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ABSTRACT 

The complexity of searching for good starting points for itera­

tions is studied. Global and non-asymptotic results are obtained: 

A useful lemma for proving lower bounds is identified, several op­

timal results are given for scalar equations, and upper bounds for 

operator equations are established by a new procedure for obtaining 

starting points for Newton's method. 



1. INTRODUCTION 

Algorithms for finding a root a of a nonlinear equation 
f(x) = 0 usually consist of two phases: 

1. Search phase: Search for initial approximation(s) to 
a. 

2. Iteration phase: Perform an iteration starting from 
the initial approximation(s) obtained in the search 
phase. 

Most results in analytic computational complexity assume 
that good initial approximations are -available and deal with 
the iteration phase only. Since the complexity, i.e., the 
time, of the computation for solving f(x) = 0 is really the 
sum of the complexities of both the search and iteration 
phases, we propose to study both phases. Moreover, we observe 
that the complexities of the two phases are closely related. 
The speed of convergence of the iteration at the iteration 
phase in general depends upon the initial approximation(s) 
obtained in the search phase. If we spend much time in the 
search phase so that "good11 initial approximation(s) are ob­
tained, then we may expect to reduce the time needed in the 



iteration phase. This observation will be made precise in 
this paper. On the other hand, if we do not spend much time 
in the search phase and initial approximation(s) obtained are 
not so "good", then the complexity of the iteration phase 
could be extremely large, even if the corresponding iteration 
still converges. Some good examples of the phenomenon can be 
found in Traub and Wozniakowski [75]. All these show that 
the complexity of the iteration phase depends upon that of 
the search phase. Hence we feel that it is necessary to in­
clude both phases in the complexity analysis. Through this 
approach we can also obtain the optimal decision on when the 
search phase should be switched to the iteration phase, since 
it can be found by minimizing the total complexity of the two 
phases. 

In this paper, we shall assume that f satisfies some  
property (or conditions), and include in our analysis the  
time needed in both the search phase and iteration phase. 
Note that it is necessary to assume f satisfies some property, 
since we have to make sure at least that there exists a root 
in the region to be searched. The general question we ask in 
the paper is how fast we can solve f(x) = 0 in the worst 
case, when f satisfies certain conditions. 

In the following section we give the methodology to be 
used in the paper, which does not have the usual assumption 
that "good initial approximations are available11. Instead, 
we assume that some property of the function f is known, i.e., 
f satisfies certain conditions. A useful lemma for proving 
lower bounds on complexity, in our methodology, is also given 
in the section. 

Section 3 gives several relatively simple results for 
f: R -* R. The main purpose of the section is to illustrate 
the techniques for proving lower bounds. One of the results 
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shows that even if we know that M ^ f1 (x) ^ m > 0 on an inter­
val [a,b] and f(a)f(b) < 0, it is impossible to solve f(x) = 0 
by a superlinearly convergent method. However, if in addi­
tion |f"| is known to be bounded by a constant on [a,b], then 
the problem can be solved superlinearly. 

In Section 4 we give upper bounds on the complexity for 
solving certain operator equations f(x) = 0, where f maps from 
Banach spaces to Banach spaces (Theorem 4.3) 0 This section 
contains the main results of the paper. A procedure (Algor­
ithm 4.2) is given for finding points in the region of conver­
gence of Newton's method, for f satisfying certain natural 
conditions. The complexity of the procedure is estimated a 
priori (Theorem 4.2), and the optimal branching condition on 
when the search phase is switched to the iteration phase is 
also given. We believe that the idea of the procedure can be 
applied to other iterative methods for f satisfying various 
conditions. By a preliminary version (Algorithm 4.1) of the 
procedure, we also establish an existence theorem (Theorem 
4.1) in Section 4. 

Summary and conclusions of the paper are given in the 
last section. 

2. METHODOLOGY AND A USEFUL LEMMA FOR PROVING LOWER BOUNDS 

Let cp be an algorithm for finding a root a of f(x) = 0 
and x the approximation to a computed by cp. Denote the error 
of the approximation x by 

6(cp,f) = |(x-cy||, 

where ||« || is a suitable norm. Consider the problem of solv­ 
ing f(x) = 0 where the function (or operator) f satisfip.s. snmp.  
property (or some conditions). Since algorithms based on the 



property cannot distinguish individual functions in the class 
F of all functions satisfying the property, we really deal 
with the class F instead of individual functions in F. De­
fine 

A « inf sup 6(co,f), 
cpei. f€F 

where 0^ is the class of all algorithms using i units of 
time. Then the time t needed to approximate a root to within 
e > 0 is the smallest i such that A ^ ̂  e, and an algorithm 
cp £ 0 is said to be optimal for approximating a root to  
within e > 0 if 

sup 6(cp,f) = A . 
f€P 

Hence the complexity of the problem is determined by the se-
quence 1A^}. We say the problem is solvable if { A ^ } converg­
es to zero, otherwise it is unsolvable. We are interested in 
solvable problems. For understanding the asymptotic behavior 
of the sequence { A ^ } , we study the order of convergence of 
{ A . ^ } , which is defined to be 

p « lim(|log A . I ) 1 / 1 , 

provided the limit exists. If jlog A | increases exponenti­
ally as i -+ co , i.e., p > 1 , we say the problem can be solved 
superlinearly. Our goal is to establish upper and lower 
bounds on h for given problems. 

Upper bounds on A^^ are established by algorithms. The 
following lemma is useful for proving lower bounds on A ^ . The 
idea of the lemma has been used by many people, including 



Brent, Wolfe and Winograd [73], Winograd [75], Wozniakowski 
[74], etc. under various settings. It is perhaps the most 
powerful idea so far for establishing lower bounds in analytic 
computational complexity. 

Lemma 2.1. If for any algorithm using i units to time, there 
exist functions f , f 9 in F such that 

(2.1) the algorithm cannot distinguish f- and f , and 

(2.2) the minimum distance between any zero of f̂  and any 

zero of f 2 is ^ 2 e, 

then 

Proof. Consider any algorithm using i units of time. Suppose 
that f 1, f 2 satisfy (2.1) and (2.2). Let , a, be the zeros 
of f.J, respectively. By (2.1), the algorithm computes the 
same approximate x for f̂  and f^. By (2.2) 

Ix-aJ + I x - q ^ I ^ | C^-o^ | ̂  2e. 

Hence either | x-a^ | ̂  € or jx-o^l ^ e. • 

3. SOME RESULTS ON REAL VALUED FUNCTIONS OF ONE VARIABLE 

In this section we shall give several relatively easy 
results to illustrate the concepts given in the preceding 
section, and the use of Lemma 2.1. We consider f: [a,b]cR-*R. 
For simplicity we assume that each function or derivative 
evaluation takes one unit of time and the time needed for 
other operations can be ignored. 
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Theorem 3 . 1 . If f: [a,b~\ -* R satisfies the following proper­ 
ties: 

( 3 . 1 ) f is continuous on fa,t>], and 

(3.2) f(a) <. 0. f(b) > 0. 

then A = (b-a)/2 i + 1. 

Proof. It is clear that by binary search we have that 
L4 * (b-a)/21'r Let cp be any algorithm using i evaluations. 
Algorithm 3 . 1 below constructs f^, such that (2.T) and 
(2.2) hold for t = [(b-a)/2 1 + 1] - 6, and ( 3 . 1 ) , (3.2) hold 
for f - f 1 or f = f 2, where 0 < 6 < [(b-a)/2 ]. We first 
define 

u(x) = 1 , 

v(x) = - 1 

for x £ [a,b], and assume the first evaluation is at Xg. 

Algorithm 3 . 1 . 

1 . Set SL «- a, r *- b, m «- x Q, c(x) = u(x) for x € (a,b] and 
c(a) « v(a) . 

2. If m £ [A,r], go to step 4. 

3. If m - J J ̂  r-m, set r «- m. Otherwise, define c(x) = v (x) 
for x € and set SL «- m. 

4. Apply algorithm cp to function c(x) and compute the next 
approxima t ion. 

5. If algorithm cp has not terminated, set m to be the point 
where the next evaluation takes place and go to step 2. 



6 . Define f , f by f (x) = f - f \ * 
V 2 J r,u; f 2(x) - c(x) for x e [a,£] U [r,b], 

f 2(x) 

u(x) for x 6 [ ¿4-6,r) , 

^[u(jtf6) - v U ) ] 4- V ( J 0 for x 6 (¿,¿+6), 
and 

i 
v(x) for x €(ji,r-6], 

^ [ u C r ) - v(r-8)] + u(r) for x e (r-6,r). 

It is straightforward to check that r~j£ £ (b-a)/^* and 
that the distance between any zero of and any zero of f 2is ^ 
r-A - 26- Hence (2.2) is satisfied for e = [(b-a)/2 1 - h 1 ] - 6. 
It is also easy to see that (2.1), (3.1) and (3.2) hold for 
f^, Hence by Lemma 2.1, we have A i £ [(b-a)/2*+^] - 6. 
Since 6 can he chosen arbitrarily small, we have shown 
A. ^ (b-a)/2 i _ H. • 

Theorem 3.1 establishes that binary search is optimal 
for finding a zero of f satisfying (3.1) and (3.2). The re­
sult is well-known. The theorem is included here because its 
proof is instructive. By slightly modifying the proof of 
Theorem 3.1, we obtain the following result: 

Theorem 3.2. If f: [a,b] ~> R satisfies the following proper­ 
ties : 

(3.3) f f(x) ^ m > 0 for all x g fa,b1, and  
f(a) < 0, f(b) > 0. 

then A = (b-a)/2 i + 1. 

Proof. The proof is the same as that of Theorem 3.1, except 
that the functions u, v are now defined as 



u(x) = m(x-a), 
v(x) = m(x-b), 

and the functions f^, f^ have to be smoothed so that they 

satisfy (3.3). • 

One can similarly prove the following two theorems. 

Theorem 3.3. If f: [a,b1 -» R satisfies the following proper­ 

ties: 

f'(x) £ M for all x g ra.bl, and  
f(a) < Q % f(b) > 0, 

then A = (b-a)/2 i + 1. 

By Theorems 3.2 and 3.3, we know that even if f f is 
bounded above or bounded below, we still cannot do better 
than binary search in the worst case sense. 

Theorem 3.4. If f: [a,b] -> R satisfies the following proper­ 

ties: 

M £ f 1(x) £ m > 0 for all x g [a.b], and  
f(a) < 0, f(b) > 0 

then A. * (b-a)[(l3) 2/2 3 i 4 U ' 

Under the conditions of Theorem 3.4, Micchelli and 

Miranker [75] showed that 
i 

A t * £<b-a)(1-g) 2 . 

Hence their algorithm is better than binary search when 
j-j ̂  However, by Theorem 3.4, we know that the problem 
cannot be solved superlinearly, even when f 1 is known to be 



bounded above and below by some constants. In order to as­
sure that the problem can be solved superlinearly we have to 
make further assumptions on the function f. A natural way is 
to assume that |f n| is bounded. This leads to the following 

Theorem 3.5. If the conditions of Theorem 3.4 are satisfied  
and If") <, K on fa.b]. then the problem of finding a root of  
f(y) = 0 can be solved superlinearly. 

Proof. We can use binary search to find a point which 
satisfies the conditions of the Newton-Kantorovich Theorem 
(see the next section for the statement of the theorem). It 
is easy to see that only a finitely many steps of binary 
search are needed to find x^. Starting from x^ the Newton 
iterates converge to a root superlinearly. • 

It should be noted that the binary search used in the 
above proof would not make sense for operators mapping from 
Banach spaces to Banach spaces. In the following section we 
propose a general technique for obtaining starting points for 
the solution of operator equations. 

4. A PROCEDURE TO OBTAIN GOOD STARTING POINTS FOR NEWTON1S 
METHOD 

In this section we consider f: D c B 2 * w ^ e r e B-| a n c* 
B£ are Banach spaces and assume that f is Frechet differenti-
able. We shall give a procedure to obtain a point x^ such 
that Newton's method starting from x^ will converge to a root 
a of f(x) = 0, provided that f satisfies some natural condi­
tions. The use of Newton's method is only illustrative. The 
principle of the procedure can be applied to other iterative 
methods. 



Let S (xrt) denote a ball in D with center x A and radius 
r 0 0 

r. Sufficient conditions for the quadratic convergence of 
Newton's method, starting from x^, are given by the famous 
Newton-Kantorovich Theorem (see, e.g., Ortega and Rheinboldt 
[70, Section 1 2 . 6 . 2 ] ) , which essentially states the following: 

If 
( 4 . 1 ) [ f ' ^ ) ] " 1 exists, ||Cf' <x Q) 1 | <;p Q, 

( 4 . 2 ) ||[f'(x())]-1f(x0)|| £ 5 0 , 

( 4 . 3 ) ||f,(x).f(y)|| £K||x-y||, x,y € S r(x Q) 

and if 

( 4 . 4 ) h 0 s P 0 K ? 0 < I f 

( 4 . 5 ) 2lQ z r 

then Newton's method, starting from Xg,will generate iterates 
converging quadratically to a root a of f(x) = 0 and 

( 4 . 6 ) ||x0-a|| ̂  2 § ( ) . 

For convenience, we say x^ is a good starting point for 
approximating a by Newton's method or a good starting point 
for short, if conditions ( 4 . 1 ) ~ ( 4 . 5 ) are satsified. Note 
that the existence of a good starting point implies the exis­
tence of a zero of f in s ^ ( x Q ) , q = 2 § Q . The conditions for 
a point to be a good starting point are quite restrictive for 
certain applications. We are interested in designing algor­
ithms for finding good starting points under relaxed condi­
tions. We shall first prove the following existence theorem 
by combining the ideas of the Newton-Kantorovich Theorem and 
the continuation method (see, e.g. Ortega and Rheinboldt [70, 
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Section 7.5]). The algorithm (Algorithm 4.1) used in the 
proof is then developed to be a procedure (Algorithm 4.2) to 
obtain good starting points, for f satisfying some natural 
conditions• 

Theorem 4.1. If f 1 satisfies a Lipschitz condition on  
S 2 r ( x 0 ) C D> 

l|f<y II * y 
UCfCx)]" 1!! £ gfor all x e S r ( x 0 ) , and 

(4.7) $ \ < r/2, 

then there exists a root of f(x) = 0 in S r ( x Q ) . 

Proof, We assume that 

||f. (x)-f,(y)|| ̂ K||x-y||, x, y € S 2 r ( x Q ) . 
The proof is based on'the following algorithm. 

Algorithm 4.1. 

The algorithm takes f satisfying the conditions of Theo­
rem 4.1 as input and produces a good starting point for ap­
proximating a root ot of f (x) = 0. 

2 
1. Set h Q p KT10 and i «- 0. 

1 
Pick any number 6 in (O,^). '2' 

1 
2. If h± < j , x^ is a good starting point for approximating 

a and Algorithm 4.1 terminates. 

3. Set X. <- 07-6)/h., and 
l 2 i* 

(4.8) f ±(x) - [f(x)-f(x.)] + \ if(x i). 
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4. (It will be shown later that x i is a good starting point 
for approximating a zero, denoted by x^ + 1, of f^.) Apply 
Newton1 s method to f̂ ,, starting from x ^ to find . 

5. (Assume that the exact x ^ is found.) Set T| i + 1«-|| f( x
i + 1 )|| 

and h 1 + 1 - B 2 K 1 1 1 + r 

6. Set i *- i+1 and return to step 2. 

In the following we prove the correctness of the algor­
ithm. First we note that X € (0,1) and by (4.8) 

(4.9) Tl i + 1 - ( 1 - X ^ . 

We shall prove by induction that 

(4.10) l l x . - x . ^ H £ 2t3X 1 - 1H 1 - 1, and 

(4.11) ||xrx0|| * r . 

They trivially hold for i = 0. 

Suppose that (4.10) and (4.11) hold and h £ ^. By 
(4.8), 

(4.12) p2K||f1(x1) || * p 2KX 1T) 1 - X 1 h 1 = ~-6, 

and by (4.9), 

2p||f±<XjL> || <; 2pX 1H i < 2 ^ £ 2f3T]0 < r. 

Further, by (4.11), we have S (x.) c S. (x n). Hence x. is a 
r 1 ZT U 1 

good starting point for approximating the zero x ^ of f^. 
From (4.6), we know 
(4.13) ||x i + rx.|| ̂  2PX.T].. 
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Hence (4.10) holds with i replaced by i+1. By (4.13), (4.9) 
and (4.7), we have 

( 4 . 1 4 ) | | X I + 1 - X 0 | | S H X . ^ - X . H + H X . - X . _ - J I + . . . + | | X R X 0 | | 

* 2 U \ \ + X

I _ I \ _ 1 + . . . + V V 

^2 P((1 - X._ 1)T1 i_ 1 + X i . 1 \ _ 1

 + + W 

- 2 P < V l + \ - 2 \ - 2 + + W 
£ ... 
* 2pTlQ < r, 

i.e., ( 4 . 1 1 ) holds with i replaced by i+1. 

We now assume that ( 4 . 1 0 ) and ( 4 . 1 1 ) hold and h^ < J . 

By ( 4 . 7 ) and ( 4 . 9 ) , 2p||f (x ) || » 2 0 1 ^ < 2$T\Q < r. Further by 
( 4 . 1 1 ) , S R ( X I ) c S 2 R ( X Q ) . Hence is a good starting point 
for approximating a. 

It remains to show that the loop starting from step 2 is 

finite. Suppose that h Q £ j . Since X . g ( 0 , 1 ) for all i, we 
i have 

2-* T 6
 7 - 6 

X «= = - 5 > - 5 = X , for all i. 
1 1 - 1 1 - 1 1 - 1 

Hence B Y ( 4 . 9 ) » ( 1 - X . ) T 1 i < 0 - V \ 

< ... 

< D - x 0 ) i + % 0 . 

1 2 * 1 
This implies that h i < j when 0 K O - X Q ) 1 ! ^ 2* i , e * > w h e n 

( 4 . 1 5 ) ( l - x / ^ . 

http://Hx.-x._-JI
file:///-2/-2
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Since 1-\ < 1, (4.15) is satisfied for large i. Therefore 
1 

when i is large enough, h i < j a n d hence Algorithm 4.1 termi­
nates. The proof of Theorem 4.1 is complete. • 

Note that Theorem 4.1 is trivial for the scalar case (Le., 
when f: R -> R ) , since the mean value theorem can be used 
there. The problem becomes nontrivial for nonscalar cases. 
The main reason for including Theorem 4.1 here is to introduce 
Algorithm 4.1, which works for Banach spaces. It should be 
noted that some assumptions (e.g., (4.7)) of the theorem could 
be weakened by complicating the algorithm used in the proof. 
Theorem 4.1 is similar to a result of Avila [70, Theorem 4.3], 
where, instead of the assumption (4.7) used here, a more com­
plicated assumption involving {3, k, 1\Q was used. Also the 
idea of his algorithm is basically different from that of 
Algorithm 4.1. 

An upper bound N(hg,6) on the number of times the loop 
starting from step 2 is executed in Algorithm 4.1 can be ob­
tained from (4.15). Since \ Q = (^"b)/hQ9 (4.15) is equiva­
lent to 

( 4 . 1 6 ) ( 1 - L - j i . j l - . 

from which N(h Q,6) can be calculated. Asymptotically, we have 

2h In h 
(4.17) N(h 0,6) ?I26 ' a s h 0 -

From (4.16) and (4.17) it appears that we should use small 6 
in the algorithm. However, small 6 tends to slow down the 
convergence of the Newton iterates in step 4 of the algorithm 
(see (4*18), (4.19)), The problem of how to choose a suitable 
ft will be further discussed after Algorithm 4.2. 
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In Algorithm 4.1, we assume that the exact zero of 
f. can be found by Newton1s method. This is clearly not the 
case in practice. Fortunately, this problem can be solved by 
modifying Algorithm 4.1. The modified algorithm, Algorithm 
4.2, appears in the proof of the following theorem. In the 
theorem and the rest of the paper, a Newton step means the 
computation of x - [ff(x)] ^ ( x ) , given x, f and f 1. Hence a 
Newton step involves one evaluation of f, one of f 1 at x and 
the computation of x - [f'(x)]~ f(x) from x, f (x), f f(x). 

Theorem 4.2. Suppose that the conditions of Theorem 4.1 are 
satisfied and 

H f (x)-f'(y)|| £ K|lx-yl|, x,y € S 2 r ( x Q ) . 

Then a good starting point for approximating the root of  
f(x) = 0 by Newton1s method can be obtained in N(6) Newton 
steps, where 6 is any number in (0,̂ -) and N(6) is defined as 
follows. If h Q = &K1\ <> ̂ -6 then N(6) = 0 else N( 6) = I( 6) J(6), 
where 1(6) is the smallest integer i such that 

2 6 i 1 1 
"o z n o 

and J(6) is the smallest integer j such that  

1 j 
(4.18) 2 j - \ l - 2 6 ) 2 _1(m+pTl0) £ r - 2 ^ , 

(4.19) ^ j C l - 2 6 ) 2 J " 1 (nri-pn0> £ m , 

with m = mln(|-gTl0>y|^). 

Proof. The proof is based on the following algorithm, which 
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is adapted from Algorithm 4.1. 

Algorithm 4.2. 

The algorithm takes f satisfying the conditions of Theo­
rem 4.2 as input and produces a good starting point for ap­
proximating a root a of f(x) = 0. 

2 
1. Set h Q «- P K110, x Q «- x Q and i - 0. 

Pick any number 6 in (0,—). 
2. If h^ ^ J - 6 , x^ is a good starting point for approximat­

ing a and Algorithm 4.2 terminates. 

3. Set X j L «- (j-6)/hjL, 

f j L(x) - [f(x)-T1 if(x 0)/Tl 0] + \ \ f ^ Q ) / \ 9
 and 

(4.20) T1.+1 - O - X ^ . . 

4. Apply Newton's method to f^, starting from x^, to find an 
approximation x j to a zero x^ +^ of f^ such that 

(4.21) ||x i + 1-x i + 1|| £ r - 2 3 T 1 0 , and 

(4.22) ||[f!(x i + 1)]"\(x i + 1)|| ^min(f-PTl i + 1, ̂  ) 

5 . Set h 1 + 1 <- P 2KT1. + 1 . 

6. Set i «- i+1 and return to step 2. 

Note that the h±, \ ± 9 T^, f ± 9 x± in Algorithm 4.2 are the 
same tu, X^, 1^, f^9 x^ in Algorithm 4.1. Note also that by 
(4.21) and (4.14) we have 

(4.23) |£.-x0|| £ Hx.-xJI + llx^xjl 



£ (r - 2pTlQ) + 2 0 1 ^ = r, Vi. 

It is clear that if h Q < j - J' X 0 i s a & o o d starting 
point for approximating a. Now suppose h^ > — - ~. Since 
X Q = X Q , in the proof of Theorem 4.1 we have shown that x^ is 
a good starting point for approximating x^, a zero of f^. Let 
Zj denote the jth Newton iterate starting from x^ for approx­
imating X j . Since 

P2K||f0(x0)|| = P ^ T l g = J-*, 

it is known (see e.g. Rail [71, Section 22]) that 

Ikj-Xjll ^4_ T(l-26) 2 J- 1||[f ,(x 0)]" 1f(x ( ))|| and 

||[fj(zj)]-1f0(z.)|| ^ ^ 0 - 2 ^ ^ 1 1 ^ ' ( X Q ) ] " 1 ^ ! ! . 

Hence we may let x^ be for j large enough, say, j=j(6), 
then 

l^-xjl <: r - 2pTl0, and 

l l E f ; ^ ) ] " 1 ^ ^ ) ! -sminCf - p ^ , ^ ) , 

i.e., (4.21) and (4.22) hold for i = 0. 
Suppose that (4.21) and (4.22) hold. Then 

(4.24) L L C F ' U ^ ) ] - 1 ^ . ^ ) ! ! 
* i < * i + 1 ) r V w l l + l l t f i ^ i + i ) r 1 [ f ( ; i + i > - f i < - i + i ) 3 l l . 
*min(f - ^ ) + and 

(4.25) l|[f: + 1(x i + 1)] _ 1f i + 1(x i + 1)|| 
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S I I C f , < * I + , ) ] " 1 [ f ( x 1 + 1 ) - \ + 1 f ( x 0 ) / T 1 0 ] i | 
+ l l [ f , ( W ] % i W < V / V l l 
* I I C f i < V 1 ) ] ' 1 f 1 ( x 1 + 1 ) | | + x 1 + l P l i l + 1 . 

Suppose that h,^ < j - 6. We want to prove that x ^ is a 
good starting point for approximating a. By (4.24), 

pK||[f<x i + 1)]- 1f<x i + 1)|| 

^ K ' 2 ^ + h i + l < 2 + l - 6 = 2"- 2 ' 

Let a = ||f (x^)]"^^^)!!. If x € ^ a ^ i + l ^ t h e n 

(4.26) ||x-x0|| * | | x - x 1 + 1 l l + I I V r x
0 l l 

£ 2a + r 

^ 2 ( | - p-n i + 1 + PH. + 1) + r = 2r, 

i.e., x € S„ (x n). Hence x... is a good starting point for 2r U 1+1 1 
approximating a. We now assume that > J " a n (* w a n t 

to prove that x^ +^ is a good starting point for approximating 
x i + 2 , a zero of f. + 1. 

We have by (4.25) and (4.22), 

^ I I C n + 1 < * 1 + 1 ) ] " ' ^ i + 1 <*!+!> II 
4 + x . + 1 p 2 K V l 

2 + 2 6 2 2 * 
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Let b - ||[f_ + 1<x 1 + 1)]" 1f i + 1(x 1 + 1)||. " * € S 2 b ( x i + 1 ) , as in 
(4.26) we can prove that x £ S2r^ x0^ # H e n c e x

i +«| i s a 8 o o d 

starting point for approximating x
i + 2

# B y t h e s a m e a r 8 u m e n t 

as used for obtaining x^ and by (4.25), one can prove that 
if x^ +2 ^ s s e t t o ^ e t* i e J(6)-th Newton iterate starting from 
x. , - , then l+l 

H*l+2 - Xi+l " * R " 2 F * V 3 N D 

I I C f i + l ^ i + 2 ) l " l f i + l ( ; i + 2 > l l * m i n (! " P \ + 2 > 2PK>» 

i.e. (4.21) and (4.22) hold with i replaced by i+1• This 
shows that we need to perform at most J(6) Newton steps at 
step 4 of Algorithm 4.2 to obtain each x£+«j • Furthermore, 
from an inequality similar to (4.16) it is easy to see that 
the loop starting from step 2 of Algorithm 4.2 is executed at 
most 1(6) times. Therefore, for any 6 € (0,j), to obtain a 
good starting point'we need to perform at most N(6) = I(6) • J(6) 
Newton steps. The proof of Theorem 4.2 is complete. • 

We have shown that Algorithm 4,2 with parameter 6 € (0^) 
finds a starting point for Newton's method, with respect to 
f satisfying the conditions of Theorem 4.2, in N(6) Newton 
steps. One should note that 6 should not be chosen to mini­
mize the complexity of Algorithm 4.2. Instead, 6 should be 
chosen to minimize the complexity of the corresponding algor­
ithm for finding root a of the equation f(x) = 0, which is 
defined as follows: 

1. Search phase: Perform Algorithm 4.2. 
2. Iteration phase: Perform Newton's method starting 

from the point obtained by Algorithm 4.2. 
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Note that the choice of 6 determines the terminating condi­
tion of Algorithm 4.2 and hence determines when the search 
phase is switched to the iteration phase. Therefore the op­
timal time to switch can be obtained by choosing 6 to minimize 
the sum of the complexities of the two phases. 

An upper bound on the complexity of the search phase is 
the time needed for performing N(6) Newton steps. Suppose 
that we went to approximate a to within e, for a given c > 0. 
It can be shown that an upper bound on the complexity of the 
iteration phase is the time needed for performing T(6,e) 
Newton steps, where T(6,€) is the smallest integer k such that 

(4.27) ^ — ( l ^ S ) ^ " 1 ^ ^ ) * €, 

(see (4.18)). Therefore, we have proved the following result. 

Theorem 4.3. If f satisfies the conditions of Theorem 4.2, 
then the time needed to locate a root of f(x) within a ball of 
radius g is bounded above by the time needed to perform R(g) 
Newton steps, where R(c) = min,(N(6)+T(6,e)), N(6) is defined 

0<&<2 

in Theorem 4.2 and T(6,e) is defined by (4.27). 

For large h^, we know from (4.17) that R(e) grows like 
0(hp In hp) as hp -> °°. For fixed h^, we can calculate the 
values of R($) numerically. We have computed the values of 
R(e) for f satisfying the conditions of Theorem 4.3 with 

1. e n o * H » 
2. 1 £ h Q = ^KT1 0 * 10, 

and for e equal to 10 - 1 -r, 1 £ i £ 10. Table 1 reports the re­
sults for e equal to 10 r. 



h o 6 o K 6 0 ) J(6 0) N(6 Q) T(6 Q,e) R(e) 
1 .165 3 2 6 5 11 
2 .103 8 3 24 6 30 
3 .118 16 3 48 6 54 
4 .129 25 3 75 6 81 
5 .137 35 3 105 6 111 
6 .144 47 3 141 5 146 
7 .149 59 3 177 5 182 
8 .154 72 3 216 5 221 
9 .159 85 3 255 5 260 
10 .163 99 3 297 5 302 

TABLE 1 

In the table, 6g is the 6 in which minimizes 
N(6) + T(6,e), i.e., R(e) = T(6 Q) + T(6 Q,€). Suppose, for 
example, that h Q = 9 or h Q ^ 9. Then by Algorithm 4.2 with 
6 = .159 and by (4.27), we know that the search phase can be 
done in 255 Newton steps and the iteration phase in 5 Newton 
steps. Hence a root can be located within a ball of radius 
10 ^r by 260 Newton steps. 

5. SUMMARY AND CONCLUSIONS 

The search and iteration phases should be studied togeth­
er. A methodology for studying the worst case complexity of 
the two phases is proposed. Results based on the methodology 
are global and non-asymptotic (see Theorems 4.2 and 4.3), 
while the usual results in analytic computational complexity 
are local and asymptotic. Optimal time for switching from 
the search phase to the iteration phase can also be determined 
from the methodology. A useful lemma for proving lower bounds 
on complexity is identified. Several optimality results are 



obtained for scalar functions. 
The main results of the paper deal with the complexity 

of solving certain nonlinear operator equations f(x) = 0. 
Upper bounds are established by a new procedure for obtain­
ing starting points for Newton's method. The procedure finds 
points where the conditions of the Newton-Kantorovich Theorem 
are satisfied. It is believed that the principle of the 
procedure can be used for other iterative schemes, where 
Newton-Kantorovich-like theorems are available, for f satis­
fying various kinds of conditions. It is not known, however, 
at this moment whether or not the number of Newton steps used 
by the procedure is close to the minimum. The problem of 
establishing lower bounds on the complexity for solving 
f(x) = 0 with f satisfying the conditions such as that of 
Theorem 4.3 deserves further research. The lemma mentioned 
above may be useful for the problem. 

We end the paper by proposing an open question: Suppose 
that the conditions of the Newton-Kantorovich Theorem hold. 
Is Newton's method optimal or close to*optimal, in terms of 
the numbers of function and derivative evolutions required 
to approximate the root to within a given tolerance? 
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