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Abstract

Optimal control system design traditionally involves the adjustment of state and

input variables to optimize a specified performance index. However, in practice there

may exist variables, such as plant parameters, that offer extra freedom in the design

of systems that can achieve even better performance. In this paper, we describe an

integrated approach for dynamic system/control system design which can satisfy a

variety of constraints and allows for the introduction of three additional types of

variables in the optimization process. The approach we outline is based on a direct

search method which can be used in conjunction with standard optimal control

algorithms such as the Riccati equation for unconstrained linear systems. The

method is used to generate optimal state and input trajectories for a linear mass-

spring-damper system.



1 Introduction

Traditionally, a mechanical system is designed to satisfy performance

specifications, such as a stiffness requirement derived from peak loads expected

during system operation. The design is "optimized" by adjusting system parameters,

such as stiffness, mass, or dimension, for example, subject to mechanical and

geometrical constraints such that the modifications satisfy the specified performance

requirements. The design is then passed on to the controls engineer whose task is

to design an optimal control scheme for the given system. Typically, the controls

engineer has little input in the evolution of the mechanical design. This practice of

separating the mechanical and control system design activities is promoted by the

attitude that an "optimal control system" can be designed for any system. In fact,

the solution to the optimal control synthesis problem can be quite different

depending on the design of the mechanical system. The current design philosophy is

that if each of the "subsystems" is optimized independently, then the total system

will be at least nearly optimal. This may not be the case; ideally an integrated

approach is necessary for real systems.

The substantial gap between the processes of dynamic system design and

optimal control system design can, in part, be attributed to their different

mathematical bases. Typically, a dynamic system design problem is formulated and

solved by nonlinear programming techniques [1-3], while an optimal control system

design is based on mathematical techniques such as variational methods and

Pontryagin's maximum principle [4-6]. Nonlinear programming methods involve the

adjustment of system parameters to optimize an objective function while satisfying

system constraints, such as requirements resulting from stress-strain analyses, etc.

On the other hand, optimal control system design is concerned with finding the

optimal state variable and input variable histories that minimize a given performance

index without violating any constraints on the state, input, and final time. The two

design stages remain uncoupled principally due to the lack of a unifying approach

which can account for the interaction between mechanical system variables and

control system variables in a combined optimization process.

Recently, work in the development of integrated algorithms has been reported in

[7-9]. In general, these efforts are directed toward the development of data-base

software management packages that facilitate the transfer of information between

application programs. These large-scale computer projects represent an important

step toward integrated design, but do not include a unifying methodology linking the

disparate stages of dynamic system design and control system design.



1.1 Scope

This paper explores the integration of dynamic system (plant) design and control

system design in the interest of obtaining an optimal total system, rather than

independently optimized subsystems. The goal is to present a systematic framework

for unified dynamic system/control system design with application to optimal

trajectory planning. We introduce an approach based on a direct search optimization

method which is used in conjunction with standard optimal control algorithms. In

addition to solving an illustrative example, we identify difficulties with the

development of integrated design schemes and suggest possible future directions for

research.



2 Background

In standard optimal control theory we seek an admissible control u* that causes

the dynamic system represented in state-space form

x(t) = f( x(t), u(t), t ) , x(0) = xo (1)

to follow an admissible trajectory x* that minimizes the performance index J

(2)J = h( x(tf), tf ) * ff g( x(t), u(t), t ) dt

where x is the state vector, u is the vector of control inputs, h and g are real,

scalar-valued functions of the indicated arguments and where the superscript «

implies "optimal." Function h is the penalty or cost associated with the error in the

terminal state at the final time tf , whereas function g is the cost associated with

the transient state errors and control effort. These functions are selected by the

system designer to put more or less emphasis on terminal accuracy, transient

behavior, and the expended control effort in the performance index J.

The calculus of variation approach [4-6] can be used to derive the necessary

conditions for optimality when the admissible state and control regions are not

bounded, viz.

X(t) = — ( X#(t), U#(t). £#(t), t

d
E<t) - - T— ( x#(t), u#(t), E-(t) ,t ) (3)

ox

( x*(t). u*(t), fi'(t) .t )0
dx.

for all t t [ 0, tf ] and boundary condition equation

**<t,),t,

• [°H ( x*(tf), u*(tf). fi-(tf). tf ) * — ( x*(t(), t, JJ51, = 0 (4)



where superscript T represents transpose and the Hamiltonian °\i is the scalar

function defined as

ty( x(t), u(t), E(t), t ) A g( x(t), u(t), t ) + E
T(t) [ f ( x(t), u(t), t )] (5)

where p(t) is the co-state vector of Lagrange multipliers. The co-state £(t) contains

information about future effects of control perturbations and the Hamiltonian

describes the way that this information can be used to describe the change in the

value of the performance index. Thus, the structure of the optimal controller

depends strongly on the co-state vector and on the Hamiltonian function (and its

dependence on the control).

For a given problem, the boundary condition requirement reduces to a specific

set of equations, as described in [5]. A problem may involve tf fixed or free with

x(tf) specified, free, or constrained on a surface. For each case, a unique set of

equations is obtained and different solution methods are usually required. The

classic Riccati equation is an example of the necessary conditions for optimality for

an unconstrained linear system with the final time fixed. Upon relaxing the final

time constraint, a more complicated set of necessary conditions applies and a

different approach must be employed. This distinct change required in the solution

method due to a different constraint often hampers the design process.



3 Methodology

This paper introduces an integrated approach for the design of a plant and its

control system. The approach can accommodate a variety of constraints and exploits

freedom in both the dynamic system and the control system. In general, flexibility

may exist in three types of variables: (1) system (or plant) parameters, (2) terminal

conditions, and (3) weighting in the performance index. These variables are described

below.

System Parameters. The selection of system parameters (as reflected by the

function f in Eq(1)) usually occurs independently of the control system design. For

instance, the mass and stiffness of a mass-spring-damper system are sometimes

selected to meet certain natural frequency requirements, but the freedom in these

system parameters is rarely exploited in control system design. There have been

some attempts [1 , 8, 10] to optimize the dynamic response of mechanical systems

by including system parameters in optimization schemes. However, these approaches

seem to tackle the problem as a totally new optimization problem without

incorporating the results of standard optimal control theory which governs the

original system with fixed parameters. As a result, they are often mathematically

and numerically cumbersome. In the method proposed below, standard control tools

can be included "naturally" in the optimization process.

Terminal Conditions. Assuming known system parameters, the necessary

conditions for optimality have been developed and are described in standard

textbooks on optimal control [4-6]. In practice, techniques for solving optimal

control problems with free final state and fixed final time are well developed. In

contrast, numerical difficulties are encountered when solving some optimal control

problems with fixed final state and/or free final time. In this paper we include the

terminal conditions as additional variables in such a way that the optimal control

techniques associated with free final state and fixed final time can be employed.

Performance Index Weighting. The general optimal control problem involves

the minimization of a performance index

g( x(t), u(t), t ) dt (6)

subject to the inequality constraint |*k(tf) - xRf| £ <5k for all k state variables where

xkf is the nominal terminal value of the k-th state variable and &k is the tolerance on

the k-th state variable at the terminal time. In order to avoid analytical and



numerical difficulties associated with incorporating the inequality constraints on the

terminal state, the alternative performance index J of Eq(2) is typically used. The

first term in Eq(2) is a penalty (or cost) function of the final state and time, and it is

usually written as

h( x(tf), tf) = Vi xT(tf) H x(tf) (7)

where the elements of weighting matrix H (usually diagonal) are selected large enough

to drive the state to the region of acceptable tolerance. If the elements of H are

too large, the state inequality constraint will be satisfied, but J will be larger than

necessary. The selection of H involves trial-and-error or estimation methods [11].

It is clear that there exists an optimal H which satisfies the inequality constraint

while minimizing J.

If all three types of variables are specified (i.e., fixed), the optimal control

problem can be solved for both linear and nonlinear systems. For unconstrained

linear systems, the Riccati equation can be solved; for nonlinear systems and

constrained linear systems, a variety of numerical techniques (including steepest

descent and dynamic programming) are available for optimization.*

If flexibility exists for only one type of variable, specialized techniques can be

used to solve the optimal control problem. However, the possibility of

simultaneously exploiting freedom in system parameters, terminal conditions, and

performance index weighting is not commonly discussed.

In this paper we assume freedom in all three types of variables. The proposed

iterative method is outlined below.

1. Formulate the dynamic system in the state equation form:

x = f( s, x, u, t ), x(o) = x (8)
— — — — — — —Q

subject to any constraints on (i) the state and input variables, (ii) the final
state and final time, and (iii) the system parameters. In Eq. (8) s is the
vector of free system parameters. The performance index, J, is

J = h( x(tf), w, tf) • J (9)

where

In a nonlinaar optimal control problem (undar torni smoothnass assumptions) a solution can always ba obtainad by
discratizing tha problam with a dansa anough grid and than using discrata dynamic programming algorithms 1121.



g( s, x u, t ) dt

and w is the vector of weighting coefficients on the terminal state.

Note that the optimality of the proposed performance index is a function
of s and w as well as the state vector x and control (input) vector u of
standard optimal control theory,.

2. Set initial guess values for s, x(tf), w, and tf.

3. Solve the standard optimal control problem. This can be accomplished
because the problem is reduced to the standard problem of finding x* and
u* for the system

x = f( x, u, t ), x(o) = x (10)
— — — — — —O

which will minimize the performance index

J = h( x(tf), tf ) • ff g( x, u, t ) dt (11)

with the final state and final time fixed and the system parameters and
weighting coefficients given. In solving for x* and u* both equality and
inequality constraints on the state and input variables must be satisfied.

4. Without violating any constraints on the system parameters, final state,
and final time, modify s, x(tf), w, and tf according to an optimization
algorithm, such as a direct search method, to minimize J.

5. If the termination criterion of the optimization algorithm is not satisfied,
repeat Step 3 with updated s, x(tf), w, and tf. If the termination criterion
is satisfied, then the method has identified the optimized "optimal"
solution, i.e., s\ w\ t f \ x#\ and u** where the single superscript « implies
the optimal values and the double superscript *« implies the optimized
(i.e., minimum) optimal solution.

The scheme presented above represents an integrated design approach for

solving a variety of optimal control problems involving freedom in the three types

of variables, s, w, and tf. The approach assumes that the optimal control solution

can be obtained for the case when the three types of variables are fixed. A general

flowchart of the proposed integrated design method is shown in Figure 1.

The optimization algorithm we have employed is based on a direct search

method known as Simplex optimization [13,14]. The Simplex method is an effective

and computationally compact scheme for minimizing the performance index J which

is a function of s, x(tf), w, and tf, or n scalar variables. The method depends on the

comparison of functional values of J (from Step 3) at (n+1) vertices of a general
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simplex, i.e., a geometric figure that has one more vertex than the space in which it

is defined has dimensions. To reach a minimum, the simplex is moved "downhill"

by replacing the vertex with the highest value by another point. In comparison to

other methods such as steepest descent and Newton-Raphson methods which depend

on gradient values, the Simplex method requires only functional values of the

objective function (i.e., J) and thus can update the current guesses rapidly.



4 Example

We demonstrate the approach using the linear system shown in Figure 2. We

consider a mass-spring-damper system with known mass m and known viscous

damping constant c and variable (i.e., "free") spring stiffness k. The mass is acted

upon by force F(t). We seek the optimal stiffness and force in moving the mass to

a new state, as described below.

Step 1. The system is described by state equation

x(t) = A x(t) + B F(t) (12)

where

k

m

c

m

and B

and the state is x = [ xi , x2 ]T * [ x , x ] T . The initial state variables x10 * x^O)

and x2Q = x2(0) and the desired final state variables x1f and x2f are given. We seek

the optimal control F# that minimizes

J = 1/2 xT(tf) H x(tf) • ff F2(t) dt (13)

where H is a diagonal weighting matrix whose diagonal elements are large enough to

satisfy known terminal state constraints

(14)

where the tolerances are

acceptable tf.

and &2 and 0 < tf £ T where T is the upperbound on

Step 2. Select initial guess values for stiffness k, final time tf, and diagonal

elements of weighting matrix H.

Step 3. From standard linear optimal control theory, the optimal control law

can be obtained by solving the Riccati equation

K(t) = - K(t) A - AT K(t) * K(t) B • K(t) B BT K(t) (15)
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Eq (15) is solved by integration for K(t). The input is then calculated from
F(t) = - BT K(t) x(t) (16)

which is substituted into the state equation (Eq(12» and solved for the optimal state

trajectory x#(t). The optimal input F#(t) is known from Eq(16) with x(t) = x*(t).

Steps 4 and 5. Based on the results of Step 3, k, tf, and the elements of H

are updated using a Simplex direct search method to minimize

T F2(t) dt (17)

while not violating the terminal state and terminal time constraints. The updating

continues until a termination criterion, such as

is satisfied where the numerator of the second term inside each pair of parentheses

is the current iteration value, the superbar represents the mean of all previous

iteration values, and * is the error bound.

The method has been implemented on a IBM PC. Simulation results have been

obtained assuming the numerical data listed in Table 1.

Three cases have been considered, as shown in Table 2. Case 1 represents the

standard optimal control problem where k, Hn , H22, and tf are fixed (having been

selected arbitrarily). The index of control effort, J , is 26.7 N2. In Case 2, the final

time tf is fixed at 0.5 sec and the method described above is used to solve for the

optimal k, Hn , and H22. Here, the index J is reduced by 6.7 percent to 24.9 N2. In

Case 3, an inequality constraint is imposed on the final time. The optimal solution

is reached at the upper bound of the final time constraint, i.e., at 0.8 sec, where J =

5.23 N2.

In comparing the results of Cases 1 and 2, we note that the terminal state

constraints are satisfied at the extremes for Case 2 resulting in a decrease in J. The

decrease in weighting elements H and H22 on the terminal state implies that the

weighting on the total control effort has been increased. In fact, the weighting on

control effort cannot be increased further without violating the bound on the terminal

state. Since the performance index J consists of the sum of the terminal penalty

function and the trajectory function J, we cannot claim to have found the minimum
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J, i.e., there may be an admissible trajectory which has a smaller J but larger

terminal penalty function with a larger total sum J. However, when the terminal state

constraint is satisfied at the extreme values, as occurs in Case 2, and the terminal

penalty function cannot be increased further without violation, then we are assured of

achieving minimum J. Thus, Case 2 represents a truly minimum control effort

solution.

In Case 3, the final time constraint is satisfied at its upper extreme, i.e., tf =

0.8 sec. Physically, this minimizes energy dissipation in the damper by reducing the

velocity profile. Even though Hn and H22 are decreased, we cannot claim to have a

truly minimum J since one of the terminal state constraints is not satisfied at its

extreme. Although the solution is optimal only with regard to J, the control effort

index J is reduced significantly and the performance is improved.

Graphs of displacement, velocity, and force as a function of time are shown in

Figures 3, 4, and 5, respectively. Figure 3 shows that the displacement histories are

sigmoidal ("S" shaped) in character corresponding to the fact that the mass is first

accelerated and then decelerated. For Case #1 the displacement at the terminal time,

tf = 0.5 sec, is within the acceptable bounded region. There is potential for

expending less control effort by reducing the weighting on the terminal constraint

without violating the required specifications. This occurs in Case #2, where the

terminal constraint is satisfied at the "lower" {i.e. closer) extreme (-0.05 m), thereby

minimizing the energy dissipated in the damper. Case #3 represents the solution

where the final time is free but limited to tf £ 0.8 sec. The optimal solution occurs

at tf = 0.8 sec, at which time the displacement is close to zero, and not at an

extreme. The solution obtained is a local minimum and the result suggests the

potential for further improved performance.

Figure 4 shows the velocity profiles as a function of time for the three cases.

These parabolic profiles again reflect an acceleration phase followed by a

deceleration phase of the mass. For Cases #2 and #3 the terminal state constraint is

satisfied at the "upper" extreme (0.05 m/sec). Physically, the mass is decelerating to

just satisfy the constraint.

Figure 5 shows the minimum control effort solution for the three cases. In

addition to minimizing control effort, the maximum magnitude of the input force is

reduced for Case 02 relative to Case #1. The input force varies smoothly except at

the boundaries (i.e., near the initial and final times). The optimal control solution has
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finite initial force values, which may be physically impossible to achieve
instantaneously.
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5 Discussion

Due to the nature of the direct search method, the proposed design approach

does not guarantee global minimization of the performance index; rather, only local

minimization is achieved. This suggests the importance of selecting a reasonable

initial guess for the optimization. In practice, the selection of an initial guess should

be predicated, to the extent possible, on insight and experience based on the given

physical problem. In many cases, it is advisable to repeat the simulation starting

with different initial guesses, in order to search for the global minimum. Despite the

possibility of missing the global minimum, the method still improves upon the

standard optimal control solution by arriving at a smaller value of the performance

index.

In the proposed method, an optimal control problem must be solved during each

optimization iteration. For unconstrained linear systems, the optimal control solution

is directly available by solving the Riccati equation. In contrast, for nonlinear and

constrained linear systems, iterative methods, such as steepest-descent methods, are

typically applied to solve the optimal control problem. In the latter cases, the

double-nested iterative structure of the overall method makes the approach

computationally-intensive and often-times unwieldy. Thus, due to its iterative nature,

the method is best suited for off-line design.

Despite the above limitations related to finding the global minimum and on

computational inefficiency, the method has several advantages, namely, (1) it can

work in conjunction with existing linear and nonlinear optimal control theories and

their numerical algorithms, and (2) it can handle effectively inequality constraints on

the three types of free variables. The first advantage means that the method can

draw upon the wealth of existing optimal control packages. The second advantage is

due to the fact that the direct search method can easily convert a constrained

problem to an equivalent unconstrained problem by suitable penalty function

techniques. The advantage is significant since, in design, inequality constraints on

system parameters are commonly encountered.
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6 Conclusions

This paper describes a PC-based tool for integrated design of dynamic systems

and control systems. The tool embeds an optimal control method inside an

optimization algorithm and is capable of simultaneously adjusting state variables,

input variables, system parameters, performance weighting, and final time to

minimize an objective function while satisfying design constraints. By utilizing these

degrees of freedom, it is possible to improve upon the standard optimal control

solution.

The algorithm has been used to solve several integrated design problems and

experience has shown that the method is best suited to unconstrained linear systems.

While there is some art involved in application of the algorithm - to arrive at initial

guess values - no difficulty has been encountered in obtaining optimal solutions.

We believe that this method represents a new trend in integrated plant/control

system design and are currently exploring a suboptimal control approach that will

overcome the double-iterative structure of the algorithm when tackling nonlinear and

constrained linear problems.
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Table 1. Numerical Data for Example,

m = 1.0 kg

c = 1.0 N-sec/m

X10 =

d s

T *

€ *

-1.0

X 1 f :

0.05

0.05

0.8

10 6

m

m

m/sec

sec
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Table 2. A Comparison of the Results of Three Optimal Control Problems.

CASE

1

2

3

PROBLEM

Fixed k,

H 1 T H22* *f

("Optimal Control")

Fixed tf

only; free

k» "ii• 22*

Constraint on

|x(tf)| 10.05

Free tf, k,

H1T H22'

Constraint

on tf <. 0.8 sec

k

(N/m)

20.0

13.1

7.12

H11

(N/m)

500.

452.

415.

H 2 2

(N-seota)

500.

233.

96.5

*f

(sec)

0.50

0.50

0.80

x,(tf)

(m)

0.0292

-0.050

0.00298

x2(tf)

(m/sec)

0.00919

0.050

0.050

J = / u2dt

(N2)

26.7

24.9

5.23
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Initial Guess
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?
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Trajectories
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Solver

(for fixed
system)

Figure 1. Simplified Flowchart of Integrated Design Algorithm.
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I X(t)

c) n c)*.

Figure 2. Mass-Spring-Damper System.
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Figure 3. Displacement Histories for Three Cases of Example.
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Figure 4. Velocity Histories for Three Cases of Example.
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Figure 5. Force Histories for Three Cases of Example.


