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Abstract

Anticipating the impact of scheduling at the design stage can result in

significant savings in the capital cost of multiproduct batch plants. In this paper this

idea is applied to multiproduct batch plants with one unit per processing stage.

Efficient scheduling models are developed for minimization of cycle time for

Unlimited Intermediate Storage and Zero Wait policies in mixed product campaigns.

Based on these models, it is shown that simplified constraints that account for these

scheduling policies can be incorporated in the optimal design problem. Numerical

examples are presented for both scheduling and design problems.



Introduction

Incorporating constraints that account for scheduling effects in the optimal

design of multiproduct batch plants is a very difficult task. Thus, previous procedures

for design of these plants have assumed only the simplest type of scheduling policy,

namely campaigns of single products with no intermediate storage. In this policy it

is assumed that the products will be produced in a sequence of campaigns each

devoted to a single product. In this way the scheduling is characterized through

cycle times for each product which are then included into a single time constraint for

the optimal design problem. This type of assumption which greatly simplifies the

design problem, is the one that has been used in previous methods (e.g. Sparrow et

al , [1975], Grossmann and Sargent, [1979], Flatz, [1981], Yeh and Reklaitis, [1985]).

The important limitation in these methods, however, is that the simplified

scheduling policy that is assumed at the design stage can greatly overestimate the

time requirements. Therefore, this can have the effect of producing large overdesigns

for the equipment when a fixed time horizon is considered for specified production

requirement. It would be clearly desirable to consider at the design stage more

efficient scheduling policies such as mixed product campaigns, where sequencing of

batches of different products can reduce idle times to increase the utilization of

equipment. It is precisely the purpose of this paper to accomplish this objective. As

an initial step, the case of multiproduct batch plants with one unit per stage will be

considered.

The problem that is specifically addressed in this paper is as follows. Given is

a plant with M batch stages with one unit per stage. Production rates for a given

time horizon, processing times and size . factors for Np products that are to be

manufactured are also given. It is assumed that the plant is of the multiproduct type

[Rippin,1983] in which all the products follow the same processing route through the

M stages. The problem then consists in determining sizes of batch equipment, the

production scheduling, and the possible use of intermediate storage that will minimize

the investment cost of the plant.

For the scheduling aspect, mixed product campaigns will be considered for the



two following cases: Unlimited Intermediate Storage (UIS) and Zero Wait (ZW) policy.

As is well known [Ku and Karimi, 1986], these correspond to limiting cases with the

former being the most efficient, and the latter the most conservative scheduling

policy. The proposed strategy wil l consist of developing for these two policies

simplified expressions for time constraints that can be readily incorporated into the

design problem. The detailed scheduling is obtained at a second stage, where the

question of intermediate storage can be addressed by analyzing the two limiting

policies.

In order to handle the scheduling problem effectively, new formulations are

proposed for the UIS case, and the ZW policy, and where the objective that is

considered is the minimization of cycle time. The former policy involves an MILP

problem whose optimal objective function value can be obtained by a simple

analytical expression. The latter policy involves the solution of a 0*1 minimax

assignment problem that is based on time slacks for any two consecutive batches,

and which can be solved as an LP in most cases. Both of these formulations can be

solved with modest computational effort even for a large number of product-batches.

Using as a basis these formulations, the derivation of simplified constraints for

design are then presented. It will be shown that these constraints can be incorporated

into the NLP model that has been reported previously in the literature for

multiproduct batch plants.

Examples are presented first to illustrate the efficiency of the proposed

formulations for the scheduling of the UIS and the ZW policies. Examples are then

also presented to illustrate how these two scheduling policies can be incorporated at

the design stage with the proposed simplified constraints.

Comparison of Sequencing Policies

In order to illustrate the difference of scheduling a multiproduct batch plant

with single product campaigns as opposed to using mixed product campaigns,

consider example 1 in Table 1 involving 3 products and 3 stages, where 3 batches of

each product must be manufactured. It is assumed that set-up and clean-up times are

negligible.



If we do not allow for intermediate storage, the lowest total time (makespan)

that is required for the single product campaign is 48 hrs as shown in Fig. 1(a). Note

that the cycle time of products A, B, C are 5 , 4 and 5 hrs, respectively. To reduce

the makespan, we could consider mixtd product campaign* where the three products

A, B, C, are produced in 3 cycles. The most conservative policy would be the zero-

wait (ZW) policy where a batch upon completion in a stage must be transferred

immediately to the following stage. The shortest makespan we can obtain is of 42

hrs by using the sequence C-A-B as seen in Fig. 1(b). Note that in this schedule the

cycle time for a single sequence of C-A-B is 13 hrs. Also note that stage 1, which

limits the cycle time, involves slack times of 4 hours between products A and B. To

further reduce the makespan, we could consider the use of intermediate storage in a

mixed campaign. In particular, with the unlimited intermediate storage policy (UIS), the

shortest makespan that we obtain is of only 38 hrs with the sequence C-A-B as seen

in Fig. 1(c). Note that in this case the cycle time of a single sequence C-A-B is

reduced to 11 hours and that stage 3 limits this cycle time.

Thus, from the above example we can conclude that by sequencing the batches

of different products in a mixed campaign, we can decrease significantly the

makespan when compared to using single product campaigns with no intermediate

storage. Furthermore, the UIS and the ZW policies are limiting cases for sequencing,

with the former providing the shortest makespan, and the latter with the longest. For

the design problem, where a fixed horizon time is considered (typically one year), it

then follows that the UIS policy requires the smallest equipment sizes at each stage,

while the single product campaigns requires the largest. The ZW policy will in general

require equipment sizes that lie in between.

In order to derive appropriate time constraints for sequencing in the optimal

sizing problem, it is useful first to present general MILP formulations for minimizing

the makespan with the unlimited storage and zero-wait policies. It will be shown that

the difficulty involved in solving these formulations can be circumvented by replacing

the minimization of the makespan by the minimization of the cycle time. This

objective, which is suitable for long Kangt hohJLzonb, will then be used as a basis

for deriving the simplified time constraints for the design problem.



MILP Models for Minimizing Makespan

The problem of determining the product sequencing that leads to the shortest

makespan for the UIS and ZW policies will be formulated as MILP problems in this

section. In order to derive the corresponding models, Nc identical cycles will be

assumed for the production. Each cycle consists of N batches involving Np products.

As an example consider Table 2 where the production task consists of manufacturing

6 batches [N=6] of products A, B, C, D, E and F [Np = 6] in five cycles [Nc = 5].

These product-batches are to be manufactured in a plant with 4 processing stages.

Since we do not know apriori the sequencing of the N product-batches in each

cycle, we will consider a sequence of N production slots where the assignment of

each batch to each of these slots must be determined. The potential assignment of a

batch JL, >cc1,. . N, to a production slot L, £=1,. . . N, will be denoted by the 0-1

variable Y-o, where a value of one implies that batch i is assigned to production-

slot L The following constraints must be satisfied for these 0-1 variables:

Every slot I must be assigned exactly to one product-batch Jc

YH " 1 * = 1 N ( 1 >

Every product-batch i must be assigned to exactly one slot t:
N

Y:a = 1 I = 1,...,/V (2)

As seen in Fig. 2, the following variables are required to model the times

associated at each stage j, j = 1,. . M, of the production slots I, I = 1,. . . N:

TF :£ * time at which processing in time-slot I of stage / is finished.

Tl -£ = time at which processing in time-slot I of stage j is started.

Given the fixed processing times tj: of batch JL in stage /, the two above

variables are related in terms of the assignment variables Y; ;, by the equation:



4iUj £ = 1 N ; J = 1 M (3)

77 n
 s 0.

From Fig. 2, it is clear that the start time of slot l+\ at every stage j requires

that the processing of slot I be finished. That is,

77'it * r / i * • ' £*i,...,/v-i ; y«i /if (4)

As for the completion and start time relations for two successive stages, these

depend on the sequencing policy that is used:

a) For the UIS policy where there is the possibility of storing the batch

produced in stage j, the start time of stage j+1 can be performed any time after the

completion of stage j:

TFT£ ^ Tl'.£ I = 1,...,/V ; j = 1,...,/W-1 (5a)

b) For the ZW policy where no intermediate storage is available, and no idle

times are allowed for the processing between stages, the start time of stage j+1 has

to coincide exactly with the completion time of stage j:

TF.JL = Tl Uyl l = 1 - " / v ; i = 1 M~^ {Sb)

In order to define the total time (makespan), it is convenient to define first the

cycle time associated with each stage j:

CTj = TF. - r/- j = 1 M (6)

The total time must then be greater or equal to the total processing time

required for each stage. Since N cycles are considered, this leads to the inequality.

(7)Tt * t r / y r ^ / J + NfT; * [rfMN-TF.N] y-1—A#

where the first and third term in the right hand side, correspond to head and

tail times, respectively (for example, see Fig. 3).



Finally, the minimization of the makespan implies the objective function,

min Tx (8)

This objective function subject to the constraints (1M7) defines problems MILP1

and MILP2 with which one can determine the optimal sequencing for the UIS and ZW

policies, respectively. Note that MILP1 involves constraint (5a) while MILP2 involves

constraint (5b).

In order to provide some insight into the computational requirements of these

MILP models consider the example given in Table 2. For the UIS case the optimal

sequence is ( E-A-B-F-D-C ) with a total makespan of 427 hrs and a cycle time of 80

hrs, as shown in Fig. 4(a). The predicted optimal sequence for the ZW policy is ( E-D-

B-A-F-C ) as shown in Fig. 4(b), with a total makespan of 505 hrs and a cycle time

of 97 hrs. In Table 3 the problem sizes and computational statistics for minimization

of makespan are presented. Note that both, MILP1 and MILP2 have a non-zero gap

with respect to the LP solution where the integrality constraints on the 0-1 variables

are relaxed. Hence, both problems require a relatively substantial effort in the branch

and bound procedure.

Since solving problems MILP1 and MILP2 can clearly become computationally

expensive for larger problems, it is convenient to exploit some of the features of

the design problem. In particular since the horizon time H is usually long (e. g.

operating time for one year), the number of cycles Nc that is necessary for total

production will be typically rather large. This would suggest that an alternative

criterion for the scheduling could be the minimization of cycle times since the

contribution of heads and tails for the total time as given by constraint (7), will be

negligible for a large number of cycles Nc. In the next two sections it will be shown

that considerable simplifications are possible by considering the minimization of

cycle times (instead of total makespan) of the UIS and ZW policies.
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Minimization of Cycle Time for UIS Policy

Consider equation (6) which defines the cycle time for each stage. If we add (3)

over the I slots and substitute (1) and (2) into this equation, we obtain

N N N N N

CTi * 7 v r / i i =

If we neglect the first and third term of the right hand side in (7) as Nc can be

assumed to be large, then the minimum cycle time is given by:

7
From (9) it then follows that,

This theoretical minimum for the cycle time is always attainable for the UIS

case. The constraints in (4) are automatically satisfied by (11). Constraints (5a) can

also always be satisfied by shifting the upstream times to the left and the

downstream times to the right with respect to the bottleneck stage j* that defines

the cycle time in (11). Furthermore, what (11) implies is that for UIS the minimum

cycle time is tndzpzndtnt of the sequencing of batches. Thus, the derivation of a

schedule for UIS with minimum cycle time reduces simply to selecting any sequence

of product-batches, and setting slack times of bottleneck stage(s) to zero. This then

also implies that if we solve the following problem:

min CT

s.t. CT * CT. j m 1,...,/V (M/LP3)

and constraints (1)-(5a) and (6)

it will have a zero-gap between the relaxed LP and the integer solution. With the

solution of MILP3 the timings of the schedule for UIS policy can be obtained. MILP3

has been applied to the problem in Table 2 that involves production of batches for 6



different products in a plant with four production stages. As seen in Table 3, MILP3

has zero gap predicting the minimum cycle time of 80 hours which is also predicted

by equation (11). As will be shown later in the paper, equation (11) can be used as a

basis to derive time constraints for the optimal design problem with UIS policy.

Minimization of Cycle Time for Zero Wait Policy

In the case of the ZW policy the equation in (11) provides only a lowtA bound

to the cycle time for the ZW policy. The reason is that the equality constraints in

(5b) may not be satisfied, since for the ZW policy there is no freedom of shifting

times upstream and downstream as was the case in the UIS policy. Furthermore,

stages that limit the cycle time will contain in most cases non-zero slacks. This then

means that if we were to solve problem MILP3, with constraint (5b) instead of (5a),

there would be a non-zero gap in the MILP, which would still make it computationally

expensive to solve. For this reason, a new MILP formulation for the ZW policy will

be developed which exhibits zero gap and can in fact be solved as an LP problem in

most instances.

The basic idea behind the new formulation is as follows. For the ZW policy

the optimal cycle time will, in general, not be equal to the minimum cycle time of

UIS ( >c.e. CT 1M ) because all the stages including the ones that define bottleneck
M IN

will often exhibit idle times ( iJjickl ) between some of the consecutively produced

product-batches (e.g. see Figs. 1 and 4). It should be noted that these Alack* are only

a function of consecutive pairs of batches [Wismer, 1972]. As an example consider

the two batches in Fig. 5. It can be seen that the slack in stage 1 is 1 hr., in stage 2

it is zero, in stage 3 it is 2 hrs. Therefore, the slacks for each pair of batches can

be easily computed a priori (see also Appendix I).

Based on the observation that in ZW policy two consecutive batches define the

minimum slack time at each stage, it is possible to use this insight to develop a

method for sequencing that is considerably faster that the previous ones. It is then

natural to define the following binary variable for any two successive product

batches i ¥ fe:
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if product-batch k is produced after i
0 otherwise

As every product-batch is produced exactly once in each cycle, it will appear

exactly once in the first place and exactly once in the second place in the pairs (I,

k) of product-batches that are produced during a production cycle. Therefore the

following two assignment constraints must apply*,

X jJk N

feo

YC^ = 1 fe = 1 N (14)

The cycle time of any stage is composed of the batch processing times of

each product-batch produced in that stage and the slacks that are forced to exist

between some of the two consecutive product-batches. Since the overall cycle time

CT must be greater than or equal to the cycle time associated with each stage, the

following constraint must be satisfied:

CT * Z Z y c A i + ^Lfli i=1 M

where SL-^ • defines the slack (or forced idle time) in stage j when product-batches

i and k are produced in succession, in that order. The data for the slacks SL-L - can

easily be generated a priori by examining every pair of products i, k as was

explained previously. As an additional example, consider the three products and three

stages in Table 1. Using the procedure described in Appendix I, examination of each

pair of products yields the slack times given in Table 4.

The objective function of minimization of cycle time,

min CT (16)

subject to (13M15) defines then MILP4 which is a 0-1 minimax assignment problem.

•For simplicity th« condition ^ # fe is not stated in the equations
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In Appendix II it is proved that if there is only one stage that limits the cycle time,

pure integer solutions in MILP4 can be obtained through the solution of the relaxed

LP where the Y C ^ variables are treated as continuous between values of zero and

one. For the case of two or more stages that limit the cycle time, it is proved that

the relaxed LP has zero gap with respect to the optimal MILP solution. This means

that MILP4 can often be solved as an LP problem or else requires the examination of

few branches in a branch and bound procedure.

The formulation MILP4 has been applied to Example 2. As seen in Table 3 the

cycle time of 97 hrs was obtained by simply solving the relaxed LP. Thus, the CPU

time is much smaller than in MILP2. The optimal sequence that was obtained is E-D-

B-A-F-C which is same as in Fig. 4(a). It should be noted that actual implementation

of this sequence can be performed by starting at any product; that is:

E-D-B-A-F-C , D-B-A-F-C-E , B-A-F-C-E-D

A-F-C-E-D-B , F-C-E-D-B-A , C-E-D-B-A-F

all have the same cycle time. The one leading to minimum makespan could be

chosen by direct examination of the alternatives or with the formulation presented in

Appendix III.

Another important point in the model MILP4 is that in principle it is possible to

obtain a sequence with subcycles of batches. For example, given the six products (A,

B, C, D, E, F) the constraints in (13) and (14) would satisfy the assignment of

variables for which the sequence is given by the subcycles (A-B-C) and (D-E-F). If

each of these subcycles is performed a large number of times one after the other,

then the error introduced by such a solution would only be the slack times for the

transition from one subcycle to the other. It should be noted however, that the

occurrence of subcycles will only tend to arise in large problems. Also, subcycles

could be eliminated by the introduction of subtour elimination constraints as in the

travelling salesman problem, but this can greatly increase the difficulty of solution of

the problem [Papadimitriou and Steiglitz,1982].

Finally, it should be noted that the concept of using the slacks in MILP4 can

easily be extended to account for set-up and clean-up times. The data for minimum

clean-up and set-up times when product fe is produced after product i can be
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incorporated into slack tables so as to satisfy both ZW conditions and the clean-up

and set-up times. For example, say the clean-up and set-up data in example 1 is such

that when product A is produced after product B, stage 1 requires 2 hrs and stage 2

requires 1 hr. The slacks in Table 4 for this particular product combination show that

stage 1 has zero slack. Thus, a slack of 2 hrs will have to be added in stage 1. To

satisfy constraint (5a) all the downstream stages will have to be 'shifted forward1

by two hrs. JL.l. fourth row of Table 4 will have to be changed from 0, 1, 4 to 2, 3,

6.

Design and Sizing of Batch Plants

Having considered the scheduling in mixed product campaigns with the UIS and

ZW policies, the optimal design problem will be considered next. The formulation

NLP1 for designing multiproduct batch plants with one processing unit in each stage,

with single product campaigns and no intermediate storage is as follows [Grossmann

and Sargent ,1979]:

M

min
j j

(NLP\)

s.t.
j = 1 M ; i * 1 N

p

Np Oj TT

and where

In the above formulation the objective consists of minimizing the investment

cost in terms of the volumes V • of the units at each stage. The first constraint

defines the volume requirements at each stage in terms of the size factors S ; ; and
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the batch sizes B .̂ The second inequality is the horizon constraint for single product

campaigns; namely, the sum of cycle times T multiplied by the number of batches

[Qy / By ] must be less than or equal to the horizon time H, where Qy are the fixed

production demands for each of the products. Finally, the cycle time T , for each
Li

product JL, is equal to the maximum of the processing times tyy of that product over

all the stages.

It is clear that in order to consider scheduling policies different from single

product campaigns, the second constraint (horizon constraint) in NLP1 must be

replaced by other suitable expressions. In the case of the UIS policy this can be

accomplished as follows.

Consider the definition of the minimum cycle time in (11). By defining a cycle

to extend over the horizon time H so as to include all the product-batches V = 1,..,N

that are required to satisfy the total production demand, the total cycle time for

each stage j is given by* ,

*£, . y = 1 M (17)

where N is the number of product-batches in a cycle. Since the cycle extends over

the whole horizon time, N represents the total number of product-batches that will

be produced in the time horizon H. In terms of individual products, N is given by,

N = ]JT nji (18)

where the number of batches n- of each product I is in turn given by

n: - — i « 1,...,/V (19)

From (17), (18) and (19) it then follows that.

01 »

• In this section JL corresponds to the index of product-batches, /C for the products.
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N N

= 2^ n^ ti= 2-, ~ Ui i'"1 M (20)

Since the horizon time H must be greater than or equal to the total cycle time

of each stage j (neglecting the heads and tails), then from (20), the simplified horizon

constraints for UIS policy reduce to:

— t- • <> H j = 1,...,*f (21)
J

Replacing the second constraint in NLP1 by the inequalities in (21), leads to the

nonlinear program NLP2 for the optimal design of multiproduct batch plants with UIS

policy:
M

min ]]T a- V#j (NLP2)
i •' i

s.t.

H

Note that this formulation requires M horizon constraints as opposed to the

single horizon constraint in NLP1. In all, NLP2 requires [M*Np+M] constraints

compared to [M*Np+1] in NLP1. The number of variables in NLP2 and NLP1 is the

same since only V • and B- are involved. Also note that in NLP2 the investment cost

of the intermediate storage is neglected.

For ZW policy the scheduling information can be embedded at the design stage

as follows. Consider the assignment constraint (13),
N

X yCv"fe' = 1 *' " 1 N

fef.1
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where there will be N equations, one for each of the product-batches V. Since n- is

the number of batches for each product JL, and defining S - as the set of product-

batches belonging to product L then by adding the above equations gives.

YCi'k> m ni < ' ' "P (22)

Vk>
YC;,h, - n. i - 1,...,/V (23)

which leads to
N

, • • / » . - I - 1 /V. (24)

where NPRS -^t is the number of times that the batches of product JL and' product-

batch fe' will occur in pairs, during production run over the horizon period. By

regrouping in (24) the domain of fef (fe' = 1,...,N) into various products (fe=1,...,Np) leads

to,

T*[ ? NPRS:L, J = ns i = 1 N ( 25 )
fe-1 fe'

NP

NPRS-L, m n- I = 1,...,/V (26)
fe-1

Similar manipulation of the assignment constraints (14) leads to:

where in both (26) and (27) NPRS -L represents the number of times the batches of

products i and k occur in pairs.
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From the cycle time constraint in (15) for ZW policy, and by defimng the total cycle

over the time horizon H for each stage j, we get
N N

1 M ( 2 8 )

From (18), (24) and (27), equation (28) can be expressed as
N * N

fej NPRSAk -I i = 1 M (29)

Since this cycle time must be smaller than the horizon time H for each stage,

the constraints that apply are
NP

ki NPRSik ] ^ H i s 1 w (30)

Thus, replacing the horizon constraint in NLP1 by constraints (19), (26), (27) and

(30) leads to the nonlinear program NLP3 for the optimal design of multiproduct batch

plants with ZW policy:
M

s.t.

min > a: VP:\ ' (NLP3)

feo

NP

H
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V- * 0 j=1,...,/W ns . Bj Z 0 i=\ N
j ^ A* P

/Vp

Note that when compared to the model NLP1 for single product campaign, the

formulation NLP3 is somewhat larger as it involves Np*M+3Np+M constraints. Also,

there are an additional Np(Np)+Np = Np+Np variables [NPRS^ and n^]. However, note

that except for (19) all the additional constraints are linear.

Remarks

The formulations NLP1, NLP2 and NLP3 presented in the previous section exhibit

a unique local optimum solution. The proof for NLP1 can be obtained by transforming

the problem to a geometric programming problem [e.g. see Grossmann and Sargent,

1979]. The proof for NLP2 is identical. For NLP3 an outline of a proof is given in

Appendix IV.

The formulations NLP2 and NLP3 have the important feature of considering for

the optimal design mixed product campaigns with the UIS and the ZW scheduling

policies, respectively. Since these limiting policies increase the utilization of the

equipment, formulations NLP2 and NLP3 will produce in general designs that exhibit

smaller equipment sizes than the formulation NLP1 for single product campaigns. It

should be noted that from the solutions of NLP2 and NLP3, one can derive with the

predicted number of batches for each product the detailed schedules. In simple cases

this can be done by inspection, but generally through the use of formulations MILP3

and MILP4. However, formulations NLP2 and NLP3 can in principle produce schedules

which change continuously over the specified time horizon H (e.g. 1 year). This

follows from equations (20) and (29) where the cycle times for each stage were

defined for the total number of product-batches that are to be produced over the

hori2on time H.

In the case where the formulations predict number of batches n - that are in

integer ratios the above difficulty can be easily circumvented so as to produce

schedules that involve cycles of relatively short duration that are repeated
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periodically. For example, assume that 100 batches are predicted for product A, 200

for product B and 150 for product C. Then, the simplest alternative to deriving a

detailed schedule would be to consider cycles consisting of 2 batches of product A,

4 of B and 3 of C. Alternatively, one might consider cycles consisting of 4 batches

of A, 8 of B and 6 of C. As shown in Appendix V the cycle time of the shorter

cycles multiplied by the number of cycles Nc is equal to the total cycle time CTH

over the horizon time H. Hence, neglecting for the effects of switchover times, the

alternative schedules are equivalent.

In a number of instances, however, formulations NLP2 and NLP3 may predict

number of batches n - that are not in integer ratios, which would then imply that the

resulting schedule would have to change continuously over the time horizon H. In

order to objtain more reasonable schedules, one can resolve NLP2 and NLP3 by

rounding-off the ratio of number of batches. This can be accomplished as follows:

Denote by q the product with the fewest number of batches; that is,

n £ n- ,c=1,...,/V , I jl q (31)
if 4. r

If the total number of batches of product q to be produced in the horizon time

H is nQ, then the ratio of number of batches that is to be rounded to a rational

number will be given by

R]n • — i=\,...,N. I J q (32)

In this way by resolving NLP2 or NLP3 with constraint (32), schedules involving

shorter cycles with integer number of batches can be obtained by considering at each

cycle R^*fs£ batches for product i« where N£ and R^*N£ are integer numbers. Also

the number of cycles will be given by Nc * nJfs£ .

As an example suppose that either NLP2 or NLP3 predict 124 batches of A, 186

batches of B and 380 batches of C. Here product q (the product having least number

of batches) corresponds to product A. Then a suitable choice of the ratios in (32)

would be RBA
s1-5, RCA

C3. By resolving the NLP problem with these constraints, shorter

cycles containing each only 11 batches (2 of A, 3 of B and 6 of C) can be obtained

by specifying NA = 2. Since the simpler schedule will require increased equipment
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sizes, the designer would need to establish the trade-off between simplicity in the

scheduling and investment cost of the units. This point will be illustrated in example

4.

Examples for Design and Scheduling

Example 3 :

This design problem consists of products A and B that are to be produced in a

batch plant with 3 stages. Data on the size factors, processing times and economics

are given in Table 5, This problem was solved with formulation NLP1 (single product

campaign), NLP2 (UIS) and NLP3 (ZW) with MINOS 5 [Murtagh and Saunders, 1985]

through the computer code GAMS [Meeraus and Brooke, 1985]. NLP1 required 5

variables and 7 constraints, NLP2, 5 and 9, NLP3, 11 and 15. The computer times

were 1.03, 1.53 and 3.59 sec. of CPU time respectively on an IBM 3083.

As seen in Table 6, the optimal design with UIS involves the lowest investment

cost, $30,185.60, which is 21% lower than the one with single product campaigns. If

storage vessels are assumed to cost one fifth the cost of manufacturing units, this

difference reduces to 14%. As for the design with ZW the investment cost of

$35,973.50 is 7% lower than for the case of single product campaigns. Note from

Table 6 that these reductions are due to the fact that with UIS and ZW the

equipment sizes are significantly smaller and the number of batches is larger. Also

note from Table 6 that the ratio of the numbers of batches of A and B is one for

both UIS and ZW policies. From the solutions to NLP2 and NLP3 it is easy to derive

the schedules which involve alternating one batch of A and one batch of B as shown

in Fig. 6.

Example 4 :

This design problem consists of 6 products A, B, C, D, E and F in a plant

involving 4 production stages. The data are given in Table 7. NLP1 required 10

variables and 25 constraints, NLP2, 10 and 28 , NLP3, 52 and 46. The computer times

required were 2.335, 3.905 and 7.485 sec. of CPU time respectively on an IBM 3083.
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As seen in Table 8, when no roundoff constraints are imposed on the ratios for

the number of batches, the design with UIS has only an investment cost of $159,000

(neglecting intermediate storage). The design with ZW has a cost of $183,809 and the

one with single product campaigns costs $206,298. However, the number of batches

in UIS and ZW exhibit noninteger ratios which implies that the corresponding

schedule would change continuously over the time horizon of 6000 hrs.

In order to obtain more reasonable schedules, the round-off constraints (32) can

be imposed. For instance, in the case of ZW policy where 248, 231, 264, 248, 99 and

66 batches were obtained (see Table 8), the computed ratios are as follows:
n n n n n
— = 3.76; — = 3.50; — = 4.00; — = 3.76; — = 1.50
n, "F " , nf ",

It should be recognized that the pcuUeJtn oi tht AchidudUng i* aiitJiaxJUiy

dtptndzvit on thZAZ hoJULoh. Thus, in order to minimize the penalty in capital cost

incurred by the rounding off procedure, it is important to change the above ratios by

the least extent possible. The selected ratios in (32) for the first level of round-off

were as follows,

"* , ' 4 ' «» m 3-5' "cF " 4 ' "o, - 4 ' " • - ™

From the solution of NLP3 with these ratios and by setting N^ = 2, results in a

design with a schedule that consists of 32 .identical cycles, each involving the

processing of 36 batches ( 8 of A, 7 of B, 8 of C, 8 of D, 3 of E and 2 of F). In

order to obtain a schedule that will repeat with higher frequency, the ratios have to

be rounded-off further. For the next level of round-off the selected ratios were

"» ' 4' * . , - 4' " * * 4' *a, ' 4' "„ ' 2

From the solution of NLP3 and by setting N^ =1, 61 cycles are obtained each

involving 19 batches (4 each of A, B, C and D, 2 of E and 1 of F). The capital cost

for the design resulting from first round-off is $185,424 (savings of 10.1% as

compared to single product campaigns), which increases to $190,843 (savings of 7.5%)

after the second round-off.

The detailed schedules for the above two designs (see Fig. 7) were derived
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using MILP4 presented earlier on in this paper. The design after first rounding leads

to a schedule that consists of 32 cycles each containing 36 product-batches. The

cycle time for the optimal schedule was 181 hours. The scheduling problem MILP4,

consisting of 1260 integer variables and 1 continuous variable, gave integer solution

when solved as an LP on an IBM 3083 using MPSX through GAMS. The CPU time

required was 29.49 sec. for generation of the model and 42.25 sec. for execution

and writing the output in a file. The design after second rounding leads to a schedule

consisting of 61 identical cycles each containing 19 product-batches. The optimal

cycle time was 105 hours. The scheduling problem MILP4, consisting of 342 integer

variables and one continuous variable, needed 7.91 sec. for generating the model and

11.93 sec. for execution and reporting the solution.

For the UIS policy the following ratios were selected:

*« " 4' *„ m 3'5' "cr - 6' *or " 4 ' "* = 1'5

With Np = 2, the resulting design involves a schedule with 37 cycles each

involving 40 batches with a cycle time of 161 hrs. The increase in the capital cost

for having this simpler schedule is of only $3,066. Clearly the final selection from

the designs in Table 8 wil l depend on the cost of intermediate storage and the

preference given to simple schedule over lower capital investments.

Conclusions

This paper has presented new NLP formulations for the optimal design of

multiproduct batch plants that account for the UIS and ZW scheduling policies in

mixed product campaigns. These formulations rely on the use of simplified

constraints that were derived from effective scheduling models that minimize the

cycle time. The scheduling model for ZW policy has the interesting feature that it

can be formulated as a 0-1 minimax problem which exhibits 0-1 solutions for the

cases where one unit limits the cycle time. Otherwise it has zero gap which implies

that it can be solved as an LP problem in most cases.

Two numerical examples have been presented for scheduling and two examples

for the optimal design problem. The former have shown that scheduling solutions that
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minimize cycle time can be obtained very efficiently. The latter have shown that

substantial economic savings can be obtained in the investment cost of multiproduct

batch plants by anticipating efficient scheduling policies.
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Appendix.I: Determination of stack times for MILP4

Formulation MILP4 requires the determination of the slacks of all stages (/) for

all possible combinations of pairs of the N batches of Np products. The total

number of permutations of product-batches that is possible when two are taken at a

time is given by, N2 - N. For example, consider the data given in Table 1. Here the

total number of combinations of product-batches is 6 (N=3). They are,

A-B , A-C

B-A , B-C (AD

C-A , C-B

In order to determine the slacks S L ^ • the following simple procedure can be

applied for each pair of product batches i,k.

1. Set the final times 0^ • for batch i in the M stages (/= 1, ,M) by the

equations:

i

i i = 1-~-M {A2)

2. Set the init ial t imes d1^: for batch fe in the M stages (y=1,...,M) by the

equations:

J

3. a) Calculate the differences between initial and final times:

d-u: * Bir 9*;i i • 1* M (AA)

b) Set the time violation H -L to

(AS)

c) Set the slacks S L ^ ; to

It can be easily verified that for the example in Table 1 the above procedure

yields the slacks shown in Table 4.
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Appendix II: On the LP Relaxation of problem MILP4

Problem MILP4 for minimizing the cycle time with ZW policy corresponds to

the following problem (see equations (12M16)):

min CT (MILPA)

s.t.
N N N

+ £ * . . - CT £ 0 i - 1 M

z
' f e . 1

/C>cfe s ° ' 1 ^ = 1 M " N ; fe=1""/V i ? k ; CT * 0

The following proposition establishes the relation of above MILP with its LP

relaxation.

PROPOSITION : The LP relaxation of problem (MILP4) exhibits :

(a) 0-1 solutions for the case of one stage that limits the cycle time.

(b) Zero gap for the case where 2 or more stages limit the cycle time.

Proof

(a) Consider the case when the optimal solution of MILP4 is defined by a single

stage; say the element /* of the inequalities that define the cycle time CT. MILP4

then reduces to,

N N N

min X l
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s.t.

2
fe«1

Since (B1) corresponds to an assignment problem, it is well known [see Garfinkel

and Nemhauser, 1972] that due to the unimodularity of its constraints, its LP

relaxation yields 0-1 values for the variables YC-^ . Furthermore, since /« has the

largest cycle time it follows that for
M

0 £ tfy £ 1, /=1,...,*f, j fi j* , 0 £ a- < 1, yT a = 1

N M N

y» y ^ SL -L * + x ^ t - -* > ^ ^ « -L x ^ y ^ SI 'L +^_" t - J (52)

where I' = {(i,k) \ Y C ^ = 1 from the solution of (B1) }. That is, the cycle time of

stage f is strictly greater than a linear combination of cycle times of all the stages

with a < 1.
j

(b) Consider the case when the optimal solution of MILP4 is defined by more

than one stage; that is by the inequalities j * J A , where | J A | £ 2 .

Problem MILP4 then reduces to:

min CT (B3)

s.t.
N N N

I l ^ f e i YClk + Xfii - CT

4*1 fe«i



26

Incorporating the complicating constraints on CT in the objective function

through the lagrangian L, and relaxing the 0-1 constraints yields,

N N N

min L s x . X \ / . x SL:u ;YC :u
 +

s.t.

1f

where X • are the non-negative lagrange multipliers for the constraints j € JA in (B3).

These multipliers satisfy the equation.

which follows from the stationary condition of the lagrangian in (B3) with respect to

CT.

The LP problem (B4) is also an assignment problem, and hence its solution

yields 0-1 values for the variables Y C ^ . The optimal lagrangian in (B4) will then be

given by
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(55)

where l"= {(i,k) | YC-^ = 1 from the solution of (B4)}, and X*- are the optimal

lagrange multipliers in the LP relaxation of (B3).

It remains to be proved that there is no dual gap between L* and the solution

of MILP4. If there is a gap, there will exist at least one stage f * JA, for which

; ; * (56)

But from (B2) this would then imply that only one stage / ' defines the active

constraint for the cycle time in MILP4, which contradicts the assumption that |J | £

2. Therefore, for | J A | £ 2 the LP relaxation of MILP4 has no dual gap. (QED)

It should be noted from the above proposition that 0-1 solutions from the

relaxed LP of MILP4 will always be obtained if there is only one stage that limits

the cycle time. For the case of two or more stages, the dual gap will be zero. Since

there is no unimodularity of the constraints in MILP4 in this case, MILP4 may require

a branch and bound search for the 0-1 solutions but with zero gap. Most cases in

practice however, will yield 0-1 solutions when solved as an LP.

Appendix III: Solution of Minimum Makespan with Minimum Cycle Time

Problem MILP4 will determine a sequence of N batch-products, S={P1 , P2, . . .,

PN>, that minimizes the cycle time. The alternative sequences S^ s {P^, P ^ , . . ., PN,

Pi# P^ . . ., ?p ,}; I * 1, . . ., N, I t 1, will also exhibit the same cycle time since

the same ordering of batches is maintained for the cycle. In order to schedule and

select among the sequences S , 1=1, . . ., N, the one that minimizes the makespan

the following formulation can be applied:

Let the s ^ be the elements of the ordered sequence ,
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,.. PU. P, P 2 .

and define the binary variables Z ,

Then, from equations (3M18), the minimization of the makespan leads to MILP

problem:

min T

s.t.

Tli

UIS : TF -t

zw : TFit

2 . 2^ - 0,1 fe=1 /V

Note that the above MILP involves only N 0-1 binary variables. Solution of this

MILP will then select among the schedules with minimum cycle time the one that

leads to minimum makespan.
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Appendix IV: On the Uniqueness of the Solution of NLP3

Only an outline of the proof will be presented here.

First consider the valid relaxation of (19)

"l. * — ^ 1 Nr

By defining b^ = ln[B^], the above reduces to

Q^ exp\.-b£ - n^ <. 0 *=1,...,/Vp (02)

while the constraint on volumes with v • = ln[V ] leads to

Sj: exptbj-vjl * 1 i'=1 M ; JL-\ NB (D3)

By substituting (19) into (30) and applying the transformation on B -, leads to

__ H i=\,...M (DA)
feo

Finally, the objective can be expressed as

M

min ^ a- expl/3 -Vj] (D5)

i 1

Thus, since (D5) involves a convex objective function subject to a set of convex

constraints [<D2), (D3), (26), (27), (D4)] NLP3 has a unique local optimal solution.
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Appendix V: On the relation of cycle times for schedules involving fewer number of

batches

Proposition: Let CTH be the cycle time of a schedule involving n^ batches of

each product JL Also let CT be the cycle time of a schedule involving Nc shorter

cycles with R -Q N^ batches of each product i (see remarks section for notation),

where RJr ISl£ £ n •. Then CTH = N CT for the UIS and ZW policy.

Proof:

a) Unlimited Intermediate Storage Policy:

We have from (18),
N

max (\ . > ( £ 1 )

Since n^ = R^q nq .

nq

Also, since n- * Nc N|
NP

(£3)

But N^ HJn is the number of batches cycles. Thus it follows that

CT" * Nc CT (£4)

b) Zero Wait Policy:

Following a similar reasoning from (15) we have
N N N

«"• , . £?{££«* , * X',y) «>
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NP NP NP

N N N
P P P

>t*1 fe*1

C7- (£7)

N P NP

where

n =^c*/Vj (58)

Q.E.D.

Thus, if the ratio among the number of batches of various products is

maintained, minimizing the cycle time of a cycle containing a smaller number

product-batches will result in a cycle time that is equivalent to that of the global

cycle containing cdUL the product-batches in the larger time horizon.
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Table 1 : Data for Example 1

Processing Times (Hrs.) :

Stage 1

Stage 2

Stage 3

A

2

5

4

B

4

1

2

C

3

2

5

Production Task:

To produce one batch each of products A, B and C in 3 cycles.

Table 2 : Data for Example 2

Processing Times (Hrs.):

' • I

Stage 1

Stage 2

Stage 3

Stage 4

A

10

20

5

30

B

15

8

12

10

C

20

7

9

5

D

14

6

15

10

E

6

11

5

15

F

13

7

17

10

Production Task:

To produce one batch each of products A, B, C, D , E and F in 5 cycles.



Table 3: Computational Results for Example 2

Formulation

MILP Solution [Hrs]

LP Solution [Hrs]

0-1 Variables

Continuous Var.

Rows

Branches

Pivots

CPU time* [sec]

Makespan
Minimization

UIS

MILP1

427

423.4

36

53

87

40

1167

154

2W

MILP2

505

423.4

36

53

87

23

1921

135

Cycle time
Minimization

UIS

MILP3

80

80

36

49

83

5

479

26

ZW

MILP4

97

97

30

1

18

0

25

0.93

* Using LINDO on DEC-20.



Table 4: Slacks for Example 2

SLjkj [Hrs.]

7—--i!^
Stage 1

Stage 2

Stage 3

A-B

4

3

0

A-C

3

2

0

B-A

0

1

4

B-C

0

3

3

C-A

0

0

0

C-B

2

4

0



Table 5: Data for Example 3

Production requirements : QA - 4 ° . ° 0 0 K9-

Cost Coefficients:

Horizon Time :

a. $ 250

H = 6000 Hrs.

= 20,000 Kg.

p. = 0.6

Size Factors (Litres / Kg.) Batch Processing Times (Hrs)

Stage 1

Stage 2

Stage 3

A

2

3

4

B

4

6

3

Stage 1

Stage 2

Stage 3

A

8

20

8

B

16

4

4

Table 6 : Optimal Design for Example 3

Sequencing
Policies

Single Prod.
Campaigns

Zero Wait

Unlimited
Int. Storage

Volume
(Utres

V1

480

429

320

V2

720

643

480

S

V3

960

857

640

No. of
Batches

nA

167

187

250

" B

167

187

250

Batch Sizes
(Kg.)

BA

240

214

160

BB

120

107

80

Capital
Cost ( $ )

38,499.80

35,973.50

30,185.60

Cost of Intermediate Storage is not included.



Table 7: Data for Example 4

Q (Production Requirements [Kg.])

Product A 300,000

200,000

400,000

300,000

100,000

Product B

Product C

Product D

Product E

Product F 100,000

Cost Coefficients : a - $ 250

Horizon Time : H • 6000 Hrs.

Size Factors (litres/Kg.)

p. = 0.6

Batch Processing Times (Hrs.) :

Stage 1

Stage 2

Stage 3

Stage 4

A

2

3

2

6

B

7

3

1

2

C

1

4

3

2

D

5

5

2

6

E

1

6

3

2

F

4

1

1

4

Stage 1

Stage 2

Stage 3

Stage 4

A

6

2

4

1

B

1

5

3

5

C

2

7

3

7

D

8

1

5

2

E

4

1

2

2

F

3

6

2

4



Table 8: Optimal Design for Example 4

V1

£
5 V2

| V3

>
V4

^ Prod. A
rn

Sf Prod. B
•S5

| ProdC

| Prod. D

£ Prod. E
o

z Prod. F

COST($)

Savings over
Sin. Prod. Camf

Single
Product

Campaigns

7333.33

7333.33

5500

8800

205[1466.67]

191 [1047.62]

219[1833.33]

205[1466.67]

82[1222.22]

55[1833.33]

206,298

No roundoff
One Cvcle / H.

6050

6050

4537.5

7260

248 [1209.7]

231 [865.9]

264 [1515.2]

248 [1209.7]

99 [1010.1]

66 [1515.2]

183,809

10.9%

Zero Wait

1 st roundoff
32cvc!es/H

6250

6250

4687.5

7031.25

256 [1171.9]

224 [892.9]

256 [1562.5]

256 [1171.9]'

96 [1041.7]

64 [1562.5]

185,424

10.1 %

2nd roundoff
61 nvdfts / H.

6557.4

6557.4

4918

7377

244 [1229.5]

244 [819.7]

244 [1639.3]

244 [1229.5]

122 [819.7]

61 [1639.3]

190,843

7.5 %

Unlimited Irrt

No roundoff
One cvnlfi / H.

5100

5100

2660.87

6120

294 [1020]

275 [727.3]

451 [886.9]

294 [1020]

118 [847.5]

78[1282.1]

*
159,000

22.9 %

erm. Storage

Rounded off
37 rvrles / H

5405.4

5405.4

2702.7

6081.1

296 [1013.5]

259 [772.2]

444 [900.9]

296 [1013.5]

111 [900.9]

74 [1351.4]

162,066*

21.5%

* Cost of Intermediate Storage not included.
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\

Intermediate Storage

Figure 1 : Scheduling policies for Example 1 :
(a) Single Product Campaigns (b) ZW Policy (c) UIS Policy



Stage 1
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Tl j /

Tl1W TRi w
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Fig. 2: Start and completion times for
production slots land 1+1.
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Stage 1
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TI13
Tail for Stage 1

TI21 TF31

TI31

Head for Stage 4

TF23

TI23 TF32

yv77/////A

141 TF41

TF33

TF42 TF43

Fig. 3: Heads and tails in schedule for ZW policy.
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33333^-5 cycles ..
406

X X X X I 422
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2T 42 27

(a) Optimal Sequence : E - A - B - F - D - C

6

6

20

17

6

22

35 45

1T3 !///////* 5

37 41 51

63 4*4 4fi4
_491

XXX X*X
-500

... 5 Cycles..

65 70 100 110 117
Tt = 505

Legend:

(b) Optimal Sequence : E - D - B - A - F - C

Prod A ProdB ProdC ProdD Prod. E Prod. F

Fig. 4: Optimal Schedules for example 2;
(a) UIS Policy, (b) ZW Policy
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2 h

3 h

5 h

3 h
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Stage 2

Stage 3

5h

3 h

B

1 Hr.

OHrs.

2Hrs.

Fig. 5 : Slack Times Between Two

Consecutive Batches
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(a) ZW first rounding
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... 61 Cycles ...

9 14 20 27 3436 43 47 52 57 6466 72 76 85 87 96

(b) ZW second rounding

Legend:

I t / J J\ IV V V *l

Prod. A Prod. B Prod. C

105
Tt - 5925 Hrs.

Prod. D Prod. E Prod. F

Fig. 7: Optimum Schedules for Example 4
(a) Schedule for design after first rounding

(b) Schedule for design after second rounding
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Fig. 6 Optimal Schedules for Example 3;
(a) Single Product Campaigns (b) ZW Policy (c) UIS Policy


