
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

The MICON System for Single Board Computer Design

by

N. Balram. W. Birmingham, S. Brady, R. Tremain, and D. Siewiorek

EDRC-18-03-87 >

U At

The M1C0N System for
Single Board Computer Design

Nikhil Balram
William P. Birmingham

Sean Brady
Robert Tremain .

Daniel P. Siewtorek

Department of Electrical and Computer Engineering
Carnegie-Mellon University

Pittsburgh, PA 15213
USA

Abstract

The MICON (M]cro-processor QQNftgurer) system is a knowledge-based
design aid, written in OPS5. for the domain of single board computers. A prototype
of the system has produced working hardware. From a set of high level
requirements, MICON is able to produce a customized board. A high level
specification is necessarily vague with regards to detailed implementation issues,
in order to produce a detailed implementation of the design, MICON must
continuously transform and refine the representation of the design objects across
three levels of representation. The design is refined using domain specific
knowledge. Domain knowledge is partitioned into five categories to facilitate future
expansion of the system. The inference engine of MICON is based on a simple
design model consisting of three steps: specification, selection and integration.

1. Introduction
The MICON[1] system is a knowledge-based design aid, written in OPS5 (3),

for the domain of single board computers. A prototype of the system has produced
working hardware. From a set of high level requirements, MICON is able to
produce a customized board. The high level requirements capture salient features
of a board needed to fit a particular application. However a high level specification
is necessarily vague with regards to detailed implementation issues. In order to
produce a detailed implementation of the design, MICON must continuously
transform and refine the representation of the design objects at the highest
abstraction level into objects which can be constructed at the lowest abstraction
level.

In producing designs for the single board computer domain, MICON uses a
technique of template refinement. A set of functional templates have been
developed which represent subsystems of a single board computer system.
Functional templates are devoid of particular component information, but contain
important abstracted features of the subsystems, allowing a rough initial structure
to be developed from the high level requirements. From the functional template
level the design is brought to the specific logic level, where the full logic structure
necessary to realize the abstracted features of the functional template level are
developed* The final level is the specific hardware level, where specific chips are
bound to the structure used in the levels above. By using several abstraction
levels, well defined partitions in the knowledge base are established, easing the
burden of adding new knowledge to allow MICON to design with new chips.
Besides the structural knowledge, there are four types of knowledge in MICON's
knowledge base: selection, refinement, problem-solving and component. Selection
knowledge allows MICON to choose the correct components for refinement of a
template. Refinement knowledge describes how to refine the templates for
specific applications. Problem-solving knowledge describes when and how
refinement knowledge should be applied. Component knowledge is a store of
knowledge on the salient features of the design components used by Micon.

At every design decision point, there are many options available. The absence
of a well formed set of transformations to guide the refinement process and
incomplete domain knowledge, combine to make the design process an ill-
structured task. This is typical of the tasks handled by other knowledge based
tools. Three recent works of this type attacked various aspects of integrated circuit
synthesis. TALIB [5] automates the mask layout phase of the IC design process.
WEAVER [4] is an expert channel/switchbox router. Ulysses [2] is an environment
for the design of analog integrated circuits. Other related work includes a system
for the redesign of circuits [7] and the configuration of super-mini computer
systems [6]. All of these systems used domain specific knowledge to accomplish
their tasks.

Domain knowledge is exploited in two ways in MICON. First, the techniques of
refinement are all based on very specific domain actions. Hence, a large number
of rules are necessary m order to produce good designs. Second, the ordering of
tasks is determined utilizing domain-specific knowledge. By delaying the
execution of those design tasks that require information generated by other design
tasks, unnecessary search is eliminated.

MICON has evolved from a prototype system. The prototype system contained
many of the features m the present MICON. While the prototype produced a

working Z801 board, it capabilities were limited. The limitation of the prototype rest
partially with an inadequate representation scheme. In order to provide context for
the representation scheme presently used, a brief overview of the prototype system
will be presented. After the overview, a detailed discussion of MICON's
architecture and representation techniques is presented.

2. Prototype MICON
The Prototype MICON (PMICON) was completed by the end of 1983. PMICON

generated a schematic for a 2 80 based single board computer. Several man-
months later, a working board was produced.

2 . 1 . P-MICON structure
The design process used by P-MICON was based on the customization of a

large template for a given set of input parameters. A template represents the
general interconnection structure between the computer's subsystems. The

'subsystems are: Processor, Memory, and Input/Output (I/O) peripherals.
Template refinement is based upon a simple design model:

Specification: A set of requirements for each subsystem is given by the user.
For example, the amount of memory needed; the type of
processor; and the types of I/O devices.

Selection: Components are selected from a parts database by matching
their characteristics with the requirements of the user. In some
cases, selection is accomplished by a simple name match;
other situations* require weighing various features of a
component against the requirements (e.g. power vs. speed).

Instantiation: The chosen components are inserted into the appropriate
position in the template. During instantiation, support
components are also added. Support components are not
specified by the user, but are necessary for proper system
operation. Examples of such components are: buffers, drivers
and the system clock.

P-MICON strictly ordered tasks during refinement Each step above was
completed for each subsystem before the next step began. For example, the
specification and selection steps for memory, processor and I/O were performed
before any instantiation steps. The completed design was output in the form of a
net-list.

2.2. P-MICON Deficiencies
Upon completing the construction of the Z-80 board, several deficiencies of the

system were discovered. The deficiencies are best explained after consideration
of P-MICON's assumptions. The first assumption was that enough domain
knowledge was available for P-MICON to make an assertion about the design
without having to retract it later as the design progressed and more information

1Z8O it *r»gistered trademark of ZltoffCotp.

became available. The second assumption was that each of the design tasks
could be considered nearty-independently of other design tasks based on the
straightforward nature of the domain.

Experience has shown that the first assumption is generally valid, except in
certain situations which exhibit bin-packing problem characteristics. The second
assumption is valid only for simple designs. Many of the assertions made by the
prototype system must be done in the absence of full design state information. This
problem is particularly evident in resolving constraint violations. For example, the
prototype system assigns a maximum amount of board area for implementing the
system. If a subsystem requires more space than it was given, the prototype finds
the problem unsolvabie even if another subsystem consumed less area than it was
given.

Another limitation of PMICON is its limited degree of design freedom stemming
from too large a template. Since each template is oriented towards a particular
processor and the components which support it, it is very difficult to design in
components that do not belong to the microprocessor's component family.

The results of these shortcomings are: difficulty in adding new design
knowledge to the system, inability to produce more sophisticated designs, and
unnecessary search. The remaining sections will discuss MICON's solutions to
these problems.

3. MICON Representation Levels
In order to remove the aforementioned representation difficulties, two new

levels of hierarchy were added to MICON's structural representation. The present
representation assists MICON's design activities as it progresses through a design
by reflecting the natural hierarchy in the task. Details of components and their
interconnections are made available only when necessary to complete some task,
making attention focusing much easier. This also results in better run time
performance of the system.

The present representation scheme provides clean partitions in the types of
structures allowed by MICON at any level. In so doing, the types of actions the
system can perform on the structure are also clearly defined. This, combined with
a well-defined system architecture, results in a knowledge base that is easily
expandable. In this way MICON avoids being trapped in the same limited
framework as P-MICON was. Deciding where new knowledge should be properly
added to MICON's knowledge-base, and deciding exactly how to add the
knowledge, is an easier task than with PMICON.

A description of the representation levels of MICON follows. Each level adds
more detail to the developing design. The first two representation levels are
oriented towards functional and logical design. The last level has provisions for
electrical characteristics of the system.

3 . 1 . Level 1 - Functional Logic
This is the highest and most general level of abstraction. At the functional logic

level a single-board computer system is divided into the following subsystems:
Processor, Memory, I/O, Bus, and Address decoder. This decomposition is finer-
grained than PMICON.

All signals included in the design at this level are generic signals, typical of any

design, and independent of the actual components chosen. Thus, all signals are
referred to by their functional names rather than by the specific names assigned by
individual manufacturers.

3.2. Level 2 •- Specific Logic
At this level the design is still partitioned into the same subsystems as in Level

1, but is now processor specific. Since the processor has been selected, all
interconnections are referred to by the name given by the processor. To illustrate
the difference between Levels 1 and 2, a sample design, with a Z80 processor, a
MC680002 family i/O chip and 64K SRAM is considered. As shown in Figure 1,
the Level 1 generic template for this design is typical of all designs. At Level 2 the
generic signals have been changed into Z80 nomenclature, as depicted in Figure
2. Some signals are merely renamed and others are modified (by adding gates) to
have the functionality the Z80 requires. For example, the generic signal lOreq (see
Fig 1) has now been renamed Int (see Fig 2).

Each of the major subsystems are now fully expanded logically at this level.
Continuing with the example, the memory macro fa macro is an abstract
representation tor a set of items that exhibit certain specified properties] now
•contains the 64K SRAM arranged as required, and the I/O subsystem macro
contains the desired I/O chips with its interface to the system fully described
logically. The I/O subsystem is by far the most complicated subsystem to
represent The problem of finding a general representation (in the form of a
general macro that fits all I/O devices with the same functionality, as was done
with memory) is made very difficult because of the lack of conformity, in terms of
signal names and functions, between chips from different manufacturers. Even
I/O devices with the same functionality are not similar. The problem is the
difficulty of connecting a processor belonging to one family (Z80 in the example
being considered) to I/O chip(s) of another family (MC68000 in the sample design).
The solution is to create an interface for the I/O subsystem that the processor
could treat as being an interface to its own family devices. This solution is based
upon the observation that within a family, all the I/O devices (SIO, PIO, etc..) have
an identical interface with a processor of the same family, so that a single macro
could be defined to represent each family of I/O devices. The family macros
defined at present are:

1.Z80

2. MC68000

3.MC68002

4. NS320323

The following steps are followed to incorporate an individual I/O device at
Level 2:

1. The processors' family I/O macro is created (in the example a Z80 I/O

2MC68000 and MC6800 are registered trademarks of Motorola Inc.

NS32032 is a reg«tered trademark of National Semiconductor Corp.

macro is created, as shown in Figure 3).

2. The family I/O macro, corresponding to the family of the I/O chip
being included in the design, is created (in the example the I/O chip
belongs to the MC68000 family, hence a MC68000 family I/O macro is
instantiated, see Figure 4).

3. The I/O chip's family macro is connected inside the processor's family
macro (in the example the MC68000 I/O macro is connected to the
interior of the Z80 I/O macro, as shown in Figure 5). Essentially, this
step creates an interface between two different chip families, making
them compatible for the same design.

4. Finally, the actual I/O device (MC68681 in the example) at Level 2 is
placed inside its own family I/O macro (MC68000 family in the
example), thus creating a device with a processor-specific interface.
Refer to Fig 6.

The above sequence of steps is followed as required for each I/O device being
included in the design. Once a device has the outer processor specific macro, it
can be connected, along with other support chips, to form an I/O subsystem.

This method of representing the I/O systems provides a great deal of flexibility
and expandability. New I/O devices can be added to Micon's library by simply
adding the family I/O macro and a set of rules specifying the way of constructing
interfaces to macros already part of Micon's library. No changes have to be made
in the existing knowledge base.

3.3. Level 3 •• Specific Hardware
After Level 2 is fully developed, a logic design exists, with all required

interconnections between different subsystems. At Level 3 electrical properties
and interfaces to external buses are represented. Specifically:

1. Connections to external buses are represented.

2. Discrete logic gates are represented where needed for the purpose of
producing consistent logic signal assertion levels.

3. Discrete electrical components (resistors and capacitors) are
represented.

4. MICON Architecture
To generate a design, MICON refines the design through the three levels of

abstraction mentioned previously. MICON has an opportunistic approach to
refinement. MICON will refine portions of the design whenever an opportunity (a
known design situation) appears. When an opportunity is developed, it generally
leads to further refinement opportunities. This process continues throughout the
design process-

In determining what design action to take for a particular design situation,
MICON relies on match and limited means-ends analysis. Match knowledge**

used to represent specific refinement opportunities and the method in which to
develop the opportunity. When match knowledge is insufficient for a situation,
MICON determines which action to perform based on the current state of the
design and the goal of the current task. Since only simple metrics of determining
the current state of the design are incorporated into the system (e.g. current
component is not known, incompatible component types) the means-ends analysis
has limited application.

The methods mentioned above form the basic MICON problem-solving
architecture. The architecture allows MICON to design single board computers by
defining a set of tasks for design refinement and by defining the preconditions of a
task's invocation. The architecture is organized around the simple design model
used in the prototype: specftcation, selection, and instantiation.

The two central features of MICON's architecture are the knowledge partitions
and the problem-solving techniques. These are discussed in the following
sections.

4 . 1 . Knowledge Partitions
The knowledge-base is partitioned into five areas:

• Structural relationships

• Refinement knowledge

• Selection knowledge

• Component knowledge.

• Problem-solving knowledge

Structural knowledge describes interconnections between MICON's
subsystems. The interconnections are based on the abstracted functionality of
signals running between the subsystems. For example, the processor-memory
structure is defined by the address bus, data bus, and generalized control signals
running between them. Presently, structural knowledge covers processor,
memory, I/O subsystems, an address decoder, reliability related devices such as
error detection units, and coprocessors. The relationships are general enough to
cover any new subsystems MICON might later be extended to incorporate. This
knowledge exists tn the form of rules. An example of the tasks involved with
constructing the structural relationships at Level 1 are:

• Instantiate - I/O

• Instantiate - Processor

• Connect - control - signals

• Connect * decoder - to - I/O - subsystem

• Connect - I/O - subsystem - to - address - bus.

The design representation built from structural knowledge forms a map for

controlling further design since it expresses general relations between
subsystems* but is not yet processor or component specific.

Refinement knowledge describes how to refine the abstracted structural
relationships for a given desrfjn. This is the richest set of knowledge in the system.
There are two parts to refinement knowledge: mtra-subsystem knowledge and
inter-subsystem knowledge.

Intra-subsystetn knowledge provides the detailed design knowledge required to
construct actual subsystems, such as I/O. Utilized primarily during refinement
from Level 1 to Level 2, this knowledge includes the processor and component
specific rules needed for actual design situations. Taking I/O as an example: there
exist specific rules for each processor to accomodnte the specialized interrupt
handling mechanisms. These rules cover the refinement of devices in the same
family as well as non-processor-family devices. Non-processor-family devices
require a supplementary set of knowledge that describes how to design hardware
to interface between device families. An example of the design tasks required to
interconnect an I/O subsystem is:

• Instantiate - interrupt - control - logic

• Instantiate - I/O - device.

Ouring the execution of these tasks, appropriate intra-subsystem knowledge is
invoked to perform the design.

Inter-subsystem knowledge contains the knowledge necessary to interconnect
the subsystems. While the design of the interior of most subsystems is performed
by component specific rules used to establish connections, the connection of
major subsystems is done by matching signal names. Level 1 dictates the
subsystems between which connections are to be made, via functionally named
signals. Level 2 representation decomposes the functional signals based on
individual processor requirements. While most of the design is handled by
matching signal names, this knowledge partition contains additional rules to
resolve the inevitable exceptions. For example, processors lacking the separate
Read and Write signals expected by MICON have these signals created.

Component knowledge describes various attributes of the hardware
components MICON designs with. These attributes include input/output signals,
power, area, etc. Most of the component knowledge is represented as a set of
facts about the component, however this is not always sufficient. For example,
most I/O devices, except for commodity chips, are constructed to match some
manufacturer's processor family. However, there are always some minor
exceptions that require small modifications in order to match a family interface and
protocol specification. Thus, in some cases axiomatic knowledge is supplemented
with device specific rules to ovende the default values. The other form in which
component information is found is as a set of data objects. This would include the
detailed hardware information (e.g. the activity of an asserted signal, pin numbers,
power requirements, etc.) required for actual implementation.

Problem-solving knowledge is the design knowledge needed to direct and
sequence the problem solving strategy. This knowledge determines when design
tasks should be invoked and provides a strategy for developing a design. For
example, this knowledge prioritizes pending design tasks depending on a given
design situation. Additionally, demon rules monitor the design for violation of
constraints such as board space, total cost, etc.

These well defined partitions help to implement abstractions and guide the
further development of MICON. A well crafted framework exists for adding new
components and design techniques, by adding knowledge within appropriate
partitions without affecting the rest of the system.

4.2. Problem-Solving
MICON utilizes a combination of means-ends analysis and match methods. In

conjunction, explicit tasks help to direct design activity; invocation and sequencing
of the tasks is done by problem-solving knowledge. As in P MICON, the inference
engine is based upon the following steps: specification, selection, and
instantiation. These steps are referred to as contexts in MICON. Within each
context many design tasks are performed. Generally, design tasks are scheduled
using an agenda mechanism; the conditions of invocation are based on the state of
the design. However, there are cases when MICON has to reorder the tasks
dynamically to handle an exceptional design case. Exceptions arise when a
constraint is violated and it is necessary to take immediate corrective action. The
ability to handle constraint violations is the major difference between P-MICON and
MICON inference engines. Examples of design tasks used in MICON were given in
the previous section.

Frequently, constraints are viofated during the instantiation context requiring
backtracking to the selection context for choosing a different component mix. In
backtracking, portions of the design must be removed and those portions of the
design related to the removed portion must be found and marked as potentially
inconsistent. This process generally involves search through the design already
constructed. Since backtracking can occur often, a means of reducing .this search
is necessary. To facilitate backtracking, dependencies are recorded during the
design process. Dependencies in MICON can be thought of as a set of pointers
from a design object to its related object at the next highest abstraction level. They
are formed during refinement. Dependencies are maintained for both components
and signals. By maintaining this information, removing a portion of a design and
determining related parts of the design are simple. P-MICON*s assumption of
nearly-independent subproWems is relaxed in MICON by explicitly reasoning with
subproblem interactions through dependency information.

5. Summary
MICON has evolved into a sophisticated system for single board computer

design. The system utilizes three representation levels: functional logic, specific
logic and specific hardware. Its knowledge base is partitioned into five types of
knowledge: selection, structural, refinement, problem-solving, and component.
The inference engine of MICON is based on a simple design model, consisting of
three steps: specification, selection, and integration.

At present the first two representation levels, and the design tasks necessary to
generate them, have been implemented. The third level is in the process of being
implemented. Future plans include a knowledge-acquisition tool to assist in
developing a more complete rule base.

6. Acknowledgements
The authors would like to thank members of the DEMETER project at CMU, in

particular Veerendra Rao, Laurence Goodby, Dario Giuse, and Janaki Akella for
their technical advice.

References

[1] William P. Birmingham, Daniel P. Siewiorek.
MICON: A Knowledge Based Single Board Computer Designer.
In Proceedings of the 21st Design Automation Conference. IEEE and ACM- ;

SIGOA, IEEE Computer Society, 1984. j

[2] M. Bushnell, S. Director.
ULYSSES- An Expert System Based VLSI Design Environment
International Symposium on Circuits and Systems :632-646,1985.

[3] C.L.Forgy.
OPSS User's Manual.
Technical Report CMU-CS-81-135, Department of Computer Science,

Carnegie-Mellon University, 1981.

[4] R. Joobbani, D.P. Siewiorek.
WEAVER: A Knowledge-Based Routing Expert.
In Proceedings of the 22nd Design Automation Conference. IEEE and

ACM-SIGDA, IEEE Computer Society, 1985.

[5] Jin H. Kim.
Use of Domain Knowledge in Computer Aid for IC Cell Layout Design.
PhD thesis, Carnegie-Mellon University, Department of Electrical and

Computer Engineering, 1985.

[6] J. McDermott.
R1: A Rule-based Configurer of Computer Systems.
Technical Report CMUCS-80-119, Department of Computer Science,

Carnegie-Mellon University, 1980.

[7] T:M. Mitchell, L.I. Steinberg, S KedarCabelli, V.E. Kelly, J. Shulman,
T.Weinrich.
An Intelligent Aid for Circuit Redesign.
In Proceedings of the National Conference on Artifical Intelligence. AAAI,

William Kaufmann Inc., 1983.

Figure 7*1: Level 1 Template.

1-

Figure 7-2: Level 2 sample design.

m !
• 1

ta t

I I I

Figure 7-3: Level 2 Z80 I/O macro. Figure 7-4: Level 2 MC68000 I/O macro.

-De-

t f §

i n

Figu re 7-5: MC68000 macro with Z80 interface.

Figure 7-6: MC68681 with Z80 interface.

