
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.



FOOBAR: An Artificial Intelligence Based Finite Element System

by

J. W. Baugh, Jr. and D. R. Rehak

EDRC-12-11-87 3



FOOBAR: An Artificial Intelligence Based
Finite Element System
John W. Baugh Jr. and Daniel R. Rehak

Department of Civil Engineering, Carnegie Mellon University,
Pittsburgh, PA 15213-3890, USA

Abstract

This paper presents altematives to the traditional programming methodologies found
in current finite element analysis systems. Artificial intelligence based represen-
tations are discussed, as are their incorporation in FOOBAR, a finite element system
under development by the authors. Particularly useful architectures include con-
straint satisfaction paradigms, object-oriented techniques, and declarative knowledge
representation. The development of FOOBAR is based on these ideas, which func-
tionally decompose "what" to compute from "how" to compute it. We expect the
resulting system to provide an intelligent, flexible environment for exploring research
issues in finite element analysis.

University Libraries
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213



FOOBAR: An Artificial Intelligence Based
Finite Element System
John W. Baugh Jr. and Daniel R. Rehak

Department of Civil Engineering, Carnegie Mellon University,
Pittsburgh, PA 15213-3890, USA

1. Introduction
Finite element analysis systems are difficult to write, maintain and modify. Conven-
tional systems have control strategies, along with data structures, computational al-
gorithms, etc., that are dependent upon each other. The application of existing
models of computation from the artificial intelligence community, however, can
greatly simplify program development, ease the burden of maintenance, and result in
a more robust system. For example, in knowledge-based systems, knowledge is
represented in a manner that is independent from control. FOOBAR is an example of
a new class of finite element system that is based on a declarative representation of
knowledge and an object-oriented style of programming.

The finite element method is described in FOOBAR using various types of
knowledge, including process knowledge, constraints, and meta-knowledge, which
are implemented in a declarative form. Knowledge about the overall solution
process, including the fundamental relationships of mechanics, alternative solution
techniques, etc., is used to guide numerical computations. Thus, the actual se-
quence of processing for a given problem is not known a priori since it is not explicitly
coded in the system. Knowledge about constraints insures that certain relationships
exist in the data, for instance, that quantities to be added have the same units. Meta-
knowledge about equation solvers and other algorithms is used to select the most
appropriate solution techniques and data representations for a given problem.

Control is based on process knowledge, and is therefore independent of the routines
that actually perform numerical computation. Thus, the explicit representation of
knowledge and constraints in FOOBAR provides independence between levels of
abstraction. As a result, the overall solution process can be changed through
modification of knowledge without affecting the underlying procedures which perform
the computations. In the same manner, the computational procedures may be
modified without affecting the solution process.

Routines that perform numerical computation in FOOBAR are implemented in an
object-oriented fashion so that data, and the procedures that operate on it, are en-
capsulated. Thus, information hiding is guaranteed, and illegal operations prevented.
The object-oriented methods used for numerical computations are based on a lattice
of objects that define a set of abstract data types. FOOBAR has at the highest level
a complete set of basic engineering quantities (force, length, etc.), which are based



on primitive data types (integers and reals). Subsequent levels define objects from
mechanics (stress, strain, etc.), mathematics (matrix, tensor, etc.), and so on.
Operations performed on the objects via sending messages are therefore inherently
consistent. For instance, a message sent to add a stress to a length would be
refused.

A prototype of FOOBAR is being developed by the authors as a test bed for many of
these ideas [Rehak 86]. This paper presents our current thinking on some of the
approaches that seem promising and does not reflect an actual implementation.
Ideas at the conceptual level are addressed, and pieces of low-level details are
presented along with various examples. The following section identifies some of the
organizational methodologies that we believe are useful - in particular, object-
oriented techniques, knowledge-based representations, and constraint networks.
Following that is a description of how these ideas may be incorporated in FOOBAR.

2. Organizational Methodologies
Many of the goals in the development of FOOBAR are the same that occur through-
out computer science, particularly in artificial intelligence and logic programming.
That is, it is desired to separate "what" is to be computed from "how" to compute it.
(These same concepts are also addressed in database management systems, where
the "conceptual" level is separated from the "internal" level, so that performance and
other machine-dependent issues are isolated from the rest of the system.) This sec-
tion addresses some of the high level control issues and alternatives that arise in
implementing a finite element system with independent representations of
knowledge, control, and processing.

2.1. Objects and Message Sending
Although the operator/operand model found in conventional languages treats
operators and operands as independent, operators are limited in the types of
operands they can accommodate. This is particularly true of scientific and engineer-
ing computations. In the message/object approach [Stefik 86], however, objects
record their class (type) explicitly, and methods are invoked based on the classes of
operands they receive. An example is given by Cox [Cox 84] of electrical systems, in
which incompatibility between plugs and sockets make it safe (you can't do the wrong
thing). The object-based approach is similar: type dependencies cannot spread
through the system since they are permanently encapsulated within classes.
Encapsulation is provided by dynamic binding (at runtime) which results in greater
flexibility. Conventional languages, however, use static binding. The user achieves
"dynamic binding" using conditionals, which must be changed with any change or
addition of data types. In object-oriented languages, the multiplicative operator, for
instance, can have the same power that it does in mathematical notations. That is, it
is capable of operating on scalars, such as integers, reals, or complex numbers, as
well as collections of data, such as vectors and matrices. This ability of objects from
different classes to respond appropriately to the same message is referred to as
polymorphism.

In addition, most object-oriented languages allow classes of data to be organized into
hierarchies and lattices. This in itself is a useful mechanism for classifying and or-
ganizing data in large software systems. Because of this arrangement, subclasses
may inherit methods defined on super classes. Therefore, redundancy is reduced
since more general operations are automatically invoked when a method is not
defined on a particular class.



2.2. Handling Constraints
Much of the pioneering work in constraint-based models of computation was per-
formed by Abelson and Sussman [Abelson 85] and their students at MIT [Steele 80],
as well as by Alan Boming [Borning 79] at Stanford. Some of the simple models of
local constraint satisfaction turn out to be particularly suitable for representing the
finite element method. A special class of constraints, dataflow, serves as a useful
introduction to constraints in general.

2.2.1. Dataflow
The use of dataflow compilers on previously sequential Fortran programs is a com-
mon approach for achieving parallelism in scientific computations. The compiler
looks for data dependencies in the code, and imposes the constraint that no opera-
tion be attempted before its ingredient data items are known. The concept of
explicitly defining the pre- and post-conditions to a task within the code itself is attrac-
tive: it allows a modularity not found in the conventional imperative programming
paradigm where procedures and functions are the basic unit of program decomposi-
tion. Dataflow constraints may be stated in a declarative manner. That is, the re-
quired input and subsequent output of a task (or procedure) can be defined without
actually invoking it. A task scheduler can then locate and execute tasks whose input
is available. Examples of such declarations in the context of a rule-based system
might consist of the following facts:

(task name solver
inputs force stiffness
output displacement)

(task name stiffness-assembly
inputs stiffness-i stiffness-i+1 ...
output stiffness)

(task name element-stiffness-generation
inputs element-type nodal-coordinates elastic-modulus
output stiffness-i)

as well as a set of rules that schedule tasks, activating those whose preconditions
have been satisfied. In this way, the control is separated from the actual computa-
tions. In addition, parallelism comes at no extra charge since multiple tasks may
simply be activated when more than one has its preconditions satisfied. For ex-
ample, in the case of element stiffness generation, the inputs for many elements may
be available. Therefore, their stiffnesses can be generated simultaneously. But
more important than the parallelism (at least in terms of development and main-
tenance issues) is the modularity of the the system. By using dataflow techniques,
the dependency graph is explicitly represented as facts which may be conveniently
modified as needed.

An alternative to a global task scheduler is a message sending scheme in which the
ingredient data items signal the appropriate tasks when its value is known. For in-
stance, if force obtains a value (as in the previous declarations), it sends task solver
(and any other tasks which rely on the value of force) a message indicating it has
been computed. When a given task has received such indications from all its con-
stituent data items, the task activates itself, producing its output, and then sends
subsequent tasks a message that its output has been computed, and so on until all
possible computations have been made.

To represent the dependency graph using classical message sending semantics, we
define two classes, one for data types and one for the tasks themselves. The data
class is the root for all data represented in the dependency graph and is defined as
follows in the proposed Common Lisp Object System [Bobrow 87, Bobrow 85]:



(dafdass data ()
((•aim :initform nil)
(tasks :ia±tfoxm nil)
(informant :initform nil)))

where the value slot contains the actual value of a piece of data; the tasks slot is a
list of the tasks that use the data; and the informant slot keeps track of how the value
was obtained (i.e., who set it). If the value is already set and the new value is
different, setp complains.

Then, a method called setp is defined for assigning the value of a variable and
propagating it to the appropriate tasks:

(dafmathod satp ((d data) naw-valua sattar)
(with-slots (d)

(oond ((null informant)
(••tq valua naw-valua)
(•atq informant sattar)
(for-aach-axcapt Mttar 'notify tasks))

((/• valua naw-valua)
(error "Contradiction: ~s *•"

valua naw-valua)))))

Notice that setp first insures that the value is not already set (informant would be
non-null if it was). Then it sets the value and the informant based on the supplied
input, notifying tasks that use the data.

The general class for task data is simply defined as:
(daf class task () () )

Specific tasks (e.g., a solver), are created by defining subclasses of task:
(dafclass solvar (task)

(forca
stiffnass
displacamant))

and a method that performs the desired task:
(dafmathod notify ((• solvar))

(with-slots (a)
(if (and (known-p forca) (known-p stiffnass))

(satp displacamant
(/ (gat-slot forca 'valua)

(gat-slot stiffnass 'valua))
•))))

When both the force and stiffness have been defined, the displacement is computed
and propagated to tasks using it, such as ones for computing stresses and strains. In
this way, data are propagated throughout the dependency graph until all satisfiable
tasks have been performed.

2.2.2. Constraint Satisfaction
A problem with dataflow, however, is that computations are directional. Consider
again the example of the force-displacement relationship using dataflow. The code
for actually computing the displacements may be defined as follows in Common
Lisp [Steele 84]:

(dafun solvar (forca stiffnass)
(/ forca stiffnass))

Yet, the meaning of the basic relationship between forces and displacements is
obscured. It is desirable to define the relationship without specifying any order of
computation, as in:



force = stiffness x displacement

where the "=" represents equality and not assignment. Thus, tasks with specified
input and output may be replaced with constraints that define relationships between
data, establishing the "what" without specifying the "how". For instance, if the quan-
tities here are matrix quantities, the relationship is still valid, and the relationship says
nothing about how to compute the quantities. If the stiffness and displacement
matrices are known, then the force may be determined by matrix multiplication. Or if
the stiffness and force are known, then the displacement may be determined by
Gaussian elimination, or perhaps by some other solution technique. The point is
simply that a relationship has been established between the data, and that there may
be more than one way to satisfy the constraint.

This simple statement of relationships constitutes the declarative programming
paradigm we consider useful. Thus, the competence ("what to compute") and perfor-
mance ("how" to compute it) are separated [Steele 80]. Competence deals with
factual information (relationships) and is responsible for correctness. Performance,
on the other hand, deals with strategy (manipulation) and is responsible for efficiency.
Ideally, a program with little or no information about performance should run cor-
rectly, though inefficiently. Predicate calculus is like this. It inherently makes no
commitment to a computational technique.

It is possible to represent general constraints (e.g., that a linear spring obeys Hooke's
law) in the same message sending style as dataflow constraints. That is, constraints
may be represented as objects consisting of rules, where the rules consist of a
procedural test plus a set of methods that can be invoked to satisfy the constraint
when it is violated. Applying any of the methods causes the constraint to be satisfied.
For example, an abstract class for constraints may be defined as:

(d«fcltft constraint () ())

T h e n , to specify a multiplicative relationship between a, b, and c, such that a x b = c,a
multiplier can be defined as:

(def class Multiplier (constraint) (a b c))

with the method notify to compute the third value when any two are known:
(defmethod notify ((a multiplier))

(with-slots (a)
(oond ((or (and (known-p a) (zerop a))

(and (known-p b) (zerop b)))
(Mtp o 0 a))
((and (known-p a) (known-p b))
(Mtp o (* a b) a))
((and (known-p a) (known-p o) (invertible-p a))
(Mtp b (/ o a) a))

((and (known-p b) (known-p c) (invertible-p b))
(setp a (/ o b) a ) ) ) ) )

Constraints such as adders and multipliers are referred to as primitive constraints
and may be used to specify entire networks of algebraic constraints which compute in
any direction. Now, the force-displacement relationship described earlier may be
defined as:

(Mtf stiffness (make-instance data))
(setf displacement (make-instance data))
(setf force (make-instance data))



(make-instance multiplier
:a stiffness
:b displacement
:o foroe)

It should be noted that the above quantities may be either matrix or scalar classes,
since the "*" operator is actually a set of methods defined on each data class.

The use of constraints as described is commonly referred to as constraint satisfaction
or propagation of known states by degrees-of-freedom; constraints are satisfied by
finding a degree-of-freedom (i.e., a relationship) that can be satisfied locally, and then
propagating its new value through the network, looking for other locally satisfied
degrees-of-freedom. However, this technique doesni always work, (e.g., when there
are cycles in the graph, as in simultaneous equations) in which case other ap-
proaches, such as relaxation, multiple views, symbolic propagation, etc., must be
used [Borning 79].

Although the dataflow and general constraint models are similar in many ways,
dataflow constraints are directional, having specified input data and output data.
Constraints in general, however, are adirectional. Thus, dataflow is a special case of
constraints [Steele 80]. It turns out that the constraint model, like dataflow, is also a
good for multiprocessor computation since each constraint only computes when all
the relevant information is available. This is because constraints perform locally
defined tasks on locally available information.

3. Description of FOOBAR
FOOBAR is an experimental object-oriented finite element system that combines the
local constraint satisfaction paradigm previously discussed with knowledge-based
reasoning. All system components are represented as objects, and are organized as
in Figure 3-1, where constraint is a library of constraint types, such as multipliers and
adders; data is a lattice of abstract data types used in the system, such as forces and
displacements; and structure is a hierarchy of structural characteristics, such as
static, non-linear, etc. Each of the classes has particular methods that may be used
to manipulate class instances as needed. FOOBAR uses principles of constraint
satisfaction to enforce fundamental relationships between objects. In addition,
knowledge modules (deductive retrieval systems) are used to select the appropriate
solver, method of data representation, etc.

3.1. Encoding Fundamental Relationships
The basis of the finite element method is a set of fundamental relationships from laws
of engineering mechanics. The approach used in FOOBAR is to encode these
relationships in the most general way possible. A constraint network is used to en-
force fundamental relationships between data. The result is a high level mathemati-
cal description of the finite element method. To solve practical problems, the descrip-
tion is specialized based on the problem at hand (this is one way to use meta-
knowledge). No heuristics are needed for this since the most general relationships
are always valid. However, if some assumptions can be made about the system,
then specialization is used to simplify the relationships for efficient computations. For
example, particular methods are invoked based on having a linear material and plane
strain.

The advantages of explicitly encoding the fundamental relationships include:
• Correctness. It may be easier to demonstrate and verify program cor-

rectness.

6



constraint

.magnitude
class (: data

• collection

tima-dajx

structure <^ dimensionality

di splacement -dependence

Figure 3-1 : Organization of Classes in FOOBAR

• Modularity. Constraints can be specified as independent sources of
knowledge - it's up to the constraint satisfaction system to satisfy them.
(This is the same idea found in knowledge-based systems, namely that
the inference engine operate on independent sources of knowledge.)
Thus, the finite element researcher can add new capabilities to the sys-
tem via data types and methods to solve a specific type of problem, or
improve the performance of an existing capability by specializing
methods - either of these can be done without changing other parts of
the system. Thus, new methods can be incrementally added without
invalidating existing ones.

• Explanation facilities. Constraint satisfaction systems have the ability to
record dependencies of how information was propagated within the net-
work. This can reveal how certain data were obtained. For instance,
when a new piece of data has been computed, such as nodal displace-
ments, a user might be interested in the basis of its computation, and
ask "how was {d}f computed?" To receive meaningful replies such as:
"from the given force-displacement relationship for linear static
problems," or, perhaps, "from you, it was input as a displacement
constraint" may be helpful. Also, the structure of the constraint network
can reveal what potential histories would be even if the known states
cannot be fully propagated.

The following fundamental relationships from mechanics are defined and enforced in
FOOBAR:

• Force-displacement relations

• Stress-strain relations

• Strain-displacement relations
in addition to relationships useful in the generation of element stiffness matrices:

• One degree-of-freedom elements:
• Direct Equilibrium

• Two and three degree-of-freedom elements:



• Virtual Work

• Minimum Potential Energy

•Weighted Residuals

Elements and assembled structures, sub-structures, etc., are represented in
FOOBAR as objects with their own little pieces of private state. Each of these struc-
tural objects records information about external forces acting on it, relevant stress-
strain transformations, etc. Since elements and assembled structures share the
same characteristics, they each belong to the same class, structure. The structure
class is defined in FOOBAR as:

(defclass structure ()
Internal-fore*
•sternal-force
di splacement
stiffness
stress
stress-strain
strain
strain-displacement
nodal-mapping)

Its immediate subclasses define a set of abstract structural characteristics, which
consist of time dependence, dimensionality, and displacement dependence. These
in turn have specific subclasses, as in Figure 3-2, that are instantiated by user-
defined structural elements to provide a complete description of their characteristics.
Subclasses from each of the three abstract classes must be instantiated by any given
element (e.g., "my-element" in Figure 3-2) so that the required methods are avail-
able. The resulting graph of structural characteristics for each element thus becomes
a lattice, instead of a pure hierarchy.

As an example, suppose an element is defined to be of classes linear, static, and
2-D. The methods used to compute its stress-strain transformation matrix are then
general enough for any linear, 2-D problem. Whereas, if its dimensionality is defined
to be of class plane stress, the methods are only general enough to handle plane
stress problems. In this way, efficiency can be achieved when specifics of a problem
are known. Yet, when specifics are uncertain, a more general class of structure may
be chosen with the assurance that a correct and appropriate (albeit less efficient)
method is used to compute its properties. With this organization, users can easily
define their own types and specialize them as desired, or use any of the default
methods provided. For example, one might define my-plane-strain to be a subclass
of plane-strain. If no new methods are defined on the class, its instances will behave
exactly as instances of its super class, plane-strain. On the other hand, new
methods may be defined to compute the stress-strain relationship in an alternate way
without modifying existing code.

When an element is created, the user has the option of selecting any of the fun-
damental relations previously described to impose on the element. Therefore, if the
stress-strain relationship is not imposed, stresses cannot be computed for that par-
ticular element. When the structure is composed of other structures, the force-
displacement matrix is assembled (rather than generated) from its constituent ele-
ment stiffness matrices. If it comprises some larger structure, this too is specified so
that the element is assembled into the appropriate structure. That is, a mapping is
defined for element forces, stiffnesses, and displacements to and from their global
counterparts. The mapping, or assembly process, is a function of the connectivity

8



structure

material

Figure 3-2: Structural Characteristics Defined in FOOBAR

information between local and global nodes in the structure. This information is
provided by creating assembler constraints, which are defined as:

(de£dass assembler (constraint)
(sub-structure
super-structure))

Thus, the actual structure objects are assigned to the sub- and super-structure stots
as in:

(setq element-1 (make-instance structure))
(setq element-2 (make-instance structure))
(setq structure-1 (make-instance structure))

(make-instance assembler
:sub-structure element-1
:super-structure structure-1)

(make-instance assembler
:sub-structure element-2
:super-structure structure-1)

Although the elements above are defined individually, it is possible, of course, to
collectively define them as members of sets, arrays, or other structures.

Multipliers, assemblers, etc., may be used to specify a constraint network that
describes the finite element method at a conceptual level, independent of issues
such as control, representation, and numerical algorithms. Other constraints must
also be incorporated in this high level description. For instance, assembly may take
place only when matrices are in the same coordinate system. As in other parts of the
system, it is expected that these components can be incrementally added throughout
program development.

9



3.2. Invoking Numerical Computations
At this point, specific data structures and algorithms must be defined before computa-
tions can proceed. For instance, satisfying the constraint relating force to displace-
ment when given both stiffness and force requires that the multiplicative definition of
displacement = stiffness xforce be inverted. Based on the mathematical class of the
components, the inversion operation is determined either to be division in the case of
scalars, or solution of simultaneous equations (instead of inversion) when the data
are matrices. At some computational cost, FOOBAR incorporates a library of
representations and algorithms without being committed to any one. The most ap-
propriate method of computation (e.g., Gaussian elimination, Sidel iteration, direct
computation for a 2x2, etc.) is selected for a given situation. This information is
provided by "knowledge modules" with domain specific knowledge about solution
methods, internal representations, element stiffness generation, etc.

A simple deductive retrieval system determines the appropriate solution method and
internal representations to use. It consists of rules such as:

(if (and (available-ooze ?a)
(required-core ?r)
(eval « ?a ?r)))

(stiffness-representation banded)
"Banded solvers execute with nothing else in core, unlike
wavefront solvers, which simultaneously generate element
stiffnesses.")

(if (stiffness-representation ?s)
(solution-method ?s)
"Use a solution method consistent with the internal
representation of the stiffness matrix.")

(if (and (eval (singular-p stiffness))
(known-displacements ?d)
(known-forces ?£)
(number-of-dofs ?n)
(eval (» (+ ?d ?f) ?n))

(recovery-method (partition stiffness)))
"Try partitioning the stiffness matrix if it is singular
and the required forces and displacements are known.")

Then, before assembling the global stiffness matrix, the knowledge-base is queried to
determine its most appropriate representation:

(infer '(stiffness-representation ?x) solution-module)

Heuristics are also used to select methods to use in stiffness generation, selecting
weights when using Galerkin's method, etc. Typical rules include:

(if (eval (one-dimensional-p ?•))
(stiffness-generation-msthod ?s direct-equilibrium)
"Use the direct-equilibrium method to generate stiffnesses
for one-dimensional structures.")

(if (and (eval (not (one-dimensional-p ?•)))
(eval (elastic-p ?•)))

(stiffness-generation-method ?s minimum-potential-energy)
"Use the principle of minimum potential energy to generate
stiffnesses for elastic, 2-D or 3-D structures.")

By providing separate knowledge modules in key system components, FOOBAR can
not only select among any of various data structures and algorithms, but also main-
tain flexibility for incorporating other alternatives in the future. New heuristics may

10



also be added along with computational methods for determining when and how they
should be used.

4. Closure
The goal of FOOBAR is to incorporate advanced models of computation into a finite
element analysis system, with the expectation that the end result will be a flexible,
self-descriptive tool that is suitable for use in research environments. This paper has
described several of the techniques that we are using to bring this about. As
development of the system continues, we intend to maintain a methodology that
separates logical levels of abstraction and functionality. Additional meta-knowledge,
constraints, objects and methods, and any other needed features, may be added
easily in an incremental manner as a result of this.

11



References

[Abelson 85] Harold Abelson and Gerald Jay Sussman with Julie Sussman,
Structure and Interpretation of Computer Programs, MIT Press,
1985.

[Bobrow 85] Daniel G. Bobrow, et al., "CommonLoops: Merging Common Lisp
and Object-Oriented Programming," Proceedings, Object-Oriented
Programming Systems, Languages, and Applications, Vol. 21,
Special Issue of SIGPLAN Notices, pp. 17-29, 1985, [Also avail-
able as Xerox Palo Alto Research Center (PARC) Report
ISL-85-8.].

[Bobrow 87] Daniel G. Bobrow, et. al., Common Lisp Object System
Specification, Technical Report 87-002, Xerox Palo Alto Research
Center (PARC), Palo Alto, CA, 1987.

[Boming 79] Alan H. Borning, ThingLab - A Constraint-Oriented Simulation
Laboratory, Technical Report SSL-79-3, Xerox Palo Alto Research
Center (PARC), Palo Alto, CA, July 1979, [Also available as Stan-
ford University, Computer Science Department Report STAN-
CS-79-746.].

[Cox 84] Brad J. Cox, "Message/Object Programming: An Evolutionary
Change in Programming Technology," IEEE Software, Vol.1,
No. 1, pp. 50-61, January 1984.

[Rehak86] Daniel R. Rehak, "Artificial Intelligence Based Techniques for
Finite Element Program Development," Proceedings, Symposium
on Reliability of Methods for Engineering Analysis, Swansea, U.K.,
pp. 515-532,1986.

[Steele 80] Guy L. Steele Jr., The Definition and Implementation of a Com-
puter Programming Language based on Constraints, Technical
Report MTA-595, Artificial Intelligence Laboratory, Massachusetts
Institute of Technology, August 1980.

[Steele 84] Guy L. Steele Jr., Common Lisp: The Language, Digital Press,
1984.

[Stefik86] Mark Stefik and Daniel G. Bobrow, "Object-Oriented Program-
ming: Themes and Variations," Al Magazine, Vol.6, No.4,
pp. 40-62, Winter 1986.

12


