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Abstract 

Since it is difficult to know the correct bias for an inductive learning problem a priori, the 
ability to detect a bad bias can be valuable. One method is to take advantage of an algorithm 
that makes strong performance guarantees when the bias is correct, then verify that the algorithm 
performs as promised. This paper develops this idea within the context of the Valiant framework. 

In the basic Valiant framework, / / the assumption that the target concept belongs to a given 
concept class holds then the output of a learning algorithm is (1 - <$)-reliable. After incorporating 
the notion of bias-evaluation, the assumption is removed such that the output is (1 - <5)-reliable 
regardless of whether or not the target concept belongs to the given concept class. It is shown 
how to convert an existing pac-learning algorithm into one with reliable bias-evaluation. 
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Extending the Valiant Framework 
to Detect Incorrect Bias 

Lonnie Chrisman 

1 Introduction 

The most successful theoretical framework to date for learning from examples has been the 
Valiant model [Valiant 84] for what [Angluin 88] has termed probably approximately correct 
identification (or /?ac-identification). Its success stems primarily from the fact that several im­
portant concept classes (eg. &-DNF) have been shown to be pac-learnable. The Valiant model 
derives its power from the assumption that the concept being learned, the target concept, be­
longs to a given known restricted concept class (contemporarily referred to as the inductive 
bias [Mitchell 80]). However, as [Amsterdam 88a] points out, "Nature does not tell us that her 
regularities are describable by £-CNF." In certain cases, it may be possible to deduce an appro­
priate bias prior to learning (cf. [Russell & Grosof 87]) and in other cases the correct bias may 
be provided by a benevolent teacher. Unfortunately, when the possibility exists that a learner 
may pick an incorrect bias, the sources of power for the Valiant framework (specifically the 
guarantees of accuracy, reliability, and computational efficiency) disappear. The Valiant model 
alone makes no performance guarantees when the learner's bias can be incorrect1. 

As a very simple example, consider the trivial learning algorithm that is biased into believing 
that the target concept belongs to the set {TRUE,FALSE}. The algorithm examines a single 
classified training instance and returns its classification as the learned concept. If the bias is 
correct, the algorithm can guarantee that with a single training example it will return an exactly 
correct concept 100% of the time. However, if the possibility exists that the target concept does 
not belong to {TRUE,FALSE}, this algorithm does not make any significant guarantees about 
the accuracy or reliability of the resulting concept. 

Since one dimension of success for a theoretical model is its utility in actual applications, an 
extension which would guarantee robust performance even in the presence of an incorrect bias 
would represent a significant contribution to the Valiant framework. This paper presents such an 
extension. The approach here gives a pac-learning algorithm the option of returning a reliably 
accurate concept (as in the unmodified Valiant framework) or alternatively it may report that the 
bias is bad. Whichever response the algorithm chooses, its output can be regarded as reliable (in 
a sense that is defined precisely in Section 3) whether or not its bias is correct. Since such an 
algorithm inherently possesses some type of ability to evaluate the correctness of its assumptions 
about the target concept, an algorithm with these qualities (and polynomial-t ime complexity) is 
termed a bias-evaluating pac-learning algorithm. 

After presenting the basic Valiant model for pac-identification in Section 2, Section 3 will 
introduce the precise requirements for a bias-evaluating pac-learning algorithm. It is shown 
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in Section 3.1 how a bias evaluator consisting of a simple statistical sampling test, similar in 
nature to Hypothesis Filtering [Etzioni 88], can be appended to any pac-learning algorithm. 
The construction leads to the paper 's main result that under one very reasonable assumption, 
a bias-evaluating pac-learning algorithm exists for any pac-learnable concept class. I conclude 
with a discussion of related work in Section 4. 

2 The Valiant Framework 

The Valiant framework was introduced in [Valiant 84] as a model for inductively learning con­
cepts from specific examples. Rather than requiring a learner to always find an exact concept, the 
model requires only that the learner produces with high probability a sufficiently close approxi­
mation to the actual target concept. A learning algorithm is also required to be computationally 
efficient. 

We assume there is a space X of possible instances where each instance is represented by 
n attribute values. A learning algorithm may request from an oracle EXQ a classified training 
example selected randomly from X according to some fixed but unknown probability distribution 
D 2 . It is assumed that the distribution remains fixed even after the learning session has been 
completed. A concept is any subset of X; in particular, the target concept L* is the concept the 
system is attempting to learn. When the randomly selected training example belongs to L*, EXQ 
classifies it as positive; otherwise, it is classified as negative. The basic Valiant model makes 
no assumptions about the form of the distribution D . 

The task of the pac- learner is to produce a concept which differs from the target concept 
L* by no more than some given small amount €. The learner is allowed to fail at this task, but 
only with probability less than 6. The difference between Lk and L*, diffo{Lh,Lm)y is defined as 
the probability that L/, and Lm differ in their classification of an instance drawn randomly from 
X according to D. 

The learner must represent its hypothesis concept, L*, in some representation language. 
Typically, the representation language restricts the set of possible hypotheses to some limited 
concept class C. 

Definition 1 An algorithm A pac-learns a concept class C iffVL* e C and all distributions D, 
A outputs Lh such that 

1- Pr[diffD(Lh,Lm)<e]>l-6 

2. A runs in time polynomial in l/e, 1/6, n, and the length of the representation of the target 
concept L*. 

Definition 2 A concept class C is pac-learnable if there exists a pac-learning algorithm for C. 

2 The original Valiant model used two oracles, EX*Q and EX~Q using distributions D+ and D~ over the positive 
and negative instances respectively. A number of people have adopted the variant described here (eg. [Amster­
dam 88b], [Angluin 88], [Haussler 87]). The relationship between the two models appears in [Haussler et.al 88]. 
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Many positive and negative results have emerged from this framework. For example, k-
D N F and k-CNF are pac-learnable [Valiant 84] while £-term-DNF and &-clause-CNF are not 
(directly) pac-learnable unless RP = NP [Pitt & Valiant 88]. Many other results exist, both 
[Pitt & Valiant 88] and [Haussler 87] provide excellent summaries of these and related results. 

3 Bias Evaluating Algorithms 

The Valiant model provides some very powerful guarantees on efficiency, accuracy, and reliabil­
ity, but only when the initial assumption holds that the target concept Lm is a member of the class 
C. When the assumption is false, the framework itself places no limitations on the behavior of 
a pac-learner. While it may be possible for some specific existing pac-learning algorithms to 
obtain performance guarantees when the bias is incorrect, in general pacness alone says nothing 
about performance in this case. Typically the reliability and accuracy of the final concept will 
drop below 1 — 6 and 1 — e respectively. 

An algorithm's bias will be termed correct when the assumptions made by the learner about 
the target concept, from which the algorithm derives its performance guarantees, are true. For 
a strict pac- learning algorithm as defined in the previous section, this simply reduces to the 
assumption that the target concept belongs to the concept class C as captured by the following 
definition. In Section 3.3 the definition will be generalized. 

Definition 3 A bias C is correct with respect to an algorithm A for a target concept L* if A 
pac- tearas C and L* € C. Otherwise it is incorrect. 

An extension to the basic framework introduced below makes the Valiant model robust with 
respect to the correctness of bias. The extension is motivated by a few simple considerations. 
First, such an extension should not sacrifice the polynomial-time complexity or the reliability of a 
pac- learning algorithm since the user will still require in a reasonable amount of time a response 
that can be believed. However, an incorrect bias could make it computationally difficult, or even 
impossible, to achieve the desired concept accuracy. Rather than misrepresenting its abilities 
when the bias is incorrect, the algorithm should admit defeat by reporting a bad bias. Even 
when the bias is not totally correct, there is always a chance that the algorithm might get lucky 
and stumble upon a sufficient approximation. In such a case it would be preferable to output 
the approximation rather than reporting the incorrect bias. The following variant of pac-learning 
incorporates these considerations. 

Definition 4 An algorithm As is a bias-evaluating pac-learning algorithm for a concept class C 
and a target concept L+ if for all distributions D, As either outputs Lh or reports a bad bias 
such that 

1. If Lm e C (ie. the bias is correct) then with probability at least 1 — 8, As outputs Lh and 
diffD(Lh,Lm)<e. 

2. IfLm £C (ie. the bias is incorrect) then with probability at least 1 - 8, AB either outputs 
Lh and diffo(Lh,Ln) < e or AB reports a bad bias. 
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3. In all cases, AB runs in polynomial-time. 

The output of a bias-evaluating pac-learning algorithm can be regarded as *1 — 8 reliable 
regardless of whether or not the bias is correct. Thus, the bias-evaluation extension solves the 
deficiency of the Valiant model discussed earlier. Of course, for this extension to be of any 
use, it is still necessary to show that bias-evaluating pac-learning algorithms exist for interesting 
concept classes. 

3 . 1 Achieving Reliability 

It is shown in this section that not only do bias-evaluating pac-learning algorithms exist for 
interesting concept classes, they exist for all pac-learnable concept c lasses 3 . It is possible using 
a technique described below to convert any existing pac-learning algorithm A into one which 
reliably reports an incorrect bias. The technique consists of appending to the end of A a simple 
sampling test which is independent of both A and the concept class C. The resulting algorithm 
will be referred to as AB. 

As with the learning algorithm, the possibility exists that the test might reach a bad conclusion 
in the unlikely event that it is dealt a bad sample. To achieve the final desired level of accuracy 
and reliability while allowing for this possibility, A is run at a slightly more demanding level 
of performance than before. Increasing the accuracy and reliability of A decreases demands for 
accuracy and reliability on the sampling test. The constant rj> is introduced to account for this 
tradeoff. The results below hold for any constant tp strictly between 0 and 1. When constructing a 
bias-evaluating pac- learner from a given pac-algorithm A (where the complexity of A is known), 
tfr can be chosen so as to minimize the total sampling or computational complexities. A complete 
description of the algorithm As is shown in Figure 1. 

The resulting algorithm As is a reliable bias-evaluating pac-learning algorithm. Before 
proceeding with the proof of this fact (Theorem 1), it will be necessary to introduce a few 
lemmas. For clarity, a summary of the notation used throughout the remainder of this section is 
given in Figure 2. The shorthand e 1 = diffD(Ln,L+) is used for convenience. 

Lemma 1 Pr [|e' o t e - e'\ < > 1 - 6^, 

Proof: This follows from Hoeffding's inequality [Hoeffding 63] : Pr[\X- fi\ < \] > 1 -

2 * - 2 m r A 2 

Pr 

• 

> l - 2 e ~ 2 ( l ^ ^ ) { S = * M ) * = 1 - le-^st = 1 - Snew (1) 

Lemma 2 If e' > e then Pr [e'obs > > 1 - Sn 

3 Provided that concepts in that class can be evaluated in polynomial time. This is a very reasonable assumption 
as will be discussed. 
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Given a pac-learning algorithm A and a constant 0 < ^ < 1, the algorithm AB that accepts as 
inputs 6 and 6 can be constructed to be as follows. 

1. Compute enew = </>e, 6new = 1 - \ / l - and m T > ( c _ c

2

w p In 

2. Run ACe,^, to obtain L*. 

3. Compute by testing on randomly selected classified instances and finding the 
fraction of those instances for which L* and Lh disagree. Note that e'obs is an estimate for 
e' = diffD(U,U). 

4. If e'obs > then report a bad bias. 

5. If e'obs < then output L A . 

Figure 1: Construction of Algorithm AB 

A : The given pac- learning algorithm. 
Lm : The target concept. 
Lh : The concept returned by A. 
1 — e : Desired accuracy for final concept. 
1 — 8 : Desired reliability of final result. 
1 - e^: The accuracy requested of A by AB. 
1 - fin**'- The reliability requested of A by AB. 
e' : The actual difference between Lh and Lm {e* = diffoiLn, Lm)). 
e'obs : The sampled value for c7 during Aa ' s sampling test of Lh. 

Figure 2: Notation 
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Proof: 

Pr ~obs > 
+ e 

> Pr 

> Pr 

~obs 

^obs 

2 
e - e„ 

— e ~obs e' > 

> l-6„ 

(2) 

(3) 

Line 2 is a result of e' > e, and line 3 follows from Lemma 1. • 

Lemma 3 If e' < enew then Pr [e'obs < 

Proof: 

> l - 6 n 

Pr > Pr 

> Pr 

e'os ~ «' < 
+ € 

2 
= Pr ~obs -e' < 

> 1 - 8 NEW 

Line 4 follows from e' < enew and line 5 follows from Lemma 1. • 

(4) 

(5) 

Theorem 1 The algorithm AB constructed from any4 pac-learning algorithm A as in Figure 1 
is a bias-evaluating pac-learning algorithm. In other words, 

1. When its bias is correct, with probability at least 1 - 6, AB outputs L H and diffD(LH, L J < e. 

2. When its bias is incorrect, with probability at least 1 - 8, AB either outputs L N and 
dijfo(Lh,Lm) < e or Ln reports an incorrect bias. 

3. AB runs in polynomial time4. 

Proof: The first subpart follows from Lemma 3 as shown here. Since A is a pac-learning 
algorithm with a correct bias, Pr[e* < e^] > 1 - 6w AB will only output L K when e'obs < lfl£|±£, 
and LH is only correct when e* < e. For AB to output a correct pac e -concept , two conditions 
must be met: 

2 * 1. AB outputs Lh — ie. e'obs < 

2, Lh is pact-correct — ie. e1 < e. 

Therefore, the probability that AB outputs a pacc -correct concept is 

Pr e'<eAef

obs< > Pr e'<en A eobs < 

> Pr[e' Pr[e'obs< 2 

> (1 - 8 ^ ( 1 - 8 ^ = 1 - 8 

2 
+ e 

(6) 

(7) 

Line 6 follows from < e an line 7 follows from A's pacness and Lemma 3. 
The second subpart of the theorem is proven by considering the following three mutually 

disjoint and exhaustive cases: 

4 A s long as A always runs in polynomial-time and the concepts output by A can be evaluated in polynomially-
bounded time. 
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-obs > — ^ ias incorrect. 

2. e'obs < A e' < e — Correct paoconcep t . 

3. z'obs < IM}F1 A e' > e — Incorrect pac-concept. 

Consider case 3 first. From Lemma 2: 

Pr z0bs < — = — A e > e < Pr € > € < SNEW (8) 

We are interested in the probability of being in one of the first two cases, and since 8new < 8, it 
follows that 

/V[Outputs "Bias Incorrect" or Outputs pacc-correct concept] > 1 - 8new > 1 - 8 (9) 

Finally, since A runs in time polynomial in l/enew and 1 a n d since l/enew and l/8new 

are themselves polynomial in 1/e and 1/8, the run time of A is polynomial in 1/e and 1/6. The 
remainder of AB, comparing Ln to L* on the mj instances to obtain e'obs, requires Oipij • evaltime) 
where evaltime is the poly normally-bounded amount of time required to evaluate Ln. • 

For the polynomial time of Theorem 1 to hold, it must be the case that the concept description 
for Ln produced by A can be evaluated (ie. used to classify a given instance) in polynomial time. 
This assumption is an extremely reasonable one since if this was not the case, A itself would not 
be very useful even when the bias is correct. Also, it is almost universally the case that learning 
algorithms evaluate concept descriptions at some point during learning. If A does so and is still 
polynomial, then the concept descriptions examined must also be polynomial. 

Since C being a pac-learnable concept class implies the existence of a pac-learning algorithm 
for C (Definition 2), and since any pac-learning algorithm can be extended to evaluate its bias, 
the following corollary follows directly from Theorem 1. 

Corollary 1 For any pac-learnable concept class C such that all concepts in C can be evaluated 
in polynomially-bounded time, there exists a bias-evaluating pac-learning algorithm for C. 

3.2 Another Look at Bias-Evaluation 
With the introduction of Bias-Evaluation now complete, it is worthwhile to once again examine 
Bias-Evaluation at a more intuitive level. In Figure 3a the target concept L* is in the concept 
class C; therefore, algorithm A's bias is correct. As a result, with high probability A (and AB) 
will return a concept within e of Lm. One can think of a ball of radius e centered at Lm which 
contains the possible e-approximations of L*. 

A second case where A 's bias is blatantly insufficient for approximating L* is shown in 
Figure 3b. Not only does Lm not belong to C, no concept within e of L* belongs to C. Clearly 
A's bias is incorrect and with probability 1 - 6 or better A B will report a bad bias. 

The interesting fuzzy case appears in Figure 3 c By definition A's bias is incorrect since 
L* £ C; however, concepts do exist in C which are sufficient 6-approximations to L+. When the 
learner does find one of these, it is desirable to return it. This raises the question as to why 
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not require a pac-learner to always find an €-approximate concept whenever one exists, even if 
L* £ C. There are two reasons. First, since the overlap between C and the e-ball around Lm 

could be as small as a single concept, the difficulty of the learning task can increase greatly. 
In many cases this can make an otherwise tractable concept class intractable. Second, without 
some constraint on L* such as the knowledge of which concept class it belongs to, it can be very 
difficult to derive performance guarantees like those afforded by the Valiant framework. Bounds 
on the computation time and the number of training examples necessary for convergence for 
existing pac-algori thms are possible precisely because it is possible to take advantage of such 
constraints. From these considerations, it follows that it would be unreasonable to require an 
algorithm to return an 6-approximate concept in this case — instead the algorithm should be 
considered lucky if it can. Otherwise, reporting a bad bias is a correct answer. For the total 
case of Figure 3c, with probability 1 - 8 or better, the Bias-Evaluating algorithm AB will either 
report a bad bias or return an c-approximation to L*. 

Note that when the bias is correct, AB can err either by returning a poor concept or by 
reporting a bad bias. AB can err when the bias is incorrect only by returning a bad concept. 
However, in either case, the probability of making an error is less than 8. 

3.3 Extending Bias-Evaluation 
In this section it is shown how Bias-Evaluation can be applied to an extension of the basic 
Valiant framework, namely learning in /i-dense concept classes [Amsterdam 88a,b]. It is hoped 
that this example will help to demonstrate how the general idea behind Bias-Evaluation might be 
applied to other extensions or possibly other frameworks for learning. The example also serves 
as a comparison of Bias-Evaluation to a closely related work. 

In Section 3.2 it was suggested that even when L„ is outside of C, it would be desirable for 
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a learning algorithm to return an ^-approximation to L M if possible. Both [Kearns et.al. 87] with 
/z-heuristic-learnability and [Amsterdam 88a,b] with /z-density have addressed this possibility. 
The /z-density extension will be considered in detail here (most of the high level discussion 
applies to /^heuristic-learning as well). 

The results on /z-density provide performance guarantees when an algorithm learns within a 
concept class C\ but the target concept belongs to a more general concept class C 2 . Because 
L V is assumed to be in C 2 , it is possible to derive guarantees like those from pac-learning, 
even for the case where L* £ C\ but L . 6 C2. Therefore, /z-density provides one important 
alternative strategy for coping with the possibility of an incorrect bias. Even so, an /z-dense 
learning algorithm is still biased by the assumption that L* G C 2 and therefore, Bias-Evaluation 
can be useful in conjunction with an /z-dense learner. 

[Amsterdam 88a,b] quantifies the notion of the distance between two concept classes with 
the parameter h: 

Definition 5 (Amsterdam 88a,b) A concept class C\ is /z-dense in a concept class C 2 iff, for 
any concept ci 6 C 2 and any probability distribution D over the example space, there is a 
concept C\ 6 C\ such that diffoic^Ci) < h. 

Unlike the case of a strict pac-learning algorithm in which a user may request an arbitrary 
close approximation, the user of an /z-dense learning algorithm may not request anything as close 
as or better than an /z-approximation to the target concept. For some target concept, this may be 
the best achievable. 

Let A H be an /z-dense pac-learning algorithm. Given 0 < e < 1 and 0 < 8 < 1, Ah outputs a 
concept LH from C\ such that if C\ is /z-dense in C 2 

1. A H runs in polynomial-t ime. 

2. When L M £ C 2 , Pr[diffD(LK,LM) <h + e ] > \ - 8 . 

To apply Bias-Evaluation to A*, it is necessary to modify the definition of correct bias for this 
case. Specifically, the bias is correct when L M e C 2 ; however, rather than require a change in the 
definition for every new extension, the following is a more general definition which subsumes 
both Definition 3 and the /z-density extension. The intuition behind this definition is that the 
bias is correct when all the assumptions which influence an algorithm's performance guarantees 
are correct. 

Definition 6 A bias C is correct with respect to an algorithm A for target concept L+ if for any 
e and 8, A outputs L H and Pr[diffD(LH, L*)] < 6] > 1 - <S. 

A quick examination shows that for strict pac-learning this definition reduces to Definition 3, 
and it also reduces to L M e C 2 above as desired. As before, it is possible to append a Bias-
Evaluator to A \ the resulting algorithm A£ is shown in Figure 4. A trivial adjustment to the 
proof of Theorem 1 yields: 
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Given an /i-dense pac-learning algorithm Ah and a constant 0 < 0 < 1, the algorithm Ah

B that 
accepts as inputs e and 8 can be constructed to be as follows. 

1. Compute enew = -06, 8M„ = 1 - \/\ - 6, and mT > ( g _ 6

2 ^ ln 

2. Run A 'Xe ,^ , <^ n w) to obtain LH. 

3. Compute e ^ , by testing Ln on randomly selected classified instances and finding the 
fraction of those instances for which Lm and Ln disagree. Note that ef

obs is an estimate for 
e' = diffD(U,Lm). 

4. If > h + then report a bad bias. 

5. If e'obs < h + then output Ln. 

Figure 4: Construction of Algorithm AB 

Theorem 2 Let C\ be h-dense in C2 and let Ah be an h-dense learning algorithm that outputs 
LneC\. The algorithm Ah

B constructed from Ah as in Figure 4 is an h-Bias-Evaluating algorithm. 
In other words, 

1. When Lm G C2, with probability at least 1 - 6, AB outputs Ln and diffD(Ln,L*) < h + e. 

2 . When L* ^ Ci, with probability at least \-8,AB either outputs Ln and diffD(Ln, Lm) <h+e 
or AB reports a bad bias. 

3. AB runs in polynomial-time5. 

It is worth examining the relationship between AB and AB. Given that a program outputs Lh 

from Ci , and that C\ is A-dense in C2, we should compare the behavior of the Bias-Evaluator 
AB which utilizes a strict pac- learning algorithm with the Bias-Evaluator AB which utilizes an h-
dense learning algorithm. The difference is that there is a tradeoff between the level of accuracy 
that may be requested and the likelihood that the algorithm returns a concept (as opposed to 
reporting a bad bias) in the event that Lm £C\. 

One of the motivations behind the original introduction of /i-density was its application for 
dealing with the possibility of a bad bias. When a class C is known to be /i-dense in U (the 
universal concept class), then /i-density by itself provides an alternative to Bias-Evaluation. 
This can be seen as an extreme of the above tradeoff — the algorithm always returns an 
(h + e)-approximate concept, but this comes with the price of h being very large. In particular, 
[Amsterdam 88a] shows that if the Vapnik-Chervonenkis dimension* of C is n, then C cannot be 
/i-dense in U for h < 

5 Provided Ah always runs in polynomial-time and outputs concepts that can be evaluated in polynomial-time. 
6 See [Haussler 87]. 
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4 Related Work 
While the majority of results within the Valiant framework depend on the correct bias assumption, 
a few people have addressed the possibility of an incorrect bias. The results on /z-heuristic 
learnability [Kearns et.al 87] and /z-density [Amsterdam 88a,b] are two very noteworthy instances 
that have already been discussed in Section 3.3. 

The approach used in this paper for performing the bias-evaluation is very closely related to 
Hypothesis Filtering [Etzioni 88]. Hypothesis filtering uses the fact that a given hypothesis can be 
(1 - £)-reliably verified to be (1 - e)-accurate by testing it against a random sample of instances. 
This technique is also discussed in [Kearns et.al 87] and was first introduced and used by 
[Angluin 86]. While bias evaluation and hypothesis filtering are very similar, the objectives are 
different. Hypothesis filtering was proposed as a method for achieving guaranteed reliability from 
any learning algorithm by settling for weaker guarantees than the Valiant framework provides. 
For purposes of comparison, bias evaluation can be viewed as a way of reliably detecting when 
a learning algorithm should be changed. 

In the Machine Learning community, the most notable instance of detecting and dealing with 
incorrect inductive bias has been the STABB system [Utgoff 86]. Utgoff divides the problem 
into the issues of detecting a bad bias and switching to a new bias. This paper has addressed only 
the first issue. STABB detects an insufficient bias when no concept in its hypothesis space is 
consistent with all observed training instances. Bias evaluation differs from detecting a collapsed 
version space in a number of notable ways. In some cases, detecting the collapse of a version 
space might be expensive [Haussler 88], while the addition of bias evaluation to an algorithm 
is relatively cheap. Bias evaluation may also be slightly more powerful than the collapsing 
version space approach since in some cases bias evaluation can detect an incorrect bias before 
the version space collapses, even when the additional testing instances are used for learning 7 ; 
however, it is unclear empirically how often such cases arise. Nevertheless, the most significant 
difference is that bias evaluation guarantees reliable detection while prior work along these lines 
has detected incorrect bias but has not provided guarantees on the reliability of its mechanisms 
for doing so. 

5 Conclusion 

Generally it is not possible to know for certain the correct inductive bias to use for learning a 
given unknown target concep t Reliably detecting when a learning algorithm is biased incorrectly 
is therefore an important issue for an inductive learner. This paper has exploited the idea that 
one method for detecting an incorrect bias is to take advantage of an algorithm that makes 

7This is because the bias test is independent of the learning session and concept space complexity. For consistent 
hypothesis finders, the effect of a training instance is to reduce the size of the version space while the effect of a 
testing instance is to influence the estimate for the accuracy of a concept Lk. While in the first case an instance 
might eliminate Lk from the VS, the VS may still contain many other candidate concepts, while in the testing case 
the instance simply lends support to the possibility that Lh was not as accurate as promised. This effect is most 
pronounced when the VS is still very large after the learner has (supposedly) obtained e-convergence. The effect 
appears to be very dependent on the particular learning situation. 
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strong performance guarantees when the bias is correct, then verify that the algorithm performs 
as promised. The Valiant framework provides a source for such algorithms, and the result from 
the method are algorithms with strong performance guarantees when the bias is correct as well as 
when the bias is not correct. The paper has demonstrated that all pac-learnable concept classes 
have reliable bias-evaluating pac-algorithms that run in polynomial time (when the concepts in 
the class can be evaluated efficiently) by showing how any existing pac-learning algorithm can 
be converted into a bias-evaluating pac-learning algorithm. 
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