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Successive Quadratic Programming (SQP) has emerged as the algorithm of choice for

solving moderately-sized nonlinear process optimization problems. However, as the nonlinear

programming problem becomes large (over 100 variables, say) storage requirements for the

Hessian matrix and the computational expense of solving large quadratic programs can become

prohibitive. To overcome this problem, Wester berg and coworkers proposed two SQP

decomposition strategies in 1980 and 1983. The first strategy overcomes this problem but is

difficult to implement, while the second has been observed to give inconsistent results. The

strategy in this paper uses range and null space projections to develop a decomposition

algorithm that is both easy to implement and performs as well as the full SQP algorithm on

small problems. This range and null space decomposition (RND) allows for sparse

implementations and thus solves large problems easily and reliably. Theoretical development of

the RND method is presented as well as a geometric interpretation of this approach compared

to others. Finally, a thorough numerical comparison of SQP strategies is presented on a battery

of nonlinear programming and process optimization test problems.

1. Introduction

Successive Quadratic Programming (SQP) (Han (1977), Powell (1977)) has been used in

numerous applications for chemical engineering optimization problems. For optimization of

complex, computationally intensive models such as process flowsheets (Lang and Biegler (1987),

Chen and Stadtherr (1985), Kisala (1985), Evans et al. (1985)), with a small to moderate number

of variables, SQP consistently requires fewer function evaluations than other optimization

algorithms. SQP can be derived as a Newton method for solving the optimally conditions.

The basic step in the SQP algorithm is the formulation and solution of the Quadratic

Programming Problem (QPP). Aside from the effort required for function and gradient

evaluations, this is the most time consuming step for the algorithm. This operation requires the

storage and update of a Hessian matrix at each iteration, which is of the size of the number

of process variables at each iteration. Hence, as the optimization problem becomes large (over

100 variables, say), storage requirements for the Hessian matrix as well as the computational

expense involved in solving quadratic programs can become prohibitive.

In most optimization problems only the Hessian matrix projected into the null space at

the solution is positive-definite. The entire Hessian matrix, on the other hand, is generally not

positive-definite, especially if the optimization problem is large and sparse. Consequently,



approximating the Hessian matrix by a dense, positive-definite updating formula may not lead

to a fast rate of convergence. Boggs et al. (1982) proved that SQP converges at a superlinear

rate if both the Hessian matrix and its quasi-Newton approximation are positive-definite. On

the other hand, Powell (1978a) showed that when the Hessian is not positive-definite the rate

of convergence deteriorates to one termed "two-step superlinear". This deterioration adds

further incentive to developing a strategy that updates the projected Hessian matrix instead of

the full matrix.

Over the past few years, several decomposition algorithms have been proposed that reduce

the size of the QPP by eliminating dependent variables and equality constraints. For process

optimization problems, Westerberg and co-workers proposed decomposition strategies in 1980

and 1983. The first, by Berna, Locke and Westerberg (1980) (BLW), is an extension of

Poweirs SQP algorithm (1977), and can be be derived through block Gaussian elimination

applied to the optimality conditions of the QPP at each step. The resulting reduced QPP

retains the symmetric structure of the original QPP and leads to the solution of the same

problem but with a considerable reduction in core storage of Hessian matrix. Here, if the

Jacobian matrix for the dependent variables is non-singular, and if there is enough storage for

the Hessian update vectors, this approach can be shown to be equivalent to the original,

undecomposed (or full) SQP algorithm. However, this approach is difficult to implement and

because a Hessian matrix is constructed in the space of all the process variables and then

projected into the subspace of the decisions, storage requirements of the rank 2 updates may

still be prohibitive with a large number of SQP iterations. This approach was implemented by

Chen and Stadtherr (1985) and by Jackson, Hutchison and Morton (1986), who noted the

above-mentioned points. Also since the full Hessian is updated, in principle, a dense, positive-

definite approximation is made to a matrix that generally has neither of these properties.

The difficulties mentioned above prompted Locke, Edahl and Westerberg (1983) to propose

a new decomposition strategy (LEW), which computes and stores a reduced Hessian directly.

Derived through sensitivity analysis, variables are partitioned into two sets, the decisions and

the dependents, and a QPP is constructed only in the space of the decision variables. The

reduced Hessian is directly estimated in the space of these variables and the reduced QP yields

a search direction for the decision variables. The search direction for the dependent variables is

then found that satisfies the set of linearized equality constraints. Chan and Prince (1986)



reported excellent results with the LEW decomposition on a series of Jiomogeneous flowsheets

with mostly linear mass balance models. Trevino-Lozano (1985) and Kisala (1985), on the other

hand, mentioned that the LEW decomposition usually requires more iterations than the full SQP

method and in some instances the LEW decomposition leads to inconsistent QP's at infeasible

starting points. To remedy this situation, they suggest converging. the equality constraints first

with Newton's method.

Thus for large optimization problems solved by SQP, the BLW strategy is difficult to

implement and may require a large amount of storage, while the LEW approach gives

inconsistent results. In this paper, we present a strategy which overcomes both of these

problems. It is based on range and null space methods, recently developed by Nocedal and

Overton (1985) for reduced SQP, and uses orthogonal (but not orthonormal) bases for

decomposition. This method can be shown to have the same convergence rate as the full

(undecomposed) SQP method, but requires only the calculation and storage of the null-space

projection (2-sided projection) of the Hessian matrix. Using this projected update was first

suggested by Murray and Wright (1978), but most of these algorithms developed in the

optimization literature use orthonormal null space factorizations based on QR decomposition.

The algorithm presented in this paper extends the Nocedal and Overton approach to systems

with inequality and equality constraints and allows the solution of large, sparse optimization

problems by using sparse, nonorthonormal factorizations.

In the subsequent sections, we develop this strategy, first for an orthonormal projection,

and then for nonorthonormal bases. Detailed derivation and outline of the above algorithm as

implemented are also given. In addition, a theoretical justification of the effectiveness of this

nonorthonormal strategy is presented and a geometric interpretation is given to compare the

range and null space strategy to previous strategies, including the original, undecomposed SQP

algorithm. Finally, a battery of nonlinear programming and process optimization test problems

is solved and a numerical comparison is presented to demonstrate the effectiveness of this

approach.



2. Range And Null Space Decomposition [RND]

The general process optimization problem can be stated as follows:

(NLP) Min <p(z)

s.L g(z) £ 0

hiz) = 0

where

<p: IRn -» IR - objective function

g: IRn -» IRr - inequality constraints

h: IRn -> IRm - equality constraints

r 6 IRn - set of variables

SQP employs a modified quasi-Newton method to converge to the optimality conditions of the

NLP by solving the following quadratic program (QP):

(QPD

J - =

0

s.L hizj * Vttzf P = 0

where

p - search direction

B - BFGS update to the Hessian of the Lagrangian

The first order necessary conditions for QP1 can be represented in matrix form as follows:
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where,

gizj * Vg* p~ < 0, V j i A (1)



Let z be a given point with V/7, the (n x m) matrix of equality constraint gradients

(inequality constraints known to be active can be included in h) having full column rank, i.e.,

rank m. Let Z(z) be an [n x (n-m)] matrix with orthonormal columns spanning the null space

of V/?T and let Y(z) be an (n x m) matrix with columns forming an orthonormal basis for the

range space of V/7. One very useful way of obtaining Z is by forming the OR factorization:

V/7 = Y(z) Z(z)
R(z)

0

where /? is a (m x m) upper triangular matrix and Q is given by:

0

0 I
Q =

an orthogonal matrix of order (n+m). Of course,
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Then eqn. 1 can be written
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Renaming Y p as p and Z p as p , we know from orthonormal properties that

(6)



p = V py + Z pz ,

Thus, the system to be solved can be represented as follows:

a. R p = -/7,

—T — — T —T —T — •

b. (Z B Z) p = - Z V<p - Z Vg u - Z B Y p ,

d. z = z + J) ,
k+1 k r

— —T —T ~T

e . R 7k+j = - 7 V ^ - / V f f ( / - K « p (8)

As the algorithm converges, p -> 0 and eqn. e can be simplified to:

which is a ftleast squares" multiplier estimate, and is based on the rationale that a "first-order"

estimate given above, obtained from the new information at the current point, should be

preferable to using the "second-order" estimate eqn. e which is just the Newton prediction of

values at the current point, based on the information at the previous iteration. Wright (1976)

shows that using eqn. 9 instead of eqn. e also yields quadratic convergence of the method.

Furthermore, Tapia (1977) shows that use of eqn. 9 gives a method which is Q-quadratically

convergent in z, in the sense of Ortega and Rheinboldt (1970).

—T —

The second reduction is done by dropping the (Z B Y p ) part from eqn. b. If the

constraints are linear, the range space of V/7T is a constant, and the term (Z B Y) is

irrelevant, since given an initial feasible point, all subsequent iterates can be chosen to be

feasible, and hence there is no range space movement Under these circumstances, updating an

approximation to (Z B Z) is preferable to updating the full Hessian. The extension of this

concept to the nonlinear case, suggested by Murray and Wright (1978) is motivated primarily

for the purpose of reducing the dimension of the approximating matrix, which can be updated

by DFP or BFGS methods. Note that the matrix (Z B Z) is generally dense and positive-

definite and thus is suited for these updating formulae.



The convergence analysis of such an algorithm, which is obtained by ignoring the

projection of the Hessian in the range space, can be intuitively explained by drawing a parallel

with the method proposed by Powell (1978a) in modifying Han's algorithm. The only difference

between these two approaches is that Powell maintains an approximation to the true Hessian.

However only the (Z B Z) portion of B should be expected to have any relation to the true

Hessian matrix, since the former is positive-definite and the true Hessian, in general is not

Thus while the range space projection term is discarded in this algorithm, it is approximated by

an inaccurate term in Powell's algorithm and hence a similar convergence property, viz. a two-

step Q-superlinear convergence rate, can be expected, i.e.,

z - z II £ a \\z - z II, with a -» 0 as k -» oo (10)
k+1 *|| k II k-1 *|| k

A rigorous proof of the convergence rate is given by Nocedal and Overton although an

intuitive explanation for the same can be given as follows: Let z be the current iterate.

Solving the system of equations 8, in the absence of the (Z B Y) term or with any inaccurate

approximation cannot be expected to give a point z , for which the error II z - z II is smaller

than IIz - z II. However, the uncorrupted movement p in the range space would give an

accurate step to the constraints, giving a value 11/? II which is relatively small compared to

||z - z II. On the next iteration, the error incurred by dropping the second order

information in Y is proportional to 11 Ml. so that the next iteration point generated, z + , will

have an error ||z ^ - z II which is small compared to llz — z II* a n d ^ e n c e a two-step Q-

superlinear convergence property.

The final QP and steps involved in this algorithm employing orthonormal bases can be

represented as follows:

(QP2) Min Vtf>T Z pz+
 ljpT

z (Z BZ) Pz

S.L V j T Z p £ -g + Vg1 Y (R Yl h

Solution of QP2 gives p and u. The other parameters viz. the range space movement and the

multipliers for the equalities, V are computed as follows:

py = - (R Yl h

V = - (/?) Y C7<p + Vg a)



p = Z p z + / py (11)

3. Extension To Nonorthonormal Bases

The focal point in the implementation of the Range and Null space method with

orthonormal bases, is that in addition to the effort in function and gradient evaluation at each

iteration, a OR factorization of the gradient matrix has to be performed to compute the

orthonormal bases Z and V. Although there are robust packages to do so, and it may not

always be computationally prohibitive, a logical step in the improvement of this algorithm

would be the use of alternate bases for range and null spaces, which would be easier to

estimate and at the same time, retain all the desirable features of this algorithm.

In this section, we propose and detail a choice of orthogonal bases for the constraint

matrix, and show that the derivation and conclusions of Nocedal and Overton are still valid. In

the subsequent sections, we discuss a particular choice for the bases, which possesses the

desirable orthogonal properties and which can be conveniently represented in terms of the

gradients and not require much additional effort to compute. Further, we show that with such

a choice the convergence property of the algorithm is not altered and 2-step Q-superlinear

convergence is retained.

Let the new choice of bases for V/7, the constraint gradient matrix be expressed as linear

combination of the orthonormal bases Z(z) and Y(z) as follows:

Y = Y N Z = Z M (12)

where N G IRmxm and M G JR^^^^^ and we still have the desirable property that:

YT Z = 0 (13)

Define

V/?T Y = V/?T YN = R1 = R N (14)

and set up (QP3) with the orthogonal bases and compare with the solution from the

formulation with orthonormal bases viz. QP2.

(QP3) Min V<fT Z p+ \ p\ (ZT B Z) pz



s.t Vg1 Z p < -g + Vg1 Y (R1)'1 h
7

with
p = - (RTYl h

p = Z pz + Y p (15)

Now let us compare the results from the steps in the Null and Range spaces and the overall

estimates for the search direction and multipliers by substituting for Z and Y in terms of Z

and Y.

Null space: The result of QP3 gives the following:

(ZTB Z) p = - ZT (V<p + V ^ u)9 i.e.

M1 (Z B~Z) M p= - M7 Z C7<p * VgA u), i.e.

z (Z B ZYX ZT C7<p + VgA u\ or

pz = (MY' pz (16)

Making similar substitutions as done above for the null space in the expression for p and vt

it can be shown that for

Range space:

P = (/V)"1 p (17)
y y

Multiplier:

v = V (18)

Search direction.

P = p (19)

Here, although the range and null space directions are different, the reconstructed search

direction is the same for either choice of bases. The same is true for the multiplier estimate.
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4. ChQice Of Orthogonal Bases

In this section, having proved the validity of other orthogonal bases for the range and

null space decomposition, we present specific choices for both, which are based on gradient

information that is already calculated and are in addition sparse formulations, which greatly

facilitate their calculation. Next we will compare this formulation with that of Locke, Edahl

and Westerberg (LEW) and show that the latter is not a reduced orthogonal SQP formulation.

A geometric representation of all the formulations will also be presented here.

Partition the set of variables z into dependents or pivoted y € JRm and independent x G

1R1™. The orthogonal bases can now be represented as follows:

Z =

Y =

I

-(v Vr1 v/7T

y A.

A, y

I (20)

whereupon the fact that Z is orthogonal to Y and to the gradient matrix V/?T can be verified

by direct calculation. With this nonorthonormal choice for Y, it can be seen that the R matrix

can be conveniently represented by C7hT Y). Thus, the null space of the constraint matrix V/?

is defined in terms of a partition of the variables, rather than a matrix Z with orthonormal

columns. The motivation for doing so is that an orthonormal Z or Y is not practical in terms

of storage manipulation and computation for most large-scale problems. In addition, numerical

difficulties are likely in the computation of the search direction p and the projected Hessian

approximation (Gill et al. (1981)).

By substituting these values in QP3, the new system of equations can be written as

(RND) Mln [ V ^ T - Vy<pT C7yh
T)'1

s.t - g

V V V
with
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p =
y

v =

P =

- (V/?T V)" h

- (VT V/?)"! VT ( V<P * Vg u )

(21)

When V/7 has full column rank, the vector p is unique, since (V/?T V) is a non-singular

matrix. Defining a new matrix a as Z?1)*1 V /?T "I, it can be easily shown that the terms

above can be conveniently represented as follows:

= - (I + aaY (V^V h.

V = - (V /?)" (I + 7 ( U ) (22)

In order to show that the Locke, Edahl and Westerberg (LEW) decomposition is not a reduced

orthogonal SQP method, it is essential to examine the differences between this formulation and

the Range and Null space method described above. Designating the movement in the

independent x variables as d and in the dependent y variables as d and using the definition
x y

of the basis Z as given before, the LEW formulation can be expressed as follows:

(LEW) Min V^>T Z d% + j d^ (ZTB Z) d%

s.L C7gT Z) dx <> -g •

with

d =
(23)

Using the definition of the orthogonal basis Z it can be seen - that the reconstructed search

direction d from LEW can be expressed as follows:

i.e.

d =

d =

-( V/)"' dx + *] .

(24)
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Thus, net contribution from the null space for RND which is Zp is identical to that given by

LEW which is represented as Zd . The essential difference is in the movement in the Range

space, where, RND takes an orthogonal step to the tangent subspace of the active constraints,

which is geometrically the shortest distance, unlike LEW. Now the range space movement in

RND is given by Yp i.e. by -V [ ( I + s a V C V /71)"1 h 1 This cannot be represented by

- [ 0 07' J?)'1 h\ . toe range space contribution from LEW, if the orthogonal relation

ZT Y(l+aaT)~l(V hT)'1 h = 0 is expected to hold. If we were to substitute:

Y C7uh
TYl =

y

and premultiply both sides by ZT, we have

ZT (V />V = 0 and,

<VT)"
] (25)

in general. So the LEW decomposition is not a reduced orthogonal SQP method. Also, it can

be seen that the two formulations are identical for a choice of To I "I for the basis Y, which

obviously does not satisfy the orthogonal requirement that YrZ = 0, and hence the LEW

method is not a Range and Null space method.

The differences cited above, can be explained more lucidly by considering a geometrical

representation of the solution paths of the two algorithms compared to that of the

undecomposed SQP method. On a simple problem, which will be referred to as the Example

problem, we see the following behavior:

Problem statement:

Min [ l 2]

S.L h: zx + - 1 = 0



13

Parameters:

Vh =

B = I

zo =

1

1

1

1

Y =

Z =

v«> =

t m

1

1

1

-1

1 +

2 +

z
i

Z 2 .

Y = (2)'1'2

Z = (2)- /2

h = 1
0

1

1

1

-1

/? = (2)1/2 /? = 1

a) Undecomposed QP solution:

1 0 1

0 1 1

1 1 0

i.e.

2

3

1

i.e.

i.e.

i.e.

p + v -

p + v =

p, = o

p =

f solution:

[Z B Z i p
L J 2

p z = (2)*1/2

= - 2

= - 3

= - 1

P2

0

- 1

= -

and

= - 1

—T

z v^

Is.,

v = -2

= (2)"1/2

1/2

-1/2
—T

= - ( / ? ) - • / , = - (2)-1/2
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i.e.

Yp = -

P =

1/2

1/2

0

-1

c) Orthogonal solution:

Let z be the pivoted variable and z the decision.

[Z1BZ]p^ = -ZT

i.e. p = 1/2 and Z p =

= 1

1/2

-1/2

p = - (I + aaV C7,,hT h = -1/2

1/2

1/2

/.e.,

/.e. P -
0

-1

d) Orthogonal solution:

Let z be the pivoted variable and z the decision. This is equivalent to solving the same

QP as done before with the new null space basis Z set to the negative of the old one.

[ Z T B Z l p = - ZT

/.*. p = -1 /2 and Z p =
1/2

-1 /2

i.e. the reconstructed movement in the null space is unchanged. Of course, the range space

movement is unchanged as the basis Y is still the same and so the effective movement is still

as the same as before.

e) LEW solution:
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Let z be the pivoted variable and z the decision. As shown in eqn. 24, the null space

movement Zd is the same as null space movement of die RND method, viz. Zp^ and the

overall step d can be calculated as follows:

i.e.

i.e.

d =

d =

d =

Zrf

i/2

-3/2

-(V /?V h
y

f) LEW solution:

Let z be the pivoted variable and z the decision. Again from eqn. 24, the null space

movement Zd is the same as null space movement of the RND method, viz. Zp and the

overall step d can be calculated as follows:

d = Z d.

i.e. d = Z p +
-1

0

/.e. tf =
-1 /2

-1 /2

Thus, not only is the step computed by the RND method independent of the manner of

variable partitioning, but it also duplicates (in this case) the step computed by solving the

undecomposed QP. The LEW, on the other hand, is sensitive to the choice of variable sets as

pivoted and decisions, and because of a nonorthogonal movement in the range space produces

different search directions. This nonoptimal movement to the tangent subspace of the active

constraints can be explained as the source of inconsistent results which were observed by

Trevino-Lozano (1985) and Kisala (1985) during the implementation of the LEW method.
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Their remedy was to stay "close" to the constraint surface and thus keep the "range space"

directions small. This is evident from graphical representation in fig 4-1 of the results

computed in the Example problem.

5. Algorithmic Representation Of RND

In this section we define the algorithm, which is based on the Range and Null space

method for the orthogonal choices of bases Z and Y as defined above by the system of

equations (RND). We note that a is defined as f"(V hTYl V h7 "I, and R is defined as

[ ( I + a a1) V hi. Define a new vector J3 as f (V h7)"* hi. The matrix (I + aa\ can be

seen from the definition of a to be of the same order of magnitude as the number of

equality constraints eliminated, which is often a very significant number. This makes the L/U

decomposition task, when inverting (implicitly) this matrix to compute (R7Y\ computationally

expensive. As a result, RND would require more work and consequently more CPU time per

iteration as opposed to LEW to reconstruct the range space direction, p and the multipliers

for equality constraints, v. This matrix can be simplified using the Householder

transformation:

(I + aa7Yl = [I - a (I + a a )"' a 1 (26)

Now the matrix to be inverted is only of the order of the number of degrees of freedom in

the problem, and represents a very significant reduction in terms of number of computations

required, as can be seen from the computational results shown in Section 6. With this

transformation, and using the definition of J3> the expressions for p and v from eqn. 22 can

be written as

py = - [i - a (I + a7aYX a7] fi .

/.a. p^ = - [fi - a (J + a7aYl (a7 >S)] , (27)

and similarly,

v = - (V hYl [ I - a (I + aaYX a7 ] Y7 ( V^> • Vtf u ) (28)

With this simplification, we are now able to state the RND algorithm:

• Choose a convergence tolerance TOL.

• Choose a starting point z and initialize the approximation to the null space
projection of the Hessian of the Lagrangian, (Z7B Z)Q, to Identity. Set the iteration
counter k to 0.



17

0.5 - - LEW( f
0 =1.75

ZP, or Zd

-0 .5 - -

0.5 0=1.5

LEW(e)

0 =1.75

Figure 4-1: Geometric representation of Example problem
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• At each iteration k:

• Evaluate <p, VV>, /?, V/?, g and

Set up a system of linear equations for L/U decomposition as an augmented
matrix (say)

A == [V/ i -V/ i -/,]

• Calculate using L/U decomposition * and J3 from A Set up another
augmented matrix (say)

C = [(I + *T*) ! (*V)]

From C, compute p by L/U decomposition and matrix
multiplication, (eqn. 27)

• Solve the QP to obtain p and u. (eqn. 21)

• Estimate the multipliers for the equalities v for line search, (eqn. 28)

• If the error in the first order necessary conditions (eqn. 1) is less than TOL
then stop. Else

• Perform line search to get X, the step length along p.

• Set z = z + X( Yp + Zp )
k+l k y z

• Update the projected Hessian (ZTB Z) using BFGS update rule with Powell's
(1977) positive-definite correction.

• Set k = k + 1 and repeat:

5.1. Desirable Features Of Implementation Of RND Algorithm

• The implementation of the algorithm is greatly facilitated by the use of a robust and
flexible L/U decomposition routine which employs partial pivoting to put the
maximum valued elements along the diagonal. The routine has two options which are
controlled by setting a parameter to 0 or 1. If the parameter is 0 then the routine
solves a system of form Ax = b, and stores the order of pivoting in an array. If on
the second call to the routine, the parameter is set to 1, then the routine solves for
AT x = b, using the L and U factors estimated during the first call, thereby
reducing the number of computations drastically, as there is no need to refactor the
coefficient matrix. This was employed in calculating the L/U factors of the matrix
(V h)1 for calculating p and then the factors of (V h) for the multiplier estimate.

y y y
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The same is true for the factorization of the matrix (I + a7a), which is symmetric.

Dynamic storage allocation - the program contains at most a few arrays that must
be dimensioned by the user, depending on the problem size. All the data arrays are
stored in these. This places a very high upper limit on the size of the problems that
can be accommodated by this method.

The decomposition algorithm has been implemented as an easy to use part of a
larger system which handles the solution of the QP, the line search and the BFGS
update. A reliable QP solver, the QPSOL (Gill et al. (1983)) FORTRAN package for
Quadratic programming, an efficient augmented Lagrangian-based line search strategy
to guarantee global convergence (Biegler and Cuthrell (1985)) and a provision for
automatic variable and constraint scaling all contribute toward a fast and robust
package.

The degree of decomposition is user controlled; one can specify the number of
equality/active inequality constraints to be eliminated. In addition there is a run time
capability that allows the user to specify an arbitrary partition of the variables into
dependents or pivoted and independents.

A very important feature of the implementation is the ability to handle singular
Jacobians. The L/U routine, if the coefficient matrix is singular for a particular
choice of basis, indicates the location of the singular element by specifying the row
and column numbers. Based on this information, the program, after reconstructing
the coefficient matrix, pivots in the maximum valued element by scanning along the
singular row into the singular element location and altering the partition indicators
for the variables accordingly. Although this option is adequate for the choice of
dependents and independents at the onset of the problem, caution should be
exercised if the Jacobian becomes singular at a subsequent stage, since the effect of
a change in basis on the second order information, accumulated so far in the form
of a BFGS update for a particular partitioning, should be considered. One obvious
option is to reset the projected Hessian approximation, (ZTB Z), to Identity and
restart with the new basis. This was found by experience to be safe and effective,
serving only to slightly slow down the convergence of this method. A second option
is to repartition the variables but continue based on the second order approximation
obtained before. Although this seems to work on some of the problems we tested, it
is not recommended. The third and probably the most reliable option theoretically, is
to compensate for the change in basis, by considering explicitly the influence of the
basis Z for the null space on the update. This requires an explicit form for the
transformation matrix M which permits the orthogonal basis to be expressed as a
linear combination of the columns of an orthonormal basis, i.e.,

Z = Z M (29)
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where the symbol with an overbar refers to the orthonormal basis. It can be seen
that the columns of the matrix (say) £ , given by

E = Z (ZT ZYm = Z (M)'] = Z (30)

form an orthonormal basis for the null space of V/?T, since each column of £ is
just a linear combination of the columns of Z and by direct calculation we see that
£ T £ is Identity. This would however require the storage of the basis Z for the
previous iteration too and a Cholesky factorization to compute £ . Although we did
not implement this approach, we mention this option here for completeness.

6. Computational Results

The algorithm described has been tested on a wide variety of test problems against an

implementation of the Locke, Edahl and Westerberg algorithm (LEW) and the full SQP method.

The programs were written in FORTRAN 77 and run on a DEC-20 computer at the Carnegie-

Mellon University. Double precision computation was used throughout. Comparisons are based

on the number of iterations i.e. the number of QFs that needed to be solved. The results are

presented in tables 1, 2 and 3 which also indicate whether the algorithms solved the problems

to the desired tolerance or terminated with a line search failure away from the optimum. All

the results reported are for unsealed runs and the CPU times required, in seconds, to solve the

problems are also given.

The test problems can be classified into three groups. The first example problem can be

classified as a separate class in itself, as it is a demonstration of the independence of the RND

method to the initial basis choice and how the RND method parallels the progress of the full

SQP method based on the initial approximation to the projected Hessian, (ZTB Z). This

problem is a limiting case, with linear equality constraints and with a feasible starting point, at

which point the RND and LEW methods are identical. The next set of problems are those

employed by Nocedal and Overton. These problems are excellent for comparative testing and

convergence analysis, as all these problems were initialized sufficiently close to the optimum,

ensuring convergence. Thus, these are true indicators of the local convergence of the methods

tested and excellent yardsticks for conclusions on performance. The third class is a myriad of

test problems from diverse sources with known solutions. The purpose of this set is to compare

performance of these algorithms when initialized away from the optimum and the effect of

change of initial basis (variable partition). All the problems above were run with at least two
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different and arbitrarily selected choices of dependent and independent variables, which are

indicated in the discussions of individual problems. These were excellent indicators of the

sensitivity of the algorithms to the manner of partitioning. Further discussion of individual

problems, as warranted, will be done after stating the problems solved.

PROBLEM

INDEX

l[a]

l tb ]

Uc]

SPECS.

N.M.MEQ

5,3,3

FULL

SQP

16 U.4E-15K2.93]

RND or

LEW

(ZTS Z) = Zr Z
0

16 (1.4E-15K3.15]

16 (1.4E-15)

16 (1.4E-15)

RND or

LEW

<ZTS 2 ) o = I

20 (6.8E-16K3.89]

21 (5.2E-18)

17 (1.1E-15)

Table 6-1: Constant Null and Range space - Linear problem

The first test problem solved is problem number 50 from Hock and Schittkowski (1980).

The main reasons for selecting this problem is that all the constraints are linear equalities and

the initial starting point is feasible. The variables in the problem are unbounded above and

below, which gives a problem without inequalities. Thus, the bases for the null and range

space viz. Z and Y are essentially constants and given the initial feasible point, all subsequent

iterates will be chosen to be feasible and hence the motion in the range space p will be

essentially zero for all iterates, the movement being only in p, in the null space. In fact, for

the linearly constrained case with a non-feasible starting point, solution of the range space

equations at the first iteration should yield a feasible point and p will be zero thereafter.

One expect superlinear convergence for the RND algorithm under such circumstances.

The results are given in table 6-1, where the letters used in reference to each problem

indicate the number of different partitions of the variables into dependents and independents

that were considered. In this context, [a] refers to the original problem as is, with the

variables 3, 4 and 5 chosen as dependent. For options [b] and [c] , the pivoted variables are

1, 2 and 5 and 1,2 and 3 respectively. The specifications for these problems are given under

the column SPECS., where, N refers to the number of variables, M to the number of

constraints and MEQ to the number of equality constraints. The first number in each of the
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other three columns, corresponding to the algorithms, refers to the number of iterations

required and the second number in parentheses, the final error in the first order necessary

conditions, which will be referred to as the Kuhn-Tucker error (KTE). In addition, a third

number is reported for the base case option ([a]), which is the CPU time in seconds required

to solve the problem. The times for the other options are comparable, and hence, not reported

explicitly.

The full SQP method was solved with B initialized to Identity and took 16 iterations to

solve the problem, requiring on average 0.183 CPU seconds per iteration. In all the test

problems solved, the null space projection of the Hessian viz. (Z1B Z) was initialized at

Identity. Now, if we had chosen the bases to be orthonormal, this choice for RND would be

identical to choice of Identity for the full SQP Hessian, since (Z Z) would be Identity from

orthonormal property. Thus, the progress of the RND method with orthonormal bases and the

full SQP method should be identical for the above problem, since the only progress of solution

is due to movement in the null space. This is true, irrespective of which variables are picked

to be dependent, since the progress of the RND method merely parallels that of the solution

obtained from solving the undecomposed QP.

With our choice of nonorthonormal but orthogonal bases, and the two-sided projection of

the Hessian set to Identity, we cannot expect the QP solution to duplicate the undecomposed

QP solution, as the (ZT Z) term is no longer Identity. But, it is obvious that if we initialize

instead, the null space projection as (ZT Z) rather than Identity, we take the same step as the

full SQP method at the first iteration and hence, with absence of movement in the Range

space, the progress of the RND method with orthogonal bases and the full SQP method are

identical. This flexibility offered by the RND method in terms of initialization is exploited in

this test problem, where, by appropriate initialization, irrespective of the set of dependent

variables the RND method merely reduces to the full SQP method. This is also evident by re-

examining the solution obtained from the Example problem.

The LEW method has been shown before to have the same null space movement as the

RND method, with the difference being only in the step taken to reach the tangent subspace

of the active constraints, which is an orthogonal move in the case of the RND method. In the

absence of range space movement, as is the case with this problem, the same QP's will be

solved by both decomposition strategies, and hence the two methods are identical.
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As is evident (rom the results, with the projectedf Hessian initialized to Identity, the

decomposition strategies take slightly different numbers of SQP iterations to converge to the

optimum, depending on the choice of variable sets as dependent and independent Also evident,

is the fact that with an appropriate initialization of the projected Hessian, (which does not

require additional computation as the basis for the null space Z is calculated anyway) the RND

and LEW method are insensitive to variable partitions, and duplicate the solution progress

obtained by solving an undecomposed QP at each iteration. Thus one can make a definitive

conclusion, that in a problem with only linear equality constraints and a feasible starting point,

the RND and LEW methods are identical, and the sensitivity of these methods to variable sets

is influenced only by the Hessian initialization. The decomposition strategies require on average

0.194 CPU seconds per iteration to solve this problem. A more significant result is in terms of

the CPU time required to solve the QP at each iteration (not reported), where, the

undecomposed SQP algorithm takes about 0.052 CPU seconds per iteration, while the

decomposition strategies require 0.028 CPU seconds, a significant decrease.

For a problem with nonlinear constraints however, the manner in which the projected

Hessian matrix, (ZTB Z), is initialized is generally arbitrary, and .a choice of Identity (I) matrix

is as effective as any other choice. Under these circumstances, the two decomposition strategies

are significantly different because of their range space movements, which is the source of

LEWs inconsistency. One would expect the RND method because of its orthogonal moves to

the constraint surface, to be less sensitive to choices of dependent and independent variables, a

factor which is borne out in the results of the rest of the problems solved to test these

algorithms.

Details and the provenance of the problems solved in table 6-2, can be found in Nocedal

and Overton (1985). All problems were solved with a value for TOL of 10"10 and the projected

Hessian approximation was initialized to Identity. Nocedal and Overton, however, initialized

the null space projection of the Hessian by differencing the gradient of the Lagrangian using

forward differences at Zk along the columns of the null space basis Z and solved the problems

to a tolerance of 10"8 only. This explains the slightly fewer iterations required by them to solve

these problems using orthonormal bases. However, the technique of computing finite-difference

along the columns of Z, which is very successful for small problems, is too expensive in the

large-scale case, because of the effort required to form Z. In addition, even if the current
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PROBLEM

INDEX

2[a]

2tb]

3Ca]

3[b]

3[c]

4[a]

4[b]

4[c]

5ta]

5[b]

5[c]

6[a]

6[b]

6tc]

7[a]

7[b]

7[c]

8[a]

8[b]

8[c]

* Terminates

t Terminated

SPECS.

N,M=MEQ

2,1

3,2

5,3

5,3

7,2

10,3

8,4

FULL

SQP

6 (7.2E-12H0.81]

7 (3.3E-15K1.01]

8 (1.5E-10)[1.49]

7 (2.0E-12K1.36]

22 (1.3E-11K6.11]

39 (4.9E-10K 17.75]

12 (6.4E-10)[3.59]

at an infeasible point

owing to serious ill-conditioning

7

7

9

11

17

33

15

RND

(2.7E-13K1.23]

7 (7.4E-11)

(1.5E-13)[1.21]

7 (1.1E-13)

10 (7.7E-11)

(2.0E-12)[1.81]

9 (9.0E-13)

11 (2.7E-13)

(4.7E-11H2.16]

11 (9.5E-12)

10 (1.9E-12)

(2.1E-12)[4.52]

19 (1.1E-10)

20 (1.3E-11)

(5.9E-10)[ 13.54]

34 (7.0E-12)

34 (7.3E-10)

(2.8E-11H4.12]

15 (1.4E-10)

13 (3.2E-12)

at infeasible point

7

10

11

12

17

40

13

LEW

(6.2E-11K1.11]

9 (8.0E-14)

(1.2E-11K1.58]

10 (1.2E-16)

> 5 0 +

(1.2E-13)t2.14]

13 (9.0E-13)

>50+

(1.8E-13)[2.23]

11 (1.0E-12)

36 (6.7E-14)

(3.3E-13)[4.48]

26 (3.1E-10)

9*

(9.4E-10)[ 15.76]

52 (2.0E-10)

50 (9.1E-10)

(1.7E-11)[3.34]

11 (5.3E-10)

35 (8.3E-13)

Table 6-2: Local Convergence tests of SQP algorithms - Nonlinear problems

approximation of the Hessian of the Lagrangian function is available, it is probably too
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expensive to form its null space projection (Gill et al. (1981)). All the constraints were

specified as equalities, and for the last three problems, we followed Nocedal and Overton's

approach of specifying only the active constraints. As in table 6-1, the final KTE values for

all cases and the CPU times for the base cases are also reported.

The convention was to partition the variables set into decisions first and dependents next.

So, in all the base cases ([a]), the variables towards the end of the variable set, equal to the

number of equality constraints were chosen as the pivoted variables, initially. For example, in

problem 4 which has 5 variables and 3 equality constraints, for the [a] option, variables 3,4

and 5 were chosen to be in the initial basis set Of course, if the Jacobian becomes singular

during the course of optimization, an alternate, appropriate basis would be chosen, different

from the initial set specified. When this happened, we picked the initial basis sets for the

other options ([b] and [c]) in such a way as to avoid overlaps, with either the initial sets

specified before or alternate sets picked thereof, owing to singular Jacobians. The variables

picked as pivoted initially for option [b] are variable 1 for problem 2; 1 and 3 for problem

3; 1, 3 and 4 for problem 4; 1, 4 and 5 for problem 5; 1 and 2 for problem 6; 1, 8 and 9

for problem 7; and 1, 5, 6 and 8 for problem number 8. For case [c] , the initial basis sets

were variables 1 and 2 for problem 3; 1, 2 and 3 for problem 4; 1, 2 and 5 for problem 5; 2

and 3 for problem 6; 1 , 5 and 9 for problem 7; and finally variables 1, 2, 5 and 8 for

problem 8.

As is evidenced by the results, RND is generally faster than LEW, although nothing in

the theoretical development always guarantees this. RND, with the exception of cases 8[a] and

8[b], never requires more QP solutions than LEW. But the most significant conclusion that

can be drawn from these results, is in terms of the sensitivity of the methods to the manner

of variable partitioning, even when initialized close to the optimum. While the RND method is

almost insensitive to this, and requires almost the same number of QP solutions irrespective of

the choice of the initial basis, the LEW algorithm is highly dependent on this. Not only do the

number of iterations required by LEW vary considerably, but in a couple of cases (3[c] and

4[c]), the algorithm was terminated after more than 50 iterations at points radically away from

the optimum, although it was initialized close to it In addition, in one other instance 6[c],

LEW terminates after only 9 iterations due to line search failures owing to ill-conditioning, at

a highly infeasible point
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The times reported, when averaged per iteration, show that RND is only slightly slower

than LEW, and that the additional work required in RND to reconstruct the multipliers for the

equality constraints is not computationally significant Further, as the results suggest, the RND

method never requires significantly more iterations, and in some instances, fewer QP solutions,

than the undecomposed SQP algorithm.

The results given in table 6-3, are for randomly selected test problems, where starting

points suggested by their authors were used. The principal purpose of solving these test

problems is to rate the performance and robustness of the algorithms in solving problems

initialized away from the solution. Further, in each instance, at least two different choices of

initial basis were tried out to gauge the sensitivity of the algorithms to this choice. A suitable

value for TOL was picked for each problem based on the magnitude of the objective function

to obtain sensible results and the approximation to the null space projection of the Hessian was

initialized at Identity for all algorithms. Unless otherwise indicated in table 6-3, all solutions

satisfied the chosen value of TOL. The other details are as before in table 6-1.

Here the problems numbered from 9 to 13 are from Himmelblau (1972), and the number

in parentheses is the problem number in the reference. Problem number 14 is described in

detail in Locke, Edahl and Westerberg (1983) and is a simple optimization problem with 4

variables and 2 equality constraints. Problem 15 is the alkylation process model of Bracken

and McCormick (1968) which was solved by Berna, Locke and Westerberg (1980). The last

problem 16, is the chemical process optimization problem of Williams and Otto. In reference

to this problem, the numbers used in the problem column indicate the three different starting

points (see, Ray and Szekely (1973)) that were used.

For the first 5 problems, the variable partitions for the base cases ([a]) were done in the

same manner as outlined before. For the [b] option, the dependent variable sets are variable 2

for problem number 9, variables 8, 9 and 10 for problem 11, variables 7, 9 and 10 for

problem 12 and variable 1 for problem 13. For the [c] option, the choices are variables 2, 3

and 7 for problem 12. As the results of these problems indicate, RND never requires more

iterations than LEW. Further, while RND solves all these problems, irrespective of the manner

of partitioning of the variables, to optimum, the LEW algorithm fails to solve one problem

12 [4a] completely, terminating very far from the optimum, but is able to solve the same



27

PROBLEM

INDEX

9[la]

9[lb]

10C3]

ll[4a]

llC4b]

12[4a]

12[4b]

12[4c]

13t5a]

13t5b]

14[a]

14[b]

14[c]

15[a]

15[b]

16[la]

16[lb]

16 [2a]

16[2b]

16C3a]

16E3b]

SPECS.

N.M.MEQ

2,2,1

2,3,0

10,3,3

10,3,3

3,2,1

4,2,2

10,11,3

10,7,5

6

6

18

51

9

7

31

196

FULL

SQP

(2.8E-12K0.87]

(4.1E-10K0.82]

(5.0E-09K7.52]

(8.0E-09K 25.30]

(5.0E-13)[1.23]

(6.0E-11K1.11]

(2.4E-07K13.13]

(2.0E-11K80.36]

122*

79*

6

6

32

57

10

11

29

89

RND

(4.5E-07K0.92]

6 (6.0E-06)

(4.1E-10)[0.82]

(9.6E-06)[ 12.81]

32 (6.0E-07)

(3.8E-08K 26.02]

56 (4.5E-07)

54 (4.0E-08)

(7.2E-09)[1.59]

11 (2.4E-11)

(1.4E-10)[1.83]

17 (7.3E-10)

7 (4.2E-11)

(7.1E-07)[ 11.57]

27 (1.1E-07)

(5.3E-07)[30.36]

38* (6.0E-04)

96 (9.3E-06)

161 (8.0E-06)

147 (2.5E-10)

50 (7.0E-06)

7

6

37

94

11

10

31+

103

LEW

(2.5E-09K1.01]

6 (6.0E-06)

(4.1E-10K0.79]

(4.1E-07)[13.98]

38* (2.0E-04)

9*

(4.4E-06K50.02]

59 (1.4E-07)

(1.0E-10)[1.73]

16* (2.1E-06)

(8.0E-13)[1.66]

> 50*

10*

(2.1E-05K11.17]

33 (1.7E-06)

(5.2E-07)[34.69]

40+ (1.2E-05)

113 (8.4E-09)

186+ (9.2E-04)

149 (7.8E-10)

59* (4.0E-04)

* Terminates at an infeasible point + TOL not satisfied

• Terminates at a significantly different local minima

Table 6-3: Comparison of performance on general test problems

problem for alternate initial basis choices, requiring highly varying number of iterations. In
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two other instances, LEW fails to satisfy the TOL specified, though the final value of the

objective function is correct, terminating because of line search failures. As before, while the

results for the RND method indicate independence of the choice of dependents and

independents, the results for the LEW method indicate a strong dependence on this choice. The

only purpose of solving problem 10, is to show that in the absence of equality constraints,

these decomposition strategies reduce to the full SQP method.

Significant results were obtained during the solution of the next problem 14, which was

solved by Locke et al. (1983). Details of this problem are also given in the same reference.

The authors report an optimum value of -3.305 for this problem. For the choice of

dependent or pivoted variables which the authors used when solving the problem, which are

variables 3 and 4, RND requires one more SQP iteration than LEW. This is easily explained by

analyzing the iterates for RND, where the search direction given by the QP at the first

iteration leads to a singular Jacobian, warranting the choice of an alternate set of pivoted

variables viz. variables 1 and 4, thereby slowing down the performance slightly. The same is

true for the second case 14[b] for RND, where variables 1 and 3 were picked as pivoted

variables. LEW, for this initial set becomes highly ill-conditioned and had to be terminated

after 50 iterations at an infeasible point. Since, in both these cases the variables 1 and 4

constitute the final pivot set, they were chosen as the initial basis for option 14[c], where,

RND requires only 7 iterations as the Jacobian remains non-singular throughout. However, for

this choice LEW terminates with line search failures at a value of -3.30501 for the objective

function and fails to converge the equality constraints to the required tolerance. The same is

true of LEW for most other possible combinations of dependent and independent variable, thus

emphasizing the marked inconsistency in the performance of this algorithm.

Problem 15 employs the original formulation of the alkylation process optimization of

Bracken and McCormick (1968) and is schematically represented in fig. 6-1. It is a simplified

model of an alkylation process, where fresh olefins and isobutane are added to a reactor.

Sulfuric acid is added to the reactor as a catalyst and spent acid is removed. The effluent

from the reactor is sent to a fractionator, where the alkylate product is separated from the

unreacted isobutane, which is recycled to the reactor. Table 6-4 gives the mathematical

formulation employed and table 6-5 gives the details of the bounds employed on the variables

as well as their starting and optimal values. The problem has 10 variables. Excluding the

bounds on the variables, is also has 11 constraints, of which 3 are equalities.
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Figure 6-1: Bracken and McCormick alkylation process

The results for the two decomposition algorithms are almost identical (although LEW fails

to satisfy the tolerance for the first option, terminating with line search failures) and are

better than the values reported by Berna et al. (1980). Here, the pivoted variables chosen

initially for problem 15[b] are 4, 5 and 6.

Although the results presented here are for the unsealed problem, the automatic variable

and constraint scaling procedure proposed by Biegler and Cuthrell (1985) has also been

implemented in the RND algorithm. Since the magnitude of the variables in the alkylation

problem vary considerably, we decided to solve the problem using this scaling procedure. The

scaled run only took 13 iterations to solve the problem for the RND method for both variable

sets, a reduction of about 15 iterations. These results are very encouraging and indicate that the

scaling procedure will be extremely beneficial for solving much larger problems.

The last example in this class is the Williams and Otto flowsheeting problem. The process

here has many of the attributes typical of a chemical process plant, involving common unit

operations like separation (through decanting and distillation) and reaction, and has topological

features like recycles, bleeds, feed and product streams, characteristic of a flowsheet The
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Min -<p = 5.04x1 + 0.035x2 + 10.0x3 + 3.36x5 - 0.063x4x7

s.L x2 + x5 - xlx8 = 0

9.8E4X3 - (x4x9 + 1.0E3x3)x6 = 0

1.22x4 - xl - x5 = 0

-xKl.12 + 0.13167x8 - 0.00667x82) + 0.99x4 £ 0

xl(1.12 + 0.13167x8 - 0.00667x82) - X4/0.99 £ 0

-86.35 - 1.098x8 + 0.038x82 - 0.325(x6 - 89.0) + 0.99x7 £ 0

86.35 + 1.098x8 - 0.038x82 + 0.325(x6 - 89.0) - X7/0.99 £ 0

-35.82 + 0.222x10 + 0.9x9 £ 0

35.82 - 0.222x10 - X9/0.9 <, 0

133.0 - 3.0x7 + 0.99x10 < 0

-133.0 + 3.0x7 - xlO/0.99 < 0

Table 6-4: Formulation for Alkylation Optimization Process

objective of the process is to manufacture a certain product P from two chemicals A and B,

and the three reactions involved are as follows:

A + B -» C

C + B -> P + E

P + C •* W

The plant, shown in fig. 6-2, produces in addition to the desired product P, a heavy oily

waste product W, which has to be disposed. Components C and E are intermediate by-products

of no commercial value as independent commodities and are used as plant fuel. The effluent

from the reactor is cooled in a heat exchanger and the waste W is removed with a decanter.

Subsequently product P is removed in the overhead of a distillation column. Owing to

thermodynamic restrictions, a fraction of the product is retained in the bottoms of the column.

The bottom product is then split into two streams; one is recycled to the reactor and the other

is used as plant fuel.
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Variable

xl

x2

x3

x4

x5

x6

x7

x8 '

x9

xlO

<P

Lower

Bound

0

0

0

0

0

85

90

3

1.2

145

Upper

Bound

2000

16000

120

5000

2000

93

95

12

4

162

Starting

value

1745

12000

110

3048

1974

89.2

92.8

8.0

3.6

145

872.387

Optimum

value

1698.09

15818.2

54.1041

3031.22

2000.0

90.1156

95.0

10.4931

1.56164

153.535

1768.81

Table 6-5: Summary of Bracken and McCormick problem

The modular nature of the flowsheet enables the entire process to be represented in terms

of equations for each unit, whereby, the output flows are calculated from the inputs and

equipment parameters which are specified. Employing the same notation as in fig. 6-2 for mass

flowrates of the streams in the flowsheet and using the convention that superscripts represent

individual component flows, the calculation sequence is given below. This formulation is similar

to one presented in Ostrovsky and Berezhinsky (1984).

1. Stirred-Tank Reactor Equations:

F = F + F + RA + RB + R c + RE + RP

R A B

F A = F + R A - K ( F A F B ) Vp/F 2

R A 1 R R r R

FR
C = R c • [ -<M c / M £ ) K ( F R

B F R
C ) - K (FR

C F R
P )
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• <MC / M £ ) K ( F R
A F R

B ) ]

FR
P = Rc - <Mp / M c ) K3 (FR

P FR
C)

• (Mp /M B ) K2 (FR
C FR'

FR
E = RE

 + ( M E /M B ) K (FR
B FR

C)

F w = (M / M ) K (F P F c) V/>/F 2

R w y C 3 R R R

K = A exp (-E /RT) i = 1,2,3

i i i

2. Heat Exchanger Equations: (No energy balances; trivial mass balances)

F i = F j , i = A,B,C,E,P,W

D R

3. Decanter Equation:(Perfect separation of waste assumed)

F W = F W , F w = 0
W D S

F ! = F ', F ! = 0, i =
4. Distillation Column Equations:

B

Fs

s'

0.1

F i __
P

0,

V = 0.1

i =

Fs

A.B.CE

5. Flow Splitter Equations:

F v = »F . '
i = A.B,C.E,P

6. Recycle or Tear Equations:

R# * - R* = 0 , i = A,B,CE,P

The objective function here is the annual rate of return on fixed investment and given in

terms of the net sales minus the fixed charge, raw material, utility and waste disposal costs. It

can be expressed as follows:

F + C F - C F - C F - C F - C F + C v / l / (C V/>)
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Details regarding the kinetic and process parameters as well as the cost coefficients can be

found in numerous literature references where this problem has* been solved (see, e.g., DiBella

and Stevens (1965) and Ray and Szekely (1973)). In addition to the tear equations, additional

constraints on the problem are in the form of inequalities that bound the production rate and

variables as follows:

580°R £ T <> 680°R

0 < F < 4763
p

30 £ V < 100

0 < n < 0.99

All flows £ 0

which gives a final formulation with 10 variables and excluding the bounds on variables, 7

constraints, of which 5 are equality tear constraints. Thus for a fixed feed and density />, a

choice of any five variables can be used as decisions for optimization.

The 3 different starting points employed for the variables and the initial and final values

of objective function are given in table 6-6. In addition, the final variable values obtained for

the third starting set with the RND option are also given. Without scaling, the same optimum

value is found from the different starting points, so that a return of 131.423% is considered

optimal for this problem.

This problem is however plagued with a myriad of local optima and very exacting

tolerances had to be specified before the optimal solution could be obtained. In fact, in the

couple of instances where the full SQP method failed, we found that the constraints were all

converged and the KTE was as low as 10" 9. Interestingly however, both decomposition schemes

progressed to the solutions without line search failures, and with acceptable tolerances. The

problem with local minima was accentuated when we changed the choice of pivoted variables

to variables 1, 2, 3 A and 5 for the [b] options, with both decomposition schemes terminating

at local minima. Examination of these results indicated that all the variables were at their

lower bounds, which is zero for the flowrates and the final value of the objective function was

close to zero. Here, we resolved the problem by placing reasonable lower bounds on the

variables, and obtained the results given in table 6-3. Since this problem contains local optima
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Variable

Fs
A

K
Fs

c

Fs
P

K
F

A

F
B

V

T

V

initial <P(%)

final <p(%)

Starting

set 1

8,820

39,910

2,360

7,890

31,660

11,540

31,230

60

610

0.5806

124.624

131.423

Starting

set 2

6,000

35,000

10,000

6,000

15,000

10,000

40,000

60

.610

0.714

1.2436

131.423

Starting

set 3

18,187

60,815

3,331

10,817

60,542

13,546

- 31,523

60

656

0.7536

81.9102

131.423

Optimum

values (3)

46,261.4

143,281

7,585.83

18,826.5

141,847

13,164.3

29,991.2

30

674.36

0.8998

—

Table 6-6: Summary of Williams and Otto problem

and extreme nonlinearities, we observe that this example may not be suitable for making

conclusions regarding the sensitivity of the RND and LEW algorithms toward the choice of

dependent variables. However, as can be seen from the results, the RND method outperforms

the LEW algorithm in each case.

7. Conclusions

In this paper, we have developed and implemented a new Range and Null space

decomposition strategy (RND) based on nonorthonormal projections. RND uses orthogonal

bases (but not orthonormal columns) for the Range and Null spaces of the matrix of the active

constraint gradients. These bases are sparse formulations based on a partitioning of the variable

set They use the gradient information that is already available and do not require explicit

computation or storage. Hence, RND is ideally suited for implementations where the Jacobian is

large and sparse.
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RND, has been shown to h^ve the same convergence characteristics as the full SQP

method, but requires only the computation of the null-space projection of the Hessian matrix,

which is of the dimension of the number of degrees of freedom in the problem. This strategy

is implemented in a robust manner and compensates for difficulties like singular Jacobians. It

thus overcomes the problems encountered in the implementation of previous decomposition

strategies proposed by Westerberg et al.

Numerical comparison derived from the solution of a number of highly varied nonlinear

and process optimization problems demonstrates the effectiveness of this strategy', compared to

other SQP methods. In particular, they show that it avoids the inconsistent behavior found with

the LEW method and requires about the same number of iterations as the full SQP method,

but by solving much smaller quadratic programs.

RND can also be extended to include specific decomposition strategies to factor sparse

gradient matrices where the non-zero elements occur in a specific pattern. Finally, the method

can also be extended to exploit the fact that only a part of the Jacobian changes from one

iteration to another, since the rows of the constraint gradient matrix that correspond to linear

constraints and simple bounds remain constant. Here, refactoring of that part of the basis to

compute the inverse (implicitly) can be avoided, as it is possible to recur the factorization

from iteration to iteration using the partitioned inverse technique.
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