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Differential-algebraic optimization problems appear frequently in process engineering,

especially in process control, reactor design and process identification applications. For fed-

batch reactor systems the optimal control problem is especially difficult because of the presence

of singular arcs and state variable constraints. For problems of this type we propose a

simultaneous optimization and solution strategy based on successive quadratic programming

(SQP) and orthogonal collocation on finite elements. In solving the resulting nonlinear

programming (NLP) problem, a number of interesting analogs can be drawn to more traditional

methods based on variational calculus. First, the collocation method has very desirable stability

and accuracy properties. Second, it will be shown that NLP optimality conditions have direct

parallels to general variational conditions for optimal control. To demonstrate this strategy, we

consider the optimization of a fed-batch penicillin reactor using a number of cases. For the

simplest case, the results presented here agree well with previously obtained, analytically-based

solutions. In addition, accurate results are presented for more difficult cases where no analytic

solution is available.

1. Introduction

The determination of optimal feed rate profiles is an important control problem in many

biochemical processes. In many cases, these reactors are operated in fed batch mode and can

have slow rates of production or low yield of a high valued product Models of these systems

are often nonlinear in the state variables and linear in the feed rate (the control variable). The

high valued final product makes determination of an optimal control profile important,

especially for product yield maximization. These control profiles are, however, difficult to

obtain since problems of this type have optimal control profiles that can be bang/bang and/or

have singular arc portions. Additionally, added complexities in the form of constraints on both

the control and state profiles are also often present As a result, problems such as these are

very difficult, if not impossible, to handle with conventional analytical or numerical solution

techniques.

In this paper we present a method which can efficiently solve optimal control problems

of this type. In the proposed method differential-algebraic equation (DAE) models are

discretized using orthogonal collocation on finite elements with continuous profiles approximated

by Lagrange polynomials. The resulting algebraic collocation equations are then written as

equality constraints in a Nonlinear Program (NLP) with the polynomial coefficients becoming



decision variables. Solution of the NLP results in both determination of the optimal control

profile and convergence of the discretized modelling equations. For the purpose of obtaining

solutions which have discontinuous control profiles, orthogonal collocation on finite elements is

used. Here, by introducing the locations of the finite element knots as decision variables

optimal control profiles which are discontinuous can be found.

Solving optimal control problems by discretizing the model to algebraic equations and then

solving the resulting optimization problems is not new. For example, Lynn, Parkin and

Zahradnik (1970) addressed the simplest optimal control problem (i.e., minimize a function of

terminal conditions subject to an ordinary differential equation (ODE) model). Here the

necessary conditions were first developed using variational calculus, and then discretized. Later

Lynn and Zahradnik (1970) applied the same idea to the problem of optimal feedback control

for a distributed system. In this case orthogonal (Chebyshev) polynomials and Galerkin's

method were used to discretize a linear partial differential equation (PDE). This resulted in a

standard linear-quadratic (LQ) control problem to which the earlier solution method was

applied. Oh and Luus (1977) also discretized the variational necessary conditions for both the

LQ problem and for a nonlinear model. Here orthogonal collocation was applied at Legendre

roots with power series polynomial approximations. Later, Wong and Luus (1982) considered the

problem of finding the optimal control profile for a linear parabolic PDE. Here the PDE was

discretized using both global orthogonal collocation at Legendre roots and Lagrange

interpolation polynomials. The resulting lumped system was then integrated repeatedly with the

variables found by direct search optimization. The LQ problem was also considered by Tsang,

Himmelblau and Edgar (1975). Here power series polynomial approximations were used and

collocation at arbitrarily chosen points (not orthogonal roots) was performed. Solution of the

resulting nonlinear program was done with the GRG algorithm. However, all of these studies

used a global discretization procedure that is only valid when the optimal state and control

profiles are smooth. On problems where discontinuous control profiles are expected,

approximate solutions generated with these approaches were poor.

Neuman and Sen (1973a) addressed the more difficult LQ problem with added state

variable inequality constraints. This approach uses cubic B-spline basis functions to

approximate both the state and control profiles. To provide a more accurate approximation,

they use collocation on equally spaced finite elements. The LQ problem is thus reduced to a



Quadratic Program (QP) where the path constraints become just a system of linear constraints

enforced at discrete points. The QP solution then yields approximations which are suboptimal,

i.e., optimal with respect to the level of approximation. This method was then extended to a

distributed parameter system in Neuman and Sen (1973b) where Galerkin*s method was used to

discretize the PDE system followed by application of the B-spline approximation to the

resulting lumped system.

Finally, to deal with discontinuous control profiles, Sargent and Sullivan (1977) consider a

more general optimal control problem that includes inequality constraints dependent upon both

the states and control. In this approach the control profile was parameterized over time

variable intervals, and the path constraints were transformed into constraints enforced at final

time. Instead of converting the ODE model to algebraic equations, a nonlinear program was

formulated with control parameters and time intervals, and solved using a gradient based

method with state and adjoint equations evaluated by numerical solution of the ODE's for a

specified control profile.

Each of the above approaches, while successful at addressing some of the problems

associated with optimal control problems, cannot be easily extended to the case considered here.

The methods which discretized the problem and then applied a math programming technique

often used a relatively poor method of approximation, such as collocation at arbitrarily chosen

points or global collocation, and usually did not address the question of approximation

accuracy. Conversely, methods that use numerical solution of ODE's can be expensive and are

not easily applied to boundary value problems or problems with profile inequality constraints.

In this paper, we present an analysis of the accuracy of our nonlinear programming

approach and show why this approach can handle discontinuous control profiles correctly.

Theoretical justification of this method is shown through equivalence of the Kuhn-Tucker

conditions of the NLP to discretized variational optimality conditions. In addition stability and

accuracy properties of orthogonal collocation are also discussed. This results in an equivalence

between orthogonal collocation and solution of the modelling equations with a fully implicit

Runge-Kutta integration scheme. Finally, optimal profiles of well-known fed-batch fermenter

optimization problems are found with this approach. These solutions compare favorably with

published analytically-based results and are obtained with modest computational effort Also,



imposition of state variable constraints, which cannot be dealt with analytically, is handled here

by simply bounding the Lagraage polynomial coefficients. Examples illustrating the general

applicability of the method to fed-batch fermentation will also be presented.

We begin the development of a strategy for solution of fed-batch reactor optimal control

problems by stating the following general optimization problem. This problem contains both

differential and algebraic equations with variables and profiles as decisions.
Min *(x.Utt).ZCt)) (DAOP1)

s.L c(x,U(;t),Z0t)) = 0

g(x,Utt),Z(;t)) * 0

Ut) = F(x,UCt),ZOtU) t € [0,1]

Z(0) = Zo

xL £ x £ xu

UL £ UOt) £ Uu

zL <> nt) * z u

where

4> = an objective function

g,c = design constraint vectors

x = decision variable vector

Tit) = state profile vector

UOt) = control profiles

xL,xu = variable bounds

UL,UU ss control profile bounds

ZL,ZU = state profile bounds

The differential-algebraic optimization problem (DAOP1), as stated, cannot be solved

directly by typical nonlinear programming techniques or optimal control methods. In general,

with an NLP technique one cannot optimize continuous profiles, nor is it possible to impose

bounds and/or general constraints involving Tit) and UCt). Here even a differential-algebraic

equation (DAE) solver can only deal with added algebraic equality constrained problems.

Coupled with a nonlinear programming technique, repeated, and often expensive, solution of the



DAE model (perhaps including a large number of sensitivity equations) is still required here.

Optimal control methods, on the other hand, will optimize continuous control profiles but

normally cannot deal with general algebraic constraints (such as c or g).

In the remainder of the paper we present and justify a method for the solution of

(DAOP1), especially for biochemical reactor problems. In the next section a discretization is

presented which converts the differential equations to a set of algebraic equations. Here

orthogonal collocation is applied to finite elements for the purpose of handling discontinuous

control profiles. Following this, stability and accuracy properties, which nonnally apply to

numerical integration techniques, will be discused as to how they apply to orthogonal

collocation. In addition, an equivalence between the Kuhn-Tucker conditions and variational

conditions will be derived for a wide class of differential-algebraic optimization problems

(DAOP's). The last section deals with the optimization of a fed-batch reactor. In the simplest

case it is seen that solutions are found that compare well with an analytically-based solution.

More complex cases are then solved and presented which do not have analytic solutions.

2. Discretization of DA0P1 to a Nonlinear Programming Problem

In this section we focus on discretizing the ordinary differential equation (ODE) model of

(DAOP1):

1U) = F(x,UU)Mt)X) X€[0,l] (1)

Z(0) = ZQ .

Here we make use of two polynomial types written in Lagrange form:

*, <t>u) = fl ,(f" y» (2)
k=o.i wi " V

JL^ JÊ . (/ - / ) ^
u tt) = ^ u ^.tt) where \J/ U) = M 77 Jh- . (3)

i=l ' ' ' k=l,i v*i " V

where the state vector approximation, z U), is a (K+l)th order (degree < K+l)



polynomial and the control vector approximation, u (£), is a Kth order (degree < K)

polynomial. Also the notation k = 0,i denotes k starting from zero and k # i. Note that the

Lagrange form polynomial has the desirable property that (for z ^ t t ) , for example)

**•,<*,> - v

Since chemical engineering problems have states and controls that represent quantities like

temperature or concentration, using Lagrange polynomials produces coefficients z. and u. which

are physically meaningful quantities. This becomes useful when providing variable bounds,

initializing a profile, or interpreting solution profiles.

Substitution of (2) and (3) into (1) and discretization of the ODE's using orthogonal

collocation yields the set of algebraic equations:

Rtt.) = zl z ^-tt.) - F(x,u,z X) = 0 i=l,...K (4)
j = 0 J J ' ' l l

with z = Z .
0 0

Using the ODE model (4), (DA0P1) becomes:

Min - 4>(x,tt,z) (NLP1)
az

s.L g(xfa.,z.) £ 0

c(x,a fz ) = 0

ROt) = 2l z 4>U) - F(xfu,z.X) = 0 i=l K

Zo =

x L £

U L S

Z L *

Zo

X £

a
i

Z :

;xu

£U U

^ zu



With (NLP1) we can now solve very general differential-algebnyc optimization problems

once the points £., i=l K are chosen. Here the location of these points corresponds to the

shifted roots of an orthogonal Legendre polynomial of degree K. The limitation of the

formulation in (NLP1) is that all profiles are assumed to be smooth (i.e. analytic functions in

£). If this is true, then choosing K sufficiently large will yield accurate solutions. However, in

most cases, this assumption does not hold and the formulation must be extended to finite

elements.

To extend problem (NLP1) to deal with finite elements we refer to a related paper

(Cuthrell and Biegler (1987)) where advantages of finite elements and their appropriate

placement is discussed. In that reference, a set of finite element knot placement equations was

solved to position the knots in order to minimize the approximation error of the state variable

profiles. The problem of control profile discontinuity was also handled in Cuthrell and Biegler

(1987) by introducing additional finite elements termed super-elements. The breakpoint (or

knot) positions of these elements were included as additional degrees of freedom so that points

of discontinuity could be found. To simplify the analysis in this paper, we shall assume that all

state profiles can be approximated to suitable accuracy using relatively low order polynomials

(e.g. K+l < 5) and do not require finite elements for this purpose. Instead, we focus on using

finite elements as super-elements, so that discontinuities of optimal control profiles can be

determined through optimal locations of finite element knots.

To preserve the orthogonal properties obtained with global collocation the domain >t£[0,l]

is mapped into each finite element through the formula (with a^a , ttNE+1
=W:

t = a • Hoc. - a.) i=i NE for t € [a. ,a. ].
1 1+1 1 1 1+1

And the locations of the orthogonal Legendre roots (with tQ=0) are mapped to the points

j ;

It is convenient at this point, in order to save a considerable amount of rewriting, to define

the expression (i-l)(K+l)+j by the label [ij]. This label, [ij]=(i-l)(K+l)+j. is not to be

confused with the commonly used double subscripts for matrices (e.g., A meaning the element

in the ith row and jth column). For an equivalent derivation of finite element collocation
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which uses matrix notation see Finlayson (1980). Furthermore, the indices "i" and "j" can

themselves take on other characters when the context requires it For example, [i—Ik]

becomes (i-l)(K+l)+k for some i and k, and [il]=(i-l)(K+l)+l for some i. With this

convention (5) becomes:

t . = a. + t(OC - a.) i=l NE (6)

j=0 K.

The Lagrange polynomials can now be expressed as:

= X a t. a) \f/ (t) = ft it
(t" t|;k|)t

fl "J1 "JI "J1 k=l,j ttl«l" li*>}
(8)

for i=l NE.

The discretized residual or collocation equations can be written down immediately from

(4) as:

R(t 9 ,Aa) = y_. z $ (t , ) - F(x,a , ,z . ,t . ) = 0 (9)

with z = ZA •
C10] 0

The calculation of the term # j r (t £ ) can be simplified by chain ruling derivatives to obtain:

4> (t p ) = 4>{tp) / Aft. i=l NE

And thus (9) is more simply written as:



= o i=i,...NE do)

with z iA = Z. .
110] 0

In (10) the expression $.(£*) can be easily calculated offline (see Villadsen & Michelsen

(1978)) since it depends only on the Legendre root locations. Now, assuming for the moment

the variables x and u^ are fixed, (10) is composed of M(NE(K)+1) equations and

M(NE(K+0) state coefficients. To make the system well posed an additional set of M(NE-l)

equations is written to make the polynomials z1 (t) continuous at the interior knots a.,
lv+1 1

i=2 NE. This is done by enforcing

or equivalently

i = 2 N E •

These equations extrapolate the polynomial zl~\ (t) to the endpoint of its element and provide

an "initial condition" for the next element and polynomial z1 ^ (t). Each overall approximation

to the state profile is therefore a continuous and piecewise polynomial function of order K+l.

Stated mathematically, z + (t)€P + M Cta,b] where P + denotes the set of all polynomials of

order K+l and C[a,b] is the set of continuous functions. A number of authors construct

different!able and piecewise polynomial approximations, from z (t)€Pv f) C1[a,b], to

higher order ODE or PDE systems (Finlayson (1980), Gardini (1985)). However, continuous

approximations are sufficient for our case particularly since our examples have discontinuous

control profiles and non-dif ferentiable state profiles.

At this point a few additional comments concerning construction of the control profile

polynomials must be made. Recall that these polynomials use only K coefficients per element

and are of lower order than the state polynomials. As a result these profiles are constrained

or bounded only at collocation points. Maintaining the entire control profile within the
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problem constraints is necessary in order to approximate the variational profile better. This

can be attempted in many ways. Here we bound the values of each control polynomial at

both knots in its element This can be done by writing the equations:

UL * u* (a ) £ Uu i=l NE .
K i

uL * u^ (a.+i) <; uu i=i,...,NE.

Recall that since control polynomial coefficients exist only at collocation points, enforcement of

these bounds can be done by extrapolating the polynomial to the endpoints of the element

This is easily done by using:

= XX % / i=l NE .

and

2i |y, / i=l NE.
J - l

Adding these constraints affects only the shape of the final control profile and not the optimal

value of the control polynomials at the collocation points. The net effect on these constraints

is to keep the endpoint values of the control profile from varying widely outside their ranges

[UL,UU].

Including the ODE model, discretized on finite elements, the state continuity conditions

and bounds on the control profiles at the knots, the NLP formulation becomes:

Min * (x-aii£,'zi i£, ) ( N L P 2 )

s.t

R(t p ) = 0

ZI10l " 0
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liO)

x L £

zLs

'ft

x ^ x u

z p -

i-r

) * U

s u u

; z u

i=2,...,NE

i=l NE

In this formulation the knot positions, a., are formulated as decision variables and found by

the optimization procedure as points of control profile discontinuity. Note, however, that the

state profiles are required to be continuous because of the continuity constraints.

In the next section we will justify the assumption that the state profiles can be accurately

approximated by discussing both stability and accuracy properties of orthogonal collocation.

Here we show that solving the differential equations via orthogonal collocation is equivalent to

performing a fully implicit Runge-Kutta integration at Gaussian roots.

3. Properties of the NLP Strategy

Before applying the NLP strategy to the *fed-batch fermenter example it is useful to

consider a few properties of the method proposed above. The following subsections therefore

address the following questions:

• Given a control profile, can the differential equation model be solved accurately and
stably using orthogonal collocation on finite elements?

• How does the DAOP solution found with nonlinear programming compare to a
solution that solves the variational conditions of the optimal control problem? How
do the optimal control profiles compare?



12

3.1. Stability and Accuracy of Orthogonal Collocation

In this section additional theoretical properties of orthogonal collocation will be

considered. First, we will see that, under certain conditions, the method of orthogonal

collocation on finite elements is equivalent to performing a fully implicit Runge-Kutta (RK)

integration of the ODE's at Gaussian points. The conditions required for this are, simply

stated, that collocation be done at Gaussian roots, and that the elements in the Butcher's block

array be specified in a certain way for the Runge-Kutta method. In establishing the

equivalence between our method and a RK method, a number of important theoretical

properties, normally associated only with numerical integration schemes, can immediately be

applied. These properties include stability, symmetry, and the order of the method, the

theoretical analysis cited here is based on the work of Burrage and Butcher (1979) and Ascher

and Bader (1986).

First, for a numerical integration method to be considered stable, it must result in

integrations of an ODE which differ by no more than the difference in initial conditions (see

Burrage and Butcher (1979)). An integration method is said to be symmetric if it is invariant

(or gives the same solution) under a change in the direction of integration. The concept of

symmetry is normally unimportant for integration of initial-value problems becomes quite

important when solving boundary-value problems.

To define the stability of a particular ODE method, a test equation is usually chosen for

analysis. For example, the standard test function

y(t) = X y(t) (13)

where X is a complex number with a nonpositive real part,

is used to define A-stability. It is well-known that implicit linear multi-step methods of orders

£ 2 (Dahlquist (1963)), and all fully implicit RK methods of order 2K (Ehle (1968)), where K

is the number of function evaluations required per step, are A-stable. Simply stated, the term

"A-stable" implies that, for all Re(X)£0, these integration schemes, stably integrate (13).

With X in (13) replaced by X(t) the test function is said to be nonautonomous and the

corresponding stability property is termed AN-stability. For this case X(t) is considered a

function having values in the nonpositive complex plane.
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Generalizing further, numerical integration schemes are said to possess B-stability if they

stably integrate the nonlinear autonomous system:

y(t) • F(y(t))

if (F(y)-F(z))T(y-z) £ 0 V y.z,

and, BN-stability if they stably integrate the nonlinear nonautonomous system:

y(t) = F(t,y(t)) (14)

if (F(t,y)-F(t,z))T(y-z) * 0 V y,z,t

The restrictions on the right hand sides here merely imply that F is a monotonic nonincreasing

function, and are necessary for y(t) to approach some steady state value.

Burrage and Butcher (1979) prove that implicit RK methods which possess a property

known as algebraic stability also possess the properties of A, AN, B, and BN-stability. Or,

simply stated, * implicit RK methods which are algebraically stable, will stably integrate

autonomous and nonautonomous, linear and nonlinear systems which satisfy the above

restrictions. Algebraic stability is thus a stronger condition than the other types of stability and

does not depend on any particular test function. In fact it derives from a matrix property

that involves only the values in the Butcher's block array (see Burrage and Butcher (1979)).

Although this does not guarantee stability for all systems of ODE's, it does indicate that the

method is stable for a wider class of problems (i.e., (14)) than previously shown.

Later, Ascher and Bader (1986), constructed several fully implicit, symmetric, algebraically

stable RK schemes and showed that the only equivalent methods to these are finite element

collocation methods which use Gaussian roots. An example that illustrates this equivalence can

be found in Cuthrell (1986). Finally, Ascher and Bader (1986) also showed that A-stable

integration schemes may not be suited for solving BVP's and. that, instead, the stronger

condition of algebraic stability is required. This property is important here because optimal

control problems usually require ODE solutions in both the forward direction (for the model

equations) and the backward direction (for the adjoint equations). In the next subsection we

will see that the method proposed above solves both equations sets simultaneously by solving

(NLP2).
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3.2. Analysis of the Optimality Conditions

In the previous subsection we were concerned about the accuracy of the state variable

profile with control profiles specified. Here we consider, instead, how accurately control

profiles are determined with nonlinear programming. In (NLP2) optimization is done over the

variables x, and the profiles zK+J(t) and uK(t), while the original problem, (DA0P1) involves the

variables x and the profiles Z(t) and U(t). We now consider the conditions for the continuous

profile U(t). Since the analysis follows the same lines for the parameters, x, and the optimality

conditions are similar, we will not be concerned with these parameters in this subsection.

In order to present a discussion of the accuracy of the optimal solution, we begin with

the following general DAOP (DAOP2) and write the nonlinear program resulting from

application of orthogonal collocation, we then write the Kuhn-Tucker conditions for this

problem and show that these can be written as discrete analogs of the variational conditions of

(DA0P2). For this analysis, the differential-algebraic optimization problem will be given as:

Pb

Min - ¥(U(b),Z(b)) • \ 4>(Z(t),U(t)) dt (DA0P2)

s.L c(U(t),Z(t)) = 0

g(U(t),Z(t)) £ 0

Z(t) = F(U(t),Z(t))
gf(Z(b)) £ 0

cf(Z(b)) = 0

Z(a) = Zo

Now, by approximating the state variable profiles as continuous, piecewise polynomial

functions of order K+l and control variable profiles as piecewise continuous, polynomial

functions of order K, we can apply orthogonal collocation on finite elements and obtain the

following nonlinear program.

Min + *(z) + 2 _ 2L M.... 4>(z ,u . . . ) (NLP3)

U p ,Z p .« .
(ill l i l) i



15

g(z ,u ) £ 0
IIJl Cljl

c(z ,u .) = 0
Cljl lij)

tfz? * 0
= 0

tlOl 0

*,,., - < > ; = ° j - 2--NE

To simplify the analysis we omit the extrapolation constraints on the control profiles, although

as seen in the previous section their inclusion does not change the results. We also include the

extrapolation of z + (t) as a new variable, z. Note that the integral in (DA0P2) is now

approximated by a Gaussian quadrature formula summed over all of the elements. Now, on a

simple optimal control problem without algebraic constraints, Reddien (1978) showed the

equivalence between variational conditions for the optimal control problem and the optimality

conditions for the resulting nonlinear program. In his analysis, B-spline basis functions were

used on finite elements. Here we adapt and extend his approach by considering Lagrange basis

polynomials and the more complicated problem given by (DAOP2) and (NLP3). First, we form

the Lagrange function for (NLP3):

liji«*,„,.%> = Z 4- «,„, [
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Note that we have defined the Kuhn-Tucker multipliers (Xf fl and V) differently than

usual, but equivalently, by including the positive quadrature weights, vo . In addition, we

assume that the adjoint variable profile can be approximated as X (t), a continuous, piecewise

polynomial function of the same order as zK+1(t) with XK+1(tirj) = X . Now since z^ is a

piecewise polynomial of order K, we can make the following equivalence by noting that K-

point Gaussian quadrature is exact for polynomial integrands of degree 2K - 1 or less (see, e.g.

Carnahan, Luther and Wilkes (1969)). Thus for the quadrature terms in (15) we can write the

following relation:

dt - - | I Z

Integrating by parts yields:

dt = -

Writing the quadrature formula for the integral on the right hand side and substitution into

(IS) yields the following Lagrange function:
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V] \ • I

. (Y + x (a ))T z M

i = 2 ' K+1 ' K+1 ' "*•" '

To simplify this function we first consider the optimality conditions for the continuity variables

z . By noting that, from (11) and (12),

(12)
ĵ O ""'Jl J

we have the following set of equations:

# <r,+ \+ 1te,» - ^1+1 + xK+i(ai+i» ^oa) = o i = i NE
HOI

Since this system of equations is overdetermined and has an infinite number of solutions,

we force a solution by making the assignment that T + X ( a ) = 0. With this simplification

the Lagrange function becomes:

[ 4>(t ) • XT F(t

By noting that vo are nonzero, the remaining Kuhn-Tucker conditions can now be

derived immediately:
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r ... * o

i = 2 NE

lijl

(0 —

(d)

(g) Cf(Z,) - 0
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(h)

= 0

We now see that (a) is a discrete analog of the adjoint equations which can easily be

derived from standard optimal control theory. They can also be obtained diTectly by applying

orthogonal collocation on finite elements to the adjoint equations. Similarly, (b) is a discrete

analog of the variational conditions on the control profiles while (c) and (d) represent

relationships on the final and initial conditions, respectively, for the adjoint variables. Finally,

(e) through (g) are simply feasibility conditions for the ODE's and the problem constraints and

the remaining expressions relate to the optimality conditions for the inequality constraints.

Note that, except for the conditions on purely state variable constraints (e.g., g(Z(t))£0),

all of the above equations are discrete analogs of the conditions found in Bryson and Ho

(1975) for variational problems. To deal with state variable constraints, variational conditions

have traditionally been defined using higher time derivatives of these constraints in order to

express them as functions of the control. This approach has often been used in order to

facilitate analytic solution of the optimal control problem. On the other hand, Jacobson et al

(1971) derived alternate conditions for state variable constraints. Here, consider the problem

(SCP1) with purely state variable constraints:

Min v £ *(Z(t),U(t)) dt
U(t)

(SCP1)

S.L tit) = F(Z(t),U(t))

g(Z(t)) * 0.

2Xa)

The conditions derived by Jacobsen et al. (1971) for this problem are:
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(a)

^ A + ( - | | ) M + A(t) = 0 A(b) = 0

(c) g(Z(t)) <£ 0

(d) M(t) g(Z(t)) = 0, M(t) ^ 0

(e) lit) = F(Z(t),U(t)) Z(a) = ZQ

where M(t) and A(t) are adjoint functions for the constraint
g(Z(t)) £ 0, and the ODE model respectively.

Note that these variational conditions can now be related to the Kuhn-Tucker conditions

presented above. Moreover, Kreindler (1982) showed that the above equations are, in fact,

stronger necessary conditions for optimally of (SCP1) than those presented in Bryson and Ho

(1975). Thus, we have shown the similarity between the solution solved with a nonlinear-

programming formulation and the corresponding variational conditions of the optimal control

problem, (DAOP2).

Finally, Reddien (1978) showed on a simpler optimal control problem without algebraic

constraints that

• The solution of the discrete approximation of the necessary conditions converges to
the continuous solution as the level of approximation increases, i.e., as K-»oo. Also,
the rate of convergence is of order 2K if the functions • and F are K + 1 times
differentiable in Z and U, and K times differentiate in t

• Solving a discrete approximation of this problem using an NLP, is equivalent to
solving a discrete version of the necessary conditions.

• And, thus, NLP solutions of a discretized problem approach the actual solution as
K->oo.

From these conditions one can argue qualitatively that as the level of approximation

increases, solutions of (NLP3) will also approach the solution for (DAOP2). However, this will

be true only if the state and control profiles are at least continuous within each element. i.e,
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all profile discontinuities are located at the element breakpoints. Since optimal locations of

these discontinuities are generally unknown a priori, we must therefore determine their

locations by including the element breakpoints as degrees of freedom in (NLP3).

4. Solution of A Fed-Batch Fennenter Problem

Finally, we consider the problem of finding an optimal time-varying control strategy for

a fed-batch reactor problem. This is a difficult optimal control problem involving the

biosynthesis of penicillin. The problem solved here has been treated in a series of papers by

Modak et al. (1986), Lim et al. (1986) and Tayeb and Lim (1986). We first state the problem

and outline some of its features. Next the technique proposed above is applied for cases with

known solutions as well as more complex ones.

Consider Figure 4-1 which presents a schematic diagram of a fed-batch reactor. Here,

the reactor contains biomass (X). substrate (S) and product (P) at certain concentrations

(grams/liter), and has volume (V) (liters). The control profile for this system is the feed rate

(U) (grams/hour) of substrate.

Figure 4 -1 : Diagram of A Fed-Batch fennenter

The differential-algebraic optimization problem is stated below in problem (BFP). The

model and associated kinetic parameters were taken from Lim et al. (1986) (Figure 2 p. 1415).

(BFP) is a difficult DAOP because of the state prof Ue and control profile inequality constraints
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(i.e. profile bounds) and the linear dependence on the control. For problems linear in the

control the optimal control profile is either bang-bang or contains singular control arcs. For

singular arcs, the control profile does not directly influence the optimality conditions of the

Hamiltonian and thus determining U(t) requires additional conditions that can be difficult to

handle. As we shall see, the solution to (BFP) does in fact have singular control arcs.

The fed-batch fermenter problem can be stated as:

Min ^ • = -P(T)V(T) (BFP)
U(t),T

x/s p/s
m S \ TT

W X (1S/V

M(X,S) = \L („ jj -)

max x K A + b '

^m»x \ K + S(l+S/K ) /

s.L X(t) = IKX.S) X - ( - ^ y ) U X(0) = 1.5 g/l

Pit) = P(S) X - Kdegr P - ( - ^ V ) U P(0) = 0.0

S(t) = - M(x,s) ( * ) - p(s)

X V v
S(0) = 0.0

= U/Sp V(0) =

0 £ X(t) S 40 %/L

0 £ S(t) £ 100 %/L

0 £ V(t) £ 10 £

0 <; U(t) £ 50 g S/hr

72 £ T £ 200 hr

where A(X,S) = growth rate of biomass (hr)*1

P(S) = production rate of penicillin (g P/g X-hr)
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nux

K P

K
in

degr

K
m

m
s

Yx,s

YP/S

S

= 0.11 hr"1

= 0.0055 g P/g X-hr

= 0.006 g S/g X

= 0.0001 g S/l

= 0.1 g S/l

= 0.01 hr"1

= 0.0001 g S/l

= 0.029 g S/g X-hr

= 0.47 g X/g S

= 1.2 g X/g S

= 500 g S/l

It is important to point out that two differences exist between the above formulation and

that cited in Lim et al. (1986). Both differences are due to inconsistencies in the Lim et al.

(1986) paper (Modak (1987)). First the maintenance term in the substrate equation was changed

from 0.029X (cf. (23) p. 1414 Lim et al. (1986)) to 0.029S/OC +S). Second the value of 0.004
in

(cf. (22) ibid.) was corrected to 0.0055 for P . It should be noted that the above corrections
mix

must be made (Modak (1987)) in order to reproduce the results given in Figure 2 of Lim et

al. (1986). For more details about this fermenter problem the interested reader is also referred

to Bajpai and Reuss (1980, 1981).

4.1. An Analytically-Based Solution of Problem (BFP)

The fed-batch fermenter control problem stated in (BFP) has been solved in Modak et al.

(1986) and Lim et al. (1986). As explained below, this solution derives from the variational

conditions, but also requires repeated numerical solution of the fermenter model. We

reproduced the solution profiles of this problem and present them in Figures 4*2 to 4-4 The

values for the points of control profile discontinuity, final time and the optimal value of the
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objective function are 11.21, 28.79 and 124.9 and -87.05, respectively. These values can be

found in Lim et al. (1986), except the value of the objective function results from integrating

their model with the changes indicated above. Lim et al. (1986) quote an objective function

value of -86.99 (i.e. a penicillin yield of 86.99 g).

4.2. Four Numerical Solutions of Problem (BFP)

To demonstrate the method proposed above, four numerical solutions of (BFP) are

presented. Each was solved using the NLP structure given in (NLP2) and the SQP algorithm

presented in Biegler and Cuthrell (1985).

Initialization of the NLP starting point was done as follows. First a continuous control

profile U(t) was used along with model initial conditions and initial batch time, T, to integrate

the model using the ODE solver LSODE (Hindmarsh (1980). Next the number of collocation

points K and the number and locations of the finite element knots were chosen, the

collocation point locations were next calculated based on (6). State profile polynomial

coefficients at the collocation points were then initialized from these continuous profiles.

Polynomial coefficients at the knots were computed by solving the linear system of continuity

equations, (12). Since these equations are linear, solving them beforehand keeps the

optimization algorithm in the feasible subspace of these constraints.

In Case I (BFP), as stated above, was solved. Here the optimal control profile given in

Figure 2 of Lim et al. (1986) (or Fig. 4-2 here) was used as the basis for the starting point

Also three finite elements were used with the initial breakpoint positions at 11.21 and 28.79

and a final (or batch) time of 124.9. In Case II an initial constant control profile of

U(t)=25.0 and a general initial knot distribution and batch time (see Table 4-1) were used. In

Case III, the problem was modified by changing the substrate upper bound to S(t) £ 25.0.

Finally, in Case IV a more complex objective function was used that includes the penicillin

yield and batch time as well as the cost of the feed solution, and.reflects the net profit of

the process per batch:

-2.5X10'2 P(T)V(T) + 168T + 8.5XHT V, U(t) dt

Table 4-1 lists the number of elements (NE), collocation points (K), initial knot



25

20 40 60
time (hrs)

Figure 4-2: Analytically-Based Control Profile
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Figure 4-4: Analytically-Based Substrate and Volume Profiles
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distribution used a0 for the above cases as well as the initial batch time T° and the initial

objective function value 4>°.

Case

I

II

III

IV

NE/K

3/4

3/3

3/4

3/3

a0

11.21,28.79

20,50

20.50

20,40

124.9

80

80

80

-82.90

-73.07

-73.98

134.39

Table 4-1: Initial Parameters and Objective Function Values

The results for the three cases are presented in Table 4-2 and Figures 4-5 through 4-16.

In Table 4-2, # iter refers to the number of QPs required to solve the NLP, KT error is the

final Kuhn-Tucker error and T* and •* are the optimal batch time and objective function.

The optimal knot distribution is denoted by a*. The convention A(-b)=AX10"b has also been

adopted. In the figures, all control profiles are drawn with solid lines and depict polynomials

constructed with the Lagrange formula (8). Note that the controls have no initial conditions

and are not required to be continuous at the knots. The state profiles are drawn with broken

lines, if they are approximations and solid lines if they were obtained from an a posteriori

integration of the model.

By comparing the optimal profiles (Figs. 4-5,6,7) and parameters (Table 4-2) obtained in

Case I it can be seen that solutions found using the proposed math programming approach are

close to the analytically-based solution. Here slight differences can be seen in the math

programming results. For example, the control profile is not at its bounds during the first two

feeding periods, the substrate profile attains a slightly lower peak value, and the, biomass

profile has a slightly altered slope after ~30 hrs. However, in both cases the volume is at its

upper bound at final time and the product profiles are almost identical. Also, the optimal

objective function value, final time value and knots for the NLP solution differ only by a

small amount: -87.83, 128.29 and 11.46 and 29.29 vs. -87.05, 124.9 and 11.21 and 28.79 from
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Case

I

II

III

IV

# iter

25+

31+

32f

8

KT error

1.26(-2)

2.05C-2)

5.88(-2)

7.02C-8)

a*

11.46,29.29

29.01,29.38

21.27,32.60

18.54,28.94

128.29

126.34

132.14

72.0

-87.83

-87.79

-87.69

120.95

t terminated due to two line search failures

Table 4-2: Results for (BFP)

the Lim solution. This represents an improvement in the objective function over the

analytically-based solution. This improvement is worth noting because the state variable profiles,

as seen in Figs 4-6 and 4-7, satisfy the model exactly.

To explain this improved solution, even though the NLP control profile does not exhibit

bang-bang features, we need to consider the approach of Lim et al. Using variational

conditions, they were only able to predict the correct shape of the control profile (bang-bang-

singular arc). However, a trial and error search was still required to determine the optimal

switching times, and this may not lead to the exact optimum. On the other hand, note that

the NLP solutions for Cases I—III all have singular arcs very similar to Lim's solution, even

though the profiles are quite different before the singular arc is encountered. Because the

objective functions are almost identical, however, this seems to suggest that the optimal control

profile before the singular arc may be nonunique.

In Cases II and III a starting profile of U(t)=25.0 is used with initial knots at 20 and 50.

In Case II some similarities can been seen with the results of Case I. Most importantly the

optimal objective function value of -87.79 and the final time of 126.34 are close to the

analytically-based values as well as those in Case I. Both the biomass and product profiles

compare favorably to the results in Case I, but differences can be seen in the control and

substrate profiles. The control profile appears to be just two singular arc portions with the

knots being very close together at 29.01 and 29.38. The substrate profile is different in that
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only a maximum of about 30 g/i is achieved. Very small differences between the profiles

obtained with Lagrange polynomials and those found via numerical ODE solution with LSODE

are also noticeable and are indicated by the dotted and solid lines.

Given the results of both Cases I and II it is clear that the optimum for (BFP) is

relatively insensitive to the final control profile. Observe the differences between the

analytically-based profiles and knot positions, and those in Cases I and II. Yet for these cases

the optimal value of the objective function differs by only 0.04 g. This relative insensitivity

of the objective function results in nonunique solutions being obtained and also in some

numerical convergence difficulties. It is clear that optimal knot positions, final times and the

final control profile vary measurably from the analytically-based results. Tight convergence of

the Kuhn-Tucker tolerance was also difficult to attain; tolerances smaller than 0.01 could not

be obtained before line search failures occurred. Note that in Case IV much tighter

convergence is attained with a different objective function. However, both Cases I and II have

objective function values that are noticeable improvements over the Lim solution and have

reasonably accurate state variable profiles as well.

The problem posed in Case III is different than those of Case I and II. Here we have

additionally imposed the state variable constraint S(t)£25.0 by simply changing the upper bound

Su to 2S.0. The results obtained are presented in Table 4-2 and Figs. 4-11 to 4-13. Good

accuracy of the state profile approximation again results with very minor differences obtained

between the polynomials and integrated profiles. Case HI illustrates the flexibility of the NLP

method over an analytically-based approach. In the NLP approach additional general

constraints (not necessarily limited to the substrate profile constraint we used) can be imposed

with little difficulty. This is not true of other methods such as that of Lim et al. (1986).

Here we easily enforced S(t)£25.0 and obtained both good results in terms of the optimal

control profile and the state profile approximation accuracy.

Finally, in Case IV use of a different objective function results in an optimal batch time

of 72 hrs (its lower bound) and optimal knots at 18.54 and 32.60. Observe again (Figs. 4-14

to 4-16) that excellent results are obtained in terms of the accuracy of the state profiles, and

a final Kuhn-Tucker error of 7.02X10"8 was obtained. Note that in this case the final volume

is not at its upper bound.
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Figure 4-8: Control Profile for Case II
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Figure 4-10: Substrate and Volume Profiles for Case II

140



37

Figure 4-11: Control Profile for Case III
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Figure 4-13: Substrate and Volume Profiles for Case III
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4.3. Comparison of Computation Aspects

The approach presented here for solving discontinuous control problems offers a number

of advantages over other methods. Alternate solution methods for problems of this type

couple a DAE (differential-algebraic) solver to an optimization routine. The DAE solver

integrates the model in an inner loop while the optimizer functions in an outer loop to

perform the optimization. This approach can be quite expensive, particularly if a gradient

based optimizer (e.g., SQP) is used. In this case, the required gradients will likely be obtained

through perturbation of the model, or through sensitivity equations. On the other hand, Lim

et al. (1986) applied variational conditions to (BFP) and had to solve a two point boundary

value problem. Here they repeatedly used a shooting method coupled with LSODE to optimize

their profile, although this only had to be done over the final feeding portion of the batch.

Just as important as the above difficulties, is the inability of DAE solvers to explicitly

handle inequalities, such as profile bounds. In the work of Modak et al. (1986) and Lim et

al. (1986), the bounds on the control profile were handled implicitly, by knowing the portions

of reaction time over which these bounds were active. The condition on the tank volume

could, however, be considered an upper bound, but this was also handled implicitly by setting

the flowrate to zero when the tank was full. For handling inequality constraints with an ODE

(or DAE) solver, only one other option exists, that of Sargent and Sullivan (1977), However,

even this approach does not overcome the problem of potentially expensive solutions.

Our approach, on the other hand, formulates a discrete version of (BFP) as an NLP, and

the above difficulties are not encountered. However, two important considerations with our

approach involve the choices of K and NE and solution of the resulting large-scale nonlinear

program. The first problem is currently handled by trial and error solution. The second

problem can be remedied by using large-scale SQP decomposition methods (see Vasantharajan

and Biegler (1987), Locke, Edahl and Westerberg (1983)). These problems form the basis for

, future research.

5. Conclusions

This paper presents a general method for solving optimal control problems that have

discontinuous profiles. The approach uses orthogonal collocation on finite elements to

discretize the differential equation model, and Lagrange polynomials to construct approximations
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to the continuous profiles. The resulting algebraic modelling equations are written as

constraints in a Nonlinear Program with polynomial coefficients becoming decision variables.

The finite element knot locations are also written as variables in the NLP so that points of

discontinuity can be found.

Two important theoretical properties have been addressed. First, approximation properties

were considered through an equivalence between orthogonal collocation on finite elements and a

fully implicit Runge-Kutta integration scheme that uses Gaussian points. As a result, desirable

stability and high order accuracy properties, normally associated with numerical integration

schemes, also hold for the orthogonal collocation method used here. The topic of accuracy of

optimal control profiles was also addressed. Here the NLP approach outlined above was shown

to be equivalent to solving discrete approximations of the variational necessary conditions.

Specifically, equivalence was established between the Kuhn-Tucker conditions of the NLP and

the discretized necessary variational conditions.

Applicability of the method has been demonstrated by solving a well-known fed-batch

fermenter problem. Solutions slightly better than published, analytically-based results were

obtained although nonunique solutions also are found due to insensitivity of the objective

function to the optimal control profile. This insensitivity leads to slight variations in the

optimal values of the points of control profile discontinuity, final batch time and the optimal

state and control profile shapes. This occurred even though objective function values varied by

less than 0.05%. Very good accuracy of the model approximations resulted and these clearly

demonstrate the effectiveness of using orthogonal collocation and Lagrange polynomials. In

addition the flexibility of the NLP approach was demonstrated by adding state variable

inequality constraints on the substrate profile. This was easily done by changing the bounds on

the polynomial coefficients in the NLP. With other methods that use a variational calculus

approach, imposition of a state profile inequality constraint can only be done implicitly and is

much more difficult
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