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Abstract 

The problem of robot manipulation-of planning how to successfully grasp, push, and pull arbitrary objects 
to reconfigure them as desired-is an unsolved problem in robotics. We are presently developing a 
hand-eye system which is intended to begin with simple knowledge about how to manipulate its world, 
and to itself acquire increasingly refined knowledge about manipulation in specialized contexts. For 
example, the robot may begin with knowledge such as "to move an object somewhere to the right, push 
from some point on the left", and may refine the knowledge through experience into more specific, more 
precise assertions such as "to move an object which is in contact with a wall to the right in a straight line, 
push from a point on the left which is 2/3 of the distance from the wall" The learning method is a type of 
explanation-based generalization driven by an incomplete theory of the domain-in particular by a theory 
for qualitative differential analysis. This paper presents an approach to constructing a planning/learning 
system of this kind, and is primarily organized around a hand-generated example of the type of behavior 
our system is intended to exhibit. 

This research has been supported by NASA Ames under grant NCC 2-463, and in part by NSF under 
grant IRI-8740522. 
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1. Introduction 

The long term goal of the work reported here is to develop robots capable of planning and 
acting in worlds about which they have only an incomplete theory, and capable of automatically 
refining their theory of the world as a result of such attempts. As a problem in machine learning, 
this research can be viewed as a case study in automated theory refinement. As a problem in 
robotics, the motivation for such research is straightforward: Current robotic systems are 
successful only in very carefully engineered environments in which it is feasible for the robot to 
know precisely the current state of its world, and in which the robot can predict accurately the 
results of each action that it might choose to perform. We seek more robust systems, which will 
be able to operate in less carefully engineered domains. Imagine, for example, asking a robot to 
Mgo look under that rock to see what is under it". In such a task, the robot cannot know the 
precise state of the world in advance (e.g., what is the size and shape of the portion of the rock 
which is underground?). Neither will it know with precision the consequences of actions it 
might perform (e.g., if it attempts to push the rock, will it budge?). 

Our approach to extending the robustness of robotic systems is to allow the robot to plan 
relative to its approximate theory of its world and to monitor the execution of its plans. Should 
the robot observe that its plan is not unfolding as intended, it will seek to construct a plausible 
explanation of the possible causes of this deviation. This explanation serves as the basis for 
devising an error recovery strategy. It also serves as the basis for explanation-based 
generalization of the empirical observation, which allows refining the initial incomplete world 
theory. 

The following sections describe in greater detail the approaches to planning with incomplete 
theories, plan execution monitoring, explanation-based error recovery, and automatic theory 
refinement. These ideas are being explored in the context of a simple hand-eye system which is 
described in the following section. The subsequent section describes the approach and illustrates 
it with a detailed, manually generated example trace. The final section summarizes the major 
aspects of our approach, as well as some issues raised by our initial explorations. 
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2. The Hand-Eye Testbed 

Figure 2-1: Hand-Eye Testbed 

Our research on learning robots is being conducted within a robot testbed based on a Puma 560 

manipulator arm and IRI D256 vision system, as shown in figure 2-1. Both the arm and the 

vision system are controlled by special purpose processors that communicate with a Sun 

workstation running Common LISP. Common LISP functions have been developed for 

requesting particular arm movements, and for querying the vision system regarding the current 

state of the robot's world. 

The problem of general manipulation is a major unsolved problem in robotics, and the task of 
planning, executing, monitoring, and acquiring robot manipulation strategies is a rich area for 
study (see, e.g., [2], [8], [4], [5], [6], [1]). The difficulty of robot manipulation stems from both 
the lack of observability of the world and the complexity of the computations involved. 
Consider, for example, the difficulty of predicting something as simple as the exact trajectory of 
a block lying on the table, when it is pushed by a finger from a particular point in a particular 
direction. The task would be burdensome but possible if one knew the exact force applied by the 
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finger, the coefficients of friction between the finger and block and between the block and table, 
the precise points of contact between the block and table, the distribution of mass within the 
block, etc. In fact, many of these features are unobservable in general, so the task is inherendy 
rife with uncertainty. For these reasons, we find robot manipulation an interesting domain for 
studying problems of planning, error recovery, and learning, under the assumption that the agent 
possesses only an incomplete theory of its domain. 

In order to avoid difficult issues of automated perception, we have chosen a very simple world 
for the robot. It manipulates flat objects lying on a table, by pushing these objects. The objects 
may collide as they are pushed, but are never picked up off the table. This essentially restricts 
the robot to operating in a two-dimensional world, and allows us to use simple vision algorithms 
to obtain reliable feedback regarding the positions, orientations, and identities of each object on 
the table with a delay of approximately 5 seconds. The present testbed provides a 2D world with 
friction (among the objects and the table), but no gravity (the objects remain in position unless 
pushed). We intend to alter these parameters as the project progresses, adding gravity to the 2D 
world by tilting the table so that objects slide to the bottom, and removing friction by utilizing a 
table full of holes connected to an air pump so that the objects float on a cushion of air above the 
table. Thus, we will be able to study a variety of worlds with and without friction or gravity, and 
study tasks such as constructing two-dimensional structures including arches, towers, and the 
like. 

3. Approach 

This section discusses the interrelated problems of planning, execution monitoring, error 
recovery, and theory refinement. Here the primary activity of the robot agent is to plan and 
execute actions to achieve its goals. Learning occurs in the event that planned actions fail to 
achieve the desired goal when they are executed. In this case, the agent attempts to explain to 
itself the plausible cause of the failure (in terms of a predefined theory for qualitative analysis of 
observed motions). This explanation is then used both for suggesting error recovery strategies 
and for generalizing from the observed failure to provide a more refined model of the offending 
action. A key assumption of the approach is that it is feasible to provide the agent a strong 
enough theory of its world that it can construct plausible explanations of observed failures, even 
though this theory may not be strong enough to predict and plan how to avoid such failures ab 
initio. 
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Figure 3-1: Problem and Plan to Achieve IN-CORNER(SQl) 
The Problem: 

Where: 
coordinate frame origin: x=0, y=0 is initial position of top left corner of SQ1 
position of SQ1 described by <x,y,theta>, where 

x = x coordinate of top left corner of SQ1 
y = y coordinate of top left corner of SQ1 
theta = orientation relative to initial orientation of SQ1 

fx = x coordinate of tip of finger 
fy = y coordinate of tip of finger 
t̂heta = orientation of finger (independent of finger velocity) 

fv = the vector velocity of the finger tip (independent of f^eta) 
SQ*x-initial= x coordinate of initial position of SQ1 

Initial Knowledge: 

To move ?object somewhere to the right 
Push(?object,?fx,?fy,?f theta,?fv) with ?fx=x coordinate of left edge of ?object 

Initial State: 
AT(SQ1, <0,0,0>) 

Goal: (target world state) 
AT(SQ1, <200,0,0>) (i.e., IN-CORNER(SQl)) 

Actions: (sequence of planned actions) 
Push(SQl, 0, -30, 60, <10,0>) 

Expectation: (predicted trajectory of world states) 
AT(SQ1, <x,y,theta>), where x > SQl x _ i n i t i a l , y<0,0<theta<360 

Intention: (target trajectory of world states) 
AT(SQ1, <x,0,0>), where x=fx 

The discussion in this section presents the approach that we are presently implementing and 
illustrates it in terms of a manually derived trace based on the simple planning problem shown in 
figure 3-1. Here the robot has the goal of moving square SQ1 into the comer, and begins with 
the following incomplete knowledge about the Push operation: 

The Plan: 
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To move an object somewhere to the right 
Push from somewhere on the left 

The following subsections discuss how this knowledge can be used to produce a plausible plan 
for achieving the robot's goal, and how the observed failure of the plan can lead to refining this 
initial knowledge to the following more specialized and more precise assertion: 

To translate square SQ1 straight to the right along WALL2 
Push from the left with y coordinate of fingertip atfy<-55 

3.1. Planning 

Planning is the task of generating a sequence of operations, or actions, whose expected 
outcome achieves the desired goal. The competence of a planner in performing this task is 
primarily determined by the correctness of its internal models of its actions; that is, its 
assumptions about each action's preconditions and postconditions. If the planner's action 
models are insufficiently precise, will be unable to produce a plan guaranteed to achieve the 
desired goal. The learning task we are considering here is the task of improving the precision 
and correctness of such action models. 

More precisely, we view actions as mappings over states of the agent's world. An action 
model is generally a one-to-many mapping (e.g., the above model of the Push operation maps an 
initial world state into any of a set of possible outcome states). Following [5], we define a strong 
plan as a sequence of actions that maps the initial world state into a set of possible outcome 
states each of which satisfies the goal. Similarly, we define a weak plan as a sequence of actions 
that maps the initial world state into a set of outcome states at least one of which satisfies the 
goal. 

While a detailed discussion of strategies for planning is beyond the scope of this paper, we 
intend for the agent to produce a strong plan when possible, and to produce a weak plan when 
strong plans are not possible. Reference [5] describes in greater detail strategies for producing 
such plans. 

In the present example, a strong plan is not possible, since the agent's model of the Push action 
is insufficiently precise. Thus, the best that can be achieved is a weak plan, such as the plan 
shown in figure 3-1. This plan is intended to achieve the goal IN-CORNER(SQl), but based on 
the agent's model of Push it can only be guaranteed to move SQ1 somewhere to the right. The 
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plan is described in terms of the following features: 
• Goal: the class of desired world states. 

• Actions: a sequence of actions to be executed in order to achieve the goal. 
• Expectation: the class of possible resulting world states, based on the agent's action 

models. 

• Intention: the class of world states that are the intended effect of executing the 
planned actions. Note in the example plan the intentions are expressed as a function 
of the finger position, fx, which varies during execution of the Push action. 

3.2. Execution Monitoring 

Figure 3-2: Execution Monitoring 
Expectation: (predicted trajectory of world states) 

AT(SQ1, <x,y,theta>), where x > S Q l x . i n i t i a l , y<0,0<theta<360 
Intention: (target trajectory of world states) 

AT(SQl,<x,0,0>), where x=fx 

Observations: (observed trajectory of world states) ' / ^ ' 
: AT(SQ1,<0,0,0>) 

t 2: AT(SQ1, <3,0,0>) 
t 3: AT(SQ1,<6,-1,-15>) ** 

/ / / / / 

** Error: At d , difference between intended and observed position of SQ1: <0, -1 , -15> 
(i.e., intended translation (y and theta should remain 0), but observed rotation) 

As the plan is executed, the vision system is used to monitor the trajectory of resulting world 
states. Here the vision system field of view encompasses the entire world of the robot (i.e., its 
table), so that we avoid questions of focus of attention in perception which appear in more 
general robotics domains. 

What is the general condition under which plan execution should be interrupted and an error 
signaled? Throughout the execution of the plan, the system's observations of the world state 
must be consistent with the plan intention. Should this cease to be the case, the plan is no longer 
proceeding as intended, and an error should be signaled. 

Figure 3-2 summarizes the results of executing the example plan, illustrating that the 

observations conflict with the plan intentions at time t 3 . This corresponds to the observation that 

at time t 3 the square SQ1 has rotated away from the wall rather than translating directly along the 

wall as intended. 
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3.3. Error Recovery 

Once an error is detected in executing the plan, one might attempt to recover simply by 
creating a new plan to reach the goal from the newly observed world state. However, this 
strategy has the drawback that the factor which led to the observed error could easily foil the new 
plan as well (e.g., if the block rotated away from the wall because it was being pushed from the 
wrong pushing point, then the new plan could easily fail for the same reason). In order to avoid 
this difficulty, the agent first constructs a plausible explanation for the cause of the observed 
error, relating the cause of the error to parameters which are within its control (e.g., the 
parameters to the Push operator). In constructing this explanation, the agent relies on certain 
general knowledge of physics which forms its background domain theory. As we will see, this 
derived explanation can be used to suggest a revised plan that avoids the cause of the error. 
Furthermore, this explanation is also used as the basis for inferring the general conditions under 
which the error will occur, as well as general conditions under which it can be avoided. Thus, 
the explanation of the cause of the error is central both to recovering from the error and to 
learning a general refinement to the agent's action models. 

3.4. Explaining the Error 

Let us call the difference between the plan intention and the observations the error feature. 
We will say that the system explains the source of the error if it answers the question "What is 
the dependence of the error feature on parameters under the agent's control in earlier world 
states?". In the present example, the error feature is the observed but unintended rotation of 
square SQ1 away from the wall. Thus, in the present example the robot must explain how the 
rotation of SQ1 depends on the controllable parameters of its Push action. 

Note that the explanation task here is fundamentally a problem of differential analysis: we are 
interested in the qualitative derivative of the error feature with respect to parameters under the 
agent's control. It is this explanation task that dictates the form of background domain theory 
required by the agent. If it can answer this question, then it can choose a new set of action 
parameters more tuned to bringing its observations in accord with its intentions. The agent 
derives the explanation by first identifying all possible influences on the error feature, then 
determining the type of dependence of the error feature on each influence, then determining 
which of these influences is under the agent's control. 
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t Figure 3-3: Block-against-wall Schema 

Note arrows inside SQ1 represent force components. 
Applicability conditions: 

IS(Block ?b) 
IS(Wall ?w) 
IN-CONTACT(?w ?b) 

Force components acting on block Dependence of CW rotation on force 

Wall normal ? (+or-) 
Wall friction 
Table normal 0 
Table friction 
Finger normal + 
Finger friction + 

Controllable features Dependence of CW rotation on feature 

Finger positiony (i.e., ?fy) 
Finger velocityy (i.e., ?fvy) 
Finger velocityx (i.e., ?fvx) 
Finger orientation (i.e., 7 ^ ^ ) 

+ 
+ 
+ 
0 

Figure 3-3 illustrates the block-against-wall schema which contains the derived explanation of 
the observed error feature for the present example. The first part of this explanation determines 
all forces acting on SQ1 as well as the direction of the dependence of the error feature on each. 
The clockwise (CW) rotation depends positively on certain force components, negatively on 
others, and might depend either positively or negatively on another (the wall normal force) 
depending on the unobservable details of the contact between the v, U and SQL This portion of 
the explanation follows from fairly straightforward knowledge of physics, based on the 
assumption that the force moment causes rotation, that forces arise from physical contacts, and 
that each physical contact gives rise to both normal and tangential force components. Since SQ1 
participates in three physical contacts (with the table, the wall, and the robot finger), there are six 
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Figure 3-4: Primitive Qualitative Physics 

• Forces arise from physical contact 

• Contact forces can be characterized in terms of two components: 
• Normal component (normal to contact surface) 
• Tangential component (due to friction) 

• Friction: 
• For translation, friction force directly opposes direction of translation 
• For rotation, friction resists direction of rotation 

• Motion = Translation + Rotation 

• Translation depends monotonically on vector sum of forces 
• Rotation depends monotonically on moment of forces 

force components to consider. Figure 3-4 summarizes the knowledge of physics used to 
construct this explanation. 

Given this inferred dependence of the error feature on these force components, the second 
portion of the analysis determines the dependence of the error feature on features under the 
control of the robot (e.g., finger position, velocity, orientation). This is shown in the bottom of 
figure 3-3, and follows from reasoning about the geometry of the contact between the finger and 
SQ1 and the dependence of the resulting forces on this geometry. This final explanation of the 
dependence of CW rotation on the features controllable by the robot provides the key to error 
recovery and to theory refinement by the robot For instance, since the explanation indicates that 
CW rotation is an increasing function of the y component of the finger position, one way to 
decrease CW rotation is to move the finger in the negative y direction. Similarly, the rotation 
can also be reduced by decreasing the y component of finger velocity, or by decreasing the x 
component of finger velocity, but not by altering the finger orientation. 

The agent attempts these candidate plan revisions in order to eliminate the undesired rotation2. 

Some of these may succeed, such as moving the finger in the negative y direction. Others may 

2In fact, the plan error may leave the world in a state such that the simple plan revision cannot be immediately 
applied. In this case, for example, the agent must first push SQ1 back against the wall before it can test the 
conjectured plan revisions. 
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not, such as reducing the x component of the finger velocity (which reduces the rate of rotation, 
but not the total rotation per unit of finger travel). When candidate plan revisions are found to 
succeed, then the associated explanation of the error feature receives empirical validation3, and 
is used as the basis for refining the agent's action model. 

3.5. Theory Refinement 

Figure 3-5: Summary: Observation, Explanation and Generalization 

• Observation 1: CW rotation for SQ1 against WALL2 with finger at position fy=-30, 
theta=60,... 

• Explanation: Sum of forces from wall, table, finger produce positive torque. CW 
rotation is an increasing function of finger positiony, finger velocityy, finger 
velocityx. 

• Candidate Plan Revision: Move finger positiony in negative y direction to reduce 
rotation. 

• Observation2: Pure translation (no rotation) when pushing at position fy=-55. 

• Generalization 1: Pushing SQ1 against WALL2, with finger position fy>-30, any 
theta,fvx>10,fvy>0 will produce CW rotation. 

• Generalization2: Pushing SQ1 against WALL2, with finger at position fy<-55, any 
theta,fvx<10tfvy<0,will produce no CW rotation. 

Once the agent recovers from its error, it uses the empirically validated explanation of the 

cause of the error feature as the basis for explanation-based generalization of the observed failure 

and later success conditions. For example, as shown in figure 3-5, the explanation of the 

observed error feature in the present example leads to the generalization that 
Pushing SQ1 against WALL2 with finger position fy>-30, any theta,jvx>10,jvy>0 

will produce CW rotation 

This generalization is supported by the observed error (observation 1 in figure 3-5), along with 
the (empirically supported) explanation of the dependence of the observed rotation on finger 
position, theta, etc. For example, since the explanation indicates that CW rotation is an 
increasing function of the y component of finger position fy, and independent of the finger angle 

3Of course the hypothesized explanation could be incorrect even if the associated error recovery strategy 
succeeds, since the error recovery tactic might work by coincidence or for some other reason unknown to the robot. 



11 

theta, it is reasonable to extrapolate to the generalization that rotation will occur for any value of 
fy greater than the value in observation 1, independent of theta. Similarly, generalization! asserts 
that rotation will not occur for values of fy<-55. 

Note that generalization 1 is only a plausible—not a guaranteed—generalization of observation 1, 
for several reasons: 

• The generalization is inferred by a form of extrapolation, inferring the behavior of 
SQ1 over some interval of pushing points based on only a single observation and the 
inferred partial derivative of rotation with respect to the pushing parameters at the 
current observed values of these parameters. There is in general no guarantee, for 
instance, that the analysis which produced the derivative of rotation with respect to 
fv at fy=-30 will hold over the entire interval fy>-30, and this extrapolation is thus an 
approximate inference. This corresponds to an inductive bias that the derivatives of 
the functions of interest are slowly varying. 

• The analysis of the physics is based on a number of implicit simplifying 
assumptions, such as the assumed uniform coefficient of friction over the surface of 
the table and block, the lack of jagged edges along the wall, the independence of 
force components and action parameters, rigid bodies, lack of inertial forces, etc 
Any of these assumptions might be inappropriate, and thus the explanation on which 
the generalization is based might be incorrect. This corresponds to the inductive 
bias that the world is fairly uniform and that of all the factors influencing an object's 
motion only a few terms dominate. 

For both of these reasons, the robot must treat its inferred generalizations as having the same 
status as its initial knowledge-they are plausible statements subject to subsequent empirical 
disconfirmation, reanalysis, and refinement. We intend for the system to retain the explanation 
that justifies each proposed generalization so that this explanation can be refined as needed 
should the generalization be empirically disconfirmed at some subsequent time. In this light, the 
above inductive biases lead the agent to inductive leaps that are not firm commitments, but are 
rather a means of delaying consideration of additional factors until some future point at which 
observations may indicate a more detailed analysis in warranted. 

This approach of generalizing based on plausible explanations, then subsequently elaborating 
the analysis on a need-driven basis, is similar to the approach proposed in [9] for dealing with 
explanation-based learning from intractable theories in the domain of chess. In our problem 
domain, we anticipate that the system's ability to automatically make and later retract 
simplifying assumptions to ease the analysis will be an important factor in determining the 
overall success of the system. 
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4. Summary and Discussion 

This paper presents our preliminary insights on the problem of developing a robot system that 
refines its action models and therefore improves its competence with experience. We have 
presented an approach to automatic refinement of robot action models based on analyzing 
observed plan failures in terms of a predefined qualitative theory for differential analysis. This 
approach is presently being implemented for a robot system based on a Puma manipulator and 
IRI vision system. The primary characteristics of our approach are: 

• Explanation-based error recovery utilizes a plausible explanation of the source of the 
error to hypothesize the dependence of the error feature on controllable parameters. 
This hypothesized dependence suggests tactics for avoiding reoccurrences of the 
error while recovering from the plan failure. 

• Successful error recovery lends empirical support to the hypothesized explanation, 
which is then used for explanation-based generalization of the observed failure and 
success conditions. 

• Learning corresponds to demand (i.e., failure) driven refinement of an initial action 
model, so that the initial general-but-abstract action model is incrementally refined 
into a hierarchy of increasingly specialized and increasingly precise models that 
cover past error situations. 

• Learning is guided by a theory for qualitative differential analysis. This theory is 
itself insufficient to entail correct plans, but is very useful for analysis of errors and 
guiding generalization. 

4.1. Relation to Explanation Based Generalization 
From the perspective of explanation based learning [3] [7], this approach utilizes a particular 

type of incomplete theory to produce plausible generalizations of its observations. A "classic" 

application of explanation based generalization [7] to this problem would require a domain 

theory capable of explaining/proving that the observed error feature (i.e., rotation of -15 degrees) 

is logically entailed by the robot's Push(SQl, 0, -30, 60, <10,0>) action. This explanation would 

then be used to extract just those features of observation 1 which are necessary for this prediction 

to hold in general. But it is unrealistic to expect that the robot could produce such an explanation 

here, both because the physics would be too complex, and because the explanation would depend 

on features such as coefficients of friction, precise contact characteristics, etc, which are 

unobservable by the vision system. 

Given this difficulty in applying straightforward explanation based generalization, our 
approach is to instead rely on a qualitative theory for differential analysis of motions, which is 
less complex and does not depend on knowing precise values of physical parameters such as 
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coefficients of friction. It is used to explain the sign of the difference between observed and 
intended values of world state variables rather than the precise observed values. This 
explanation is then used to suggest directions for changing the initial action parameters so that 
this error feature will be reduced. Should the suggested changes be tested and found to have the 
predicted effect, then the corresponding explanation receives empirical support, and is used to 
drive the agent's generalization process. This process extrapolates from the specific training 
instance to a general class of situations and action parameter values for which the action effects 
can be more precisely predicted. It is interesting that this theory for differential analysis is very 
helpful in guiding learning despite that fact that it is not useful for initial planning (e.g., it is not 
useful in selecting the parameters for the Push action in the initial plan). See [10] for a 
discussion of methods for qualitative differential analysis. 

A number of questions for further research are raised by this approach: Will the generalization 
errors introduced by the approximate theory and the extrapolation mechanisms overwhelm the 
system, or will it be able to incrementally refine its beliefs as it discovers these errors during 
subsequent activities? Can this type of differential analysis be useful for analyzing plan 
execution errors that are not typically described numerically (e.g., the tower was intended to 
remain intact, but it fell down)? Can this differential analysis be used to automatically design 
feedback control loops that use the inferred dependence of the error feature on controllable 
parameters to continuously update the control parameters of the robot's action? Can the 
approach be extended to deal with situations in which the cause of the plan failure is outside the 
scope of the background theory (e.g., if the finger is magnetic)? 
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