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ABSTRACT

In this paper the problem of obtaining the degree of flexibility that maximizes

the total profit in an existing process flowsheet is addressed. Assuming a linear

model for the process and given probability distribution functions for the uncertain

parameters, the curve relating the expected revenue to the flexibility index is

generated. An efficient stochastic optimization method is developed for this purpose

that is coupled with a parametric analysis. This then allows to determine the level

of flexibility in a retrofit where the proper trade-off is established between

investment cost and expected revenue. Two examples are presented to illustrate the

proposed procedure.



INTRODUCTION

Currently in the chemical industry there are few new plants that are being built.

Instead the emphasis has shifted towards the improvement of the operation and

profitability of existing plants (see Cabano, 1987, Linnhoff and Smith, 1985). Main

motivations include potential for reducing energy consumption, enhancement of

product quality through better monitoring and control, increased need to effectively

handle uncertainties, such as variations in feedstocks and production levels. It is the

latter aspect, namely, the one of redesigning an existing plant so as to optimally

increase its flexibility in the face of uncertainties that will be addressed in this

paper.

There have been several approaches to the problem of design under uncertainty

reported in the literature. Grossmann et al (1983) present an extensive overview of

different approaches. Among these, only few have considered stochastic

optimization methods for the design of flexible processes (e.g. Weisman and

Holzman, 1972, Lashmet and Szczepanski, 1974, Johns et al, 1978, Malik and Hughes,

1979). Most recently, Pai and Hughes (1985) proposed a stochastic optimization

scheme that combines experimental design with gradient-based NLP methods, such as

the SQP algorithm. Reinhart and Rippin (1985) also presented two methods for the

optimum design of multi-product plants taking account of uncertainty in product

demands. The first method uses a penalty function for the objective function to

account for the failure to meet the demand, whereas the second one uses a two-

stage programming procedure. However, none of these works has been aimed

specifically towards retrofit design problems.

The problem that will be addressed in this paper is the one of finding the

optimal increase of flexibility that will maximize the total profit in an existing

process flowsheet whose performance is described through a linear model. One of

the major issues in this problem is how to determine the proper trade-off between

the investment cost for the retrofit and the expected revenue that will result from

having an increased flexibility.

Previous work by the authors (Pistikopoulos and Grossmann, 1987) has



concentrated on the problem of redesigning a flowsheet to achieve a specified

degree of flexibility at minimum cost. Reduced LP and MILP formulations that

explicitly include flexibility constraints were proposed, and for which one can easily

develop the trade-off curve relating flexibility to retrofit cost. In order to determine

the economically optimal degree of flexibility, this work will be focused on

developing the revenue curve as a function of flexibility. The major challenge here

lies in how to efficiently integrate the expected optimal revenue of the process given

distribution functions for the uncertain parameters and constraints that need to hold

for feasible operation.

In the method proposed in this paper a number of redesigns with specified

degree of flexibility will be obtained from the trade-off curve relating retrofit cost

to flexibility. For these designs the corresponding expected optimal revenue wil l be

evaluated through a modified Cartesian Integration Method. This method consists of

partitioning the vector of the uncertain parameters through sensitivity analysis and

reducing the problem to one-dimensional integrals. Consequently, it wil l be shown

that this integration can be performed analytically by the use of a range analysis that

determines the appropriate active constraints for the domain of the integration. Two

examples wil l be presented to illustrate the suggested procedure.

PROBLEM STATEMENT

The specific problem which is to be addressed in this paper can be stated as

follows: Assume that an existing process flowsheet is given with fixed equipment

sizes dE and fixed structure. A set of uncertain parameters d is also provided.

Continuous distribution functions for the vector 0 of the uncertain parameters are

also specified. The problem is then to determine the required changes of the design

variables d that wil l provide a flexibility that maximizes the total profit, consisting

of the difference between expected revenue and retrofit cost.

The quantitative measure for flexibility to be used wil l be the flexibility index

F, as introduced by Swaney and Grossmann (1985). This index corresponds to the

largest scaled hyperrectangle that can be inscribed within the parametric region of

feasible operation. Therefore, this index provides a measure on the size of the



parameter space over which the design is guaranteed to have feasible operation.

Furthermore, this index accounts for the fact that process adjustments can De made

during operation through control variables z.

The problem as stated above corresponds to a stochastic semi-infinite

programming problem. Firstly, because the expected revenue must be determined in

terms of parameters that are defined by probability distribution functions. Secondly,

because the region defined by the flexibility index, which is the one where the design

must have feasible operation, contains an infinite number of values of the uncertain

parameters. In order to define more precisely the scope of this problem, the

following basic assumptions will be made:

1. The performance of the process is described through a linear model.

2. The revenue of the process is strongly dependent on the uncertain
parameters.

3. The expected revenue will be quantified over the feasible parameter space
defined by the flexibility index F.

4. The uncertain parameters vary independently of each other.

The first assumption on linear models is made to simplify the complexity of

the problem and to gain some insight for tackling the nonlinear case. The second

assumption can be expected to hold in many cases since usually in a process the

uncertainties that are involved include product demands, feedstocks, prices, which

clearly have a great impact in the revenue function. The third assumption will tend to

underestimate the revenue since the actual feasible region may be larger than the one

implied by the flexibility index. However, since this region contains the points with

highest probability the underestimation will usually be small. Also, the third

assumption avoids the difficulty of quantifying penalties for infeasible operating

conditions. The fourth assumption has been stated for the sake of simplicity in the

presentation. The basic procedure to be proposed can actually be extended to the

case of correlated parameters.

A qualitative representation of the retrofit design problem of this paper is

shown in Figure 1. As it can be seen, increased flexibility leads on the one hand to

increased retrofit cost, and on the other hand to increased expected revenues.



Therefore, the objective will be to determine the flexibility value, F\ that optimizes

the profit Z as given by the difference between expected revenues and retrofit cost.

Pistikopoulos and Grossmann (1987) have developed efficient procedures that are

based on parametric LP and MILP models to determine the curve of retrofit cost as a

function of flexibility that is shown in Figure 1. This work will therefore concentrate

on the problem of estimating the curve of the expected revenues shown in Figure 1.

A systematic procedure will then be presented to determine the optimal degree of

flexibility and will be illustrated with two example problems.

PROBLEM FORMULATION

For a specified target value of flexibility index F, the problem of determining

minimum investment cost changes of the existing design can be formulated as the

following MILP problem (see Pistikopoulos and Grossmann, 1987):

C(F) = min cTy + /?TAd
y,Ad '

s.t.
k=1,.,n

I I

AS

y. £ Ad £ U.y. ,y.=0,1

0, k=1,..,nAS, AdGRr

where C(F) = retrofit investment cost at the flexibility index value F

y = is a binary 0,1 variable associated with the change Ad.,i=1,.,r

Ad. = change of the design variable d.

SQ
k = flexibility index for existing design of k'th active set of constraints

<r.k = sensitivity coefficient of flexibility associated with design variable d. for



k'th activp set of constraints

F = specified flexibility index value

c,/S = vectors of cost coefficients

As shown in Pistikopoulos and Grossmann (1987), the retrofit cost C(F) in (P1)

can be obtained as a piecewise linear function of the flexibility index F (see Figure

1).

In the present work revenue considerations are also taken into account in order

to maximize the profit Z with respect to flexibility. By assuming that the expected

revenue is evaluated over the parameter space defined by the flexibility index F, this

problem can be represented conceptually in the following way:

max Z = E { max r(z,0) I f(d,z,0)£O }- *(y,Ad)
y,Ad,F 0GT(F) Z ' r

(PO)
s.t. g(y,Ad,F) < 0

d = dE • Ad

where

Z = profit as given by expected revenues minus retrofit cost

E = expected value of the revenue over the parameter set T(F)

T(F) = id | 6" - FA0" £ 6 £ d" • F A 0 4 }, is the parameter
set defined by the flexibility index

r(z,0) - a + aj z + a / 6, is the linear revenue function
O 2 3

z = vector of control variables with dimension n

f(d,z,0) = bj + (b/)1 d • (b2
j)T z * (b3

j)T 6 £ 0 , j€J, are
linear constraint functions

,Ad) = cTy • JSTAd is the cost function in (P1)



g(y,Ad,F) is the constraint set in (P1)

dE = vector of design variables for the existing system

Problem (PO) is in general very difficult to solve. To simplify this problem, it

is convenient to consider that the maximization of the profit will be constrained to

having minimum investment cost as given by problem (P1). This then leads to the

following formulation:

max Z = R(F) - C(F)

(P)
s.t. C(F) = min [ cTy • ^TAd ]

y,Ad

s.t. g(y,Ad,F) £ 0

where the expected revenue R(F) is given by :

R(F) * E { max r(z,0) I f(d,z,0) £ 0 }
0GT(F) z

s.t. T(F) = { 8 | 0N - FA0" < 6 £ 6" • FA0* } (P2)

d = dE • Ad

Ad = arg[C(F)]

Note that the advantage of formulation (P) is that its solution can be

decomposed through the solution of problem (P1). That is, for a given value of the

flexibility index F the design changes Ad that minimize the investment cost, C(F), can

be determined from problem (P1). The expected revenue, R(F), in problem (P2) can then

be evaluated for the design changes Ad obtained from problem (P1).

In general problem (P) will only provide an approximation to problem (PO).

However, as shown in Appendix A, the formulation in (P) is exactly equivalent to

problem (PO) if the revenue of the process is only a function of the uncertain

parameters 6, i.e. r(z,0) = r(0). If the revenue is a function of both d and z problem

(P) will provide a lower bound to the optimal profit in (PO). Since, the revenue is
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commonly dominated by the parameters 6, as is being assumed in this paper,

prcblem (P) should provide in general a very good approximation to (PO).

The following general strategy is proposed in order to tackle problem (P) to

determine the optimal degree of flexibility:

1. Determine the curve of retrofit cost versus flexibility, C(F). This involves
solving problem (PI) parametrically as a function of F.

2. Generate the curve relating revenue to flexibility, R(F). This involves
solving problem (P2) parametrically as a function of F and with the design
variables obtained from (P1) for the given value of F.

3. Construct the composite curve of the total profit versus flexibility, Z=R(F)-
C(F), in order to determine the optimal degree of flexibility F\ shown in
Figure 1.

Note that step 1 involves the procedure described in Pistikopoulos and

Grossmann (1987). This paper concentrates on steps 2 and 3. In step 2 the expected

revenue R(F) will be estimated at different fixed values of F. With these points, the

expected value of the revenue function R(F) will be obtained through a polynomial

approximation. Fixed values of F on which to estimate R(F) will typically correspond

to the break points in the curve for C(F) and any additional points that may provide a

desired degree of accuracy in the approximation.

The estimation of the expected revenue function R(F) at a fixed value of F is by

itself a very difficult problem due to two reasons:

• General approximation techniques for evaluating the multiple integral of
the expected revenue in (P2) can be computationally very expensive.

• Integration of the expected revenue must account for the changes in the
active constraints that are economically optimum in (P2) for the different
parameter values.

In the next section a Modified Cartesian Integration Method will be presented

to circumvent the first difficulty.



MODIFIED CARTESIAN INTEGRATION METHOD

For a fixed value of the flexibility index F the revenue function R(F) must be

evaluated over the n^ uncertain parameters 8 that are contained in the parameter set

T(F), and for values of the design variables that result from the solution of problem

(P1). In this section it will be shown that this can be effectively accomplished by a

modified Cartesian Integration Method.

For simplicity, it will be assumed firstly that the uncertain parameters 6 vary

independently with corresponding continuous density functions p.(0). Each uncertain

parameter 6., i=1,.,n0 is defined in T(F) through the flexibility index F, to lie in the

interval [ 0 L , 0 U ] where:

eL = e" - F Ad:
i i i

0 u = 0 N + F A<9*

(1)

where Ad.", Ad.4 are negative and positive deviations. These deviations

correspond in general to a specified level of confidence through the density function

p.(0.), as seen in the example of Figure 2.

The basic idea of the Cartesian Integration Method (see Bereanu, 1980) is to

approximate the multiple integral of the expected revenue over the region in (1)

through Gaussian quadrature of n^-1 uncertain parameters, and the evaluation of one-

dimensional analytical integrals in terms of a single uncertain parameter dm at each

of the nodes of the quadrature formula. Its major drawback, however, is that the

number of nodes that must be considered for the n^-1 parameters in the Gaussian

quadrature formula increases very rapidly as the number of uncertain parameters

increases. In particular, if L points are selected for each of the n^-1 parameters, the

number of nodes for the integration is equal to L<n0"1) (see example in Figure 3).

Therefore, a more effective way must be developed for the particular case of

evaluating the expected revenue.

In order to accomplish the above task, the vector of the uncertain parameters 6
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will be partitioned into three subsets as follows:

6
6 =

m

where 6 is a single independent parameter that exhibits
the largest sensitivity to the revenue,

d is a vector of dimensionality D^1 with significant
sensitivities to the revenue, and

0S are the remaining uncertain parameters of dimensionality S
whose sensitivity to the revenue can be neglected.

The basic idea for the partitioning is to choose only few of the uncertain

parameters that are the most sensitive to the economics of the process in order to

simplify the evaluation of the multiple integral of the expected revenue. Under the

assumption that the revenue function r(z,0) will be essentially independent of the

subset #s of the uncertain parameters, the application of the Cartesian Integration

Method can be performed much more effectively as then the number of nodes need

only be specified for the subset 0Q. Then, the conditional expected value in terms of

the single parameter 6m and the parameters 0g, will be estimated using a Gaussian

quadrature formula for LD nodes, where L is the number of points selected for each

parameter in dQ. At each node the analytical solution of a one-dimensional integral in

6 will be performed as will be shown later in this paper.

In order to apply the Gaussian quadrature, each of the parameters #Dj, i=1,2,.,D,

will be fixed at L points within the interval [ 0 D \ #DJ
U3. For each uncertain parameter

0D. the L points will be denoted by the index 1. = 1,.., L Since LD nodes are required

for the quadrature formula, they will be labelled by the set Q={q}, where each node

q is given in terms of the points I by the equation:

D

q = I, + X L1*1 <*s *
 1> <2)

i=2

As an example, consider two parameters in 0Q each involving L=3 points. The
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node corresponding to point 2 of 0Q1 il^2) and point 3 of 0Q2 (£2=3) is then labelled

as q=8.

From the Gaussian quadrature formula, at each node q a weight w is assigned

and its location 0Q
q is defined in terms of the roots t^. for each parameter k as

follows (see Carnahan et al, 1969):

, + -r

The expected revenue over the whole parameter set T will then be approximated

by the following Cartesian Integaration formula whose derivation is given in Appendix

B:

R(F) = M X w Rq(F)n°, Pfi'J (4)

q€Q

where M = 2'° T[? 16 u-6 L>

R (F) = conditional expected revenue for &m and 0 at node q

w = weight for Gaussian quadrature at node q

It should be noted that in this way, at each node q, the values of the uncertain

parameters 0 will be fixed and the problem reduces to the evaluation of the

conditional expected revenue function R (F) in terms of the single uncertain parameter

0 and the constant parameters 0. The evaluation of this conditional expected
m S

revenue can be performed analytically by one-dimensional integrals in 0m as will be

shown later in the paper (eqtn. (10)).

The proposed implementation of the modified Integration Method to estimate

the revenue term R(F), will then consist of the following steps:
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1. Partitioning of the vector 6 of the uncertain parameters in 6m, dQ and 0g

according to their economic sensitivity. Definition of the set #D
q at each

node q, qGQ.

2. Evaluation of the conditional expected value of the revenue objective
function R (F) at each node q through a one-dimensional integral in dm. As
will be shown later this requires the identification of subintervals for the
integration of R (F).

3. Evaluation of the expected revenue as given by equation (4)

The first two steps will be discussed in the following sections.

PARTITIONING OF THE UNCERTAIN PARAMETERS

The single uncertain parameter 6m and the subset dQ will be selected as the

ones which have the greatest economic sensitivities of the revenue function for the

existing design dE at the nominal parameter 6N. These parameters can be obtained by

solving the following LP problem where the revenue is maximized with respect to the

control variables z at the nominal parameter values, 6H and at the existing design dE:

max r(z,0N) = max [aQ • a^ dE • a2
T z + a3

T 0N]
z z

(5)

s.t. f. * bo
j + (b,1)1 dE • (b2

j)T z • (b3
j)T 8N Z 0 j€J

This LP will yield the multipliers X. for the constraints f., j€J. Since

X.=-dr(z,#N)/8f., the variation of the revenue with respect to each parameter 6. is

given by:

8 f.
X> Tt- M'-n* (6a>

The economic sensitivity can then be defined as the potential revenue over the

expected deviations by the equation:
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. a r .
if x n 2: 0

r. = ' (6b)

< 0
i

In this way, 6 is selected as the one for which r - max {r }, and 6 as the
m m i D

next few uncertain parameters that have largest r.. Note, that in this way the

uncertain parameters which are the most sensitive to the economics of the process

are selected for the evaluation of the expected conditional revenue R (F).

Qualitatively, the reason for these selections is that the approximation of the revenue

function will tend to be more accurate if it is based on the parameters that play the

most important role on the economics of the process.

EVALUATION OF THE CONDITIONAL EXPECTED REVENUE FUNCTION

At each node q, the conditional expected revenue function R (F) in equation (4)

will be of the following form:

R (F) • E [ max r(z, 6 . 0C I 0n
q) ] (7)

m' S 2

m S

Imax r(z,d ,8jd*)1p (6 )dd
m S 1 D * m m m

e L

Here r(z,0 ,0e I 0J*) is the conditional revenue function for fixed values of 6*
m S ' D D

which involves as variables the vector of control variables z and as parameters B

and 0g. However, since the revenue is essentially invariant to 0g, these parameters

can be fixed at their nominal value 0g
N. Equation (7) can then be rewritten as:
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e u

! I (max

e L

\0H.e*)pie )dd ]
m S D m m m

f II (8)

K

Note that the above integral is separable in dm and 0g. The integration in 0S

can be easily performed given analytical distribution functions. The integration of the

expected revenue in 6 reduces to a one-dimensional integral where the optimization

of the revenue function at a given value of 6 will be given by:

max r(z, 6 I 0C
N, 0n

q)s m a x an • a,T d • a_T z • a_T
e

(9)

s.t. bj + (b/)T d • (b2
j)Tz • (b3

j)T

s

where d corresponds to the design determined from problem (P1) at the given

value of the flexibility index F.

The integration of the first term in equation (8), is not trivial since the optimal

basis of problem (9) will in general change with 6 in the interval [0 L, 6 u ] . This
r m m m

implies that the integrand of the first integral in (8) is in general piecewise linear as

seen in Figure 4. Therefore, it will be necessary to identify the different subintervals

in id L, 6 u] over which the optimal basis of problem (9) changes. For this reason,
m m

equation (8) will be expressed as:

e k

inn
q % 5

e k"1

rid )p {6 )dd ] [ f TT
k mm m m J * *

(10)

where k«1,.,n is the index for the n optimal bases, 6 ° = 6 L, 6 "R * 6 u, and
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r (8 ) is the revenue function corresponding to interval {8 k'\ 8 k ] . As will be
* m m m

shown in the next section this revenue term can be expressed explicitly in terms of

8 .

IDENTIFICATION OF SUBINTERVALS

In order to compute equation (10), it is necessary to identify the different n
R

subintervals for the integration. By having only one independent uncertain parameter

dm one can use range analysis information (Schrage, 1986) to determine changes in

the optimal basis of problem (9) to identify the sequence of points 8 k, k=1,.,n with
m R

8 °=8 L, 8 nR=0 u that are required in (10). Also, through this range analysis one can
m m m m

generate explicit expressions for the revenue rk(#m) for the integration of equation

(10).

The following procedure is suggested for the evaluation of R (F) at each node q

for the given value of the flexibility index F:

STEP 1: Set B ° = d N - FA0" and the subinterval counter k = 0.
m m

STEP 2: a) By parti t ioning a3=[a4, ag, a , ] . b3
j=[b4 \ bg>, b6

j ] for 18 m. 8J. 0S
N]

problem (9) can be reformulated as:

max r(z, d k\0" d*) - max a * a,T d+ a,T 2+ a / 6 k+ a / d*+ a / 8"
m ' S D /» 7 ® 4m 5 D 6 5

(11)

s.t. (b2
j)T z + (b4')

T a ^ - [b o
j * (b/)7 d + (bs

j)T(90
q * (be

j)T ^ S
N ] , j€J

8 "

where a is a scalar variable that is equal to 6 k, and d corresponds to the

design variables predicted by (P1).

b) Formulate the dual problem of (11):

rk(8m*) - m i n -T [ b j + ( b / ) T d * (b5 i )T<?D" + ( b e ' ) T 8*1 ,,. * 8m
k
 P

M'P j G J
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s.t. £ b>. * a2 (12)

j€J

where /# (//.£0), j€J and p are dual variables corresponding to the two

constraints in (11).

The solution of the dual problem (12) will indicate the constraints which are

active, and thus constitute the optimal basis through the non-zero multipliers //. It

will also determine the value of p which is the sensitivity coefficient of the change

of the revenue with respect to the independent uncertain parameter d^.

STEP 3: a) Do range analysis on the solution of the dual problem (12) (Schrage,

1986). This will provide a value of Aff \ such that the basis wil l remain unchanged.
m

b) set e k*1 = e k * Ad k

m m m

c) Determine the revenue as a linear function of 6 as follows:
m

r (6 ) = rid k) - P (d - d k) (13)
km km * m m

since p = - 8r / dO .
' m

d) If d k+1 ^ 6 u, set 6 k*1 = d k, and go to step 4. Otherwise, set k=k+1,
m m mm

return to step 2.

STEP 4: The conditional expected revenue Rq(F) is calculated as follows:

„ e k

R m

(f)=[X f u\e k)-P{6 -e k)]p (d )d$ ] [ f TlpJejdd
q • f J k m ' m m rm m m J * * ' S i Si Si

e k-1
m

where the one-dimensional integrals in the summation are determined
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analytically.

ALGORITHMIC PROCEDURE

Based on the analysis presented in the previous section an algorithmic

procedure can be developed to find the optimal degree of flexibility when redesigning

an existing chemical plant with a linear model. After obtaining the trade-off curve

relating retrofit cost to flexibility target, as described in Pistikopoulos and

Grossmann (1987), problem (P2) is solved for different fixed values of F. A

polynomial approximation is then considered to construct the revenue versus

flexibility trade-off curve:

Step 1. a) Construct the retrofit cost versus flexibility trade-off curve, C(F)
by solving problem (P1) parametrically in F (see Pistikopoulos and
Grossmann, 1987).
b) For a set of N+1 flexibility values {F1} = {F°, F\ . , FN}, (F° = FB) obtain
the corresponding set of design variables values {d1} = {dE, d1, ., dN}.

Step 2. a) Solve the LP problem in (5) to maximize the revenue for the
existing design dE at the nominal point 0N.
b) Partition the vector of uncertain parameters 6 into the three subsets,
8 , d^, 0e according to their sensitivity coefficients in (6a) and (6b).

Step 3. For each value of flexibility F', i=0,1,.,N and its associated design
variable d1:

a) Determine the intervals [0.L, 0.u] as given in (1).

b) Fix the subset 6 at the LD nodes for the Gaussian quadrature by

determining 6Q
q as in (3) and by labelling the nodes as in (2).

c) For each node q€Q, compute the conditional expected revenue
R (F1) from (14) using the procedure described in the previous section.

d) Compute the expected revenue R(Fj) from equation (4).

Step 4. Using polynomial approximation, f i t a curve for R(F) using the
points [F j, R(F*)], i=0,1,.,N.

Step 5. Given the curves for R(F) and C(F) determine with a one-
dimensional direct search procedure the degree of flexibility F# that
maximizes Z s R(F) - C(F).

It should be noted that the accuracy of the solution wil l clearly depend on the
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number of nodes selected in step 3(b). However, as has been observed by Beureanu

(1980) usually only a modest number of nodes need to be considered.

EXAMPLES

Two examples will be considered to illustrate the application of the proposed

algorithmic procedure. The first one will be a small linear example, which will serve

to illustrate the detailed steps of the procedure. Two different revenue objectives

functions will be considered which correspond to extreme cases : the one when the

revenue function is only a function of the control variable z, and the second one

with a revenue function only in terms of the uncertain parameters 0. The effect of

the number of nodes for the integration will also be considered. The second one

will be the linearized model of a simple flowsheet problem with five uncertain

parameters, which serves to show the potential of the procedure, when the number of

uncertain parameters increases.

EXAMPLE 1

Consider that the specifications of a design are represented by the following

inequalities:

f1 = z - By • 0.5 d2 • d1 - 3 d2 £ 0

f2 = -z - 0/3 - 62 • d2 + 1/3 < 0 (15)

f, - z • ^ - J2 • d, - 1 i 0

These inequalities involve a single control variable z, two design variables d^

d2, and two uncertain parameters 6y. 62. The values of the existing design variables

are 6**3 and d2
E=1. The two uncertain parameters 6V 92 are assumed to have normal

distribution functions N(2,2). Hence, for a level of confidence of 70%, the expected

parameter deviations are A51*»A^1"» A02*=A02"=2. Two cases will be considered for

the revenue functions: (a) r(z)=10z; (b) r(d)*M}0y- 292 ($103/yr). Finally, the investment

cost for the redesign is assumed to be given by the linear function with no fixed
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cost charges: c(Ad)=10Adl+10Ad2 ($103/yr).

Since the flexibility index for the existing design is FE=0.636 (calculated as in

Pistikopoulos and Grossmann, 1987), the question to be answered is what is the

flexibility value F* that maximizes the total profit, consisting of the difference

between the expected revenue and the cost for the modifications for the two cases.

Applying the suggested algorithmic procedure the following results are obtained at

each step for the revenue r(z)=10z in case (a):

1. (a). By applying the procedure in Pistikopoulos and Grossmann, 1987, the

trade-off curve in Figure 5 was developed that relates retrofit cost to flexibility.

This curve consists of two segments. The first segment is characterized by one

limiting active set (f1ff2), for which the corresponding changes of the design variables

at F=0.81 are Ad^O, Ad2=0.335. The second segment is characterized by the active

sets {f1#f2), (f ,f3). with corresponding design changes Ad,* 1.335, Ad2= 1.335 at F=1. This

result then implies that a redesign with (^=4.335 and d2=2.335 will exhibit a flexibility

index of 1.0 at a minimum cost for the modifications of $2.7x104/yr.

(b) Choose the flexibility values {F1} = {0.63, 0.81, 1.0} and their corresponding

design variables {d1} = {(3,1), (3,1.335), (4.335,2.335)}.

2. At dE = (3,1) and 0N=(2,2), by solving the LP in (5) the corresponding

economic sensitivities are: r =20, r =10. Since r^>r^ 6 =0. is chosen as the single
l 2 1 2 m l

independent parameter and 0D
S#2. Note that here there are no d% (S=0) since there

are only two parameters.

3. For {F1} = {0.63, 0.81. 1.0} details will only be presented for F°=0.63.

(a) From equation (1) with the values A0*= A0"=2 and F°=0.63 the corresponding

intervals are: [0.728, 3.272] for 8y and [0.728, 3.272] for S 2.

(b) By selecting 6 points for 62 its nodes and weights are given in Table 1.

Figure 6 presents the geometrical representation of the nodes in 9y~02 space.

(c) For the nodes $2
q, q=1,.,6, the details are only given for the node

02
1=O.813899. By setting d° at its lower bound, 0^=0.728, problem (11) yields:
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max 10 z
s.t. a - z £ 0.138864

a + 3z £ 1.5583 (16)
-<z - z £ -4.814

a = 01

and hence its dual is given by:

min -0.138864 / i i - 1.558 p% + 4.814 n2' 0y p
s.t. ^ - 3//2 * //3 £ 10 (17)

The solution of the above dual problem yields />=-10 and ^=10, /i2
9/i3*0, which

means that constraint f is the active one, thus constituting the optimal basis (see

Figure 7). By doing range analysis, A0l
1=1.748. Therefore 0^=0.728+1.748=2.476, and

r / 0 ^ 3.31 + 10(0^0.728), for 0.728^0^2.476.

For 0^2.476, the solution of the dual provides the following result: />=10 and

/ / i s / /2S° ' ti3~^Q; t h e r e f o r e constraint f3 is the active one (see Figure 7 ). By doing

range analysis, A01
2=2.33. Since 0 ** 2.476+2.33>01

u=3.272, then ^(0^=20.79-10

(0^2.476) for 2.476^0^3.272. Then the conditional expected revenue from equation

(10) for this node is the following:

2.476 3.272

R ( O = \ [3.31 + 10^(0 -O.728)]p(0 )dd + \ [20.79-10^(0 -2.476)p(0 )dd (18)
1 *W I 1 1 *J 1 l l

0.728 2.476

where p(dj={2n<r)'v2 exp[-<0-/i)2/ 2a2], jd=<r=2. The analytic integration of (18) yields a

value of $11.407x103/yr.

By applying the same procedure for all six nodes, the expected revenue for F°

can be calculated from equation (14) at a value of $6.5115x103/yr. For F1 and F2 the

corresponding values are $12.8x103/yr and $30.0x103/yr respectively.

4. The revenue curve can be constructed using a polynomial approximation to

fit the 3 points for the flexibility index (see Figure 8).

5. Given the two curves R(F) and C(F) the degree of flexibility that maximizes
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Z=R(F)-C(F) is at F#=O.81 as shown in Figure 8. The corresponding optimal profit is of

$9.45x103/yr with design changes Ad^O, Ad2=0.335.

The same example was then solved for case (b); i.e. a revenue function in terms

only of 8, r(0)=1O0y-2dr Four and six nodes were considered for the integration

respectively. In this case, as shown in Appendix A, there is no maximization problem

over the control variable z. The results are summarized in Table 2, and the curve

that was generated is shown in Figure 9. Note, that again the degree of flexibility

that maximizes Z=R(F)-C(F) is at F*=O.81 with a profit of $7.75x103/yr. It should also

be pointed out that the approximation error due to the different number of nodes for

the integration, for this example at least, was very small (less than 1%).

EXAMPLE 2

The reactor system considered in Halemane and Grossmann (1983) is shown in

Figure 10. It consists of a reactor and a cooler, where a first- order exothermic

reaction A+B takes place. The existing design of this flowsheet has a volume of the

reactor V=4.6 m3, and an area of the heat exchanger, A=12 m2. Five uncertain

parameters are considered: the feed flow rate F , the temperature of the feed
o'

stream To, the inlet temperature of cooling water Twl, the reaction rate constant ko,

and the overall heat transfer coefficient for the heat exchanger U. Distribution

functions are provided for the five parameters, as shown in Table 3, and the

corresponding nominal values as well as the expected deviations for a confidence

level of 85%.

The specification constraints as well as the heat, mass balances and design

equations are presented in Table 4. The revenue function considered for this problem

is also shown in this table and represents the net profit of the product sales minus

the cost of the cooling utilities. Note that in this revenue function the feed flowrate

F f which is an uncertain parameter, will have a dominant effect. Finally, data for

the retrofit cost of additional reactor volume and exchanger area is also given. The

problem is then to determine the degree of flexibility that maximizes the total profit,

consisting of the difference between expected revenue and cost for the necessary
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modifications.

The model equations were linearized at the point obtained from the solution of

the feasibility test at the existing design for nominal values of the uncertain

parameters ( see Halemane and Grossmann, 1983). The flexibility index of the existing

design with V=4.6 m3 and A=12 m2 is FE=0.146. Using the procedure described in

Pistikopoulos and Grossmann (1987), the trade-off curve relating retrofit cost versus

flexibility was generated, and is shown in Figure 11. This curve is a straight line, due

to the fact that the only required modification is a reactor volume increase of 1.03

m3 at F=1. In order to generate the curve for the expected revenue three points were

considered for the flexibility {Fj} = {0.146, 0.60, 1.0} with the corresponding design

variables {d j} = {(4.6,12.0), (5.14,12.0), (5.63,12.0)}.

Optimizing the existing design at the nominal parameter values, the sensitivity

coefficients that were obtained for the uncertain parameters are given in Table 5. As

can be seen the feedflowrate FQ (8}) has the largest sensitivity, followed by the

reaction rate constant k (OX The sensitivities of the other parameters can be
O 4

neglected for practical purposes. Hence, 0 will be partitioned as follows:

Selecting four nodes for the parameter 0A. and applying the proposed procedure

for evaluating the expected revenue at each value of F1, yields the results shown in

Table 6. By then generating the revenue curve, the degree of flexibility that

maximizes the profit Z=R(F)-C(F) is determined at a value of F#=0.95, as shown in

Figure 11. The corresponding optimal profit is $7.4x105/yr with design changes in

reactor volume AV=0.97 m3 and no change in exchanger area AA=0.0 m2. Thus, by

increasing the reactor volume to 5.57 m3 the profit of the system in Figure 10 can

be increased from $4.5x103/yr to $7.4x105/yr due to the increased flexibility from the

existing index FE=0.146 to the optimal flexibility index F#=0.95.
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CONCLUSIONS

In this paper the problem of finding the optimal increase of flexibility that will

maximize the total profit in an existing process flowsheet has been addressed. It has

been shown that this problem can be greatly simplified by optimizing the expected

revenue subject to having minimum retrofit cost. This simplification was shown to be

valid for the case when the uncertain parameters have a dominant effect in the

revenue function.

Given distribution functions for the uncertain parameters and a linear model for

the performance constraints that need to hold for feasible operation, an efficient

integration procedure for obtaining the expected revenue curve as a function of

flexibility has been presented. The proper trade-off between investment cost for the

retrofit and the expected revenue that will result from having an increased flexibility

can then be established by constructing the composite curve of the total profit

versus flexibility. Two example problems were presented to illustrate the fact that

the proposed method provides a systematic approach to determine the optimal degree

of flexibility in retrofit design.
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APPENDIX A. ON THE RELATION BETWEEN PROBLEMS (PO) AND (P)

It will be shown in this Appendix that problems (PO) and (P) are equivalent

under the assumption that the revenue function r{z,6) is only a function of 6. For this

case (PO) can then be written:

max Z = E { r<0) I f(d,z,0)£O }- *(y,Ad)
y,Ad,F 0ET(F) ' r

(AD
s.t. g(y,Ad,F) £ 0

d * dE + Ad

where the maximization of the revenue with respect to z can be removed since

r(z,0)=r(#). Furthermore, the inequalities f(d,z,#)^O are satisfied V 0€T(F) if and only if

g(y,Ad,F)£0, d=dE+Ad, are satisfied (see Pistikopoulos and Grossmann, 1987). Hence,

the function

R(F) = E { r(0) |f(d,z,0)£O } (A2)

will exist for d=dE+Ad, Ad=arg[C(F)], and where

C(F) = min rf(y.Ad)
y,Ad r

s.t. g(y.Ad,F) <> 0 (A3)

corresponds to the maximization over y and Ad of the term -^(y,Ad) in (A1).

From (A2) and (A3), (A1) reduces to:

max max Z - R(F) - *(y,Ad)
r y.Ad

s.t. g(y,Ad,F) <. 0
d = dE + Ad

= max Z * R(F) - max
F y,Ad

s.t. g(y,Ad,F) ^ 0
d = dE + Ad

= max Z = R(F) - C(F)
F
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s.t. C(F) = min ^(y,Ad) (A4)
y,Ad

s.t. g(y,Ad,F) <> 0

where R(F) is defined by (A2) for d=dE+Ad, Ad=arg[C(F)].

It then follows from (A4) that problems (PO) and (P) are equivalent for the case

when r(z,0)=r(0).
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APPENDIX B. DERIVATION OF MODIFIED CARTESIAN INTEGRATION FORMULA

It will be shown in this Appendix how the Cartesian Integration formula in

equation (4) can be derived based on the partitioning of the uncertain parameters 0.

By partitioning 0 into three subsets 0=[0m, 0Qt 0g] the expected revenue R(F)

corresponds to:

max riz.d) } - ^E^ { max r{z.d m.d D,d J }

0 u <9 u e u

m D S

= f f f imax riz.0 .d.BHp (6 )d6 TT
J J J m D S m m m* *
•^ v , v , 2 i=1

e L L je L e L ej
m D S

We approximate the integral in dQ with a Gaussian quadrature, where L nodes

are specified for each 0Dj. With this we then define a set of node points #D.q, as in

equation (3). This permits us to use summation over the nodes in Q as follows:

0 u du

m S S

f f imax iiz.6 .6 \0*)lp (0 )dd T\pJd)dd
J J m S 1 D m m m * * Si Si Si

L 0J
where the constant term M=2'D I I D (0 u-0 L) comes from the transformation of

A A i = 1 i i

the limits of the integration from [0.L,0.U] to [-1,+ 1], for which the Gaussian

quadrature formula holds (see Carnahan et a/, 1969).

Since dr/d#s is assumed to be zero, then 0 can be fixed at its nominal point

#S
N, and in this way the above multiple integral represents the conditional expected

revenue Rq(F) as given in equation (7). Substituting R(F) yields:

qGQ "

which is exactly equation (4).
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Table 1: Example 1a: Nodes and weights of Gaussian formula

Node number Node Weight

q

1

2

3

4

5

6

0.813899

1.158942

1.890078

2.109921

2.841057

3.186100

w
q

0.171324

0.360761

0.467913

0.467913

0.360761

0.171324
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Table 2: Example 1b: Expected revenue for 4 and 6 nodes formulae

Flexibility index

0.63

0.81

1.00

No.

4

$103/yr

7.246

11.090

15.144

of nodes

6

Profit

$103/yr

7.282

11.044

15.144

Error

%

0.5

0.4

0.0
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Table 3: Data for uncertain parameters for example 2

Uncertain
Parameter

e

F (krnoles/hr)
o

T (K)
O

T , (K)
w1

k (hr'1)
0

U (KJ/m2hrK)

Distribution
Function

N(45.36,5)

N(333,4.5)

N(300,6)

N( 12,0.8)

N( 1635,110)

Nominal
Value

8N

45.36

333.0

300.0

12.0

1635.0

Positive
Deviation

7.5

6.66

9.0

1.2

163.5

Negative
Deviation

Ad'

7.5

6.66

9.0

1.2

163.5
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Table 4:

Mode) equations, specification inequalities

and economic data for example 2

Retrofit cost: 10 AV + 5 AA ($104/yr)

Revenue function: r = 100 FQ - 2 Fw ($103/yr)

Model equations Specification inequalities

-cA1)/c
Ao A1 Ao

T ,-T ,
w2 w1

T,-T ,
1 w2

T-T ,
2 w1
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Table 5: Sensitivity coefficients of the uncertain parameters
for example 2

Uncertain parameter Sensitivity coefficient

1 F 1628.16
O

2 T 53.08
O

3 T , 61.15

4 k 901.98
O

5 U 0.00
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Table 6: Expected revenues for the three points of example 2

Flexibility index

F1

0.146

0.60

1.00

Design variable

d'

V(m3) A(m2)

4.6 12.0

5.14 12.0

5.63 12.0

Revenue function

R(F')

$104/yr

0.45

68.2

146.4



t
Expected Revenue . R(F)

J
R e t r o f i t Cos t . - C ( F )

Figure 1: Curve of total profit versus flexibility
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Figure 3: Nodes for the Cartesian Integration Method



ma x
z

A

Figure 4: Piecewise linear revenue function
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Figure 5: Curve of cost vs. flexibility for example 1
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Figure 6: Geometric representation of the nodes for example 1
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Figure 7: Geometric representation of the optimal bases
of the revenue function for example 1a



Figure 8: Revenue curve vs. flexibility and optimal degree of flexibility
for example 1a



Figure 9: Revenue curve vs. flexibility and optimal degree of fiexibilty
for example 1b



-Ao

V , T. CA1 "

* T w 2
Tw1

Figure 10: Reactor system of example 2
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