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ABSTRACT

This paper addresses the solution of nonconvex MINLP problems for process

synthesis through the Outer-Approximation/Equality-Relaxation algorithm. A two-phase

strategy is proposed where in phase I nonconvexities that may cut off the global

optimum are systematically identified with local and global tests. In phase II, a new

master problem is proposed that attempts to locate the global optimum which may

have been overlooked in phase I. The proposed procedure, which has been

implemented in DICOPT, is illustrated with several examples that include the design

of multiproduct batch plants and a structural flowsheet optimization problem.



INTRODUCTION

Many design and process synthesis problems can be formulated with mixed-integer

optimization models that involve both continuous and discrete variables (usually 0-1).

Examples of synthesis problems include heat exchanger networks (Cerda and

Westerberg, 1983; Papoulias and Grossmann, 1983; Floudas et al, 1986; Saboo et al,

1986), separation sequences (Andrecovich and Westerberg, 1985; Isla and Cerda, 1985;

Lin and Prokopakis, 1986; Floudas and Anastasiadis, 1987) , utility and refrigeration

systems (Papoulias and Grossmann, 1983; Shelton and Grossmann, 1986), evaporation

systems (Hillenbrand, 1984). Most of these problems have been formulated as mixed-

integer linear programs (MILP) that rely on linear approximations and discretization of

operating conditions to avoid treatment of nonlinearities.

Recent advances in mixed-integer nonlinear programming (MINLP), however, offer the

possibility of explicitly accounting for the nonlinearities that are commonly

encountered in process models. In particular, the outer-approximation (OA) algorithm

by Duran and Grossmann (1986a) and its extension with the equality-relaxation (ER)

strategy by Kocis and Grossmann (1987) have shown to provide a very efficient

method for solving MINLP problems. The basic idea in the OA/ER algorithm consists

of solving an alternating sequence of NLP subproblems and MILP master problems.

In the NLP step, the 0-1 binary variables are temporarily fixed and the continuous

variables are optimized to yield a solution which provides an upper bound for an

MINLP minimization problem. The MILP master problem optimizes the discrete

variables and predicts an increasing sequence of lower bounds. The master problems

are obtained by successively adding linear outer-approximations that are intended* to

underestimate the objective function and overestimate the feasible region of the

MINLP problem. Since this master problem provides a close approximation to the

original MINLP problem, relatively few iterations (typically 2 to 5) are required to

converge to the optimal MINLP solution. This has been shown in the design of gas

pipelines (Duran and Grossmann, 1986b), retrofit of multiproduct batch plants

(Vaselenak et al, 1987), in structural flowsheet optimization (Kocis and Grossmann,

1987), and in heat integrated distillation sequences (Floudas and Paules, 1987).

However, in order to guarantee global optimal solutions with the OA/ER algorithm,

sufficient conditions require quasiconvexity of the relaxed equations and active

inequalities, and convexity in the objective function and inactive inequalities. Some

problems exhibit this structure, or else they may be transformed to satisfy these

conditions, typically through logarithmic transformations of the variables that



convexity the problem (e.g. see Duran and Grossmann, 1986b).

When the MINLP problem exhibits nonconvexities that cannot be transformed to a

form that satisfies the above sufficient conditions, as is commonly the case in

flowsheet synthesis problems, there is the possibility that the OA/ER algorithm may

produce suboptimal solutions. There are two possible reasons why the presence of

nonconvexities can cause difficulties. First, the NLP subproblem may exhibit more

than one local solution. Second, even if a nonconvex NLP subproblem has a unique

solution, the MILP master problem may not provide rigorous lower bounds, and as a

consequence may sometimes cut off the global optimum solution. This paper will

address the problem on how to circumvent the second difficulty for the case when

general nonlinear functions1 are involved in the MINLP, such as is the case in

structural flowsheet optimization problems.

A two-phase solution strategy is proposed in this paper that attempts to find the

global optimum of nonconvex MINLP problems. In the first phase the original OA/ER

algorithm is applied with local and global tests that can automatically identify

nonconvexities in the objective function and constraints. When none are detected, the

algorithm terminates. Otherwise, one proceeds to a second phase where the invalid

outer-approximations to the nonconvex functions can be systematically relaxed to

yield a modified MILP master problem that attempts to locate an improved solution

from the one obtained in the first phase. This strategy has been implemented in the

computer code DICOPT (Kocis and Grossmann, 1987) that can solve general purpose

MINLP problems. Several numerical examples are presented which include the

optimal design of multiproduct batch plants and a structural flowsheet optimization

problem. The results show that in many cases the proposed scheme can identify the

global MINLP optimum.

BACKGROUND

For a given superstructure that has embedded alternative designs, the associated

MINLP problem is assumed to have the following form:

For the particular case of concave functions of a single variable, this problem can be avoided through the use of valid
linear underestimators (e.g. see Vaselenak et al, 1987).



z = min cT y + f(x)
x,y

s.t. h(x) = 0

g(x) < 0

A x=a (MINLP)

By + Cx £ d

In problem (MINLP), x is the vector of continuous variables representing flows,

pressures, temperatures and sizes, while the vector of 0-1 binary variables y

represent the potential existence of units which are embedded in a superstructure

containing alternative flowsheet designs. The equations h(x)=0 and Ax=a correspond

to material and energy balances and design equations. Nonlinear process

specifications are represented by g(x)<0. Logical constraints and linear specifications

that must hold for a flowsheet configuration to be selected from within the

superstructure are represented by By+Cx^d and Ey^e. The variables x are specified to

lie within the compact set X consisting of lower and upper bounds. The cost function

involves fixed cost charges in the term cTy for the investment, while revenues,

operating costs, and size dependent costs for the investment are included in the

function f(x).

It should be noted that for most synthesis problems the terms f(x) in the objective

function are linear in x, because it represents incomes and expenses (see Kocis and

Grossmann, 1987). Also the binary variables y as shown above, are usually linear

because in the objective they are used for fixed-cost charges, and in the constraints

they are used to model multiple choice constraints or logical implications that can be

written linearly.

For the case when the binary variables are nonlinear in a function 4>(x,y>, one can

always reformulate the problem so as to have the structure that is linear in y and

nonlinear in x as in problem (MINLP). This can be done simply by defining new

continuous variables x* = y, so that $(x,y) can be formulated as a nonlinear function

of continuous variables •(x,xl). The additional equations x* = y are then linear in y.

Also, the case when linear terms in y appear in nonlinear equations and inequalities,



h(x) and g(x), can be directly handled by th^ OA/ER algorithm.

In the OA/ER algorithm the NLP subproblems arise for a fixed choice of the binary

variables ykGY. From (MINLP), this leads to the problem:

z(yk) = min cTyk + f(x)
X

s.t. h(x) = 0

g(x) < o . (NLPk)

A x=a

C x < d - B y k

x € X

Since this problem may not have a feasible solution for the particular choice of yk,

it is often convenient to introduce a non-negative slack variable u for constraint

violations and a large scalar p. The objective function and inequality constraints in

(NLPk) are replaced in a modi f ied formulat ion (SNLPk|f as fo l lows:

a) Objective function: z(yk) = min cTyk + f(x) + p u
x , u

b) Nonlinear inequalities: g(x) ^ u

c) Linear mixed inequalities: C x ^ d - B y k + </

In this way, if a feasible solution to problem (NLPk) exists, then the slack variable u

will be zero and formulation (SNLPk) reduces to that of (NLPk). If a feasible solution

does not exist, then the objective function in (SNLP ) will produce continuous

variables xk that minimize the violation u of the inequality constraints.

The master problem in the OA/ER algorithm at iteration K is given by the following

MILP problem:
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where z* is the predicted lower bound at iteration K. In the above formulation, the

linear approximations to nonlinear functions f(x>, h(x), and g(x) are based on a Taylor

series approximations at the point x\ the optimal continuous variables in subproblem

<NLP ). The linear coefficients and right hand side constants in (M ) are then given by:

wk = Vf(xk)T wk = Vf<xk)T [xk] - f(xk)

Rk = Vh(xk)T

Sk = Vg(xk)T sk = Vg(xk)T [xk] - g(xk)

rk = Vh(xk)T [xk] (1)

Tk is an rXr matrix for relaxing the linear approximations of the r nonlinear equations

to inequalities. The diagonal elements of the matrix Tk are given by:

- 1 if Xk < 0
i

+ 1 if Xk > 0 /=1.2,...r (2)
i

0 / / Xk - 0
i

where Xk are the associated optimal lagrange multipliers for the nonlinear equations

h.(x)=0, i=1,2...r, in the subproblem (NLPk).

The lower bound z£~1 of the constraint on cTy+// is introduced to expedite the

solution of the MILP. The next set of inequalities are integer cuts that eliminate the



assignments of binary variables analyzed at the previous K-1 iterations (see Duran

and Grossmann, 1986a). For any integer combination yk, the index sets are such that

Bk={j: yj=i} and Nk={j:

It should be noted that the above master problem is a slightly modified version of

the one presented in Kocis and Grossmann (1987) in that the constraint cT y + p < z

has been removed, where zu represents the best current upper bound predicted by the

NLP subproblems. In this way the stopping criterion is given not when the master

problem (M ) is infeasible, but rather when the predicted lower bound zK exceeds the

current best estimate z^

The OA/ER algorithm requires an initial guess of the binary variables y1 at iteration

K=1 and then alternates between the NLP subproblems in (NLPK) and the master

problems in (MK). In order for the master problems to provide rigorous lower bounds,

sufficient conditions require quasiconvexity of the relaxed equations Tkh(x)£O and

active inequalities gA(x)sO, and convexity of objective function term f(x) and inactive

inequalities g(x)<0 (see Kocis and Grossmann, 1987). When these conditions are not

met, the master problem may cut off the global optimum. On the other hand, the

global optimum solution might still be obtained since the above conditions are only

sufficient. The following section illustrates these two points.

MOTIVATING EXAMPLES

Example 1.

The following small example illustrates how the MILP master problem can

sometimes cut off the global optimum solution in nonconvex problems. The problem

is given by,

z • min 2x + y
x.y

s.t. - x 2 - y £ -1.25

x + y £ 1.6 (EX-1)

x £ 0

where the nonlinear inequality contains a nonconvex term for the continuous variable

x. The feasible region and the objective function contours are shown in Figure 1.a.



The global optimum of problem (EX-1) is located at (x,y)=(0.5,1) where 2=2.000, since

at (x,y)=(1.118,0) 2=2.236. Note that at each of the two integer values the solution of

the corresponding NLP subproblem is unique.

In applying the OA/ER algorithm to this small nonconvex MINLP problem, assume

that y=0 is selected as the initial point. This yields an NLP subproblem with the

solution (x,y)=(1.118,0) and objective function value 2=2.236. To set up the MILP

master problem at iteration 1, the nonlinear constraint in (EX-1) is linearized at

(x,y)=(1.118,0) and the integer cut y £ 1 is introduced. The master problem formulation

is given below and its feasible region is shown in Figure 1.b.

2 = min 2 x + y
x.y

s.t. -2.236 x - y < -2.5

x + y £ 1.6 (M1)

y Z 1 , y€{0,1} , x Z 0

Note in Figure 1.b that the linearization of the nonconvex function cuts into its

feasible region. Since the integer cut forces y=1, the feasible region defined by the

two linear inequalities is empty. Thus the master problem (M1) is infeasible.

Therefore, due to the nonconvexity of the nonlinear inequality the global optimum

has been cut off. In the procedure that will be presented later in the paper this

difficulty will be overcome and the global optimum will be found.

Example 2.

This example will illustrate the use of nonlinear 0-1 variables and the fact that the

global optimum can still be identified despite nonconvexities that may be present.

The problem is a pure 0-1 problem corresponding to a nonconvex quadratic capital

budgeting problem (see Kettani and Oral, 1987 ) of the form:

2 = min <K1 + 2 / 2 + 3 y3 - yj (2 y, + 5 / 2 + 3 / 3 - 6 y]
y

s.t. yi + 2 y2 + y3 + 3 yA Z 4 (EX-2)

y€{0,1} 4

The global optimum of this problem is z=-6.0 at y=(0,0,1,1). There are 16 possible



combinations of the 4 binary variables, of which 8 are feasible as determined by the

linear inequality constraint. Applying the OA/ER algorithm from each of the 8

feasible starting points yields the optimal solution as seen in Table I, where the

progress of the lower and upper bounds at each iteration is presented. Since (EX-2)

is a pure 0-1 problem, the NLP subproblems for fixed yk require only an objective

function evaluation rather than an optimization. Note, however, that in the starting

point y l=[0,1,0,1], the lower bound at iteration 1 (-4.0) does not underestimate the

objective function of the next NLP subproblem (-6.0). This example then shows that

global solutions can often be obtained despite the presence of nonconvexities.

OUTLINE OF TWO-PHASE STRATEGY

As was shown in the previous section, when sufficient conditions for the OA/ER

algorithm are not satisfied, one may or may not obtain the global optimum solution.

However, problem (EX-2) and computational experience by the authors has shown that

in a good number of cases the OA/ER algorithm will find the global optimum solution

for nonconvex MINLP problems. This would then suggest that a suitable strategy to

tackle these problems is to solve them in two phases. In the first phase the OA/ER

algorithm will be applied in its original form, but with special provisions for the

identification of nonconvex functions that may cut off the global solution. If none

are detected the search is terminated. Otherwise, one proceeds to a second phase

where linearizations are systematically modified in a new master problem so as to

try to yield valid outer-approximations. Here the search is terminated at the point

when no further improvements are found in the NLP subproblems. The main steps in

the two-phase strategy for handling nonconvex MINLP problems are shown in Figure

2.

Phase I consists of the OA/ER algorithm by Kocis and Grossmann (1987), and an

identification procedure for nonconvex functions. Given an MINLP problem, the

OA/ER algorithm involves the solution of a series of alternating NLP subproblems and

MILP master problems. The NLP subproblem (NLPK) corresponds to the continuous

optimization for fixed values of the binary variables y\ Its solution z(yK) yields a

valid upper bound z to the MINLP solution, and it is used to derive linearizations for

the nonlinear functions that are to be included in the master problem.

The MILP master problem <MK) is an approximation to the MINLP that is based on

cumulative linearizations up to iteration K, and its role is to predict new values of

the binary variables yK*1 and provide a lower bound, z*, to the MINLP. If the lower



bound lies below the current best upper bound zyf a new NLP subproblem is solved.

Otherwise, phase I is terminated, and at that point the global optimum is assumed

to correspond to the current upper bound, zy. Convexity tests are then applied to

challenge this assumption.

The proposed identification procedure is based on two types of tests: local tests

and global tests. Both tests are used to determine which linearizations are cutting

into the feasible region of the original MINLP problem. The local tests consist of

checking convexity conditions of the functions by perturbing the NLP subproblems.

The global tests consist of checking whether solutions that are generated from the

NLP subproblems in phase I are feasible for the linearizations of the master

problem. When all the functions in the MINLP are convex, these tests will not record

any violations, and the search would then be terminated. On the other hand, when

nonconvex functions are present in the MINLP, these tests may detect those

linearizations that violate the convexity assumptions for phase I. One must then

proceed to phase II where an attempt is made to correct invalid linearizations.

Once the violating linearizations are identified, a new MILP master problem is

defined for phase II that will attempt to expand the feasible region by modifying

the linear approximations in order to include the space of the original MINLP. This

task is handled through a shifting of linearizations which failed the global test via

new right hand side coefficients. Also, nonnegative slack variables are added to

linearizations which failed either the local or global test and to the objective function

with a large positive coefficient. Finally, a constraint which forces the lower bound

to be no greater than the current upper bound is included in the phase II master

problem. Qualitatively, this master will attempt to produce valid outer-approximations

to the nonconvex region. In this way it will yield a new set of binary variables

whose lower bound lies below the current best solution, z(j/ while minimizing the sum

of infeasibilities introduced by the slack variables.

The solution corresponding to the new binary variables yK is then optimized through

its NLP subproblem to yield the objective function value z(yK) at xK. If z(yK) is greater

or equal than zy, the search in phase II is terminated and zu is assumed to be the

global optimum solution. Otherwise, the current upper bound is updated to z sz(yK),

and the new linearizations are derived. These are then checked with the local test and

the global tests. All previous linearizations are checked through the global test at the

new point xK. The MILP master problem is then derived accounting for the new

linearizations and violations recorded in the two tests. Iterations in phase II are
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then repeated up to the point where no further improvement is obtained in the upper

bound zy. Note that in phase I I , no use is made of the lower bounds of the master

problem since in general these will exhibit a gap due to the relaxation of the

linearizations.

It should be noted that the main advantage of the two-phase algorithm is that it

can automatically identify nonconvexities in the MINLP problem that could prevent

the OA/ER algorithm from finding the global optimum solution. However, no rigorous

guarantee on global optimality can be given if phase II is activated. This follows

from the fact that no special structure on the functions has been assumed to

guarantee validity of the modified outer-approximations and uniqueness of the

solutions of the NLP subproblems. Despite these unavoidable limitations, the

strategy represents a systematic procedure by which one can intelligently use all the

information generated in phase I to try to locate the global solution, in fact, as will

be shown in the examples, this strategy is able to find the global optimum in many

of the nonconvex MINLP problems that have been tested so far. Finally, it is

interesting to note that when nonconvexities are not involved in the MINLP, the

strategy will be able to automatically identify this situation and terminate at phase I

with the global optimum. The following sections describe the local and global tests,

as well as the master problem used in phase I I .

LOCAL TEST

The purpose of the local test is to provide information required to analyze locally

convexity conditions of a nonlinear constraint through its corresponding linearization.

First consider the nonlinear equations h(x)=0 and let h^IN denote the linearization of

equation h.. xk, the optimal solution to subproblem (NLPk), is selected as the point at

which the linearization are derived.
LIN

h(x) « /?(x") + Vh(xk)T [x - xk] (3)
i i i

Since the point xk must satisfy /?.(xk)=0

LIN
h(x) = Vh(xk)T [x - xk] (4)

As discussed in Kocis and Grossmann (1987), the condition for quasiconvexity of

on:

if Mx) £ 0 then Vh(xk)T [ x -x k ] £ 0 (5)

h.(x) requires satisfying the following relation:
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Then for a function h.(x) to be quasiconvex, the above statement must hold for alt

x. In the local test, we attempt to find a point >Tk near xk which violates this

condition. But since there are an infinite number of candidate points to consider, a

logical choice is a point xk which produces a decrease in the objective function. Such

a point can be found by solving a relaxed NLP subproblem <LNLPk) which is identical

to (NLPk), except that the lower and upper bounds for nonzero xk, yk are given by:

) (6a)

and for zero x*, y* by:

- ( <, x <; ( (6b)
i

- « ^ y. * €

where £ is a small number (i.e. 0.05). These bounds insure that the solution point xk

will remain near xk. Also, since the solution to (NLPk) has already been determined, a

very good starting point is provided for this NLP so the solution point xk should be

found quickly.

It is clear that at the solution of (LNLPk), h Uk)«0. Referring back to the

quasiconvexity condition in (5), the local test reduces to verifying if

Vh.(xk)T [xk-xk ] ^ 0, which is equivalent to testing the feasibility of the linearization

at xk. In terms of the master problem linearizations in (Mk), the local test for

quasiconvexity in the nonlinear equations h(x)*0 and active inequalities g <x)s0 reduces

then to checking if

Tk Rk xk £ Tk rk , Sk
A xk £ s^ (7)

If the above inequalities are satisfied for each row i, then the local test for

quasiconvexity is passed for the corresponding linearizations.

Next, consider the inactive inequality constraints g(x)<0 and the nonlinear objective

function term f(x). In order to guarantee that the OA/ER algorithm will converge to

the global solution, the inactive inequality constraints and the objective function term

are required to be convex. From Mangasarian (1969), for a differentiable convex

function, g(x):

g,(x) ;> gf(x
k)+ Vg^xV [x -x k ] (8)
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The right hand side of the above condition is precisely the linearization of g (x) at

the point xk so the convexity condition can be restated as:

g,(x) £ gu
t
N(x) (9)

The local test for the linearizations in (M ) of the inactive nonlinear inequalities

gI<x)<0 and objective function f(x) then reduces from (9) to checking the following

inequalities at the local test points xk:

g(xk) £ Skxk - sk , f(xk) Z ( w W -w k (10)
I I I o

GLOBAL TEST

The local test provides a means of checking convexity and quasiconvexity

conditions near the point at which the linear approximation is derived. However, this

procedure does not determine whether the linearization provides a valid outer-

approximation at other points in the feasible space of the MINLP. The proposed

global test provides this information in addition to a simple mechanism for

modifying linearizations which do not provide valid outer-approximations.

At completion of the OA/ER algorithm, the solution of K NLP subproblems are

available with the corresponding values of xk for k=1,2,..K. If the master problem is

truly underestimating the objective function and overestimating the feasible region of

the MINLP problem, then each of these points should be feasible in the final master

problem. This provides a simple method for identifying linearizations which may be

excluding the global MINLP solution by cutting into its feasible region.

The global tests are similar to the local tests, except that they are applied to the

linearizations of iteration t for the points xk, k=1,2,..K, k # I. That is, from (7) the

conditions that must be verified for each row i of the equations and active

inequalities are:

T^R*xk £ jt-r1 , S* xk £ s* £,*=1,2,...tf, I* k (11)

while from (10), for the inactive nonlinear inequalities and objective function, the

conditions to be tested are:

g,(xk) * S* xk - s* , /(xk) * (v/)T xk - wl t * = 1,2,...* , I # k (12)
I I I o

Note that since the linearizations of iteration I must be tested at a point xk

corresponding to a different iteration (i.e. l*k). the global test can only be applied
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if two or more iterations take place for the OA/ER algorithm. Also, note that this

test is very easy to apply as (11) only requires matrix multiplication, while (12)

requires matrix multiplication and function evaluation of the inactive constraints and

nonlinear objective function term.

Finally, those linearizations found to fail the global test conditions in (11) and (12)

are modified so as to satisfy these conditions at all the points x\ This can be

accomplished by simply determining for each linearization, the maximum violation at

a point xm and setting

r -R x . S A - S A x M3)

i f - sf xm - g(<xk> . w f = (v / ) T xm - /(xm)

I f f I
where f , & , &~, and v^ are new coefficient values that provide valid outer-

A I o

approximatipns for the points xk, k=1,2,...K.

MASTER PROBLEM FOR PHASE II

The phase II master problem formulation is similar to the phase I formulation

except for the addition of an upper bound to the original objective function and the

treatment of linearizations which failed either the local or global test through slack

variables and modified right hand side coefficients. The master problem linearizations

for each iteration k will be partitioned into the three sets Pk, FGk, and FLk, denoting

linearizations that passed all tests, failed a global test, and failed only a local test,

respectively. Note that if a linearization fails both a global and a local test it is

included in the set FGk.

The candidate test points, xk for k=1,2,..K, for the local test are generated by

perturbing the NLP subproblem solution points x\ Based on the form of the

linearizations in master problem (MK), a given linearization fails the local test if the

conditions in (7) and (10) are not satisfied. A nonnegative slack variable C is

introduced to each linearization i of iteration k which failed only a local test to

allow this constraint to be violated when the slack becomes positive. The coefficient

of the slack variable is chosen so that the corresponding violation is relative to the

magnitude of the right hand sides. Hence, the modified linearizations in FLk are given

by:
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f X - u - I Wk \ C < W*
i " ' i O ' i i C

T k R k x - I T V I C k * Tkrk

i • i ' i i

S k x - | s k |

i€FLk (14)

where the index i is used to denote the ith element of the vectors and matrices

corresponding to the linearizations that failed the local test. Note that if f^O the

original linearization is kept, whereas if fk>0 the linearization is relaxed in proportion

to the right hand side coefficient. For numerical convenience, we define the absolute

value function for | . | < t as | . | s € where * is a small positive tolerance.

As mentioned earlier, it is tne global test that provides information required to

modify an invalid linearization to yield valid outer-approximations at the NLP solution

points x\ k=1,2,...K. By substituting the new coefficients in (13) into (11) and (12) for

linearizations which failed to satisfy these inequalities, and introducing slack

variables as in (14) the linearizations in FGk are given by:

<w

r
s k

i

• ) T

R"
i

x -

X

X -

If

f

T

• 1

i

J s k

i i O

i Tr
i

/EFGk (15)

The nonnegative slack variables, Ck in (14) and (15), are included in the objective

function with a large positive coefficient p so that the sum of violations for the

modified linearizations is minimized.

Lastly, an upper bound given by the best solution from the phase I NLP

subproblems (zu) is placed on the objective function, cJ y • p, to ensure that the

predicted lower bound in the modified master problem does not exceed its value. The

lower bound from the previous master problem however is excluded. The phase II

master problem is then given by:
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The application of the master problem shown above will be demonstrated using the

small nonconvex MINLP example problem (EX-1). Since this problem has only one

continuous and one binary variable, details can be illustrated graphically in order to

provide a geometrical interpretation of the local test procedure and the phase II

master problem. Recall that the global optimum of problem (EX-1) is located at

(x,y)=(0.5,1) where z=2.000, and if y=0 is selected as the initial point for the OA/ER

algorithm, it yields the suboptimal solution (x,y)=(1.118,0) with objective function value

2=2.236. Since the master problem (M1) was infeasible, phase I was terminated with

zu=2.236. Because only one iteration has been completed, no candidate points exist

for the global test (i.e. the linearization derived at x1 will be satisfied at x1 by
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definition). However, the local test can be performed through the NLP problem

(LNLP ) with the bounds as in (6). For the value of €=0.05 this yields:

z = min 2 x + y
x,y

s.t. - x 2 - y < -1.25

x + y <> 1.6 (LNLP1)

1.118 (1-c) * 1.062 £ x < 1.174= 1.118(1 + *)

-* = -0.05 £ y <> 0.05= e

The. solution to this problem is ( x \ y 1 H i . 140,-0.05) with z=2.230. Checking if the

linearization in (M1) is satisfied at this point,

-2.236 x " 1 - ^ 1 =-2.236(1.140) +0.05=-2.4992 < -2.500 (16)

Since -2.4992 > -2.5, the linearization fails the local test and phase II is activated.

A slack variable is added to the invalid linearization and to the objective function to

yield the following phase II master problem (RM2).

z = min 2x + y + 100 C

s.t. -2.236 x - / - 2.5 C* -2.5

x + / < 1.6 (RM2)

2 x + / £ 2.236

y £ 1 , yE {0,1} , x £ 0

The solution to (RM2) is (x,y,{)=(0.6,1.0,0.063) with 2x+y=2.200 which is less than the

current upper bound of zu
s2.236. The local test identified the nonconvexity and

relaxed the linearization through the slack { as shown in Figure 3. y2 is fixed at 1

and the next NLP is solved to yield z(y2)=2.000 at X2=1.118 which is the global

minimum of (EX-1). Technically, one would continue in phase II since z(y2)=2.000 <

zy=2.236. But it is clear that the search at this point would terminate since there are

only two possible values for the binary variable y in (EX-1). Larger and more

interesting test problems wil l be presented later, but this small example clearly

shows the role of the local test and the form of the relaxed phase II master

problem.
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ALGORITHM FOR TWO-PHASE STRATEGY

Having presented the local and global tests, and the modified master problem, the

steps in the proposed two-phase strategy for solving nonconvex MINLP problems are

as follows (see Figure 2):

Step 1 Select initial binary assignment y\ set K=1.

Initialize lower and upper bounds, z°=-oo z^oo.

Step 2 Solve <NLPK) for fixed yK yielding z(yK), x\ and X"

If z(yK)<zur then set y#=y\ x#=xK, and zu=z(yK).

Step 3 Determine at xK the coefficients in (1) for the linear approximations of

f(x), h(x), and g(x), and set up with TK the master problem (MK).

Step 4 Solve the MILP master problem (MK):

[a] If a feasible solution yK*1 exists with lower bound z* < zy,

set K=K+1, go to Step 2.

[b ] If no such solution exists, phase I solution is zu at y\ x\

Go to Step 5.

Step 5 [a] Determine local test points x"k for k=1,2,..K by solving the

problems (LNLPk) which are given by (NLPk) with the bounds in (6)

Check the local test conditions in (7) and (10) to

determine those linearizations which fail the test.

[b ] Check the global test conditions in (11) and (12) and update the

right hand sides of those linearizations which fail the test as in (13).

[c ] Add slack variables to the linearizations which failed the local

and global test as in (14) and (15).

Step 6 If no linearizations failed any of the tests, the global optimum is

assumed to be z{J at x\y#; stop.

Otherwise set K=K+1 and go to Step 7.

Step 7 Set up and solve the phase II MILP master problem (RMK) to obtain yK

[a] If a feasible solution yK exists, go to Step 8.
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[b ] If no feasible solution exists, then stop

The global optimal solution is assumed to be zu at y \ x \

Step 8 Solve (NLPK) for fixed yK yielding z(yK), xK, and X\

[a] If z(yK)<zu, set y#=yK, x#=xK, and zu=z(yK).

Define the matrix TK as in (2).

[b] If z(yK)>zuf stop.

The global optimal solution is assumed to be z at y#,x\

Step 9 Derive at xK the linear approximations for f(x), h(x), and g(x) as in Step 3.

Step 10 Perform local and global tests for the current linearizations

as in Step 5. Set K=K+1 and go to Step 7.

The steps given above define the two-phase strategy in its entirety. Note that in

phase I at each iteration K, the NLP subproblem is solved first followed by the MILP

master problem. In phase II the MILP is solved first and then the NLP at each

iteration K.

It should be also noted that different variations of this algorithm are possible. For

instance, one may wish to perform only the global test for identifying nonconvexities

since the points for this test are readily available at the end of phase I. The local

test, however, requires the solution of the NLP problems (LNLPk), k=1,2,..K, to generate

the test points x"k. In addition, initial experience with the convexity tests has

indicated that in many cases the slack variables for the linearizations which failed

the tests take the value of zero. Resetting the right hand side coefficients as in (13)

has been found to usually yield a feasible phase II master problem with an

objective function value less than the upper bound (zu> from phase I.

The proposed two-phase strategy has been implemented in the computer code

DICOPT (Discrete Continuous OPTimizer) for solving general purpose MINLP problems

with the OA/ER algorithm (see Kocis and Grossmann, 1987). DICOPT was used to

solve the problems in this paper on the IBM 3090-600 supercomputer at the Cornell

Theory Center. This code has as an interface the modelling system GAMS (General

Algebraic Modelling System, Kendrick and Meeraus, 1985), allowing the user to supply

the MINLP problem formulation in algebraic form with indexed equations and without

the need for MPS files nor gradient information. MINOS (Murtagh and Saunders,

1985) was used to solve NLP subproblems and MPSX (IBM, 1979) was used to solve
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the MILP master problems. Note that an initial point is required only for the first

NLP subproblem since the solution from the MILP master problems (Mk), k=1,2,...K-1

provide the starting point for subproblems (NLPk), k=2,3,..K. With the newly developed

strategy for handling nonconvexities, a larger class of MINLP problems can be

handled in DICOPT.

EXAMPLE PROBLEMS

Three types of examples will be presented to illustrate the application of the two-

phase strategy. The first one is a small MINLP problem that will serve to illustrate in

detail the steps of the algorithm. The second example is an MINLP for the optimal

design of a multiproduct batch plant. This example will serve to compare the direct

solution of a nonconvex MINLP with the use of transformations that can convexify

the problem. The third example is a structural flowsheet optimization problem that

involves nonconvexities and where no special structure is present in the MINLP

model.

Example 3 The following MINLP problem has the characteristic that although

nonconvexities are present, the NLP subproblems have unique solutions. However, the

effect of the nonconvex terms will be seen in the master problem where the linear

approximations fail to overestimate the feasible region of the original MINLP

formulation.

Example problem (EX-3) has three binary variables and two nonnegative continuous

variables. The objective function is linear and the only nonlinear terms appear in the

two equality constraints, hi and h2.

z =min2x + 3x + 1.5/ + 2/ - 0 . 5 /

s.t. h^x.y) = (x^2 + KI = 1.25

/72(x,y) = (x2)
15 + 1.5 y2 = 3.00

x} + yy <> 1.60 (EX-3)

1.333 x2 + y2 £ 3.00

- y, - y2 + y3 * o

x * 0 , y€ {0,1}3

There are 23 different combinations of the binary variables, meaning 8 NLP
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subproblems exist. Of these, only 1 combination, y=[0,0,1] is infeasible because it

violates the pure integer constraint. The global solution of (EX-3) is y'=[0,1,1],

x'=[ 1.118,1.310] with z#=7.667.

Each of the 8 different starting points were tested with DICOPT and the results of

phase I are given in Table II. Included in this table are the initial point y1, the

progress of the iterations, and the phase I solutions. Note that 4 of the 8 starting

points lead to the global optimal solution in phase I (see Table Ha) while the

remaining 4 terminated at the second best solution, y=[ 1,1,1] with z=7.931 (see Table

lib). The two-phase strategy was applied to these 4 starting points. As shown in

Table lib, for 3 of these points the global optimum (z=7.667) was identified. Only the

starting point y1=[ 1,0,0] failed to yield the global optimum. Interestingly, the value

of each binary variable in this starting point is different from the values in the

global solution y#s[0,1,1].

To illustrate in some detail the two-phase algorithm, consider the starting point

V1»[ 1.0,1]. Continuing to Step 2, NLP1 yields z(y1)=8.240, x1=[0.500,2.080], and

X1=[-2.000,-1.387]. z(y1) < z^oo so zu is set to 8.240, y#=[1,0,1], and x#={0.500,2.080].

The direction matrix T1 has diagonal elements t1 ,
= t2 2=-1. In Step 3, the relaxed

linearizations at x1 for hl and h2 are derived:

/?l;INn)(x,y)=-xi - KI < -1.50 (17)

/?2
JNn)(x,y)=-2.163x2 - 1-50/2 < -4.50

With these linear approximations, the master problem (M1) is formulated and solved

in Step 4 yielding y2=[ 1,1,1] with z^=8.160. Set K=2 and return to Step 2 where (NLP2)

is solved to give z(y2)=7.931, x2=[0.500,1.310], and X2=[-2.000,-1.747]. zy is then set

to 7.931. Since both of the multipliers remained negative, T2=T1. Also, note that

(x ^y^Mx^y^2 meaning that in Step 3 the linearization of hi at iteration 2 is identical

to that at iteration 1. The master problem at iteration 2 then involves the following

linearizations:

£ -1.50 (18)

- 1.50/ < -4.50
2 2 "*

- 1.50y £ -3.750

From the above linearizations the master problem (M ) is formulated and solved in

Step 4. The lower bound provided by the solution to (M2) is z2=9.052 which is
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greater than z «7.931; so according to Step 4 b we proceed to Step 5.

In Step 5 [a ] , the local test is performed which first requires that (x,y)1 and (x,7)2

be determined through (LNLP1) and (LNLP2) by setting *=0.05 in (6). By solving these

NLP problems, (x^y)1 and (x,y)2 were found to be [0.475,2.045,1.024,0.050,1.050] and

[0.475,1.266,1.024,1.050,1.050], respectively.

The local tests at these two points are as follows:

\ y ' ) « -0.475 - 1.024 = -1.499 < -1.500 -> fails

-2.163*2.045 - 1.500*0.050 = -4.498 < -4.500 fails

2y"2,y2) = "0.475 - 1.024 = -1.499 < -1.500 -» fails

/ £ ( x 2,y 2) = -1.717* 1.266 - 1.500*1.050 = -3.749 <> -3.750 -> fails

It can be seen that all 4 linearizations failed the local test.

Step 5 [b ] is the global test where the linearizations derived at tay)1 wil l be checked

using the point (x,y)2 and the linearization derived at (x,y)2 wil l be checked using the

point (x,y)\ The global test for the 4 linearizations are shown below.

/?l;IN(1>(x2,y2)=-0.500 - 1.000 = -1.500 £ -1.500 -» passes

/7L
2
im)(x2

ty
2)= -2.163* 1.310 - 1.500*1.000 = -4.334 £ -4.500 -» fails

/?lJIN(2>(x1
/y

1)=-0.500 - 1.000 = -1.500 £ -1.500 -> passes

/£N < 2 )(x1 ,yV-1.717* 2.080 - 1.500*0.000 = -3.571 £ -3.750 fails

It is the linearization of h2 which was* found to fail the global test at both test

points. Thus, following a similar treatment as in (13), the right hand side coefficients

of these two linearization are replaced by the value of the left hand side

expressions, -4.334 and -3.571 respectively. In Step 5 [c ] the slack f J is added to h*;IN(1>

according to (14), while the slacks C\ and C2 are added to h^Nn) and h^IN(2) according

to (15). Using the information from the above tests, the phase II relaxed master

problem is now formulated in Step 7.
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', + 3 x2 + 1.5 yi + 2 y2 - 0.5 y^ + 100 U] + C] + C )

s.t. - x i - / , - 1.50 Cj ^ "1-50

-2.163 x - 1.50/ - 4.334 C1 * -4.334
2 ' 2 2

-1.717 x2 - 1.50 y2 -3.571 Cj * -3.571

x i + yy £ 1.60 (RM

1.333 x . + y ^ 3.00

3)

- Y2

1.5/1 + 2 / 2 - 0.5 y2 < 7.931

^ + / 2
 + / 3 ^ 2

x £ 0 , C * 0 , y€ {0,1}3

The solution to the relaxed phase II master problem is z^=7.931 at y3=[0,1,1], with

x=[ 1.500,1.144], and { = [0.000,0.083,0.030]. Proceeding with Step 8, (NLP3) is solved to

give z(y3)=7.667 at x3=[ 1.118,1.310], which corresponds to the global solution of

(EX-3K Since z(y3)<zu=7.931, y# is set to (0,1,1) and zy to 7.667.

The linearizations are then derived at x3 and the local test point (x,y)3 is determined

through (LNLP3). These new linearizations are subjected to the local test at (x,y)3 and

the global test is applied at tay)1 and <x,y)2. Finally, the previous linearizations are

checked via the global test at (x,y)3. Using the results of these tests, the next phase

II master problem is formulated and solved to provide y4=[0,1,0]. The solution to

(NLP4) is z(y4)=8.167 which exceeds the current upper bound of zu=7.667. At this point,

phase II terminates having found the global solution to this nonconvex MINLP

problem.

In order to provide further geometrical insight into phase I I , refer to Figure 4

where the nonlinear equation h2 is plotted along with the phase I linearizations and

the phase II relaxed linearizations. It is clear that the feasible region defined by the

linear inequalities in phase I has cut into the feasible region of h2. Note also, the

global test points tay)1 and (x,y)2, and the expansion of the master problem feasible

region that results from the modified linearizations of phase I I .
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Example 4 This example problem addresses the optimal design of muitiproduct batch

plants (see Grossmann and Sargent, 1979). It is assumed that the plant consists of M

processing stages where fixed amounts Q of N products must be manufactured. The

design problem consists of determining for each stage j the number of parallel units

N. and their sizes V, and for each product i the batch sizes B. and cycle times T ..

Data for the problem are the horizon time H, cost coefficients a., ft., for the units,

and size factors S. and processing times t for each product i at stage j.

The optimal design of muitiproduct batch plants can be formulated as the following

MINLP problem (MIPB1):
M

2 - min y a N V. ' (Investment cost)

s.t. V

N T
j Li

B
i

T

i = 1 . N . j =1 ,M

/ « 1 ,N . j =1 ,M

(Volume for stage j)

(Cycle time for product i)

Li

i O B.
£ H (Horizon constraint)

N
j

Z 2""1 Y
k

rr
J'l.M (Number parallel units)

1 <> N
i

VL ^ V
j i

Bl

i

Y

B

/Vu

i

vu

i

y = 1 , M

i-y.N

I'= 1 , N

k= 1 ,K , j=1 ,M

(Bounds)

where Nu, VL
# and Vu are specified bounds, while valid bounds for Tu and B. can be

determined as fol lows:

max

j

--U Li i ij
(19)

Q.
Eh-— max —) , 5°= mini 0 • min— j

/v" ' ' ' S
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The above formulation is similar to the one in Grossmann and Sargent (1979),

except that the number of parallel units N is expressed in terms of 0-1 variables Y

through a binary expansion (see Garfinkel and Nemhauser, 1972). As an example, if a

maximum number of 4 units is considered for stage j, then N = 1 • Yr + 2Y2 (R=2).

In this way, by assigning the different combinations of 0-1 values for Y . and Y .,

the values N. = 1,2,3,4 can be obtained.

Note that the inequality constraints for volumes and the equations for the number

of parallel units are linear, but the rest on the model involves nonlinear functions.

The nonlinear inequalities for the cycle times are quasiconvex meaning that the

corresponding linearizations will provide valid outer-approximations when the point of

linearization satisfies these inequalities as equations. The remainder of the model, the

horizon time constraint and the objective function are nonconvex and these functions

can cause the OA/ER algorithm to terminate with suboptimal solutions.

Through logarithmic transformations, the above formulation can be modelled as a

convex MINLP problem. This requires the definitions of the transformed variables

v.=ln[V], n=ln[N ], b.=ln[B.], and t sln[T ]. Also, in this formulation the variables n.

must be expressed in terms of 0-1 variables y for each choice of k parallel units,

k=1,..Nu. Using these transformation for the variables V., N., B., and Tu yields the

following MINLP problem (MIPB2):
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M

z - min ^L, a exp[ n + J3 v ] (investment cost)

s.t. v £ In [S ] +6 / = 1 , N , y = 1 , M (Volume for stage j)

n + t £ In it ] / = 1 ,M j = 1 ,M (Cycle time for product i)
j Li ij
N

Z Q ex pi t - b ] £ H (Horizon constraint)
i Li i

j

n = j^ In [Ar] y j = 1 , M (Number parallel units)

U
N
i

0

In

In

In

y

j

[V] ^
j

[7J,] ̂

= 0.1

In [A

j

Li

P
ln[O

J

In [r0]
Li

In [B^]

k

J -

Js

i -

i«

r = 1 , / V u

j

/ = 1 , W (0^7// o/?e choice of n)

1 , M (Bounds)

1 ,M

1,/V

1,/V

, y« 1,*f

Note that in this formulation, all nonconvexities have been eliminated. The

nonlinearities in this model appear only in the objective function and in the horizon

time constraint, and in both cases the exponential terms are convex. Hence, by

solving problem (MIPB2), one is guaranteed to obtain the global optimum with the

OA/ER algorithm.

Table III contains the data for a plant consisting of 6 stages and 5 products and a

maximum of 4 parallel units per stage. In (MIPB1) only two 0-1 variables are needed

per stage due to the use of binary expansions for the number of units in parallel.

Hence, the MINLP formulation (MIPB1) contains 12 binary variables and 22 continuous

variables. The objective function and 31 of the 67 constraints in the model are

nonlinear. With formulation (MIPB2), there are 24 binary variables and 22 continuous

variables. Only the objective function and 1 of the 73 constraints are nonlinear. The

global optimum for the 2 equivalent formulations has an investment cost of $285,506

and details of the optimal solution are shown in Table IV.
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The two-phase strategy was applied with DICOPT on an IBM 3090-600 to both

formulations so as to determine the optimal design and the results from various

starting points are given in Table V2. As expected, the global optimum is found in

phase I with the convex formulation (MIPB2), and no violations were detected in the

local and global test. Note however, that formulation (MIPB2) tends to typically

require one or two more iterations and an average of 6% more CPU-time than the

original nonconvex formulation (MIPB1). The drawback of the nonconvex formulation is

that phase I predicts suboptimal solutions in 5 of the 10 starting points which were

investigated. Phase II was then applied in attempt to improve upon the phase I

solution. In this problem, only the global test was activated in phase I I . In almost

all cases, the objective function and horizon constraint failed the global tests, and in

some instances a few of the cycle time constraints failed the global tests.

The phase II results for the 5 starting points which lead to suboptimal solutions in

phase I with formulation (MIPB1) are shown in Table VI. 3 out of the 5 cases

improved upon the phase I solution, locating the global optimum twice. Note that on

the average, the phase II procedure increased the CPU-time requirement by 87% with

respect to phase I. Taking into account the 5 starting points which lead to the

global optimum in phase I, the optimal solution of z=$285506.5 was found in 7 of

the 10 cases studied. The suboptimal solutions of z-$304,660. and $328,260. were

found twice and once respectively.

Example 5,

The final example will demonstrate the use of the proposed two-phase strategy on

a nonconvex MINLP problem which arises in the synthesis of chemical processes. The

goal is to determine both the optimal structure and operation of a chemical process

flowsheet. First, a superstructure is proposed which contains several alternative

flowsheets candidates. The problem is then modelled as an MINLP involving the

maximization of profit subject to material and energy balances, equilibrium relations,

and design specifications. The resulting formulation contains a wide variety of

nonlinear functions, many of which introduce nonconvexities, making this MINLP

problem a very good candidate for the two-phase procedure.

The superstructure selected for this example is shown in Figure 5. Feedstock F1

contains only component A whereas feedstocks F2 and F3 are mixtures of

components A, B, and inert D with different compositions and purchase costs. These

For convenience starting points are given in terms of number of parallel units instead of 0-1 variables.
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3 streams enter at 300 K and 1.0 MPa and will require compression since the reactor

must operate above 2.5 MPa. A choice between single-stage compression or two-

stage compression with intermediate cooling exists. The reactor feed stream can then

be either heated or cooled before entering one of the three available reaction units.

Reactor R1 has the highest conversion per pass and is the most expensive reactor,

followed by R2 and R3. The reaction is 2A+B-»C and component D is inert. The

reactor effluent stream is then expanded and cooled before entering a flash

separation tank where the heavy product C is separated from unreacted raw materials

A and B and inert D. The bottom stream can then be sold (P1), or purified further in

a second flash separator and sold at a higher price (P2). The vapor streams from the

flash units can be recycled and mixed with the reactor feed stream or sent to a

membrane separator. The permeate stream leaving the membrane separator is rich in

component A and can reduce the requirement of feedstocks F1, F2, and F3.

This superstructure was modelled as an optimization problem having the structure of

problem (MINLP). The formulation contains 9 binary variables (see Figure 5) and 416

continuous variables. There are 420 constraints, of which 130 are nonlinear

equations. Important problem data is given in Table VII and a summary of the unit

models are given in Table VIII (see Kocis, 1988, for detailed models). This nonconvex

MINLP problem was solved using the OA/ER algorithm with the phase II procedure

for handling nonconvexities. The results presented were obtained on an IBM 3090-600

using DICOPT.

The results obtained using two different starting points are given in Table IX. Since

in this problem the objective function (profit) is being maximized, the NLP

subproblems provide the lower bound and the MILP master problems supply the upper

bound. In both cases the global solution with a profit of 10.173 (106$/yr) was

identified. The optimal assignment of binary variables is y#=[001111000] which

corresponds to the flowsheet structure shown in Figure 6. Feedstock F3 with single

stage feed compression, reactor R1, and both flash separators were present in the

optimal flowsheet. Most of the vapor stream from the first flash was recycled and

mixed with the reactor feed stream, and the rest was sent to the membrane

separator where the permeate stream was recycled. The membrane raffinate stream

BP3 was sold as a byproduct. All of the bottom stream from the first flash was

sent to the second flash. The vapor phase was recycled and mixed with the reactor

feed while the liquid phase was sold as the high purity product P2. Table X

summarizes the optimal operating conditions in this flowsheet.
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As seen in Table IX, the first starting point considered was y1=[ 110101000]. This

flowsheet, which is shown in Figure 7a, uses feedstock F1 and F2, single-stage

compression, reactor R1, both flash separators but no membrane separator. The

objective function value for this NLP subproblem is 4.050 (106$/yr). Phase I

terminates at the second iteration with z*=7.925 since the upper bound predicted by

the second master problem (1.010) is less than the current lower bound.

Nonconvexities in the MINLP model have caused the OA/ER algorithm to terminate at

a suboptimal solution.

In phase II only the global test was used to identify nonconvexities.

Linearizations which failed the global test were shifted through relaxation of right

hand side coefficients. The first phase II master problem provided a valid upper

bound (26.600) and identified the global solution y=[001111000]. The binary variables

were fixed at the master problem solution and the resulting NLP subproblem was

solved to yield z=10.173 (106$/yr). Since this is an improvement upon the previous

lower bound of 7.925, another iteration of phase II is performed. The next master

problem predicted a new set of binary variables and a valid upper bound on the

global optimum. However, the NLP subproblem for the value of binary variables from

this master problem had a solution of 4.584 and phase II terminated since no

improvement was made upon the current best solution of 10.173. From this starting

point, the two-phase strategy required the solution of only 4 NLP subproblems in

locating the global solution of this nonconvex MINLP problem. With this starting

point, the total CPU time required with DICOPT for the NLP and MILP problems was

106.8 seconds.

y^t 101011000] was selected as the second starting point. As shown in Figure 7b,

this corresponds to a flowsheet with feedstocks F1 and F3, single-stage compression,

reactor R1, one flash separator and the membrane separator. The NLP subproblem was

solved yielding a profit for this flowsheet of 7.926 (106$/yr). Phase I terminated in

just 3 iterations, this time with the global solution of 10.173 (106$/yr). The global

tests and relaxation of right hand side coefficients were performed to yield the

phase II master problem. The solution to this MILP lead to an NLP subproblem with

z=8.926, which is not an improvement over the phase I solution of 10.173, and

therefore phase II terminates. As in the previous starting point, the two-phase

procedure required a total of just 4 iterations to converge to the global optimum. The

solution of NLP and MILP problems in DICOPT required a total 147.0 CPU seconds

for this starting point.
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The MINLP formulation of this problem involved 9 binary variables meaning that

approximately 500 different flowsheet configurations were embedded within the

selected superstructure. The two-phase strategy was quite efficient in identifying the

global solution since it had to examine and optimize less than 1% of the different

configurations.

CONCLUSIONS

It has been shown in this paper that the master problem in the outer-approximation

algorithm for solving MINLP problems can sometimes cut off the global optimum

solution when nonconvexities are present. This case arises in synthesis problems

that involve complex nonlinear models. To remedy this problem, a two-phase strategy

has been proposed that relies on local and global convexity tests in phase I, and a

modified relaxed master problem in phase I I . Although the proposed scheme is not

mathematically guaranteed to always find the global optimum, it represents a

strategy where all the numerical information is fully exploited in attempt to find the

global solution.

Numerical experience with the two-phase strategy has been encouraging as was

shown in the example problems. In examples 3 and 4, the global solutions were

found in 7 of 8, and 7 of 10 initial points, respectively, and in example 5 in both of

the starting points. The results of example 4, the design of multiproduct batch

plants, illustrates the importance of convexifying a problem through transformations

when this is possible in order to guarantee the global optimum. The experience with

a structural flowsheet optimization problem, example 5, showed that nonconvexities

in these problems can lead to suboptimal solutions with the OA/ER algorithm. Since

in this case, convexification is virtually impossible due to the complexity of the

models, there is a clear need for global optimization strategies such as the one

presented in this paper.
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Table I. Results for Capital Budgeting Problem with OA/ER algorithm

INITIAL POINT ITERATION

y1=[0.0,1,1] NLP

MILP

y'-M.o.i.n NLP
MILP

y1=[O,1,O,1] NLP

MILP

y1=[ 1.0,0,1] NLP

MILP

y1=[ 1,1,0,1] NLP

MILP

y'=[0,1,1,1] NLP

MILP

y1s[1.1.1,1] NLP

MILP

y1=[ 1.1.1.0] NLP

MILP

- 6.0

- 5.0

- 3.0

- 9.0

- 1.0

- 4.0

0.0

-24.0

2.0

-10.0

8.0

-10.0

20.0

-40.0

60.0

-84.0

0.0

- 8.0

- 6.0

- 3.0

6.0

-12.0

0.0

- 6.0

0.0

-6.0

0.0

-12.0

0.0

-12.0

- 6.0

1.0

- 3.0

- 8.0

- 6.0

- 1.0

- 6.0

- 1.0

- 3.0

- 8.0

- 3.0

- 8.0

- 6.0

1.0

- 6.0

1.0

- 6.0

1.0



Table II. Results for Problem (EX-3)

a. Starting Points Which Found Optimal Solution in Phase I

INITIAL POINT ITERATION 1 2

y1=[ 0,1,1] NLP 7.667

MILP 8.167

y1s[0,1,0] NLP 8.167 7.667

MILP 7.667 8.788

y^EO.O.O] NLP 8.476 7.667

MILP 7.896 ' 8.396

yMO.0.1] NLP infeasible 7.667

MILP . 7.896 8.788

b. Starting Points Which Found Sub-Optimal Solution in Phase I

INITIAL POINT ITERATION 1 2 3 4

yM 1.1.1] NLP 7.931 7.667 8.167

MILP Phase I 8.431

MILP Phase II 7.931 7.667

y M i . 0 . 1 ] NLP 8.240 7.931 7.667 8.167

MILP Phase I 8.160 9.052

MILP Phase II 7.931 7.667

y'-E 1.1.0] NLP 8.431 7.931 7.667 8.167

MILP Phase I 7.931 8.431

MILP Phase II 7.931 7.667

y'»[ 1.0,0] NLP 8.740 7.931 8.240

MILP Phase I 8.160 8.552

MILP Phase II 7.931



Table III. Problem (EX-4) Data

Stages M-6

Cost Coefficients: a. - $250
j

Bounds on Volumes: VL = 300 I
J

Maximum Number of Parallel Units:

Horizon Time: H = 6000 hrs

Products

V

Nu

• 0.6

> 3000

- 4

N=5

I
i-i
i»i
i-i

,6

,6

,6

Q: Production Rate of Product i (kg)

A

250000.

B

150000.
c

180000.

D

160000.

E

120000.

S:,: Size Factor for Product i in Stage j (I/kg)
'I

A

B

C

D

E

t..:
•J

A

B

C

D

E

1

7.9

0.7

0.7

4.7

1.2

Procesing Time

1

6.4

6.8

1.0

3.2

2.1

2

2.0

0.8

2.6

2.3

3.6

for Product

2

4.7

6.4

6.3

3.0

2.5

3

5.2

0.9

1.6

1.6

2.4

i in Stage i (hr)

3

8.3

6.5

5.4

3.5

4.2

4

4.9

3.4

3.6

2.7

4.5

4

3.9

4.4

11.9

3.3

3.6

5

6.1

2.1

3.2

1.2

1.6

5

2.1

2.3

5.7

2.8

3.7

6

4.2

2.5

2.9

2.5

2.1

6

1.2

3.2

6.2

3.4

2.2



Table IV. Optimal Solution for Problem (EX-4)

Investment Cost $285,506.

Product A B

TLj (hr) 3.2 3.4 6.2 3.4 3.7

B (kg) 380. 770. 730. 638. 525.

Stage 1 2 3 4 5 6

N 2 2 3 2 1 1
i

V (I) 3000. 1892. 1975. 2619. 2328. 2110.
i

Binary Variables in Formulation (MIPB1): Yk

1 1 1 0 1

2 0 0 1 0

Binary Variables in Formulation (MIPB2): yk

1

0

0

0

1

0

0

0



Table V. Phase I Results in Problem (EX-4)

INITIAL POINT FORMULATION (MIPB1)

NO. UNITS N. SOLUTION
j

ITERATIONS

FORMULATION (MIPB2)

SOLUTION ITERATIONS

(4,4,4.4,4.4)

(1,1,1.1,1,1)

(3,3,3,3,3,3)

(2.2,2.2,2,2)

(3,3,4,4,3,3)

(2,2,3,2,2.2)

(2.1,2.2,1.1)

(1.1,2.1,1,1)

(2,1,1,1,1,1)

(3,3,4,3,3,3)

304,660.

304.660.

313.575.

285,506.5

304,660.

285,506.5

285,506.5

285,506.5

285,506.5

349,864.6

3

2

3

3

3

3

3

3

2

2

285,506.5

285,506.5

285.506.5

285,506.5

285.506.5

285,506.5

285,506.5

285,506.5

285.506.5

285,506.5

4

5

4

2

4

3

5

4

4

3

Average Total CPU-time 5.26 seconds

Average Total NLP CPU-time 0.97 seconds

Average Total MILP CPU-time 4.29 seconds

5.55 seconds

1.52 seconds

4.03 seconds



Table VI. Phase II Results in Problem (EX-4) for (MIPB1)

INITIAL POINT PHASE I

NO. UNITS N. SOLUTION

PHASE II TOTAL

SOLUTION ITERATIONS ITERATIONS

(4,4,4,4,4.4) 304,660. 329,222.

(1,1,1,1,1,1) 304,660. 285,506.5

(3,3,3,3,3,3) 313,575. 285,506.5

(3,3,4,4,3,3) 304,660. 322,166.

(3,3,4,3,3,3) 349,864.6 328,260.

Average Total CPU-time 3.78 seconds 9.85 seconds



Table VII. Problem Data for Problem (EX-5)

Feedstock or

Product/Byproduct Composition Costs/Price <$/kg-mole)

F1

F2

F3

Product PI

Product P2

Byproduct BP1

Byproduct BP2

Byproduct BP3

Byproduct BP4

100% A 0.163

40% A
50% B

10% D

35% A

50% B

15% D

> 97.5% C

< 172,800 kg-mol/day

£ 99% C

£ 172,800 kg-mol/day

0.065

0.049

0.441

0.490

0.039

0.039

0.082

0.098



Utilities Costs

Electricity $0.03/kW-hr

Heating (steam) $8.0/106 kJ

Cooling (water) $0.7/106 kJ

Design Specifications

Reactor

Pressure, MPa 2.5 < P < 15.

Temperature, K 423 <, T IN < 623.

523 < T0UT < 673.

Flash Separators

Pressure, MPa 1. < P < 10.

Temperature, K 300. £ T IN £ 500.



Table VIII. Model Types Used in Problem (EX-5)

COMPRESSION:

Power Requirement - Isentropic - ideal gas nonlinear

EXPANSION VALVE:

Heat Balance -

FLASH SEPARATION:

Equilibrium Relation -

Vapor Pressures -

Mass Balance -

HEAT EXCHANGER:

Adiabatic - ideal gas

Raoult's Law

Antoine relation

nonlinear

nonlinear

nonlinear

linear

Heat Balance - Constant heat capacity nonlinear

MEMBRANE SEPARATION:

Recovery Relation -

Mass Balance -

Constant split fraction linear

linear

MIXER:

Heat Balance -

Mass Balance -

Constant heat capacity nonlinear

linear

SPLITTER:

Mass Balance -

REACTOR:

Equilibrium Conversion

Heat Balance -

Mass Balance -

Through split fractions

Correlation

Adiabatic exothermic

nonlinear

nonlinear

nonlinear

nonlinear

OBJECTIVE FUNCTION

Revenue from sales , raw material and utility costs

Investment costs

linear

linear with fixed charges



Table IX. Two-Phase Strategy Results for (EX-5)

INITIAL

POINT y1

ITERATION

[110101000] NLP

MILP Phase I

MILP Phase II

4.050

12.350

(10*'$/yr>

7.925

1.010

10.173

26.600

4.584

24.185

Total NLP CPU-time = 96.1 seconds

Total MILP CPU-time = 10.7 seconds

Total CPU-time = 106.8 seconds .

[101011000]

MILP

MILP

NLP

Phase

Phase

I

I I

7.926

12.532

do5'$/yr>

9.173

9.290

10.173

7.667

8.926

10.910

Total NLP CPU-time = 135.6 seconds

Total MILP CPU-time * 11.4 seconds

Total CPU-time « 147.0 seconds



Table X. Optimal Solution for Problem (EX-5)

Feedstock or

Product/Byproduct Flowrate (kg-mol/day)

F3

P2

BP3

760,130

172,800

511,090

Utilities Requirement

Electricity (kW)

Heating (steam, kW)

Cooling (water, kW)

compressor #1

compressor #4

heat exchanger #2

heat exchanger #3

3490.

1443.

8.265

106.84

Reactor

Pressure, MPa 2.5

Temperature, K 347. (inlet)

Conversion per Pass of A 25.28 %

Flash Separators

Pressure, MPa

Temperature, K

Recycle Flowrates

RC1 (kg-mol/day)

RC2 (kg-mol/day)

Overall Conversion of A

F-1

2.04

300.

1.629.115

274,717

92.34 %

449. (outlet)

F-2

2.04

422.



Figure 1. Feasible Region and Objective Function in (EX-1)

(a) Objective Function Contours and Nonlinear Feasible Region
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Figure 2. Steps in Two-Phase Strategy
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Figure 3. Nonlinear Constraint Linearization, and Relaxed Linearization in (EX-3)
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Figure 4. Global Test and Relaxed Linearizations in Problem (EX-3)
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Figures. Superstructure for Problem (EX-5)
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Figure 6. Optimal Flowsheet Structure in (EX-5)
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Figure 7. Initial Points in Problem (EX-5)

(a) y1 = [ 1,1,0,1,0,1,0,0,0]

PROFIT = $4,050,000 /yr

(b) y1 = [ 1,0,1,0,1,1,0,0,0]
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