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The application of recently developed process optimization strategics

is motivated and reviewed from a Newton perspective: Over the past
. fifteen yean Newton-type methods have been used to solve difficult
' uimiaticpa problems. Similar principles and advantages also extend to
. process optimization. Using the Newton framework we discuss recent
:. imgwovetents to nonlinear pnAfradwity algorithms and the
' application  to largescale systems. The improvements in  the
| optimization strategy also lead as to consider new and more difficult
! IMOOCSSprdonams Reocot resultsidstmstotftrpeof ticse
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« sensitivity of optimal flowsheets

address the solution of brger aiid nxxc difficult ()ptimizaiJoo problems.

L Introduction

Over the past five years the application of the Successive Quadratic

- Programming (SQP) nonlinear programming algorithm by a number of
researchers [7,13,43,44] has led to renewed interest in flowsheet

- optimization as an efficient tool for process design and operation. The
- key concept to its effectiveness is SQP*s ability to converge equality

condraints aspart of the optimization problem. Through the application
. of Newun-like strategies for process smulation [14,53,60], limc-

; consuming solution procedures for convergence of nested recycle and
" calculation loops, could now be subgtituted by smultaneous methods
| that easily account for the interactions among different loops. Process

| optimization can be seen as representing the integration of another :
| calculation loop; accounting for its "interaction” with the rest of the :

< process represents the contribution of the SQP strategies. In a recent

" review paper [4], paralds were drawn between the simultaneous
smulation and optimization problem and a number of studies were
summarized for both problems. Here we use the well-known properties
of the Newton method and ,more recently discovered properties of SQP
to review the work of the lagt five years from a different perspective.
Moreover, an undersanding of SQP's convergence properties also
allows us to analyze newly developed decomposition methods for
large-scale problens and develop guidelines for ther further

, improvement.

For flowsheet optimization with conventional process smulators,
"most recent studies [15,43,44,46] report some experimentation to
determine tuning parameters to improve problem specific aspects or
optimization, such as variable scaling, flowsheet initialization and the
, use of partial flowsheet convergence. This experimentation may always
be needed for better performance on specific problems, but it is our
" hope that better theoretical understanding will eiminate many of the
o tuning’ parameters and lead to important generalizations for flowsheet
optimization. As an example of this, recent developments in partial
conver gence algorithms will be highlighted.

will be reviewed. Finally future directions will be riwrasysri thai .

The capability to do process optimization quickly allows us to
formulate and solve many problems that could not be considered
before. Here, we expand the smultaneousconcept to consider problems
with a wider scope. For example, in paralld with algorithms for
process optimization, very powerful strategies have been developed for
heat integration [39,48]. Unfortunately, these only apply to problems
with fixed flows and temperatures, e.g., after the process has been
"optimized". This paper wmamrirr* recent results for simultaneous
heat integration and process optimrniion using process smulators.
This smultaneous concept is also extended to process flowsheets with
differential equation models, such as reactor units. As self-contained
modules these are often expensive to evaluate and are usually not part
of a flowsheet optimization study. On the other hand, interaction
between the reactor and the rest of the flowsheet is frequently the most
significant aspect of an optimtiation problem. Here we outline a
simultaneous approach using orthogonal collocation on finite elements. .
and summarize its performance on a small problem.

In addition to extending the smultaneous concept to more difficult
optimization problems, one is often interested in the sensitivity of the
optimal solution to parametric and, possibly, mo&dling changes. As
with Newton-type methods for smulation, much of this sensitivity
information is aready available from the optimization algorithm.
Therefore, it is sraightforward to quickly analyze which variables are
locally sensitive to nominally assigned parameters, and for which
othersthere will belittle change.

The last section on future issues deals primarily with the solution of
larger and more difficult optimization problems. To this end,
development and evaluation of large-scale decomposition strategies |
seem to be an important issue. Also the incorporation of problem'
gructure to improve performance will be a key area in handling more
difficult problems. The brief review in this paper shows that the past
five years have demongrated the feasibility and effectiveness of these
smultaneous concepts. Future research will hdp talor these
simultaneous concepts to develop more powerful algorithms for more
difficult problems.

2. Newton Derivation of SQP

Consder for smplicity an equality constrained optimization problem
of the form:

Min F(z)

) .
s.t. h(z) @

i
\" The first order necessary optimalily conditions for this problem ar s
| ara\ightforward:’=

j V,L(z v*) -V,F(z*) + Vjh(z)v* - 0
h(«*> - 0 (2)
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and a Newton method applied 10 these conditionsleadsto:

vgol(sl, V1) vAtdY) fax
v T (z1)
vz L(z". Vl) (3)

h(sl)

- Here L(z,v) is the Lagrange function and v is the vector of Lagrange
multipliers for h. At the optimum, (z\v*) second order necessary
- conditionsrequirethat the projection of V » z* . v*) into the null space
“of Vs h(z*) be positive sen*4eiThite. Therefore, for some region
around the optimum, the Newton step is equivalent to solving the
. following quadratic program:

i VeR()Td + T e vha

4
a.c. hcz) + meeh)Ta - o ¢

whese d isthesear ch dketJonmz.

With this quadratic progeamsing equivalence the Newton concept is
| also easily extended to imchath inequality congtraints. g(z) ** a In
' xkBtion to computing the Newton step, by induding inequality

conmraints, the quadratic program win identify the correct active set

and satisfy additional complementarity conditions given by the Kuhn-
' Tocker conditions. For most engineering problems, however, gradient

evaluation requires 2xx£d* r*ti work and second derivative information

is usually too expensive to be calculated. It is therefore desirable to

replace V, L(zu,v) by a suitable positive definite approximation

matrix, B\ derived from differences in gradients from point 10 point.
i! The following quadratic program (QP) isthen solved ac each iteration,
' i, todetermine the " Newton step" foroptimrrations

sin v,xaH T + Jdvd

s.t. ;(z") + v;(:‘)"a * 0 . (5)
hczy) + Ma(ad)td -

% In parale with Newton's method, a number of properties can be
staled to characterize the performance of the optimization algorithm.
" Thfsc can be summarized by the following categorici.

Local Convergence Properties

For solving nonlinear. equations. h(z) = 0, Newton's method
convergesat a Q-guadratic ratein the neighborhood of the solution, i.e:
Nz - * - (KILE - z4]?) (6)

Quasi-Newton methods, on the other hand, are known to converge at

a superlinear rate, and because they do not require derivatives at each
iteration, can have significant advantages over Newton's method. For

f the SQP optimization algorithm. Garcia-Patoniares and Mangasarian
[32] showed that if the actual Hessian matrix, V*, L(z,u,v), is used in

the QP. convergence is. of course, also quadratic in z and v. On the

other hand, if a postive definite quasi-Newton approximation is
subgtituted for the Hessian, conver gence rates are expected to be lower -
Han [351, and later Boggs, et a [11], showed that if the actual Hessan
is positive definite at the solution (a very restrictive assumption) then
SQP converges at a Q-superiinear rate. A smpler proof of this
property was later given by Nocedal and Overton [58]. In general,
however, only the projected Hessan is positive definite and usng a
positive definite approximation for the/ttf Hessian may lead to sSower

convergence. Powell [62] showed that by using an update formula that
‘only approximates the projected part of the Hessan accurately, the
conver gencerate is actually two-step superlinear, i.e:

e 141 _ V),
’L.Jrn flat*® - = "’“8’"1 -f|=-° (7)
e _ .

This implication b important because it means that for general
nonlinear problems only the two step superlinear convergence rate can
be proved. Moreover, in a recent study, Nocedal and Overton [58]
show that if one updates only the projected Hessan (the smaller
positivedefinite part), convergencé OCCUR at thesamerate. Thismay
lead to a strong motivation and judtification for decompostion
strategiesapplied to lar ge-scale optimization problems.

Of course* rales of convergence are only assymptotic properties and
other acton such as appropriate matrix miriilJTation (asfor Broyden's
_met'hod) and varjable scaling will have sgnificant effects on
pai-fouuanrft. Nevmhclcn, convergence rate wunams an important
guidelinethat can be used to motivate moreefficient strategies.

Global Convergemce

While Newton's method for nonlinear equations has local quadratic
oonVergenoe properties,' it is not guaranteed to converge from poor
garting points. To prove global convergence, a unique Newton step
must be calculableat each iteration (the Jacobian must be nonsingular)
and a tnTrizX decrease should be found at each iteration for some
roer kftmctk»,e*the2-rjormc/thefuncti® valnes [88). Fortunatdly,
the Newton step gives a descent direction for this merit function and
. thus one has a guarantee (for smooth functions with no singularities)
that a stepsize exists which progresses toward the solution. In the
nrighborhood of the solution, one, of cour se, expects full Newton steps
tobetaken for fast convergence.

With SQP one can draw similar analogies to Newton's method in
order to ensure convergence from poor darting points. Han [36]
showed that the QP solution gives a descent direction for the-exact
penalty function:

P(z,n) - F(x) + n(Eg;(2). + Elng(@)]) .
| where gjU). - nax(0,gj(z)) ©)
[ Ensuring a sufficient decrease of this function will lead to global
convergence as long as the QP is solvable at each iteration. Several
researchers, however, recognized that this condition may lead to slow
convergence in the neighborhood of the optimum (the " Maratos effect”
[51]). because full steps were not taken. Chamberlain ct a [12]
proposed a modified exact penalty line search (the "watchdog
technique') where a sufficient decrease was required over a sequence
of iterations. Other merit functions and line search strategics have also
been proposed [10, 22, 64] Here, the augmented Lagrange function
appears to be a suitable choice because it is dif Terenuabk and has the
global convergence property together with allowing full steps in the
neighborhood of the optimum [6, 66]. We have modified this merit
I\ function to the following form:

. L*(z,uv) - F(z) + uTg(2). +vih(z) +

n 2 ®
3 |l sty oniz) ||

and developed an adaptive srategy for choosing ihc penally
parameter, r\. Compared to the exact penalty and Watchdog " (cpsi/c
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: gmnlatnrs separately as each has unique characterigtics that must be

proccdyna we lavefound ntesttM cgylo consiswmly give as good as

_ or beaer perfortaance on tileesters and procoss optimization: probles:s

[61. Use of this line search function also solves the pathological j
cxamples that camse\ e exact penalty function to fail  Finally, the ;

mgmemed Lagrangian s egy is sraightforward to impknient with .

- few adjustable panmeters.

SiAfuiarity .

Lastly, we mention that the main drawback to Newton's method, ;
encountering singular lacobian inatrices, sJso hv its parallels in SQP. !
This occurs when the feasible region isinconsistem and the QP has no
solution. As with Newton's method numerous "safeguards’ are
available that attempt 10 move away from singular points [52,61,65].
In an analogous fashion, safeguards exist for SQP [61 that have the
effect of relaxing the feasriife region and BUS solving an altered QP.
However, none of these rHawaffun techniques avoid failure for all
problems. Condder, for example, the problem shown in Figure 1.
Here, garting at or below point B and applying a relaxation strategy
based on the linearized constraints will lend to a zero solution vector
(U., collapse of SQP at an infeasible point) at some point between
point A and B. This's due to the fiet that locally, SQP cannot tell
whether no solution existsfor this problem or it issimply unableto find
TL Because of this dilemma, it appears unlikely that any safeguard
based on local information can be developed to avoid this problem, ¢
other than by exhaustively restarting the problem.

Figure 1: Failure of the QP Step i
Minx, 2 ’

S.t. 1. -xl-xzso .
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3. SQP Implesentation for ProoesOptirﬁizaIion Problems

Having outlined some of the properties and analogies to Newton's
method it is ingtructive to see how SQP is applied to flowsheeting ,
problems. This section deals with equation oriented and modular '

considered for opinutarion. Wefirst begin with modular smulators as

© thess awe mdmcapplicable tocxrem industriialapplications.

' that s less important for process smulation. Among these are

Modular Simulaton

Flowsheeting programs that incor por ate process models in black box
or modular form are widely used in the process industries [54].
Because solution strategies are specific to process modules, they can be
individually tailored for robust and efficient performance. On the other
hand, since recycle convergence only uses input-output information
from these imMhj'rf, inefficient and often unrdiable algorithms based
on function values are often applied. On the other hand, superior
convergence algorithms, such as Newton's method, require gradient .
information which can only be obtained by repeated modular
perturbatfon*

Despite this drawback. Newton and quasi-Newion methods are often
preferable for simulation, especially if nested recycle loops and design
congtraints need to considered. In fact, application of these gradient '
bewed Strategies over function-based algorithms (like successive
sebstination smg \Wcgsicin) is the key difference between newer i
smulaneous modlular strategies [14,60] and the traditional sequential j
modular approach [54,63]. As mestiomed in [7], process optimization
can be thought of as a semslsom proMffm with difficult design
congtraints, Le. the Kuhn-Tucker conditions. Application of the SQP j
algorithm to this problem can thus be thought of as application of a JI
quas-Ncwton method to satisfy these conditions. For flowsheet |
DpodmIT THIDR, however, a number of other issues must be considered

gnidlent rifayiofiLm..problem scaling and the use of partial recycle
convergence. These will be motivated first by a smple presentation of

theoptimizationfofmiilation.

oy

I..

Figure.2: Flowsheet Optimzation
Mn F(x,y)
s.t. he(xty) -y - wx,y) »0
ha(x,y) - f(x,y) - ¢=0

g(x»y) <0

Consider the flowsheet shown above in Figure 2. To smulate this
process we need to bresk (or tear) all récycle and calculation loops and
define a set of tear variables, y, that converges these loops. Because
most of the equations are solved within modules.this problem deals
with a much smaller subset of process equations and variables.and can
be partitioned  as\(y) =y - w(y) » O for the recycle loops and hy »
f(y) - ¢ 0. for additional design specifications. Here c is a constant
design specification vector. For optimization, as seen in Figure 2, one
also adds decision variables, x, an objective function, F(x,y), and any
additional limitson the process or product, g(x,y) - < 0. This leads to
the optimization problem:

sin F(z)
st- 9@ * 0 whee z' - Xyl (10)
10
h(z) - O T = (hY BY}
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that was discussed in the previous section. Note, however, that the SQP
procedure requires gradients far F, g and h with respect to z at each
iteration. Moreover, this iwfffiwinfftw, either directly or indirectly, .
determines whether die optimi7aiion problem has converged or not °

. Comsequemty, clficient dexermination of accurae gradicay information
. isan important aspect to process optimiration.

i More recently. Kisala [44], applied a fixed number of Wcgstein posses

Note herethat diecontribution of the last term can be set to zerojust by ’

Initially, direct loop perturbations (ej . along a path bom x or y to .

. w<xy) in Figure 2) were used for dm purpose [7.43]. This approach is {

very easy to implement without much knowledge about the smulator, !

but it may be inefficient because it requires additional modular |

- perturbations. A study of the perturbation error uto® mH with this |
ppeosch s piikitted in Biegkr [3]; an innovative strategy for

minimBIg (s error” * has been developed and successfully
deniongtrated by Kag.;'s]uoto [43]. Later, more accurate gradient
strategies were developed in [5, 13]. Here perturbations were done
module by module and die resulting partial derivatives were ether
assembled in atower triangular form [13] or dinxtiy diainruled using
die calculation sequence [5]. In this way analytic Jacobians could be
whtrifutrd- where available and greater control could be exercised in
determining gradient accuracy. However, this strategy is much more
difficult to implement on a general purposesimulator. In fact, Chen and
Stadtherr [13] construeltd an ffPF'f+L. demonftnukw sinwfrFor for this

Together with gradient calculation, scaling of the optimization
problem, especially die z vector, can greatly affect algorithmic
performance. The purposes of scaling are, firgt, to tranform the
problem so that die Hessian is "wefl-approximaied* by a diagonal |
(usually the identity) matrix, and also to avoid ill-conditioned quadratic .
programming problems. While this task is often problem specific,
several heurigtic strategies are available which seem to work well [6,
68,71]. Moreover, ill-conditioning can be monitored " on-lin€" in order
to signal poorly scaled problems.

Finally, process optimizations someumei benefit from partial recycle
convergence applied between QP iterations. This was observed
indirectly by Biegler and Hughes [8,9], who noted that feasible variant
methods (i.e. where the SQP algorithm was applied but the flowsheet
was converged at each iteration) could be faster and more reliable on
some process problems. This is especially true if exact penalty line
search strategies are used with direct loop perturbations. Chen and
Sadtherr [15], on the other hand, observed better performance if
additional successive subgtitution passes were made at the initial point.

after die solution of each QP and observed better performance on some

problems. Given thesefindings, onewonders:
*what criterion can be used to determine whether partial
conver gence will be beneficial and,
« bow can gradient mformstion available for optimization be
used for efficient partial recycle conver gence?
At this stage, little is known about the effects of partial convergence.
Therefore, to address diefirst question we outline a heuristic procedure
that makes use of a Kuhn-Tucker convergence lest frequently used in

| QB |gp(elyTq| + 1 ujgfzi)_'_ *

Elvihj(s)| * ¢ (1D

Vfaxr« ¢ is a tolerance

- converging the equality congtraints. Consequently, if this term
ftammatrs die Kuhn-Tucker error at a given iteration, partial recycle
- convergence (reducing this teem to a point where it no longer

_'rtominairi) will reduegjhe overall errer= After partial convergence, the

-
|

- ——— .
Kuhn—Tud(a error will then be better "balanced" and the QP should

not need any additional help for simultaneous convergence and
optimization. Currently this strategy has been implemented using
tuning parameters set by the user. Overall, performance, however, does
not appear to bevery sensitiveto their values [46].

In order to perform partial recycle convergence efficiently, it is ;
ingructiveto consider the two contour pkxsin x and y shown in Figure ;
3 below. Thefirst shows a sequence of SQP steps along an infeasible
path toward the optimum. In the second, partial convergence is’
performed from point B to point C using gradient information from
point A. Note here that the QP b solved (and gradients are only ,
evaluated) at points A and C Consequently, a conventional Broyden i
method starting with the Jacobian at point B can not be applied here. ,5
Instead we derive a nonsguare Broybcn update from point A to point B j
and then use this Jacobian information for tbe remaining steps [46]. j‘
Interestingly, this approach satisfies the same convergence properties
that the conventional Broyden method does [21] and performs well in

practice (with usually only one or two iterations required for partial '

SP Steps without patial convergence

p—— .

AN- —T - - ":——1
i - H Partial
d = Recycle

Convergence |

7

Figure 3: Partial Convergence Strategy

Equation Oriented Simulators

For modular simulators the major computational cost is due to
calculations performed within modules. Consequently, the SQP
algorithm, which numerous computational studies identify [3,6.38,61,
68] as requiring the fewest number of function evaluations for
optimization, is the most efficient algorithm for modular optimization.
As the size of the problem becomes large (greater than 100 variables,
say), die computational effort and overhead required to solve QP's with
current, dense quadratic programming implementations becomes
significant and. indeed, may be the major computational cost For
equation oriented smulators where much of the process is solved and
optimized simultaneoudly, it is therefore necessary to reconsider how
lar ge-scale optimization should be performed




Unlike SQP, MINOS [35, 35] was developed a5 an efficicnl nonlinear
programming problem for targe-scale implememation, Here the
nonlinear program is solved as a sequence (injor iterations) of linearly
constrained nonlinear programs. The solution of each linearly
constrained problem can be found by applying unconstrained
algorithms (minor iterations), such as variable metric methods, in the
null space of the active linear constraints. Under mild conditions k can
be shown [seé 561 that major iterations converge to the solution of the
oonlinesr prograw ai a quadratic rate. Minor iterations generally
converge to the solution of the linearly constrained problem at a
superlinear rate. Moreover, although this strategy generally requires
more function and gradient evaluations than SQP, it lends itself lo
efficient sparse implementations, especially with respect to matrix
tfldOnZBDOOS TOT OUHl SPBCC @QDCSIDOQS* ~QDBGQDGDUjrt 1D6 A&UNAIw
algorithm often performs well on targe scale optimization problems.

For large scale process problems, however, effort required for
fiimtw'= evaluations can still bef»gsfinwt and SQP strategies tailored
10 these problems still can be very effective. In the conventional SQP
approach die full Hessian of the LagnofB function is approximated
through a dense quasi-Newton updating formula. For large scale
problems, it therefore seems reasonable to approximate the Hessian
matrix in some sparse form and adapt the QP algorithms to take
advantage of sparsity in the Hessian and the constraint gradients. Not
only wiB this lead to more efficient QP solutions, but die incorporation
of a sparse structure will lead to a better approximation of the Hessian
and fewer SQP iterations. Lucia and coworkers [45, 74] have
successfully demonstrated this approach for ofXtmhration of vapor-
liquid process models. Here, derivative information b supplied where
calculable and remaining information is approximated through sparse
quasi-Newton formulae that are thermodynamically consistent

A seconid approach comaei from realizing that process optimization
problems usually have many variables and equations, and relatively
few degrees of freedom. Consequently, if SQP can be applied in the
null space of the equality roMtrainn. a much smaller QP needs to be
solved. To motivate this riivimion, consider an equality constrained
optimization problem with an onhonormal null space to Vh, Z and
range space, Y, that satisfy the following relations:

Vhi'z - 0 ZzZz=1 YS - T.b

Y'Z-0 Yvyat

(12)
Here ¥ h e R™™, YR, zeghtlnm)
SeR*** |a son* nonsingular matrix.
Using this onhonormal basis, one can therefore transform the quadratic
programming problem (for egn. (4) above) from:

8 9h)(d
z A\
o ol 1Y)
|'

[YTBY Y'BZ S d,, YTV, F
T
Z'BY Z'BZ. 0 dy | = = |Z°V,F (14)
o) |vi+

sT 0

[4-H

h

d - zd, + Yd,

From the second and third block matrix rows of (14), one sees that the

‘search di_rection, d, is independent of the Lagrange multipliers-a;ﬁ the

search direction in the range space, dy does not depend on the Hessian,
B. Moreover, Gill, Murray and Wright [34] show that by eliminating
YTBY, Y'BZ and Z"BY (or setting them to zero) and using only the

projected Hessian Z'BZ, onecan solveamuch smaller problem:

ZTBZdZ- - Z'VF

5 Td! - -h (15)
svitl = - yly p
and till obtain a good estimate of the multipliers. More recently,
Nocedal and Overton [58] show that an SQP algorithm based on (15)
also converges at a two-step supcriinear rate. They also present a brief
numerical sudy using a Family of reduced strategies that compare well
to fuU Hessan SQP strategies.

With this background, we can now re-examine recently developed
decomposition strategies for process problems in terms of range and
null spaces. For sparse implementations an easy to compute null space
can be defined by:

-yt
. (16)
I

Using this definition, Berna ct al [3] extended the srategy of cgn (15)
to deal with inequality constraints. Here, solution of the QP is only
required in the space of x, but toe full Hessian is approximated with
update vectors stored in a Cactorized form. However, this strategy is
difficult to implement and can require excessive storage for problems
that require a large number of iterations [40, 41]. The more recent
approach by Locke et a [50] is simpler and deals with solving the
reduced QP, and updating Z'BZ directly. Since the full Hessian is
generally not positive definite for large-scalé problems, both
implementations should have the same convergence rate. However,
very limited testing of the latter strategy has been reported [49,50,72].
Moreover, no reliable implementation of this reduced Hessian strategy
is currently available that addresses the other SQP properties
‘mentioned above.

The previous two sections of this paper focus on properties and
characteristics of algorithms that have been developed for simultaneous
process simulation and optimization. In the following section we deal
with formulations of more difficult problems that the simultaneous .
strategy now allows us to consider.

4. Applications of Simultaneous Simulation and Optimization

The next three subsections deal with problems thai expand the scope
of process optimization. Fust we discuss the simultaneous application
of heat integration with process optimization and summarize a case
study that demonstrates its effectiveness. Next we show that other time-
consuming process models can also be treated with this simultaneous
concept, and outline an application to differentid equation models.
Finally, we present a strategy for assessing the sensitivity of an optimal
flowsheet to parametric variations.

Simultaneous Heat Integration and Optimization

In parallel with process optimization, efficient strategies have been
developed for synthesizing energy efficient heat exchanger networks.
While these strategies are easy to apply [39,48], offer valuable insights
for process improvement and can be automated [29, 59], they can only
deal with fixed process flows and temperatures. In the context of




imm.m.&deadhuwm To account for heat integration within process optimization, Duran
strongly with the rest of the process and therefore mast be included as and Grossmann [23] include additional constraints and objective
part of the problem. To sce this effect, consider the trade-off curves in function terms that represent conditions for maximum energy recovery.

Figure 4. Here, application of heat integration gfier optimization serves These have recently been incorporated into the process optimization
10 reduce the total cost but the overall process conditions (c.g. flows, capability [46] impicmented on FLOWTRAN (63, 67]. Onc resulting i
temperatureg, overall raw material conversion) remain the same. On the formulation of the problem is presenied in Figure 5, where heat !

other hand, if one is able to account for heat integration as a function of integration is implemented as an additional "cost block”. Within this

process conditions, the dashed curves result in Figure 4. Noie that, as block, one solves for maximum encrgy recovery, using the cquivalent !

has recently been shown (23, 47], this not oaly results in lower total ’ of a lincar programming straicgy proposed by Duran and Grossmann !

coets but also leads 10 better utilization of raw materials through greater ' | (23] for multiple utilities. This information is then passed (0 the -

averall conversion. ' optimization problem simply as additional terms in the objective |
function. This approach now accounts for the interaction of the process

A with the heat integration network. It should be noted, however, that the

straightforward formulation of Figure 5 may lead to nondifferentiable
functions. While these have not presenied any problems in our current

. ::::1 Capital & work, this difficulty can be circumvented by using a more complex
\ Operating formulation as presented in (23, 47).
\ Cost

To sce the cffect of this siratcgy coasider the ammonia process
Y ‘ \ i flowsheet presented in Figure 6. As seea by the hot and cold streams
\ i (H1, Cl, exc.) in Figure 6, this singie loop process preseats several

Cun | opportunities for heat integration. The optimization probicm is given
| below and inclodes mine decision variables such as inlet flash
: temperatures, compressor pressures and feed flowrates. This process
\ was first optimized on FLOWTRAN without heat integration. Starting
' / from & base peofit of $20.66 x 105 /yr, the optimum was found to be
chx _ Total Cost $24.93 x 108 /yr aficr only S SQP itcrations. (Interestingly, with the
T \ AN (Heat Integrated) partial convergence strategy outlined above, the optimum can be found
sim for this problem after only 3 SQP iterations [46).) Application of heat
\ j Capital & intcgration stratcgics on the "optimized™ flowshect fusther increascs the
Operating Cost 05 . .
\ (Heat Integrated) profit 10 $26.86 x 10° fyr. Insicad of this scquential procedure, we now
,V perform these two tasks simultancously using the strategy in Figure S.
S~ —pJ .

—~——— Here, the optimal profit is $27.65 x 105 /yr or almost $800,000/yr
Ravw Material Cost greater than with the scquential approach. The reason for this is
justified by different operating conditions in the optimal flowsheet.
Here the overall conversion of hydrogen is 1.5% higher, the main

1 | 1 1 1 /] Il L L ~

compressor pressure is 41 atm lower and the recycle ratio is 33%
highcr [47) than with the scqueatial procedure.

A2 3 45 6 a8 Le
Overall Conversion

thi- cost without heat integration

ch:l. - heat integration after optimization

csi.n- simultaneous heat integration & opt.

This example illustrates the importance of accounting for interacting
subsysiems in process optimization. In the next section a similar
situation occurs with process reactors in (lowshects. While in this
Figure 4: Comparison of Costs l section s.mulmsomm was made possible ‘thmcfgh a new

with Heat Integration ! formulation of the optimization problem, the next section discusses the
: reformulation of the process model in order t0 adapt to simultancous
| solution.

/

Process Process Process
"1 Module I Module II Module III[—

sQP MAXIMUM
Optimization ENERGY
’ RECOVERY
| CONSTRAINTS

Figure 5: Simultaneous Optimization and Heat
Integration Strategy (Implicit Form)




”Simultaneous Solution and Optimization of Flowsheets with
Differential Equation Models

Process models that require the numerical solution of differential
equatkrawithconipltttheniiodyijai" and/or usasport properties can
lead a0 very tme-consuming calculations. Here the modd must be
solved for each flowsheet pass and physical properties must be
caioilaiedtoeachimegratk»«Kp.|f optiméation is ten spplied and
additional gradient mformatioa is required, the computational expense
can be protuoajve. in pracuce, many process SMnwanons use simple
reactor models based on split frictions or approaches to equilibrium.
These do not, however, fully account for ihe imersction of the reactor
with dierest of the flowsheet. Moreover, since thereactor frequently
oeleiuimes me cnaracier oi me IMJWSUUH uvougn icyiaimi steps,
recycle structure and possibilities for heat integration, tncorporating
this interaction ino te optisiicasion problem s clearly itepormnt,

Consder the following optimiiaiion problem with an ordinary
differential equation (ODE) modet
«in  F(z.C)

s.t. g(z.C) * 0

h(z,C) - 0

dc.
¥dt - f(2,C,t); T(O) =&y

(17

Hoethe variablesfar e functions of the spatial variable L

In order to allow for smultaneous solution of the ODE model, recycle
equations and the optimization problem, we fist apprfl=*Taff the
differential equation model by a set of algebraic equations. In order to
keep the problem small and also to guarantee a stable solution, we
apply an implicit, higher order method. Here, perhaps the easiest
method to apply is orthogonal collocation [73]. By approximating the

polynomial with a set of Lagrange polynomial basis functions,
algebraic equations can be written at n points, the shifted roots of an
nth degree orthogonal polynomial, t* Thesecollocation equationsare:

d1
L ] (g} = £(2,85,t4) - O i=l,m
=0 i dt L 1

(18)
lj(t) -jio .(..t-_ti) » to -0
#H (egtq)

Note that these coUomatina eguations are easily constructed from the .

differential equations. Values for dlj/dt can be computed once the
number of collocation points is known, and can be stored for later use.
Because thismethod requiresfar fewer pointsthan a conventional ODE
solver, fewer equations and property evaluations are required for the
reactor module. Moreover, the collocation eguations (18) and
polynomial coefficients, Cj, can be added directly to the optimization
problem and any profile constraints can be incorporated directly as
congraints on the coefficients. Consequently, this approach is
potentially more powerful and efficient than embedding a conventional
ODE solver within the process module.

CuthreU and Biegler [18] recently demonstrated this approach on the
simple flowsheet optimization problem shown below in Figure 7.

For this problem both Ihe conversion and temperature profiles could
be approximated accurately using only five collocation points. In
comparison with direct use of an ODE solver, the number of property
evaluations for thereactor module is reduced by a factor of 30. Here
the number of iterations for the smultaneous solution was 27 while the
formulation with an ODE solver [37] required 22. Consequently, at the
expense of dealing with a larger nonlinear piogiain (and its associated
QP step), the computational effort for the reactor module and any other
similar process modulescan be significantly reduced.
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However, for stiff systems of diffenesitial <squatiant or problems with
steep profiles, a global collocation approach ¢aanot [73] give accurate
solutions. Instead, one can successfully formulate this problem using
orthogonal collocation on finite elements [2, 33]. Briefly, the
oprimi7arion problem can be stated as:

Min F(z,0
g(z»O S O .
h(z,O - 0 i - 1L n k- 1 N
dl
S cjk Ej (tj_k) - ﬂﬂkt(‘no‘) =0

C(t) is continuous and piecew se
pol ynom al of order n+1 :

Aok 2 0
k=
ta -jE::. MJ + Mk'!’.

T< - shifted Legendre roots between
0 and 1

SLD

AayW, - Aax. | wk-1 k-2, NE

where Vi is based on higher derivatives

of C(t) in Aacx with respect to tiae.
Compared to the global collocation formulation, the collocation
equations in (19) are now written on finite elements, a; and continuity
isimposed at the boundaries of these elements. Also we have included
an additional set of conditions that govern the placement of the
elements. As formulated in [17, 20], one can show that the element
placement equations are necessary and sufficient for minimizing the
approximation error. Moreover, this approach has strong sability
properties as well as a high approximation order. Ascher and Bader [1]
show that this method is equivalent to a fully implicit Runge-Kutta
method applied at OfHif!1** roots. Such methods are algebraically
stable, i.c stable for a wider class of problems than A-stable methods.
In fact, because of this property orthogonal collocation on finite
elements is desirable not only for differential equation models but also
for two point boundary value problems.

To demongrate the formulation given by (19), consider the reactor
optimization problem given in Figure 8 [19. 28]. Here the reaction is
exothermic and goes to completion in the reactor. Because it raises
steam in the coolingjacket, it may be advantageous to design a reactor
that is longer than needed for complete conversion, in order to provide
additional heat transfer. Thisdesign leads to temperature profiles, with
hot spots that arc difficult 1D approximate. Applying the finite element
formulation leads to the dimcnsionlcss temperature profiles presented
in Figures 9 and 10. Note that elements arc closer together in steep
regions and farther apart for more gradual ones. Moreover, in Figure
10abound of T(t) .£ 14Sisplaced on the temperature profile and it
can be seen that the hot spot and reactor length shift to accommodate
this constraint

A

*1 B/A

S =

Figure 8: Reactor Optimzation with Hot Spot
Mn (Reactor Capital Cost - Steam Credit)

The ability to handle difficult differential equation based problems in
thisway allows us also to consider optimal control problemsaswell. A
number of examples with control profiles have been presented in
[17,19] but discussion of these more difficult problems is beyond the
scope of this paper. However, it is important to note that the ability to
handle complex ODE process models is directly influenced by the
ability to do large scale optimization. More will be said about this in
the final section. Before discussing this, however, we first turn to ihc
topic of postoptimality analysis.

Sensitivity Analysis of Optimal Flowsheets

In the topics covered so far emphasis has been placed on formulating
the optimization problem and solving it efficiently. In this section we
try to characterize the optimal solution and its sensitivity to parametric




and modd changes. For example, a given design or optimization study
win require the selection of external parameters, p. at some nominal
point. These can include external utility supply temperatures and
pressures, composition and Oowntes of the feedstock or even hcai

Am

-
L 8

Lb ¢
LA
43 4 7 4 0 Lt
1

LI LI

Figure 9: Optimal Tenperature Profile
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Figure 10: Optinal Tenperature Profile

with T(t)g 1.45

____Collocation Solution

— ODE Sol ver Solution [37]

pﬁ’&u*. Here we are interesed in
egimating the change in the optimal sokrica as a fwc* » c/changes
in theseparameters L c.dz*/3p. Todo thisweconsder ibeparametric

tnsfer coclficionts and kinetic

cychn'ujtiunprobiem:
Mia F(z, p? °
8.t g« p ) *0
h(z. p°) - O
with theassociated Kuta-Tocker conditions
VF(z°) +yg(x°)u°® +yh(z°)v® - 0
h(z°, p°) - O
gz = p)*0
UTOQ(XO.PO) -0
u°* 0

Fiacco {2627] shows that if drict ccopiemetarity and linear
independence of the active congtraint set holds at the optimum, then the
active set will not change for small parameric perturbations
Consquently, we can write the change of the solution, A z. to an

Vi Wiikes mal} change in the perametary, A p, ax:

3 . -
* V 7XXL* vaL* .r‘& Vxh' AX
Vyl- o \VAS VL' VIgBy Tytf [lay
Ie Ta
Ala *X«A 'yk 0 o Au

Ah V*'yht o o |[av

(20)

(21)

(22)

FOTED

M

‘Note that the gradient information in the above matrix equation is

available from the optimal solution. Because a qutsi-Ncwion Hessian
approximation is used by SQP, however, second derivative informaiioo
most stU be evataated Umx»gh add”tioiul penurbttons. Here we lake
advantage of dttowposkic* coaccptt inditioncd*« sction 3 in onder 40
ovalaam the actesl Besximi projected k areduced space. As suggested
by Edahl [25], btock Gesssim decomposition of the above system

leadsto:
3 I 0 E 0 Ay® .
b 0 I L M Av°
- - (23)
H 0 0 H. Q Ax®
. 0 o Q o Att®
whero

| « ldentity Matrix
E«-A-Nf',.r.v!l?.
L= (WA (Vl® =V 1° )

Q = Vgt = Vyt® (VA7 V02
HeV,l® - VL Wﬂﬁ‘h)-l Ao
=Vt (o) (VLT LA
as= Wvb")" Ah®
¢ = Ag® - Vgl (V™)' ane
b= (V%) AV, L%) - (V4% Vl® (V1% an®
e AVRLY) - Vg L W”n"')" Ab® ’
+v!,,. {vy,,.)-u le'. Wyfi")" AR
T Vst (T AV, L)

and thereduced space system of linear equationsisgiven by:

HEE |
. o o aut (24)

Now instead of congtrocting the entire Lagrange Hessian by

perachation. H can be comstrucwed by pefomiog simultaneous

perturbationsin x and y and remamingm thenull spaceofV~ L ¢,
(Axj; -(VyaVS”ArrJAXj) - ~.Ay)

The numba of flowsheet evaluations reguired to congruct the
scQ3Uivi(y BuofmitfioQis Urns fotSlooQ tinoiia
NFE=(m +n ){m +a,+1}/2 (25)

where

wamber of dependent (tear) variables
x, - mamher of independent (decision) variables




NFE=(n, (0, +1}/2) 43 +2 (26)

In addition, sensitivities for y can be evaluated from EA x and a: the
only information not available from the reduced equations is the
sengitivity of the equality congraint multipliers, v. Normally this
information isnot as important asfor the other variables.

As an illugration of this analysis, consider the simple flash loop
optimization in Figure 11. Hoe_thesolution liesat thetower bounds of
the split firactkm and flash pressure. As expected from physical insight,
a change in the feed flowraie will not change the optimal values of
these decision varibles; thisiseasily verified using thereduced Hessian
sensitivity analysis in egqn (24). As shown in [31, 32], however,
subgtitution of different objective functions wiO make the decision
variables more sensitive to parametric variations.
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Sensitivity of the optimal solution to the choice of process models is
mor e difficult to analyze and a thorough derivation is beyond the scope
of this paper. To afirst approximation, a smple analysis can be made
by conddering the model "sendtivity" as a Newton step, from the
optimal solution obtained with Modd |, say, applied to the optimality
conditions in the space of Modd 1. A smple illustration of this
concept is shown by the contour plots in Figure 12. Although this
problem differs conceptually from parametric sensitivity, the derivation
of the Newton step leads to same equations as in (22) and the reduced
Hessian strategy in (23) can be applied directly to the calculation of the
Newton step [32].

5. Problems for Future Research

While smultaneous simulation and optimization dtrategies have
certainly allowed the solution of difficult process optimization
problems, much work still needsto be donein order to solve larger and
more complex problems. If anything, the above review has outlined
recent work that demondrates the feasibility of these dtrategies.
Although successful implementations of SQP-based strategics have
been made on commercial process smulators there ill remain some

" open questions regarding efficient and reliable formulations for

different classes of process optimbaiion problems. In this section we
briefly discuss a short list of unsolved problems with an eye toward
future research.
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X
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SQP algorithms for larger optimization problems.

As mentioned in the firg section of this paper, decomposition
strategies have been developed but as yet no general purposg, reliable
implementations of these are available. Two reasons for this are that
these strategies rely on alinearly independent repr esentation of the null
space and that the reduced problem is often very highly constrained.
For large, sparse problems, representation of the null space depends
strongly on the choice of dependent and decision variables. Here it is
most important that the Jacobian matrix, V,h", remains nonsingular for
all points encountered by SQP. And conditioning of this matrix will
affect the scaling of the problem and performance of SQP. Also. QP
problems after decomposition tend to have few variables but many
inequality constraints that derive from bounds on dependent variables. :
Because of this highly congtrained nature, small inaccuracies in
congtraint gradients may even cause the feasible region in the reduced
space to vanish. Finally,with-inequality congtraints, the QP
algorithm needs to solve a more difficult combinatorial problem.

An alternative to this formulation is to consider sparse QP
implementations that lead to well conditioned null spaces. One very
promising QP drategy was recently developed by Ng and Thompson
[57]. For the SQP algorithm, however, one must ill determine
whether the Hessan matrix should be approximated in the full or
reduced space, and how to treat changes in the set of dependent and
independent variables from iteration toiteration.

Solution of large optimization problemsfor modular simulators

Even with a reliable largescale SQP drategy, large process
optimization problems can still be time-consuming if gradients arc
required through modular petur'baiions Consider, for example, a
flowsheet with two decision variables and fifty tear variables. If the
flowsheet is easy to solve with a simple recycle conver gence algorithm,
it would clearly be better, from a smulation and nonlinear
programming standpoint, to treat the flowsheet as a black box and
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require three converged flowsheets at each SQP iteration (one for
function evaluation and two for gradicnt perturbations), rather than 53
flowsheet passes at each SQP iteration. On the other hand, if the
flowsheet has nested or difficult recycles, or design constraints arc
applied, the black box approach will also be inefficient and less reliable
than the simultaneous strategy.

To reduce the wark for the simultancous straiegy a number of ideas
have been proposed. First, simple models [16] can be substituted for
gradient and function evaluation. These could be adjusted during
optimization © match the properties of the more complex process
models. Jirapongphan et al [42] proposed a very efficient strategy
based on this idea, although it was later realized that this approach can
lead 0 suboptimal solutions. More recently, safeguards have been
proposed that still allow the use of simple models {31,72) and lead t0
the optimal solution of the original problem. However, these remedics
are at the expense of greater computational effort; it still remains to be
scen whether these straiegics can be made efficient for general
flowsheeting problems.

Other ideas that reduce the size of the optimization problem and the
work of gradient calculation include the lumping of stream
components, and the selective incorporation of recycle loops into the
optimization probiem [69]. At present, however, these have oaly been
applied in an ad hoc manner, based on specific information of the
process problem. Although these concepts have the potential o
improve performance, it scems that their sysiemalic application 0
general purpose problems will be difficult.

Simultaneous solution and optimization for differemiial algebraic
models

Use of simultancous straicgies for differential equation modules can
greatly reduce the cffort in solving the process model as well as dcal
directly with stase variabie peofile bounds in the optimization problem.
However, while the potential for simultaneous treatment of differential
equation models has been demonstrated, much work still needs 1o be
done. First, reliable and efTicient large scale SQP capebilitics nced o be
developed since increasing accuracy with finite clements quickly leads
10 a large number of variables and equations. On the other hand,
because more of the structure is known for collocation equations, it
should be possible to develop mare reliable decomposition stratcgics.

More general questions involve the number of finite elements and
collocation points required 10 achieve a given level of accuracy. An
nghfuquwh;dmeqummfm
establishing the relationship between this approach and implicit Runge-
Kuua methods [1]. As discussed above, this can lead to betier insights
regarding stability and error coatrol.

Extension of simul str
problems

gies to more difficult optimization

above is an illustration of combining two separate tasks in order 10
wwammmhm.swhdy.mkedimegammming
[u.ﬁ]mﬁqfamquhﬁsmmmbnwimm
models and ofien require the results of nonlinear optimization
problems.  Consequently, it would be uscful 10 combine the
ﬁmulnneaumgymprmmluwimsyndnsismwmm
an cfficient way.

Recent developments in flexibility analysis (70] also require the

efficient solution of process optimization problems. While these
strategics have been demonstrated on small equation-oriented process
probicms, they can clearly be formulated 10 evaluate the flexibility of
strategics should allow the automation of flexibility analysis as part of
a design and optimization study.

6. Conclusions

Simultaneous simulation and optimization stralegies for process
problems were first developed by Berna et al [3]. Since then a number

. of different sudics have shown the effectiveness and flexibility of this

approach 0 handle time-consuming and difficult optimization
problems. In this paper, we summarized some theoretical concepts for

. this approach by relating convergence propertics of the SQP algorithm

with Newton’s method. This discussion also allowed us to compare

recent improvements to SQP on a theoretical basis. Following this,

application of SQP 10 simultancous strategics was summarized for
straegies were highlighted for equations while issues of gradient

simulators.

Once an optimization capebility is available, problems that were

* previously considered out of reach can now be handled. Here we

discuss three such probicms:

 simultancous optimization and heat integration (47)

¢ process optimization with differential equation models

[18,19)

* sensitivity analysis of optimal flowshcets {32].
For each topic a small example is presented 10 illustrate the approach
taken and its results. The above discussion shows that these problems
can be solved quickly and the results are either novel or noticcably
better than those obtained with conventional methods. However, the
above formulations for these problems have only recently been
developed and much work remains in refining these approaches.

After reviewing some encouraging results obtained over the last five
years we conclude with a summary of unsolved problems for
simultancous strategics. These deal mainly with developing strategies
for larger problems and formulating approaches to handlc more
difficult ones. Nevertheless, it should be noted, that development of
simultancous solution and optimization strategies has led 1o
reconsideration of process optimization as a valuable design tool. The
work accomplished so far has demonstrated the feasibility and
efficiency of these approaches for process probk It now
for us to understand and improve these approaches in order 1o solve
more difficult optimization problems.
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