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Abstract
The target approach to reactor synthesis tries to determine an upper bound for the
performance of a chemical reactor network as measured by its objective function (such
as yield or reactor volume). This leads to an optimal control formulation in which the
residence time distribution and the micromixing function are the control variables. The
optimal control problem is solved using a gradient based algorithm that employs
successive quadratic programing and adjoint variables. Examples are given to illustrate
the approach taken.

1. Introduction

A chemical reactor is frequently the key unit in a chemical process. While the overall
profitability of the chemical plant depends on the cost of the various units (heat
exchangers, separators for example) and on everyday operating costs, in this work we
focus on the reactor design in isolation because it often affects downstream concerns.
An extensive amount of work has been done in this area ( Levenspiel, 1972, Aris, 1961);
however, most of the approaches have been based on heuristics and on graphical
techniques. For example, Nestoridis et al (1986) recently used convex analysis to show
that the yield of a reaction (occuring in segregated flow) is maximized if such a reaction
is carried out in a combination of two plug flow reactors in parallel. While this analytic
approach is encouraging the assumption of segregated flow and the convexity of the
objective function (in this case yield) is limiting. The algorithmic approach that we use in
our research, is a viable alternative especially when the kinetics and the performance
index (yield, selectivity, reactor size etc.) are complicated functions of concentration and
other process variables and parameters.

We pose the reactor synthesis problem as a two part problem as follows:
1. Given the kinetics of a homogeneous reaction what combination of ideal

reactors, namely CSTR's, recycle reactors and PFR's will maximize a
given performance index?

2. What is an upper bound (target) on the performance index irrespective of
the reactor type and configuration?

Optimal reactor networks for homogeneous reactions depend to a large extent on
mixing, temperature effects, reaction times, and sometimes on the amount of a catalyst.
To tackle problem (1) we postulate a superstructure of reactors, together with a set of
decision variables that exhibit the effects of mixing, temperature and reaction times. By
manipulating these variables an optimal subnetwork of reactors is derived (Achenie and
Biegler, 1986). However, the optimal structure is heavily dependent on the complexity of
the superstructure, which may be characterized by how many substructures it contains.



The need for an independent measure of the performance index, free of restrictions
imposed by the reactor type and configuration is thus clearly present. We propose to
solve the target problem by determining the optimal micro and macro mixing profiles for
a reactor model that takes into account both kinds of mixing.

For isothermal homogeneous reactions occuring in a reactor with premixed feed, Adler
and others (1972) have shown that two extremes of mixing put a bound on the yield of a
single reaction that has a concave or convex rate function. These mixing extremes are
realized in a completely segregated reactor and a "maximum mixed" reactor (Zwietering,
1959) respectively. It is immediately apparent that for more complex kinetics, and for
performance indices other than yield, the two extremes of mixing will not give rise to
extreme values of the performance index. In fact a reactor with an intermediate degree
of mixing may result in the maximum yield or selectivity.

To predict or simulate the effect of mixing on the throughput of a reaction (which may

involve many elementary steps) a number of mixing models for reactions in reactors with

both premixed and unmixed feeds have been proposed (see Rao and Edwards, 1973,

for a comparison of some of these models). Features that are common among these

models are the macro and micro mixing concepts. Macro mixing is characterized by the

residence time distribution. On the other hand the micro mixing level is a measure of

how intimately molecules mix with each other, and how early or late this mixing occurs

(Levenspiel, 1972). By combining these concepts all the mixing models are capable of

simulating various degrees of mixing, between completely segregated and maximum

mixedness, with varying degrees of success.

Three of the models that, in our opinion, are suitable for optimization are due to Rippin

(1965), Villermaux (1969) and Jackson et al (1986). In Rippin's two-environment model,

molecules of the fresh feed initially enter a segregated environment. A fraction of

molecules transfer to the maximum mixed environment at a rate proportional to the total

number of molecules in the segregated region. By varying the transfer coefficient, h,

from zero to infinity complete segregation, intermediate mixing and maximum mixedness

are simulated. Since this model is a one parameter model its range of applicability is

somewhat limited. Jackson's model can be thought of as a number of plug flow reactors,

each with a different residence time, in parallel. By allowing these reactors to exchange

material at various "remaining lifes" all degrees of mixing are simulated. While this

approach is elegant and one of the more realistic ones, the resulting formulation is

currently too complicated for optimization.

The third model, Villermaux's model, is closely related to Rippin's. Here also, there is a
segregated environment and a maximum mixed environment. He postulated that a



fraction h of the molecules that will remain in a reactor for t + At units of time will spend
all this time in the maximum mixed environment. The remaining fraction, (1-h), will spend
all their time in the segregated environment. By choosing a different fraction , h, for
different aggregates of molecules one obtains a distribution h(t), which describes the
micro mixing pattern. The residence time distribution (RTD) remains intact and it
characterizes the macro mixing in the system. That there is no exchange of material
between the two mixing environments, in the Villermaux model, appears unrealistic.

2. Optimal Control Problem

Of the three models the Ng and Rippin model appears to have the best tradeoff between
a realistic model and one that is easy to implement in an optimization algorithm. The
model is appropriate for homogeneous reactions involving low viscosity reactants, in
continuous flow reactors. In the model the transfer coefficient, h, is a constant based on
the assumption that all molecules in the segregated environment (irrespective of age)
have the same probability of transferring to the maximum mixed environment. In our
implementation we have increased the range of applicability of the model by allowing h
to be dependent on the age of a molecule in the segregated environment.

With this modification, the model becomes a multi-parameter model since it is a
continuous function of age. The modification is justified on the grounds that molecules
that have been in the segregated environment for a longer period of time will tend to
have a greater probability of transferring to the maximum mixed environment, than the
younger molecules. For generality, however, we do not assume that h is a monotonic
function of age.

Using the modified Rippin model as a basis, an optimal control problem (solved as a
nonlinear program or NLP) can be formulated in which the objective function is the
performance index, and the decision variables are the macro mixing function (the RTD)
and the micro mixing function (the transfer function, h). The mass and energy balances
and the bounds on the decisions form the set of constraints in this problem. To solve the
optimal control problem we approximate the residence time density function (associated
with the RTD) and h(t) by a set of basis functions on finite elements. NLP is solved
using successive quadratic programing (SQP). With the optimal control formulation one
can obtain solutions to the following problems:

1. For a given RTD what micro mixing profile will maximize the performance
index?

2. Given a micro mixing function what RTD will maximize the performance
index?

3. What are the optimal RTD and micro mixing profiles that will give the
optimal performance index?



Since the mixing models use the residual life and age concepts the optimal control
problem may not yield the c ails of the reactor type and configuration. Therefore the
performance index thus o! 3d is a bound on the performance index that can be
obtained using the superstruc ure approach to reactor network design. In other words,
how good the reactor superstructure is, can be measured by how close its optimal
performance index is to that obtained in the residual life/age domain. Although the
modified Rippin model is based on isothermal homogeneous systems, it can easily be
extended to adiabatic systems. Our optimal control formulation can be made to include
species dependent RTD and micro mixing functions. Thus a target for the performance
index of a reactor superstructure which has component splits (by distillation for instance)
can be calculated.

3. The Modified Rippin Model

The derivation of the modified Rippin model very closely parallels the original work by Ng
and Rippin, and therefore will not be repeated here. However, with the modification
made in the transfer function, h (Rippin uses R) it is appropriate to point out the changes
that result.
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Figure 1: Schematic of Rippin Model

In figure 1 "max" and NsegN refer to the maximum mixed and the segregated
environments respectively. Fo is the fresh feed flow rate and Xexit is the average exit
concentration vector. The key assumption is that the rate of transfer of material of age,
t, from the segregated environment to the maximum mixed environment is proportional
to the amount of material of age t remaining in the segregated environment. If m(t) is the
amount of material of age t then

which implies m = moexp(-g(t))
ft

where g(t) = h(s)ds
Jo

and mo=m(O). Rippin's equations (4)* through (5)# then become
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then Cex[t = (1.0 - J%-s<*>f(a)da )Cmax(0) + J^C^taJe-oW)! (a)da (6):(9)#

where (*)* are equation numbers from Ng and Rippin's paper, and

Cbat = concentration profile from batch reactor kinetics (segregated environment)

Cmax = concentration profile in the maximum mixed environment

a = age of a molecule

X = residual life of a molecule

Co = concentration of feed to reactor

R = rate of production of a species by reaction

V = volume

f = residence time density function ( note that the density function and the distribution
function are used interchangeably in this paper)

h = micro mixing function

t = time

Cexit = average concentration at the exit of the reactor

The batch concentration profile is defined by

^ (7)



Equation (5)* is solved using the Zwietering boundary condition

£ l ^ = 0at X= 00. (8)
ok

This boundary condition makes it necessary to integrate (5) backwards using Cmax(«> ).
The latter is a solution to the algebraic equation (9) resulting from equation (5)* and the
boundary condition, (8).

1_
P(1.0-e-9(a>)f(a
Jo

0 = - R(Cmax) + jimH -2 (9)

Equation (9) is usually very difficult to solve. However, in a chemical reaction system it is
generally the case that Cmax(oo) is finite. Glasser and others (1986) have shown that for
some reaction systems different values for Cmax(oo) yield the same Cmax(0), which is
needed in the expression for Cexit, the average exit concentration. Thus one can in
certain cases avoid solving (9), and instead guess a value for Cmax(«>) to be used in
integrating (5)* backwards. Experience has given credence to this finding.

4. Formulation of the Nonlinear Program

For convenience we normalize the concentration vector C by letting X = C/Co. Also let
£ = a + X, then equation (5) becomes

- R ( X ™ ) +

f (1.
(10)

XmaxH - finlte« *e [°.~1

Also equations (6) and (7) become

(a)da )Xmax(0) + Jo\at(a)e-9<°0)f(a)da (11)

(12)

' (13)

It is convenient to rewrite (11) as
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Xexit - (1 -0 - JV°<a>f(a)da )Xmax(0) + Iseg(oo) (14)

where we have used the fact that f ~ f(a)da = 1 (15)
Jo

and ^ = e-9<«)f(a)Xbat(a) (16)

We next approximate t = °° by ^^ and divide the interval [0, tmax] into N finite elements ,

such that tj<tj+1V J€[1,N].

Here t1 = 0 and tN+1 = tmax. The present formulation of the target problem has the
following features:

(i) an objective function that depends only on exit concentrations

(ii) constraints on the average residence time.

It should be noted however, that the objective function can easily be expanded to include
residence time, which is a measure of reactor volume and hence the investment cost of
the reactor. Other costs associated with the reactor can be included in the objective
function, as long as these costs can be expressed as functions of exit concentrations
and residence time. The expanded objective function will change only the boundary
conditions on the adjoint variables to be discussed in the following sections.

For the target problem we choose an objective that is a function of exit concentrations,
and optimize it subject to the mass balances in the modified Rippin model. Here we
define J = J(XQxit) as the objective function, and choose as decision variables the
piecewise continuous functions h and f (being the micro and the macro mixing functions
respectively).

With the above definitions the target problem can be cast from an optimal control
problem to a nonlinear program defined over N finite elements as follows:

maxJ = J(Xexit)

subject to
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dXmaxft) _. R / y v Jt maX

- = MlAmaxJ + T^

Jt ' 6 (18a)

R(Xbat(t)) . te[$t-+1] (18&)

je [1,N] (18c)

Xbat

dt

dlM1

with boundary conditions

(18d)
(18e)

(18f)

( 1 8 h )

and the constraints

xexit - f1™" n-0 -e'9(t)f(t)dt]Xmax(0) + W W ) (18D

J: (18k)

Wdt = tmax (181)

Here x is the average residence time.

The boundary conditions (18d) through (18i) express the fact that the states
(concentrations) are continuous at the knots. Equation (18k) ensures that the fraction of
molecules with residence time less than infinity is one. The average residence time x
may be fixed at some value or it may be allowed to find its optimum level, which can be
shown to be bounded by tmax.

Since f(t) and h(t) are piecewise continuous they can be approximated on the j-th
element by a linear combination of a set of M linearly independent basis functions
(bases), (Wt). Thus,
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,/=l 1=1

hji^0 (2°)

The coefficients ty} and {h^ are chosen so as to maximize the objective function, J.

There is an infinite number of basis funtions that can be used. However, the choice of
bases should take into account the inherent characteristics of the nonlinear program.

On an element [tj, tj^] we choose as bases

(ii) <j)j2 =

(iv) «j»j4 = [eaVi - eat]/v

where a and v are adjustable parameters. The bases are plotted in figure 2.
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(i) (ii)

(iv)

Figure 2: set of basis functions

The above choice of basis is motivated by the following:

(i) f and h are non-negative over [0, tmax]

(ii) the shapes of the bases mimic the shapes of the rtd's normally found in the chemical
engineering literature

(iii) being exponentials the bases are easy to integrate or differentiate, and are generally
easy to manipulate.

The bases {^(t)} can be defined globally (i.e. on the entire interval [0, tmax]) or locally

(on an element [tjf t H ] c [O.t^J).

Since residence time distributions can be discontinuous on [0, tmax] (eg: the PFR rtd)
global interpolation is usually inappropriate. By definition a set {(^(t)} will have compact
support (be non-zero) only on the j-th element.

fm and hm are used to denote the finite element approximation of f and h respectively.
We illustrate the above concepts in Figure 3 below.
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Figure 3: Partitioning of [0, tmax] into N finite elements

In the above figure

[tj, tj+1]sj-th element

*1-0. tN + 1=tm a x , tj+1>tj, J€[1,N]

For global interpolation N = 1. N > 1 for finite element interpolation with N elements.

5. Method of Adjoints

There are a number of ways to solve the nonlinear optimal control problem (P1). Among
these are methods based on Pontryagin's strong maximum principle and control vector
parameterization coupled with direct search methods. The nonlinearity of the modified
Rippin model (with respect to the control variables f and h) make the above methods
impractical. The method which is described here makes use of adjoint variables, which
are lagrange multipliers that are functions of time. An adjoint variable, which is a
measure of the sensitivity of the objective function to a change in the decision variables,
is assigned to each mass balance in the Rippin model. Let us define a hamiltonian H as

H - *i ( -R(Xmax> + ZmWKm(t)) + X^R(Xbat) + xjxbat(t)e-9m(t)fm(t) (22)

where

J ^ P W t ) X ( ^ t ) ] h ( ^ ) 8 ^ t ) 4 4 (23)

KmW = J ^ 1 -0 - e ^ ^ m f t ) * (24)
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We also define a Lagrangian L as

AM T AM
L =

AM _ AM pr T . T . T .

where | i , TJ, v, XA, XQ and XQ are adjoint variables. It is easy to verify that when the mass
balances and boundary conditions are satisfied L = J, the objective function. A change in
the states results in a change in L as follows:

(dJ/dXexit)'dXexit

T . AM „. AM

7=

v[[dXbat(tf) - dX^O-)] + g d(J^[H - ^ X.,,3, - Xl ^ - Ajl seg]dt) (26)

This equation is the basis for defining the functional form of the adjoints. More precisely
the integral term determines the ODE's that A,A, Xc and ^D satisfy. The remaining terms
determine the boundary conditions on the system of adjoint equations. Although it is
straight forward the derivation is long and somewhat unwieldy, and will therefore not be
presented in this paper. We include the knots as decision variables since they are
allowed to move relative to each other. The following is a summary of the adjoint system:

< 2 7 a >x

( 2 7 b )
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0 (27C)

with boundary conditions

J e t 2 ' N l <27d)

- (f ̂ " [1 -0 - e^JOdrt-JL (27e)
\J0 /a*exit

â A exit

As we shall see later, XQ does not appear in the gradient of the lagrangian with respect
to the decisions {f^, {h$, and {ty. As a result one need not solve (27b). Equation (27a)
and (27f) imply

With the above definitions and analysis the gradient of the lagrangian with respect to the

decisions {f,;}, {ty and {ty take the form

| i : = f ViC(t)(dJ/dXexit)
T(Xmax(0)[1.0 - e " ^ +

.0 - e-9m(H)]/K2 © y&l (28a)
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VJ , T (JoKcJJ/dXexit)
T(Xmax(0) - Xbat(s+t))e-9m(^)fm(s+t)

- Xbat(t)]e-9m(t)fm(S+t)/Km(s) - J V i

t (28b)

V° Jt+|i

§£ - H(lp - Hflf) + (dJ/dXex/^hm(t-) - h J t + M j ^ t X ^ O ) - Xbat(t)]e-9n,(t)fm(t)dt

Xmax(0)[(1-0-e-9m(9)fm(^)-(1.0-

- JJAJCOZ^Q / [1.0 - e-Sm^)]fm(tp - [1.0 - e-9m(tp]fm(tf)\/K2(t)dt

- hm(t+)]

- hm(t+)] (28c)

J o * n ( W - 0 - ^ ^ 1 >]fm(tN+1 )/K2 (t)dt

( t t ) (28d)
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6. Strategy for Solving Optimal Control Problem

The target problem has been formulated as a nonlinear program (NLP). Different
methods exist for its solution. For the NLP we employ a gradient based algorithm that
uses successive quadratic programing (SQP) to update the decision variables. The
SQP step employs the gradients that were presented in the previous section. The
relevant steps in the algorithm are as follows:

Let Y be the vector of decision variables [ {f^, {hjj}, {tj}] Then in terms of Y the NLP takes
the simpler form

MAXJ = J(Y) (a)

subject to:

Ymin< Y< Ymax (b)

Smin< S(Y)< Smax (c)

The nonlinear constraint set (c) contains the two integral equality constraints on f
(equations 18k and 181) and may involve some or all the decision variables. For example
we may require the RTD and micro mixing functions to be continous at the knots and
that tj < tj+1. Note also that if the knots, {tj}, are fixed then the integral constraints on f
are linear in {y . Finally we propose the following strategy for solving the NLP:

(i) Provide an initial guess for the decision variables, Y

(ii) Solve the nonlinear state equations (18a) through (18c) together with the associated
boundary conditions using an ODE code such as LSODI.

(iii) Evaluate the objective function J.

(iv) Using state variables from (ii) solve the linear adjoint equations (27a) through (27c).

(v) Use the set of equations (28) to calculate the derivatives of the objective function with
respect to the above decision variables.

(vi) Calculate a search direction for the decision variables by setting up and solving the
following quadratic program at Yk (Y at k-th iteration):

MAX Q = VTJ(Yk)dk + 0.5djBkdk
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subject to:

Ymin - Yk * d k ^ Ymax " Yk

Smin * A k Y k * A k d k * Smax " A k Y k

Here Ak = VTS(Yk). Bk is a positive definite hessian matrix constructed by a quasi-
Newton updating formula and serves as an approximation to V2J(Yk). With the search
direction dk update Y by Yk^1 = Yk + a ^ , where c^ is a stepsize selected so that a
sufficient increase in J is found at Yk+1. This Successive Quadratic Programming (SQP)
algorithm is given in Han (1977) and Powell (1977). A complete description of an
updated algorithm is given in Biegler and Cuthrell (1985). The above QP is solved using
a code written by Gill et al.(1978)

(vii) If the Kuhn-Tucker conditions for a stationary point for the NLP are satisfied to a
specified tolerance 8 STOP. Else go to (ii).

It should be noted that depending on the general nature of the objective function, J,
there could be multiple local optima for the NLP. As a result to increase the likelihood of
finding a global optimum it might be useful to restart the algorithm from different initial
points. However, unless the objective function exhibits special features (such as
convexity in the decision variables), there is no guarantee that a global optimum can be
found.

7. Test Examples

Three examples have been chosen to illustrate the approach to reactor synthesis
(involving isothermal homogeneous fluid phase reactions) that has been presented in
this paper.

Example A:

This is an isothermal Van de Vusse reaction involving four species for which the
objective is the maximization of the yield of the intermediate species B. The reaction
diagram is as follows:
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P- B

K3

where k., = 10s"1 (first order), k2 = 1s"1 (first order), k3 = 1 L/(gmol s) (second order),
molar flow rate of reactant A = 58 gmol/s, CA0 = 0.58 gmol/L.

In terms of normalized concentrations, X, the reaction rate vector is given by R(X) «[fcA,

*B *C *D ]T - I- fc1 " °-5 Wl kiXA - k2
XB. *k2XB' 0.5

where k1 = k1f k2 = kg, k3 « CA0k3 .

This example was solved by Chitra et al (1981) and later by Achenie and Biegler (1986),
who reported an optimal reactor network of a single plug flow reactor. The target
approach resulted in an optimal B-yield of 0.4426 gmol/L (versus 0.4368 Achenie et al,
0.4362 Chitra et al) with an optimal residence time of 0.2932s (versus 0.2965s, Achenie
et al).

Other pertinent data are a = 2, number of elements = 15, tmax = 3.0 To reduce the
number of decision variables only bases <t>j1y ^ and <t>j3 were used on each element.

As shown in figure A.2 the RTD looks very much like a delta dirac function (the PFR
RTD). In this case, any values of hm will yield the same objective and the hm profile is
nonunique and not important here. In figure A.1 where the RTD and micro mixing
function have been plotted together, hm is small wherever fm is non-zero. Here the
micromixing function suggests that the optimum mixing pattern is close to segregated
flow.
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Figure A.1: RTD and hm for example A
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Example B:

Figure A.2: RTD for example A

The reaction diagram is the same as the one in example A except that here
CA0 = 5.8gmol/L Chitra et al, Achenie at al (1986b) reported an optimal reactor network
of one CSTR followed by a PFR. The optimal RTD for such a reactor train is an
exponential RTD with a lag as in figure 4.
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Figure 4: RTD of Optimal Network (Achenie and Biegler)

The target approach resulted in an optimal B-yield of 3.7271 gmol/L (versus 3.6806 with
Achenie et al and 3.6772 with Chitra et al) and an optimal residence time of 0.2702
seconds (0.2381 with Achenie et al and 0.2802 with Chitra et al). The optimal RTD is
similar to that in A, except that here the RTD is more spread out and shorter. The micro
mixing profile is strongly influenced by the chosen basis functions. However, the general
trend is that of a large hm on the first half of the interval and tailing off towards the end of
the interval (figures B.1 and B.2). The large hm at the beginning points to a CSTR
followed by a PFR, as opposed to a PFR followed by a CSTR (which network has the
same RTD)
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Figure B.1: RTD for example B
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Figure B.2: hm for example B

Example C:

This example, the "plant problem", is a modified form of the Williams and Otto problem
(as stated in Ray and Szekely, 1973, and in Di Bella and Stevens, 1965).
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to fuel

Figure 5: Flow Diagram of the Chemical Plant

This plant produces a chemical P from reactants A and B. There is a decanter that
separates the heavy oily by-product G from the reaction mix before it enters a distillation
column where P is separated from other components. Components C and E are
intermediates that can be used as plant fuel. The reaction diagram is as follows:

A + B --*1 > C, 2nd order

C + B —fc» > P + E, 2nd order

P + C ™ka > G, 2nd order

Unlike the original problem here we assume:
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(i) that the reaction is isothermal,

(ii) the bottoms product is not recycled to the reactor, and

(iii) 50 million pounds of chemical P are to be produced in one year.

At the temperature of the reaction, 120°, the rate constants are
It) = 6.1074 hr wt fraction, kg = 15.0034 hr wt fraction and kg = 9.9851 hr wt fraction.

The objective function for this plant is taken to be the annual rate of retum on the
investment, which can be expressed as (assuming total operating hours per year of
8400 hours).

(i) Sales Volume: [0.3FP + 0.0068FD]/hr

(ii) Raw Material Cost: (0.02FA0 + 0.03FB0)/hr

(iii) Waste Treatment Cost: 0.01 FG/hr

(iv) Utilities Cost: 2.22FR/yr

(v) Sales, Administration and Research Expenses: 12.4% of sales

(vi) Plant Fixed Charge: 10% of the Plant Investment/yr

(vii) Plant Investment: 600Vp

where

p = 50 Ib/ft3, V = Ox = 120.0x, T = residence time

Fp = Fp-0.1FE

A

F D " FA0 + FB0 ' FG ' F P

FR = FA + FB + FC + FE + FG + FP

If there is no recycle then FR = FA0 + FB0.

is the molar flow rate of species j at the reactor exit. Using the above information the
objective function I(F) becomes

Max I(F) - 100[8400(0.3FP + 0.0068FD - 0.02FA - 0.03FB - 0.01 FG) - 0.124x8400x(0.3Fp

+ F D) - 2.22FR - 60Vp]/600Vp
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Now express all flows in terms of FA, FB> Fc and Fp and normalize by FA0 =
1.3546x104 Ib/hr, then we have

J(Xexit) = -7.4x10-% - 7.4x10"% - 7.4x10"% + 7.1842)^ - 0.7265)% -0.4541)^ -

- 10.0/FA0

as the new objective function. The reaction rate vector is given by R(X) = [-

=s [XA, Ag, AQ, Ap, Ag, A Q ]

where kj = kjFA0/FR and FA0 is the mass flow rate of species A at the 0-th iteration. The
target approach resulted in an annual rate of return on investement of 219.9% and an
optimal residence time of 0.5004 hours. In addition the optimal values for FA0 and FB0

were 13546 Ib/hr and 33776 Ib/hr respectively. The general shape of the RTD is more
spread out than in the two previous examples. hm is zero almost everywhere, suggesting
that segregated flow is favorable to the maximization of the objective function. As a
result of the spread, the the maximum value the RTD takes is a lot smaller than in the
previous examples.
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Figure C: RTO and hm for example C

In examples A and B the target problem yielded a slightly better objective function than
the one based on a superstructure of reators. In this respect the target approach is quite
successful. However, some characteristics of the target approach need to be pointed
out.
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(i) The target approach assumes that the RTD is species independent. It is therefore

reasonable to expect that this approach may not give an upper bound for reactor

networks that allow component splits. To get around this limitation the RTD will have to

be made species dependent.

(ii) Besides being limited to homogeneous reaction mixtures of low viscosity, the

modified Rippin model (on which the target approach is based) is restricted to isothermal

and adiabatic systems. However, the model can be modified to allow non-isothermal

reactions.

(iii) The local profile (i.e. on an element) of hm and fm are influenced by the shapes of the

basis functions used. By scaling the basis functions such that no one function has undue

influence alleviates that dependence. In the above examples a, the characteristic time

for the bases, was set constant on each element. It is expected that by using the

alternate set of bases {1, e'V} on the k-th element and by considering o^ to be a

decision variable, smoother profiles will result. However, such a modification will make

the integral equality constraints on f nonlinear.

Also to avoid nonlinear constraints on fm, the knot positions were chosen a priori

(uniformly placed). The next step is to allow knot movement as part of the optimization

problem. In addition the problems raised above will be addressed as part of continuing

improvement on the algorithm.
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