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ABSTRACT

This note deals with the problem of evaluating the flexibility index for existing

designs for which the new nominal value of operation of the uncertain parameters is

infeasible. In this case one can not inscribe within the region of operation the largest

hyperrectangle to determine the flexibility index. However, it is shown that for linear

systems a negative value of the index can be defined in terms of active sets of

constraints that limit flexibility. Furthermore, it is shown that the optimal redesign to

increase flexibility can easily be obtained with the procedure by Pistikopoulos and

Grossmann (1987). A small example is presented to illustrate these ideas.



INTRODUCTION

Current methods for the evaluation of the flexibility index for a given design

assume that the nominal point 0N of the uncertain parameters is feasible for the

operation of a given process (see Swaney and Grossmann, 1985). The same

assumption holds for the definition of the resilience index for the heat exchanger

networks, by Saboo and Morari (1986). This assumption, however, is only generally

true for a grassroot design where feasible designs are selected for the nominal

parameter values. In the redesign of a process, however, it is very often the case

that new desired conditions of operation might result in a situation where the

nominal point du is infeasible.

Two basic questions that then arise for such a case are the following:

(i) How to define and compute the flexibility index F for an existing
design whose nominal parameter point is infeasible?

(ii) How to incorporate the infeasible nominal point within a redesign
procedure for improving process flexibility?

It is the purpose of this note to show that for linear process models question

(i) can be handled by the application of an active set strategy for flexibility analysis,

and that question (ii) can be answered by a straightforward extension of the

procedure described in Pistikopoulos and Grossmann (1987) for improving flexibility in

the retrofit of linear systems.

FLEXIBILITY INDEX FOR INFEASIBLE NOMINAL POINT

In order to illustrate the problem of defining flexibility for a design with

infeasible nominal point, consider that the specifications of a design are given by the

following four linear inequalities:

f1 = z - dy • 02/2 + d1 - 3d2 < 0

f2 = -2 - dp - 62 + d2 • 1/3 < 0



(1)
f3 = Z * 6 \ " ff2 " d1 " 1 ~ 0

f4 = z • 13/21 <91 • 5/3 62 - d1 - d2/3 < 0

The above inequalities involve one control variable z, two design variables d

and d2 and two uncertain parameters 9^ and d2. It will be assumed that the existing

design has values of the design variables of d*=7. d2
E=4, and that the nominal point

for the uncertain parameters has the values of 6^-8 N=5. Expected parameter

deviations along the positive and negative directions are also specified as follows:

For a given design d, the parametric region of feasible operation, R, is defined

by those 0-points for which the feasibility function ^(d,0)<O (see Swaney arid

Grossmann, 1985). The function f(6,6) is given by the minimization of the maximum

constraint value; that is, ^(d,0)=mjn m.^ {f (d,z,0)}. The corresponding Kuhn-Tucker

conditions of f(ti,8) as applied to (1) yield:

x, * x2 • x3 • x4 = i
X, - X2 + X3 + X4 = 0 (2)
x, . x2. x3, x4 ̂  o

Since there is one control variable z, there are three sets of two active

constraints that can potentially limit flexibility (Grossmann and Floudas, 1987). In

particular, the constraints that can satisfy (2) are: ^^s^^2^
 w ' ^ ^ /^ j^O-S,

J 2={fv
f,J w i t h X > X > 0 . 5 , Jj*{f9.1J with Xo

2=X/=0.5. Also, since for the k'th active
A 2 3 2 3 A 2 4 2 4

set ^k(d,0)=Z X.kf.(d,z,0) (see Pistikopoulos and Grossmann, 1987) this yields the

following feasibility functions for the existing design:

fH6*.d) = -2/3 6% - 0.25 62 - 0.335

f2(6*,d) = dp - 62 - 1.835 (3)

. fH6*,d) = ep * ep - 2

Figure 1 shows the feasible region R, whose boundary is determined by setting

j/(dE,0)=O in (3) for each active set k= 1,2,3. The rectangle T, which is centered at the



nominal point and with sides equal to the expected deviations, represents the desired

region of operation with flexibility index F=1. That is T=T(F)={0l 0N-FA0*<0<0N+FA0 + }

where F=1. To determine the actual flexibility index F in Figure 1, the largest

rectangle T(F) that ..is proportional to T must be inscribed within the region of

operation. However, from Figure 1 it is clear that this, is not possible since the

nominal point 0N=[5,5] is infeasible. Hence, in this case the flexiblity index F cannot

be estimated from the general formulation (see Swaney and Grossmann, 1985):

F = max h

s.t. max min max f (d,z,0) ^ 0 (4)
0 € £ £ J

TU)={0l 0N-2Al9'<0<0N+5A<T}, 5>0

In the next section, however, it will be shown that despite the fact that

problem (4) can not be solved for infeasible 0N, a flexibility index F can still be

defined in terms of the active sets. The geometric interpretation, however, is

different from the one used when the nominal point is feasible.

ACTIVE SETS FOR THE FLEXIBILITY INDEX

An alternative formulation to determining the flexibility index in the case of

linear systems, consists of finding the smallest scaled deviation from the nominal

point to the boundary of the region for each active set (Grossmann and Floudas,

1987). That is,

F = min { dk )
k*1,2,3

(5)
s.t. ^k(d.0N+SkA0ck) = 0 k=1,2,3

where A0ck is the critical parameter direction. As discussed in Pistikopoulos

and Grossmann (1987) the critical directions can be obtained by analyzing the signs

of Bykldd, k=1,2,3, and expressed in terms of the expected deviations. Hence, from

(3) it folows that the critical directions for each active set are given by,



A 0 ° = [ -4,-3 ], A0C'2 = [ 2 , - 3 ], A0C'3 = [ 2,2 ] (6)

and these are shown in Figure 1. Based on these critical directions, the values of dk

can be determined from the constraint in (5) by solving the equations ^k(#N+<5kA0ck)=O.

From (3) this then leads to the following results:

a1* 1.44, a2* 1.41, <53=-0.4 (7)

Hence, from (5), the flexibility index F exhibits a negative value, F=-0.4. The

interpretation of this value is that it represents the fractional deviation along the

negative direction of A0Ct3 and that reaches the boundary f2=0 (see point A in Figure

1). The negative value of F is then due to the fact that the inequality j^3(dE,0)<O is

infeasible for the nominal point #N=[5,5]. Hence, using the concept of active sets

one can still define a flexibility index for infeasible nominal points, although in this

case the index takes a negative value.

REDESIGN THROUGH ACTIVE SETS

Pistikopoulos and Grossmann (1987) have proposed the following MILP

formulation for determining the cheapest retrofit design modifications to increase the

flexibility to a specified flexibility target F1:

min cTw + >ffTAd
w,Ad

s.t.
k=1,,nAS

(8)
O

1=1

- U.' w £ Ad £ U.+ w. , w.=0,1, i=1,.,r
I I I I I

AdGRr

where Ad are the design changes associated with 0-1 variables w., i=1,.,r; U.+, U." are

bounds for the design changes; c and JS are cost coefficients for the fixed-charge

cost model; 5k is the flexibility index that is predicted for each of the nAC active
AS



sets of constraints given the design changes Ad.; oj is the flexibility index for the

k'th active set at the existing design, and a* are linear sensitivity coefficients. Note

that in problem (5), bk is not restricted to have positive values, and therefore this

formulation can be applied for negative values of oQ
k as will be shown below.

To apply the formulation in (8) to the example problem, the linear sensitivity

coefficients <rk have to be calculated as given by the equation (see Pistikopoulos and

Grossmann, 1987):

J fe J A

where vk

The coefficients 5 k, k=1,2,3 correspond to the values in (7). Hence, the

equations for flexibility for each active set in (8) are given as follows:

(i) active set J A M f / ^ ^^=0.2727, <72
1=-0.5455, 3Q

1 = 1.44, which leads to

S1 = 1.44 + 0.2727Adi - 0.5455Ad2

(ii) active set JA
2s^2^3>#. ^^=-0.1249, (r2

2=0.375, 3o
2=1.41f which leads to

£2 = 1.41 - 0.1249Adl + 0.375Ad2

(iii) active set JA
3={f -f }: 0-^=0.5222, <r 3=-0.3501, 5 3=-0.4, which leads to

A 2 4 1 2 O

53 - -0.4 + 0.5222AC1, - 0.3501Ad2

Assuming cost coefficients c=(0,0), /S=(10,10) and no bounds for the changes in

the design, the MILP in (8) reduces to the LP problem:

min 10Ad, + 10Ad,
Ad,,Ad2

 1 2

s.t. dk > F' k= 1,2,3



01 = 1.44 + 0.2727Ad i - 0.5455Ad2 (10)

02 = 1.41 - 0.1249Ad i + 0.375Ad2

a3 = -0.4 + 0.5222Ad i - 0.3501Ad2

Setting the f lex ib i l i ty target equal to one, i.e. F^I.O, the above problem (10)

yields: [ Ad1 = 2.682, Ad2 = 0.0 ] and thus the new design is given by d NEW = 9.682,

d2
NEW = 4.0.

The parametric region of this optimal redesign is shown in Figure 2, where the

corresponding functions j^k(dNEW,0) wi th the new design variables are given by:

j ) « - 2/3 0, - 02/4 + 1.006
?<2(dNEW,0) = 0/3 - 67 - 3.176 (11)
jr(dNEW,0) = 0 /7 * B2l2 - 3.341

As can be seen in Figure 2 the rectangle T which corresponds to the flexibility

index value of F=1 is now inscribed within the region of operation of the new design.

CONCLUSIONS

It has been shown in this note that for linear systems, the flexibility index F

can be obtained for the case of an infeasible nominal parameter point 6H through the

active sets of constraints that may limit flexibility. As was shown, in this case the

flexibility index takes a negative value, and represents the fractional deviation along

the negative critical direction of the limiting set of active constraints. Furthermore,

it has been shown that the procedure described in Pistikopoulos and Grossmann

(1987) can handle with no difficulty the case of retrofitting linear designs with

infeasible nominal point dH in order to achieve a desired degree of flexibility.
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Figure 1: Feasible region of the existing design
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Figure 2: Feasible region of the redesign


