues must be considered

idle

less important for process simulation Among these are

rifa}iotirm problem scaling and the use of partial recycle

convergence. These will be motivated first by a simple presentation of

theopumizauonfofmiilauon.

w(x,y

Figure.2: Flowsheet Optimization

Min F(x,y)

s.t. ht(xty) - y - w(x,y) » 0

hd(x,y) - f(x,y) - c = 0

g(x»y) < 0

Consider the flowsheet shown above in Figure 2. To simulate this

process we need to break (or tear) all recycle and calculation loops and

define a set of tear variables, y, that converges these loops. Because

most of the equations are solved within modules.this problem deals

with a much smaller subset of process equations and variables .and can

be partitioned as \(y) = y - w(y) » 0 for the recycle loops and hd »

f(y) - c • 0. for additional design specifications. Here c is a constant

design specification vector. For optimization, as seen in Figure 2, one

also adds decision variables, x, an objective function, F(x,y), and any

additional limits on the process or product, g(x,y) < 0. This leads to

the optimization problem:

• i n F ( z )

s . t

capplicable toe ialapplic

g(z) * 0 where

h(z) - 0

T r Tz - [x yTl
(10)



that was discussed in the previous section. Note, however, that the SQP

procedure requires gradients far F, g and h with respect to z at each

iteration. Moreover, this iwfffflwintftw, either directly or indirectly, .

determines whether die optimt7aiion problem has converged or not

is an important aspect to process optimi ration.
Initially, direct loop perturbations ( e j . along a path bom x or y to

w<x.y) in Figure 2) were used for dm purpose [7.43]. This approach is

very easy to implement without much knowledge about the simulator,

but it may be inefficient because it requires additional modular

perturbations. A study of the perturbation error uto^mH with this

is PKKitted in Biegkr [3]; an innovative strategy for

this e r r o r has been developed and successfully

dcnionstrated by KagsJuoto [43]. Later, more accurate gradient

strategies were developed in [5, 13]. Here perturbations were done

module by module and die resulting partial derivatives were either

assembled in a tower triangular form [13] or dinxtiy diainruled using

die calculation sequence [5]. In this way analytic Jacobians could be

whtrifutrd where available and greater control could be exercised in

determining gradient accuracy. However, this strategy is much more

difficult to implement on a general purpose simulator. In fact, Chen and

Stadtherr [13] cons true ltd an ffPr'f1!. demonftnukw sJnwfrFor for this

Together with gradient calculation, scaling of the optimization

problem, especially die z vector, can greatly affect algorithmic

performance. The purposes of scaling are, first, to transform the

problem so that die Hessian is "wefl-approximaied* by a diagonal

(usually the identity) matrix, and also to avoid ill-conditioned quadratic

programming problems. While this task is often problem specific,

several heuristic strategies are available which seem to work well [6,

68,71]. Moreover, ill-conditioning can be monitored "on-line" in order

to signal poorly scaled problems.

Finally, pr optimiz

convergence applied between QP iterations. This was observed

indirectly by Biegler and Hughes [8,9], who noted that feasible variant

methods (i.e. where the SQP algorithm was applied but the flowsheet

was converged at each iteration) could be faster and more reliable on

some process problems. This is especially true if exact penalty line

search strategies are used with direct loop perturbations. Chen and

Stadtherr [15], on the other hand, observed better performance if

additional successive substitution passes were made at the initial point.

More recently. Kisala [44], applied a fixed number of Wcgstein posses

after die solution of each QP and observed better performance on some

problems. Given these findings, one wonders:

• what criterion can be used to determine whether partial
convergence will be beneficial and,

• bow can gradient mformstion available for optimization be
used for efficient partial recycle convergence?

At this stage, little is known about the effects of partial convergence.

Therefore, to address die first question we outline a heuristic procedure

that makes use of a Kuhn-Tucker convergence lest frequently used in

i benefit from partial recycle

! E | v j h j ( s ) | * c ( I D
i
I vfa«r« c is a tolerance

Note here that die contribution of the last term can be set to zero just by

converging the equality constraints. Consequently, if this term

ftammatrs die Kuhn-Tucker error at a given iteration, partial recycle

convergence (reducing this term to a point where it no longer

_ rtominairi) will reducejhe overall error. After partial convergence, the

Kuhn-Tucker error will then be better "balanced" and the QP should

not need any additional help for simultaneous convergence and

optimization. Currently this strategy has been implemented using

tuning parameters set by the user. Overall, performance, however, does

not appear to be very sensitive to their values [46].

In order to perform partial recycle convergence efficiently, it is ;

instructive to consider the two contour pkxs in x and y shown in Figure ;

3 below. The first shows a sequence of SQP steps along an infeasible

path toward the optimum. In the second, partial convergence is

performed from point B to point C using gradient information from

point A. Note here that the QP b solved (and gradients are only ,

evaluated) at points A and C Consequently, a conventional Broyden i

method starting with the Jacobian at point B can not be applied here.

Instead we derive a nonsquare Broybcn update from point A to point B j

and then use this Jacobian information for tbe remaining steps [46]. j

Interestingly, this approach satisfies the same convergence properties

that the conventional Broyden method does [21] and performs well in

practice (with usually only one or two iterations required for partial

\ \ \ \ ' ; ;
\ \ x\ / I /Contourso f F ( x , y )

SQP Steps without patial convergence

A«̂ r- — T — — — -^— -

Partial
Recycle
ergence

,y) - 0

Figure 3 : P a r t i a l Convergence S t r a t e g y

Equation Oriented Simulators

For modular simulators the major computational cost is due to

calculations performed within modules. Consequently, the SQP

algorithm, which numerous computational studies identify [3,6.38,61,

68] as requiring the fewest number of function evaluations for

optimization, is the most efficient algorithm for modular optimization.

As the size of the problem becomes large (greater than 100 variables,

say), die computational effort and overhead required to solve QP's with

current, dense quadratic programming implementations becomes

significant and. indeed, may be the major computational cost For

equation oriented simulators where much of the process is solved and

optimized simultaneously, it is therefore necessary to reconsider how

large-scale optimization should be performed



programming problem for targe-scale Here the

nonlinear program is solved as a sequence (injor iterations) of linearly

constrained nonlinear programs. The solution of each linearly

constrained problem can be found by applying unconstrained

algorithms (minor iterations), such as variable metric methods, in the

null space of the active linear constraints. Under mild conditions k can

be shown [see 561 that major iterations converge to the solution of the

at a quadratic rate. Minor iterations generally

converge to the solution of the linearly constrained problem at a

superlinear rate. Moreover, although this strategy generally requires

more function and gradient evaluations than SQP, it lends itself lo

efficient sparse implementations, especially with respect to matrix

tfldOnZBDOOS TOT OUtl S P B C C QDCS9D0QS* ^^QDBGQDGDujrt 1D6 A&û v̂ J'w

algorithm often performs well on targe scale optimization problems.

For large scale process problems, however, effort required for

fiimtw" evaluations can still bef»gw»flnwt and SQP strategies tailored

10 these problems still can be very effective. In the conventional SQP

approach die full Hessian of the LagnofB function is approximated

through a dense quasi-Newton updating formula. For large scale

problems, it therefore seems reasonable to approximate the Hessian

matrix in some sparse form and adapt the QP algorithms to take

advantage of sparsity in the Hessian and the constraint gradients. Not

only wiB this lead to more efficient QP solutions, but die incorporation

of a sparse structure will lead to a better approximation of the Hessian

and fewer SQP iterations. Lucia and coworkers [45, 74] have

successfully demonstrated this approach for ofXtmhration of vapor-

liquid process models. Here, derivative information b supplied where

calculable and remaining information is approximated through sparse

quasi-Newton formulae that are thermodynamically consistent

id approach i from realizing that process optimization

problems usually have many variables and equations, and relatively

few degrees of freedom. Consequently, if SQP can be applied in the

null space of the equality roMtrainn. a much smaller QP needs to be

solved. To motivate this riivimion, consider an equality constrained

optimization problem with an onhonormal null space to Vrh, Z and

range space, Y, that satisfy the following relations:

VhTZ - 0

YTZ - 0

ZTZ

YTY

YS -

(12)

Here e Rn YeR1* and

SeR*** la son* n o n s i n g u l a r m a t r i x .

Using this onhonormal basis, one can therefore transform the quadratic

programming problem (for eqn. (4) above) from:

V h 1

V

YTBY YTBZ S

ZTBY ZTBZ 0

d
Y

dz
v i + l

Y T V Z F

h

( 1 3 )

(14)

d - Ydy

From the second and third block matrix rows of (14), one sees that the

search direction, d, is independent of the Lagrange multipliers and the

search direction in the range space, dY does not depend on the Hessian,

B. Moreover, Gill, Murray and Wright [34] show that by eliminating

YTBY, YTBZ and ZTBY (or setting them to zero) and using only the

projected Hessian ZTBZ, one can solve a much smaller problem:

ZTBZd
z

- - h

- ZTVF

(15)

Sv,1+1

and still obtain a good estimate of the multipliers. More recently,

Nocedal and Overton [58] show that an SQP algorithm based on (15)

also converges at a two-step supcriinear rate. They also present a brief

numerical study using a ramily of reduced strategies that compare well

to fuU Hessian SQP strategies.

With this background, we can now re-examine recently developed

decomposition strategies for process problems in terms of range and

null spaces. For sparse implementations an easy to compute null space

can be defined by:

. • 1 (16)

Using this definition, Berna ct al [3] extended the strategy of cqn (15)

to deal with inequality constraints. Here, solution of the QP is only

required in the space of x, but toe full Hessian is approximated with

update vectors stored in a Cactorizcd form. However, this strategy is

difficult to implement and can require excessive storage for problems

that require a large number of iterations [40, 41]. The more recent

approach by Locke et al [50] is simpler and deals with solving the

reduced QP, and updating ZTBZ directly. Since the full Hessian is

generally not positive definite for large-scale problems, both

implementations should have the same convergence rate. However,

very limited testing of the latter strategy has been reported [49,50,72].

Moreover, no reliable implementation of this reduced Hessian strategy

is currently available that addresses the other SQP properties

mentioned above.

The previous two sections of this paper focus on properties and

characteristics of algorithms that have been developed for simultaneous

process simulation and optimization. In the following section we deal

with formulations of more difficult problems that the simultaneous

strategy now allows us to consider.

4. Applications of Simultaneous Simulation and Optimization

The next three subsections deal with problems thai expand the scope

of process optimization. Fust we discuss the simultaneous application

of heat integration with process optimization and summarize a case

study that demonstrates its effectiveness. Next we show that other time-

consuming process models can also be treated with this simultaneous

concept, and outline an application to differential equation models.

Finally, we present a strategy for assessing the sensitivity of an optimal

flowsheet to parametric variations.

Simultaneous Heat Integration and Optimization

In parallel with process optimization, efficient strategies have been

developed for synthesizing energy efficient heat exchanger networks.

While these strategies are easy to apply [39,48], offer valuable insights

for process improvement and can be automated [29, 59], they can only

deal with fixed process flows and temperatures. In the context of



, however, the effect of heat integration interacts

saoBft? with the rest of the proem and therefore mo* be included as

part of the problem. To see this effect, consider the trade-off corves in

Figure 4. Here, application of heat integration <^er optimization serves

10 fedace the total coat but the overall process conditions (&g. flows,

nutpfial conversion) reman the tamf • On the

To account for heat integration within p opti Duran

odierhan4.tfc«eUabte to account for tieMintegfatta

process conditions, the dashed curves result in Figure 4. Note that, as

has recently been shown [23, 47], this not only results in lower total

costs but also leads to better utilization of raw materials through greater

Capital &
Operating
Cost

i i

'Total Cost
(Heat Integrated)

; Capital &
/ Operating Cost

1 / (Heat Integrated)

Raw Material Cost

.1 2 J .4 .S .t .7 • .9 l.t
Overall Conversion
C , - cost without heat integration
vni

C.. - heat integratlpn after optimization

c
s i m~ simultaneous heat integration & opt.

Figure 4: Comparison of Costs
with Heat Integration

and Grossmann [23] include additional constraints and objective

function terms that represent conditions for maximum energy recovery.

These have recently been incorporated into the process optimization

capability [46] implemented on FLOWTRAN [63. 67]. One resulting

formulation of the problem is presented in Figure 5. where heat

integration is implemented as an additional "cost block". Within this

block, one solves for maximum energy recovery, using the equivalent

of a linear programming strategy proposed by Duran and Grossmann

[23] for multiple utilities. This. information is then passed to the

optimization problem simply as additional terms in the objective

function. This approach now accounts for the interaction of the process

with the heat integration network. It should be noted, however, that the

«fraijhtfirywagri formulation of Figure 5 may lead to nondiflerentiable

functions. While these have not presented any problems in our current

work, this difficulty can be circumvented by using a more complex

formulation as presented in [23.47],

To see the effect of this strategy consider the ammonia process

flowsheet presented in Figure 6. As seen by the hot and cold streams

(HI, Cl, etc) in Figure 6, this single loop process presents several

opportunities for heat integration, The optimization problem is given

below and includes nine decision variables such as inlet flash

temperatures, compiessor pressures and feed flowrates. This process

was first optimized on FLOWTOAN without heat integration. Starting

from a base profit of $2066 x 106 /yr, the optimum was found to be

$24.93 x 10* /yr after only 5 SQP iterations. (Interestingly, with the

partial convergence strategy outlined above, the optimum can be found

for this problem after only 3 SQP iterations [46].) Application of heat

integration strategics on the "optimized" flowsheet further increases the

profit to $26.86 x 10^/yr. Instead of this sequential procedure, we now

perform these two tasks simultaneously using the strategy in Figure 5.

Here, the optimal profit is $27.65 x 10* /yr or almost $800,00<Vyr

greater than with the sequential approach. The reason for this is

justified by different operating conditions in the optimal flowsheet

Here the overall conversion of hydrogen is 1.5% higher, the main

compressor pressure is 41 aim lower and the recycle ratio is 33%

higher [47] than with the sequential procedure.

This example illustrates the importance of accounting for interacting

subsystems in process optimization. In the next section a s»m^y

situation occurs with process reactors in flowsheets. While in this

section simultaneous solution was made possible through a new

formulation of the optimization problem, the next section discusses the

reformulation of the process model in order to adapt to simultaneous

Process
Module 1C

SQP
Optimization

Process
Module II

Process
Module III

MAXIMUM
ENERGY
RECOVERY
CONSTRAINTS

Figure 5: Simultaneous Optimization and Heat
Integration Strategy (Implicit Form)



Simultaneous Solution and Optimization of Flowsheets with

Differential Equation Models

Process models that require the numerical solution of differential
equatkrawithconipltttheniiodyijai^

lead ao very tme-consuming calculations. Here the model must be
solved for each flowsheet pass and physical properties must be
caioilaiedtoeachimegratk»«Kp.lf

additional gradient mformatioa is required, the computational expense

can be protuoajve. in pracuce, many process SMnwanons use simple

reactor models based on split frictions or approaches to equilibrium.

These do not, however, fully account for ihe imcrsction of the reactor

with die rest of the flowsheet. Moreover, since the reactor frequently

oeieiuimes me cnaracier oi me IMJWSUUH uvougn icyiaimi steps,

recycle structure and possibilities for heat integration, incorporating

Consider the following optimiiaiion problem with an ordinary

differential equation (ODE) modet

• i n F(z .C)

s . t . g ( z . C ) * 0

h ( z , C ) - 0

dC.
Xdt - f ( 2 , C , t )

Hoe the variables fare functions of the spatial variable L

In order to allow for simultaneous solution of the ODE model, recycle

equations and the optimization problem, we fist apprfl**maff the

differential equation model by a set of algebraic equations. In order to

keep the problem small and also to guarantee a stable solution, we

apply an implicit, higher order method. Here, perhaps the easiest

method to apply is orthogonal collocation [73]. By approximating the

(17)

polynomial with a set of Lagrange polynomial basis functions,

algebraic equations can be written at n points, the shifted roots of an

nth degree orthogonal polynomial, t^ These collocation equations are:

- 0

- 0
(18)

Note that these coUo uations are easily constructed from the

differential equations. Values for dlj/dt can be computed once the

number of collocation points is known, and can be stored for later use.

Because this method requires far fewer points than a conventional ODE

solver, fewer equations and property evaluations are required for the

reactor module. Moreover, the collocation equations (18) and

polynomial coefficients, Cj, can be added directly to the optimization

problem and any profile constraints can be incorporated directly as

constraints on the coefficients. Consequently, this approach is

potentially more powerful and efficient than embedding a conventional

ODE solver within the process module.

CuthreU and Biegler [18] recently demonstrated this approach on the

simple flowsheet optimization problem shown below in Figure 7.

For this problem both Ihe conversion and temperature profiles could

be approximated accurately using only five collocation points. In

comparison with direct use of an ODE solver, the number of property

evaluations for the reactor module is reduced by a factor of 30. Here

the number of iterations for the simultaneous solution was 27 while the

formulation with an ODE solver [37] required 22. Consequently, at the

expense of dealing with a larger nonlinear piogiain (and its associated

QP step), the computational effort for the reactor module and any other

similar process modules can be significantly reduced.

O
C2

Figure 6: AMMONIA SYNTHESIS PROCESS

Hfeac Integration and
Optimization Case Study
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Figure 7: Propylene Chlorination
Process Optimization

Application of Global Collocation

H 2 0 .

HEATE* WHC1 yHCl I

• ( a q ) HC1
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RS/sec) • -220.462($/gmole)/fO<l* 9.1i3E-2($/m-secX. Cl .

• 9.486E-6(S/J)Q!
prod

HACl

However, for stiff systems of diffe itial<

steep profiles, a global collocation approach
nt or problems with

ot [73] give accurate

solutions. Instead, one can successfully formulate this problem using

orthogonal collocation on finite elements [2, 33]. Briefly, the

oprimi7arion problem can be stated as:

Min F ( z , O

g(z»O S 0

h(z,O - 0 i - 1, n; k - 1, NE

C(t) is continuous and piecewise
polynomial of order n+1 * *'

Aok 2 0
k-1

T< - shifted Legendre roots between
0 and 1

AakWk - Aa k. l W k - l k-2,NE

where V k i s b a s e d o n h i g h e r d e r i v a t i v e s

o f C ( t ) i n Aak w i t h r e s p e c t t o t i a e .

Compared to the global collocation formulation, the collocation

equations in (19) are now written on finite elements, a i ( and continuity

is imposed at the boundaries of these elements. Also we have included

an additional set of conditions that govern the placement of the

elements. As formulated in [17, 20], one can show that the element

placement equations are necessary and sufficient for minimizing the

approximation error. Moreover, this approach has strong stability

properties as well as a high approximation order. Ascher and Bader [1]

show that this method is equivalent to a fully implicit Runge-Kutta

method applied at OfHif"!** roots. Such methods are algebraically

stable, i.c stable for a wider class of problems than A-stable methods.

In fact, because of this property orthogonal collocation on finite

elements is desirable not only for differential equation models but also

for two point boundary value problems.

To demonstrate the formulation given by (19), consider the reactor

optimization problem given in Figure 8 [19. 28]. Here the reaction is

exothermic and goes to completion in the reactor. Because it raises

steam in the cooling jacket, it may be advantageous to design a reactor

that is longer than needed for complete conversion, in order to provide

additional heat transfer. This design leads to temperature profiles, with

hot spots that arc difficult ID approximate. Applying the finite element

formulation leads to the dimcnsionlcss temperature profiles presented

in Figures 9 and 10. Note that elements arc closer together in steep

regions and farther apart for more gradual ones. Moreover, in Figure

10 a bound of T(t) £ 1.4S is placed on the temperature profile and it

can be seen that the hot spot and reactor length shift to accommodate

this constraint

*1 B/A

urc

Figure 8: Reactor Optimization with Hot Spot

Min (Reactor Capital Cost - Steam Credit)

The ability to handle difficult differential equation based problems in

this way allows us also to consider optimal control problems as well. A

number of examples with control profiles have been presented in

[17,19] but discussion of these more difficult problems is beyond the

scope of this paper. However, it is important to note that the ability to

handle complex ODE process models is directly influenced by the

ability to do large scale optimization. More will be said about this in

the final section. Before discussing this, however, we first turn to ihc

topic of postoptimality analysis.

Sensitivity Analysis of Optimal Flowsheets

In the topics covered so far emphasis has been placed on formulating

the optimization problem and solving it efficiently. In this section we

try to characterize the optimal solution and its sensitivity to parametric



r~

and modd changes. For example, a given design or optimization study

win require the selection of external parameters, p. at some nominal

point. These can include external utility supply temperatures and

pressures, composition and Oowntes of the feedstock or even hcai

0.0 .1 .2 .3 .4 Lt LI LI

Figure 9: Optimal Temperature Profile
Collocation Solution

— Solution from ODE Solver

Figure 10: Optimal Temperature Profile
with T(t)< 1.45

Collocation Solution

ODE Solver Solution [37]

pvr&u*. Here we are interested in
estimating the change in the optimal sokrica as a fwc*» c/changes
in these parameters. Lc.dz*/3 p. To do this we consider ibe parametric
cycunujtiunprobiem:

Mia F(z ,

(20)
p )

g(«f p ) * 0
h(z. p°) - 0

with the associated Kuta-Tocker conditions:

VF(z°) + y g ( x ° ) u ° + V h ( z ° ) v ° - 0

h ( z ° , p°) - 0

g(z • p ) * 0

u T o g ( x o . P ° ) - 0

u ° * 0

Fiacco {2627] shows that if strict ccopiemetarity and linear

independence of the active constraint set holds at the optimum, then the

active set will not change for small parametric perturbations.

Consequently, we can write the change of the solution, A z. to an

C i f t i

*V 3

A h

* —

7xxL*

V"'
*x«A

V *

VxyL* '

VyyL'V

0

0

v x h -

7ytf

0

0

A x

A y

Au

A v

(22)

Note that the gradient information in the above matrix equation is

available from the optimal solution. Because a qutsi-Ncwion Hessian

approximation is used by SQP, however, second derivative informaiioo

most suU be evataated Um»gh add^tioiul penurbtuons. Here we lake

advantage of dttowposkic* coaccptt ineiitioncd « s

i projected k a reduced space. As suggested

decomposition of the above systemby Edahl [25], btock

leads to:

I 0 E 0

0 I L M

0 0 H Q

0 0 QT 0.

Av°

Att°

(23)

I « Identity Matrix

E « - A

L E)

t « A(VXL°) -

and the reduced space system of linear equations is given by:

(24)

Now instead of constrocting the enure Lagrange Hessian by

perturbations in x and y and remamingm the null space ofV^Lc,

( A x j t - ( V y a V S ^ r J A X j ) - ^ . A y )

The number of flowsheet evaluations required to construct the

scQSuivi(y BuofmjtfioQ is Urns fOtSiooQ finoiia*

(25)

V of dependent (tear) variables
of independent (decision) variables



(26)

In addition, sensitivities for y can be evaluated from EA x and a: the

only information not available from the reduced equations is the

sensitivity of the equality constraint multipliers, v. Normally this

information is not as important as for the other variables.

As an illustration of this analysis, consider the simple flash loop

optimization in Figure 11. Hoe the solution lies at the tower bounds of

the split firactkm and flash pressure. As expected from physical insight,

a change in the feed flowraie will not change the optimal values of

these decision varibles; this is easily verified using the reduced Hessian

sensitivity analysis in eqn (24). As shown in [31, 32], however,

substitution of different objective functions wiO make the decision

variables more sensitive to parametric variations.

OVEfWEAO

FEED MIX AOUBATC
FLASH

RECYCLE
BOTTOMS

SPL

Figure 11 : S e n s i t i v i t y of Optimum

Max ( L i g h t Comp. in Ovhd.)

0 . 2 < S p l i t F r a c t i o n < 0 . 8

69 < F l a s h P r e s s u r e <3A5 kPa

Sensitivity of the optimal solution to the choice of process models is

more difficult to analyze and a thorough derivation is beyond the scope

of this paper. To a first approximation, a simple analysis can be made

by considering the model "sensitivity" as a Newton step, from the

optimal solution obtained with Model I, say, applied to the optimality

conditions in the space of Model II. A simple illustration of this

concept is shown by the contour plots in Figure 12. Although this

problem differs conceptually from parametric sensitivity, the derivation

of the Newton step leads to same equations as in (22) and the reduced

Hessian strategy in (23) can be applied directly to the calculation of the

Newton step [32].

5. Problems for Future Research

While simultaneous simulation and optimization strategies have

certainly allowed the solution of difficult process optimization

problems, much work still needs to be done in order to solve larger and

more complex problems. If anything, the above review has outlined

recent work that demonstrates the feasibility of these strategies.

Although successful implementations of SQP-based strategics have

been made on commercial process simulators there still remain some

open questions regarding efficient and reliable formulations for

different classes of process optimbaiion problems. In this section we

briefly discuss a short list of unsolved problems with an eye toward

future research.

Figure 12: Newton Step for Model 2
"Sensitivity"

Model I Space
A- Model I Optimum

Model II Space
B- Model II Optimum

I
SQP algorithms for larger optimization problems.

As mentioned in the first section of this paper, decomposition

strategies have been developed but as yet no general purpose, reliable

implementations of these are available. Two reasons for this are that

these strategies rely on a linearly independent representation of the null

space and that the reduced problem is often very highly constrained.

For large, sparse problems, representation of the null space depends

strongly on the choice of dependent and decision variables. Here it is

most important that the Jacobian matrix, VyhT, remains nonsingular for

all points encountered by SQP. And conditioning of this matrix will

affect the scaling of the problem and performance of SQP. Also. QP

problems after decomposition tend to have few variables but many

inequality constraints that derive from bounds on dependent variables.

Because of this highly constrained nature, small inaccuracies in

constraint gradients may even cause the feasible region in the reduced

space to vanish. Finally,with i n e q u a l i t y constraints, the QP

algorithm needs to solve a more difficult combinatorial problem.

An alternative to this formulation is to consider sparse QP

implementations that lead to well conditioned null spaces. One very

promising QP strategy was recently developed by Ng and Thompson

[57]. For the SQP algorithm, however, one must still determine

whether the Hessian matrix should be approximated in the full or

reduced space, and how to treat changes in the set of dependent and

independent variables from iteration to iteration.

Solution of large optimization problems for modular simulators

Even with a reliable large-scale SQP strategy, large process

optimization problems can still be time-consuming if gradients arc

required through modular perturbations. Consider, for example, a

flowsheet with two decision variables and fifty tear variables. If the

flowsheet is easy to solve with a simple recycle convergence algorithm,

it would clearly be better, from a simulation and nonlinear

programming standpoint, to treat the flowsheet as a black box and



require three converged flowsheets at each SQP iteration (one for

function evaluation and two for gradient perturbations), rather than S3

flowsheet passes at each SQP iteration. On the other hand, if the

flowsheet has nested or difficult recycles, or design constraints arc

applied, the black box approach will also be iiiefficient and less reliable

than the simultaneous strategy.

To reduce the work for the simultaneous strategy a number of ideas

have been proposed. Fust, simple models [161 can be substituted for

gradient and function evaluation. These could be adjusted during

nptimiiafion to match the properties of the more complex process

models. Jirapongphan et al [42] proposed a very efficient strategy

based on this idea, although it was later realized that this approach can

lead to suboptimal solutions. More recently, safeguards have been

proposed that still allow the use of simple models 01,72] and lead to

the optimal solution of the original problem. However, these remedies

are at the expense of greater computational effort; it still remains to be

seen whether these strategies can be made efficient for general

flowsheeting problems.

Other ideas that reduce the size of the optimirarion problem and the

work of gradient calculation include the lumping of stream

components, and the selective incorporation of recycle loops into the

optimization problem [69]. At present, however, these have only been

applied in an ad hoc manner, based on specific information of the

process problem. Although these concepts have the potential to

improve performance, it seems that their systematic application to

general purpose problems will be difficult

Simultaneous solution and optimization for differential algebraic
models

Use of simultaneous strategies for differential equation modules can

greatly reduce the effort in solving the process model as well as deal

directly with state variable profile bounds in the optimization problem.

However, while the potential for simultaneous treatment of differential

equation models has been demonstrated, much work still needs to be

done. First, reliable and efficient large scale SQP capabilities need to be

developed since increasing accuracy with finite elements quickly leads

to a large number of variables and equations. On the other hand,

because more of the structure is known for collocation equations, it

should be possible to develop more reliable decomposition strategics.

More general questions involve the number of finite elements and

collocation points required to achieve a given level of accuracy. An

encouraging result for answering these questions comes from

establishing the relationship between this approach and implicit Rungc-

Kuoa methods [1]. As discussed above, this can lead to better insights

regarding stability and error control.

Extension of simultaneous strategies to more difficult optimization
problems

The simultaneous heat integration and optimization strategy outlined

above is an illustration of combining two separate tasks in order to

solve a more general problem. Similarly, mixed integer programming

[24, 59] strategies for process synthesis can communicate with process

models and often require the results of nonlinear optimization

problems. Consequently, it would be useful to combine the

simultaneous strategy on process modules with synthesis strategics in

an efficient way.

Recent developments in flexibility analysis [70] also require the

efficient solution of process optimization problems. While these

strategies have been demonstrated on small equation-oriented process

problems, they can clearly be formulated to evaluate the flexibility of

complex simulation models. Moreover, simultaneous optimization

strategies should allow the automation of flexibility analysis as part of

a design and optimization study.

Simultaneous simulation and optimization strategies for process

problems were first developed by Berna et al [3]. Since then a number

of different studies have shown the effectiveness and flexibility of this

approach to handle time-consuming and difficult optimization

problems. In this paper, we summarized some theoretical concepts for

this approach by relating convergence properties of the SQP algorithm

with Newton's method. This diwnwion also allowed us to compare

recent improvements to SQP on a theoretical basts. Following this,

application of SQP to simultaneous strategies was summarized for

equation oriented and modular simulators. Here decomposition

strategies were highlighted for equations while issues of gradient

nd partial convergence were stressed for modular

Once an optimization capability is available, problems that were

previously considered out of reach can now be handled. Here we

discuss three such problems:

• simultaneous optimization and heat integration [47 J

• process optimization with differential equation models
[18,19]

• sensitivity analysis of optimal flowsheets [32].

For each topic a small example is presented to illustrate the approach

taken and its results. The above discussion shows that these problems

can be solved quickly and the results are either novel or noticeably

better than those obtained with conventional methods. However, the

above formulations for these problems have only recently been

developed and much work remains in refining these approaches.

After reviewing sor aging results obtained over the last five

years we conclude with a summary of unsolved problems for

simultaneous strategies. These deal mainly with developing strategies

for larger problems and formulating approaches to handle more

difficult ones. Nevertheless, it should be noted, that development of

simultaneous solution and optimization strategies has led to

reconsideration of process optimization as a valuable design tool. The

work accomplished so far has demonstrated the feasibility and

efficiency of these approaches for process problems. It now remains

for us to understand and improve these approaches in order lo solve

more difficult optimization problems.
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