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Abstract 

KR is a very efficient knowledge representation language implemented in Common Lisp. It 
provides powerful frame-based knowledge representation with user-defined inheritance and 
relations, and an integrated object-oriented programming system. In addition, the system 
supports a constraint maintenance mechanism which allows any value to be computed from a 
combination of other values. KR is simple and compact and does not include some of the more 
complex functionality often found in other knowledge representation systems. Because of its 
simplicity, however, it is highly optimized and offers good performance. These qualities make it 
suitable for many applications that require a mixture of good performance and flexible 
knowledge representation. 

This research was sponsored by the Defense Advanced Research Projects Agency (DOD), 
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1. Introduction 
Frame systems have received much attention in the last two decades; [Brachman 79] contains a 
classic treatment of the field and discusses some of the more influential systems. Frame systems 
are characterized by great flexibility and representational power, and constitute one of the basic 
lines of research in knowledge representation. [Brachman and Levesque 85] give a recent 
overview of the field of knowledge representation. 

KR [Giuse 87] is a very efficient knowledge representation system in the tradition of frame 
systems. Simplicity and efficiency are its main design goals and differentiate it sharply from the 
more conventional frame systems, as discussed in [Giuse 89a]. KR is positioned at the low end 
of the spectrum and offers superior performance that traditional high-end systems cannot 
achieve. 

In addition to basic representation of knowledge as a network of frames, KR provides object-
oriented programming and an integrated constraint maintenance system. Constraint maintenance 
is implemented through formulas, which constrain certain values to combinations of other 
values. KR guarantees that a value computed through a formula is constantly up to date, 
regardless of changes in the network. The constraint system is closely integrated with the basic 
knowledge representation mechanism and is actually a part of the same program interface. 

Such a close integration between frame-based representation and constraint maintenance yields 
several advantages. First of all, constraint maintenance is seen as a natural extension of frame-
based representation; the same access functions work on both regular values and on values 
constrained by a formula. Secondly, the full power of the representation language is available in 
the specification of constraints. Thirdly, since the two mechanisms are integrated at a fairly low 
level, the constraint maintenance system offers very good performance. These advantages 
combine to make the KR constraint maintenance system a practical tool for the development of 
applications that require great flexibility, expressive power, and performance comparable to that 
obtained with conventional data structures. 

KR is currently being used for a variety of applications which cover the whole range of 
programming styles. The first application we developed on top of it was the Chinese Tutor 
[Giuse 88a] [Giuse 88b], an intelligent tutoring system designed to teach Chinese to English 

speakers. KR is the sole form of knowledge representation in the Chinese Tutor, and is used, 
among other things, to store the online dictionary of Chinese characters, complete with English 
translations and various structural hierarchies. 

The second major application of KR is the Garnet User Interface Development Environment 
[Myers 88], an advanced user interface development environment currently under development 

at the School of Computer Science of Carnegie Mellon University. We are using KR extensively 
to implement a graphical object system [Vander Zanden et al. 89], a constraint satisfaction 
system [Giuse 89b], and a graphical object editor [Myers 89] for the interactive creation of user 
interfaces. Other applications of KR are also being developed at Carnegie Mellon, especially in 
the area of speech understanding research [Young 89]. 

This document describes version 2.0 of KR, which is currently in use at the School of Computer 
Science at Carnegie Mellon University. Several aspects of this version differ from previous 
versions of the system, such as the one described in a previous report [Giuse 87]. The present 
document overrides all previous descriptions. 



2 

The document begins with a description of the features of the system that beginners are most 
likely to need. Some of the less common features are only presented near the end of the 
document, in order to avoid obscuring the description with irrelevant details. 

2. Structure of the System 
KR is a knowledge representation system implemented in Common Lisp [Steele 84]. It includes 
three closely integrated components: frame-based knowledge representation, object-oriented 
programming, and constraint maintenance. 

The first component, frame-based knowledge representation, stores knowledge as a network of 
chunks of information. Unlike more traditional data-storage systems (such as relational data 
bases, for instance) networks in ICR are built out of unstructured chunks. Each chunk, known as 
a frame or schema, can store any arbitrary piece of information, and is not restricted to a 
particular format or data structure. The general way to encode information is via attribute-value 
pairs. 

A program or user is free to use a schema in any given way and to store as much information as 
needed in it. Moreover, schemata 1 can be modified as needed, even after they have been created. 
Relational data bases, by comparison, force each chunk to be in one of a small group of possible 
formats, and the format of a chunk cannot be modified after creation. Frame systems are also 
more flexible than most object-oriented programming systems, which often prohibit changes to 
the class structure once instances have been created. 

The other important property that KR shares with most frame systems is that certain values in a 
schema can be interpreted as links to other schemata. This enables the system to support 
complex network structures, which can be freely extended and modified by application 
programs. KR provides simple mechanisms that enable application programs to specify the 
structure of a network and the relationship among components of the network. 

The second component of KR is a simple object-oriented programming system. Schemata can 
be used as objects, and inheritance can be used to determine their properties and behavior. 
Objects can be sent messages, which are implemented as procedural attachments to certain slots; 
messages are inherited through the same mechanism as values. Instead of the class-instance 
paradigm, common in object-oriented programming languages, KR follows the more flexible 
prototype-instance paradigm [Lieberman 86], which allows properties of instances to be 
determined dynamically by their prototypes. Object-oriented programming in KR is heavily 
based on the dynamic properties of the underlying frame system. 

Finally, the third component of KR implements constraint maintenance. This component is 
logically independent of the first two, which may in fact be used stand-alone. Constraint 
maintenance is implemented through formulas, which may be attached to slots and determine 
their values based on the values of other slots in the system. Constraint maintenance is closely 
integrated with the underlying knowledge representation, and for most users the distinction 
between the two is irrelevant. The user, for example, does not need to know which slots in a 
schema contain ordinary values and which ones are constrained by a formula, since the same 

^Schemata is the plural of schema. 
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access primitives may be used in both cases. 

3. Knowledge Representation in KR 
This section describes the first component of KR, i.e., frame-based knowledge representation. 
More details about the design philosophy of the system and some of the internal implementation 
may be found in [Giuse 87], which describes a previous version of the system that did not 
support constraint maintenance. 

3.1. Main Concepts: Schema, Slot, Value 
A schema is the basic unit of representation in KR and consists of an optional name, a set of 
slots, and a set of values for each slot. The user can assemble networks of schemata by placing a 
schema as the value in a slot of another schema; this causes the two schemata to become linked. 

A schema may be named or unnamed. Named schemata are readily accessible and are most 
useful for interactive situations or as the top levels of a hierarchy, since their names act as global 
handles. Unnamed schemata do not have meaningful external names and thus are slightly less 
convenient in some situations. They are, however, more compact than named schemata and 
account for the vast majority of schemata created by most applications. Unnamed schemata, in 
addition, are automatically garbage-collected once they are no longer needed, whereas named 
schemata have to be destroyed explicitly by the user. KR provides a mechanism to refer to 
unnamed, as well as named, schemata in interactive situations. 

The name of a named schema is a symbol. When a named schema is created, KR automatically 
creates a special variable by the same name and assigns the schema itself as the value of the 
special variable. This makes named schemata convenient to use. 

A schema may have any number of slots, which are simply attribute-values pairs. The slot name 
indicates the attribute name; the slot values (if any) indicate its values. Slot names should be 
keywords. All slots in a schema must have distinct names, but different schemata may very well 
have slots with the same name. Slot names are not interpreted by KR in any way. 

Each slot can contain zero or more values. Values are the actual data items stored in the schema, 
and may be of any Lisp type. KR provides functions to add, delete, and retrieve values from a 
given slot in a schema. 

The printed representation of a schema shows the schema name followed by slot/value pairs, 
each on a separate line. The whole schema is surrounded by curly braces. Consider a schema 
for John's pet, Fido: 

{ f i d o 
: i s - a d o g p e t 
: o w n e r J o h n 
: c o l o r brown 
r a g e 5 
} 

The schema is named FIDO and contains four slots named :IS-A, :OWNER, :COLOR, and :AGE. The 
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slot :AGE contains one value, the integer 5. The slot :IS-A contains two values, DOG and PET. 

In order to illustrate the main features of the system, we will repeatedly use a few schemata. We 
present the definition of those schemata at this point and will later refer to them as needed. The 
following KR code is the complete definition of the example schemata: 

(create-schema graphical-object 
(:color :blue) 
(:update-demon 'graphical-object-changed)) 

(create-schema box-object 
(:is-a graphical-object) 
(:thickness 1)) 

(create-schema rectangle-1 
(:is-a box-object) 
(:x 10) 
C y 20)) 

(create-schema rectangle-2 
(:is-a box-object) 
(:x 34) 
(:y (formula '(+ (gvl :left-obj :y) 15))) 
(:left-obj rectangle-1)) 

The exact meaning of each expression above will become clear after we describe the functional 
interface of the system. Briefly, however, we can summarize the example as follows. The 
schema GRAPHICAL-OBJECT is at the top of a hierarchy of graphical objects. The schema 
BOX-OBJECT represents an intermediate level in the hierarchy, and describes the general features 
of all graphical objects which are rectangular boxes. As the example shows, BOX-OBJECT is 
placed below GRAPHICAL-OBJECT in the hierarchy, since its :IS-A slot points to the schema 
GRAPHICAL-OBJECT. 

Finally, two actual rectangles (RECTANGLE-1 and RECTANGLE-2) are created and placed below 
BOX-OBJECT in the hierarchy. RECTANGLE-1 defines the values of the two slots :X and :Y 
directly, whereas RECTANGLE-2 uses a formula for its :Y slot. The formula states that the value 
of :Y is constrained to be the :Y value of another schema plus 15. The other schema can be 
located by following the .LEFT-OBJ slot of RECTANGLE-2, as specified in the formula, and 
initially corresponds to RECTANGLE-1. 

Figure 3-1 shows the four schemata after the definitions above have been executed. Relations 
are indicated as an arrow going from a schema to the ones to which it is related. 

Asking the system to print out the current status of schema RECTANGLE-2 would produce the 
following output: 

{RECTANGLE-2 
:IS-A = BOX-OBJECT 
:X = 34 
:Y = fl306 (NIL . NIL) 
:LEFT-OBJ = RECTANGLE-1 
} 
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GRAPHICAL-OBJECT O
:color .blue 
:update-demon 'graphical-object-changed 
:is-a-ir inv box-object 

6 :is-a grapni 
:thickness 1 
:is-a-inv re 

:is-a graphical-object 

ctangle-1 rectangle-2 

RECTANGLE -O is-a box-object 
x 10 
y 20 

RECTANGLE-2 O is-a box-object 
x 34 
y ( + (gvl :left-obj :y) 15) 
left-obj rectangle-1 

Figure 3-1: The resulting network of schemata 

Note that slot :Y contains a formula, which is printed as "fl306 (NIL . NIL)". This is simply an 
internal representation for the formula and will yield the correct value of :Y when needed. 

3.2. Inheritance 
The primary function of values is to provide information about the object represented by a 
schema. In the previous example, for instance, asking the system for the :X value of 
RECTANGLE-l would simply return the value 10. 

Values can also perform another function, however: They can establish connections between 
schemata. Consider the :LEFT-OBJ slot in the example above: if we interpret RECTANGLE-1 as a 
schema name, then the slot tells us that the schema RECTANGLE-2 is somehow related to the 
schema RECTANGLE-1. Given the name of the slot, one might reasonably assume this to mean 
that the former is subordinated to the latter; graphically, this would mean that the position of 
RECTANGLE-2 is partially determined by that of RECTANGLE-1. 

KR makes it possible to use values to perform inheritance, i.e., to control the way information is 
inherited by a particular schema from other schemata to which it-is connected. Inheritance 
allows information to be arranged in a hierarchical fashion, with lower-level schemata inheriting 
most of their general features from higher-level nodes and possibly providing local refinements 
or modifications. A connection that enables inheritance of values is called a relation. 

32.1. An Example of Inheritance 
The most common example of inheritance is provided by the :IS-A relation. If schema A i 
connected to schema B by the :IS-A relation, 2 then values that are not present in A may b 
inherited from B. J 

2In other words, if schema B appears as a value in the :is-A slot of schema A. 
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Consider the schema RECTANGLE-1 in our example. If we were to ask "What is the color of 
rectangle-1?", we would not be able to find the answer by just looking at the schema itself. But 
since we stated that RECTANGLE-1 is a box object, which is itself a graphical object, the value 
can be inherited from the GRAPHICAL-OBJECT schema through two levels of :IS-A. The answer 
would thus be "Rectangle-1 is blue." Inheritance is possible in this case because the slot :IS-A is 
pre-defined by the system as a relation. 

3.2.2. Multiple Inheritance 
ICR supports multiple inheritance, i.e., the situation where a schema may inherit values from 
more than one direct ancestor. This can be accomplished in two separate ways. The first way is 
simply to connect the schema to more than one ancestor schema through a relation. The relation 
slot, in other words, may contain multiple values. When performing inheritance, KR searches 
each ancestor slot in turn until a value is found. 

The second way to achieve multiple inheritance is by using more than one relation with 
inheritance. Any schema may have several slots defined as relations with inheritance; in this 
case, all relations are searched in turn until a value is found. The two mechanisms may be 
combined, of course. 

Note that an application program should not rely on the order in which KR searches different 
relations. The particular order chosen is implementation-dependent. 

3.3. Relations 

Slots such as :IS-A which enable knowledge to be inherited from other parts of a network are 
called relations. Inheritance along a relation is typically defined to proceed depth-first and may 
include any number of steps (in other words, the search terminates if a value is found or if no 
other schema can be reached via the relation). 

KR allows the user to define new relations as desired. This is achieved through the function 
create-relation (see section 6.3), which performs all the necessary bookkeeping. 

Any relation, including user-defined ones, may also be declared to have an inverse relation. If 
this is the case, KR automatically generates an inverse link any time the relation is used to 
connect one schema to another. Imagine, for instance, that we defined :PART-OF to be a relation 
having :HAS-PARTS as its inverse. Adding schema A to the slot :PART-OF of schema B would 
automatically add B to the slot .HAS-PARTS of schema A, thereby creating a reverse link. 

3.3-1. Relation Maintenance 
KR automatically maintains all relations and inverse relations described above, and the 
application programmer does not have to worry about them. This is probably one of the most 
convenient features of the system. 

Imagine, for instance, that the two schemata A and B are linked by a certain relation and inverse 
relation. This means that schema A has schema B as the value in one of its slots. If the program 
decides to delete schema B, then, it is essential that the link from A to B also disappear. Failure 
to do so would cause the reference in A to be dangling: it would be an error to try to follow the 
reference, since the schema being pointed to (i.e., B) would no longer exist. 
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KR keeps track of similar situations whenever they occur and corrects them instantly. The KR 
function that deletes schema B automatically follows the reverse pointers and makes sure that 
any reference to B disappears as well. In a similar manner, whenever the name of a schema is 
assigned as a value to a slot which happens to be a relation, KR automatically creates an inverse 
link. This ensures that the state of the knowledge representation system is completely consistent 
at any point in time, independent of the particular sequence of operations. 

4. Object-Oriented Programming 
This section describes the object-oriented programming component of KR. This component is 
fairly straightforward and implements two concepts: the concept of message sending, and the 
concept of prototype/instance. 

An object in KR is simply a schema. As in most object-oriented programming systems, objects 
consist of data (represented by values in slots) and methods (represented by procedural 
attachments, again stored as values in slots). Procedural attachments are invoked by "sending a 
message" to an object; this means that a method by the appropriate name is sought and executed. 
Different types of objects very often provide different methods by the same name; this ensures 
that the same message may be sent to different objects, which respond by performing different 
actions. 

Both the data and the methods associated with an object can be either stored within the object or 
inherited. The usual inheritance rules are followed, including of course multiple inheritance. 
This allows the behavior of objects to be built up from that of other objects; it is possible, in 
particular, to create complex graphs of method inheritance. The object-oriented component of 
KR allows some combination of methods, since a method is allowed to invoke the corresponding 
method from a parent and to explicitly refer to the object which is handling the message. 
Method combination, however, is not as fully developed as in full-fledged object-oriented 
programming systems such as CLOS [Bobrow et al. 89]. 

The notion of prototype in KR is superficially similar to that of class in conventional object-
oriented programming languages, since a prototype object can be used to partially determine the 
behavior of other objects (its instances). A prototype, however, plays a less restricting role than 
a class. Unlike classes in typical object-oriented systems, a prototype simply provides a place 
from which the values of certain slots may be inherited. The number and types of slots which 
actually appear in an instance is not in any way determined by the prototype. The same is true 
for methods, which are simply represented as slots. 

Prototypes in KR serve two specific functions: they provide an initialization method, and they 
provide default constraints. When a KR schema is created via the function create-instance, and 
its prototype has an :INITIALIZE method, the method is invoked on the instance itself. This 
provides a uniform mechanism for handling object-dependent initialization tasks. 

If the prototype provides a constraint for a certain slot, and the slot is not explicitly defined in the 
instance, the formula which implements the constraint is copied down and installed in the 
instance itself. This provides a convenient mechanism through which a prototype may determine 
some of the behavior of its instances. Note that this behavior can be overridden both at instance-
creation time (by explicitly specifying values for the instance) and at any later point in time. 
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5. Constraint Maintenance 
This section describes the constraint maintenance component of KR. Unlike other frame-based 
systems, constraint maintenance is an integral part of KR and is tightly integrated with the basic 
knowledge representation. 

5.1. Value and Action Propagation 

The KR constraint system offers two distinct mechanisms to cause changes in a part of network 
to propagate to other parts of the network. The first mechanism is value propagation and 
ensures that the network is constantly kept in a consistent state. The second mechanism is action 
propagation, allowing an application program to cause certain actions to be triggered when parts 
of a network are modified. 

The constraint system ensures that whenever a value in a slot is changed, all slots whose values 
depend on it are immediately invalidated, although not necessarily re-evaluated. This is what we 
refer to as value propagation. The fundamental notion if that of dependency of a value on 
another. This strategy does not immediately recompute the values in the dependent slots, and 
thus it typically does less work than an eager re-evaluation strategy. The system simply 
guarantees that the correct values are recomputed when actually needed, thus giving the same 
results as eager re-evaluation. Value dependencies are embodied in formulas. This first 
mechanism of constraint maintenance is implemented by the KR system itself and guarantees 
that value dependencies are never violated. 

In addition to this, a second mechanism, is provided which allows an application program to 
perform special actions when a value is modified. We refer to this as action propagation. This 
second mechanism, which is totally controlled by the application program, is quite independent 
from the first. Action propagation is implemented through the concept of demon. A demon is an 
application-defined procedural attachment to a KR slot. Whenever a value of a slot in a schema 
is modified (either directly or as the result of value propagation), KR checks whether a demon is 
defined for that particular schema and slot. If so, the demon is invoked. This allows application 
programs to attach a certain behavior to their schemata and be notified every time a change 
occurs. 

The following example illustrates the relationship between value propagation and demon 
invocation. The example shows the complete sequence of events when the basic value-setting 
function, s-value, is called to set slot A of schema B to the new value C: 

1. If the value in slot A is identical to value C, nothing happens. 

2. Otherwise, if a demon is defined for schema B, the demon is invoked. The demon 
should be a function of three arguments: a schema, a slot, and a value. The demon 
is called with schema B in its old state, which means that slot A still contains its 
old value. The third argument is the new value, i.e., C. 

3. The change is recursively propagated. All slots whose value is a formula that 
depends on slot A are invalidated. The process is similar to the one described in 
step 2., but there is no check corresponding to step 1. at this point. Demons are 
invoked normally on any slot that is modified during this phase. 

4. The value of slot A is finally changed to C 
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5.2. Demons 

A demon is associated with a schema either directly or through inheritance. The demon is stored 
in a slot named :UPDATE-DEMON. This allows the application to gain fine control over the 
response to a value change. 

To allow the application program even finer control over demon behavior, another slot is used by 
KR to determine which slots should actually trigger a demon when they are modified. This other 
slot is named :UPDATE-SLOTS and should contain a list of the slots for which demons are to be 
invoked. Whenever a slot whose name is contained in :UPDATE-SLOTS is modified, and a demon 
is defined for the schema, the demon is activated. If the slot is not among those in 
.UPDATE-SLOTS, or if no demon is defined for the schema, no demon is invoked. 

A typical example of demon is a graphical demon, i.e., one which is attached to schemata that 
represent graphical entities. Since some of the schemata may be visible to the user (in a display 
window, for example), many application programs will want the display to change when the 
schemata are modified. Different types of demons can serve this need. 

A simple-minded approach would be to define demons that simply erase the old image of a 
schema when one of the slots is modified, and immediately redraw the new image. This 
approach can be improved significantly. A second, and better, approach would be a demon 
which erases the old image and then marks the schema as "dirty", to indicate that its display 
image is not up to date. At some later point in time, the application may then redraw up-to-date 
images for all the "dirty" schemata. The advantage of this approach is that successive changes to 
a schema which is already marked dirty have no effect, and thus the total amount of erasing and 
redisplaying may be significantly reduced. Yet other approaches to this problem are possible, 
and they all rely on demons to notify the application program of changes in schemata. 

5.3. Formulas 

Formulas represent one-directional connections between a dependent value and any number of 
other values. Formulas specify an expression which determines the dependent value based upon 
the other values, as well as a permanent dependency which causes the dependent value to be 
recomputed whenever any of the other values change. 

Formulas can be arbitrary Lisp expressions, and in general contain at least one reference to a 
particular KR value. The expression is used to recompute the value of the formula whenever a 
change in one of the values makes it necessary. A formula, therefore, contains two logically 
separate types of information: 

1. A list of all the values on which it depends, i.e., a list of dependencies. 
2. An expression which determines how to combine the values to compute the value 

of the formula itself. 

As we mentioned earlier, formulas are not recomputed immediately when one of the depended 
values changes. This reduces the amount of unnecessary computation. Moreover, formulas are 
not recomputed every time their value is accessed. Each formula, instead, keeps a cache of the 
last value it computed. Unless the formula is marked invalid, and thus needs to be recomputed, 
the cached value is simply reused. This factor causes a dramatic improvement in the 
performance of the constraint maintenance system, since under ordinary circumstances the rate 
of change is fairly low and most changes are local in nature. The availability of a local cache 
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means that in most cases the formula is not recomputed at all, since the correct value is already 
available locally. Typical applications have a read-to-write ratio of around 100:1, which means 
that out of 100 accesses to a formula only 1 causes the formula to be recomputed. 

:yl 10 
POINT-1 I ) : y 2 4 Q » 0 : 

(a) 
r i > 2 ( ] : parent point-1 

V - ^ :y ( 
P0INT-_ m 

y (formula '(floor (+ (gvl .parent :yl) (gvl .parent :y2)) 2)) 

( b ) (c) ( d ) (e) 
POINT-1 

O :yl 10 
:y2 40 

POINT-2 

o - < 
CACHED 25 
VALID yes O 

'CACHED 25 
VALID ho 

O 
O 

:yl 0  
|:y2 60 | 

^CACHED 25 
'VALID no 

O 
O 

:yl 0 
:y2 60 

:y< 'CACHED 30 
VALID fyes 

Figure 5-1: Successive changes in depended values 

Figure 5-1, part (a), shows an example of a formula installed on slot :Y of schema :POINT-2. The 
formula depends on two values, i.e., the value of slots :Y1 and :Y2 in schema :POINT-l. The 
formula, in particular, specifies that slot :Y is constrained to be the sum of the two values divided 
by 2, i.e., the average of the two values. Figure 5-1, part (b), shows the internal state of the 
formula in a steady-state situation where the formula has been evaluated and contains a valid 
cached value. Under these circumstances, any request for the value of slot :Y would simply 
return the cached value, without ever recomputing the formula. 

Parts (c) and (d) show the effects of changes to the depended values. Changes are illustrated by 
small rectangles surrounding the modified information. The first change is to slot :Y1 and causes 
the value in the formula to be marked invalid. Note that the formula is not actually recomputed 
at this point, and the cached value is left untouched. The second change is to slot :Y2 and does 
not cause any action to take place, since the formula is already marked invalid. 

Finally, part (e) shows what happens when the value in slot :Y is needed at last. The value of the 
formula is recomputed and again cached locally; the cache is marked as valid. The system is 
then back to the a steady state. Note that the formula was recomputed only once, when needed, 
rather than eagerly after each value change. 

5.3.1. Circular Dependencies 
It is perfectly legal for constraints to involve circular chains of dependency. Slot A, for instance, 
might depend on slot B, which in turn depends on slot A; see section 8.1 for an example of a 
situation where this arises fairly naturally. Circular chains may also be used to provide a limited 
emulation of two-way constraint maintenance. 

KR is able to deal with circular dependencies without any trouble. This is handled during 
formula evaluation; if a formula is evaluated and requests a value which depends of the formula 
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itself, the cycle is broken and the cached value of the formula is used instead. This algorithm 
guarantees that the network is left in a consistent state, even though the final result may of course 
depend on where evaluation started from. 

5.3-2. Dependency Paths 
Typical formulas contain embedded references to other values and schemata. Many of these 
references span more than one link and are known as dependency paths. Whenever a formula is 
evaluated, its dependency paths are used to recompute the updated value. 

It is possible for a dependency path to become temporarily unavailable. This can happen, for 
instance, if one of the intermediate schemata is deleted. KR handles such situations 
automatically: If a formula needs to be evaluated but one of its dependency paths is broken, the 
current cached value of the formula is simply reused. This makes it completely safe to modify 
schemata that happen to be involved in a dependency paths, since the system handles the 
situation gracefully. 

The typical application program does not have to be aware of the existence of dependency paths 
and the possibility that a path might be temporarily severed. A special function, link-valid-p, is 
available for those applications that need to be informed of this situation and take special actions. 

5.4. Constraints and Multiple Values 

Version 2.0 does not allow constraints on multiple values in a slot. The only value on which 
constraints are handled properly is the first one in a slot; g-value and the related functions work 
properly with such values. 

The interaction between constraints and multiple values will be specified and implemented in 
future versions of KR. It will be possible, in particular, for a formula to depend on values in 
positions other than the first in a slot. 

6. Functional Interface 
This section contains a list of the more common functions and macros exported by the KR 
interface. It includes the functionality that most users are likely to need and covers knowledge 
representation, object-oriented programming, and constraint maintenance. Section 7 describes 
parts of the system that are much less commonly used. All functions and variables are defined 
and exported by the KR package. 

Throughout this and the following section, we will use the schemata defined in section 3.1 as 
examples. All examples assume the initial state described there. 

6.1. Predicates 

This group includes functions that test certain attributes of KR schemata and slots. 

(SCHEMA-P thing) [Function] 
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This predicate returns T if thing is a valid KR schema, nil otherwise. 

(RELATION-P thing) [Macro] 

This predicate returns nil if thing is not a relation, or a non-nil value if it is the name of a relation 
slot. 
Examples: 

(relation-p :is-a) ==> non-nil value 
(relation-p : color) — > NIL 

(IS-A-P schema otherschema) [Function] 

This predicate returns T if schema is related to other-schema via the :IS-A relation, either directly 
or through an inheritance chain. It returns nil otherwise. 
Examples: 

(is-a-p rectangle-1 box-object) ==> T 
(is-a-p rectangle-1 graphical-object) ==> T 
(is-a-p rectangle-1 rectangle-2) ==> NIL 

(HAS-SLOT-P schema slot) [Function] 

A predicate that returns T if schema contains a slot named slot, nil otherwise. Note that slot 
must be local to the schema; inherited slots are not considered. 
Examples: 

. (has-slot-p rectangle-1 :is-a) ==> non-nil value 
(has-slot-p rectangle-1 : thickness) ==> NIL ; not local 

6.2. Schema Manipulation Functions 

This group includes functions that create, modify, and delete whole schemata. 

(CREATE-SCHEMA schema-name &rest slot-definitions) [Macro] 

This macro creates and returns a new schema named schema-name. If schema-name is nil, an 
unnamed schema is created and returned. If schema-name is a symbol, a special variable by that 
name is created and bound to the new schema. 

The slot-definitions, if present, are used to create initial slots and values for the schema. Each 
slot definition should be a list whose CAR is the name of a slot and whose CDR is a (possibly 
empty) list of values for that slot. 

Note that if schema-name is the name of an existing schema, that schema is deleted first. This 
default behavior may be modified by using the keyword :override as part of the slot-definitions. 
This keyword requests that the existing schema be modified in place and contain the union of its 
previous slots and those specified by create-schema. Previous slots that are not mentioned in the 
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call retain whatever values they had before the operation. 
Examples: 

(create-schema rectangle-3 (:is-a box-object) (:x 70)) 
(create-schema rectangle-3 :override (:y 12)) ;addaslot 
(create-schema nil (:is-a graphical-object)) 

(DESTROY-SCHEMA schema-name) [Function] 

E)estroys the schema named by schema-name. Returns T if the schema was destroyed, nil if it 
did not exist. This function takes care of properly removing all constraint dependencies to and 
from the schema-name. 

6.3. Slot Manipulation Functions 

This group includes functions which create and delete slots in a schema. It also includes a 
convenient way to iterate a user-defined function over all the slots in a schema. 

(CREATE-RELATION name inherits-p &rest inverses) [Macro] 

Declares the slot name to be a relation. The new relation will have inverses (a list of slot names) 
as its inverse relations. If inherits-p is non-nil, name becomes a relation with inheritance, and 
values may be inherited through it. 

The following form defines the non-inheritance relation :HAS-PARTS and its two inverses, 
:PART-OF and :SUBSYSTEM-OF: 

(create-relation :has-parts nil :part-of :subsystem-of) 

("DESTROY-SLOT schema slot) [Function] 

Destroys the slot from schema. Values previously stored in the slot, if any, are lost. All 
constraints to and from schema are modified accordingly. 

(DOSLOTS schema function) [Function] 

Iterates the function over all the slots of schema. The function, which should be a LISP function 
of two arguments, is applied in turn to each local slot of schema. The function is called with the 
schema itself as the first argument, and the name of the slot as the second argument. The 
function is called purely for side effects, and doslots simply returns nil. 
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(doslots rectangle-1 #'(lambda (schema slot) 
(format t "Slot ~S has value ~A~%" 
slot (g-value schema slot)))) 

;; prints out: 
Slot :Y has value 20 
Slot :X has value 10 
Slot :IS-A has value BOX-OBJECT 

6.4. Value Manipulation Functions 

This group includes the most commonly used KR functions, i.e., the ones that retrieve or modify 
values in a slot. This section presents KR value manipulation functions that deal properly with 
constraints. A different set of primitive functions, which do not deal with constraints, is 
described in Section 7. 

(G-VALUE schema slot &rest other-slots) [Macro] 

This macro returns the first value in the slot from schema; if the slot is empty or not present, it 
returns nil. Inheritance may be used when looking for a value. This function handles constraints 
properly: If a formula is currently installed in the slot, the value is computed (if needed) and 
returned. 
Examples: 

(g-value rectangle-1 :is-a) ==> BOX-OBJECT 
(g-value rectangle-1 .-thickness) — > 1 ; inherited 
(g-value rectangle-1 : color) — > :BLUE 
(g-value rectangle-2 :y) ==> 35 ; computedformula 
;; Change value in depended slot from 20 to 21 
(incf (g-value rectangle-1 :y)) 
;; Now the constraint is propagated to RECTANGLE-2 
(g-value rectangle-2 :y) ==> 36 ; recomputed 

As shown by the expression ( i n c f ( g - v a l u e r e c t a n g l e - 1 : y ) ) in the example 
above, a LISP setf form is defined for g-value and expands into s-value, the KR function which 
sets the value in a slot. This allows a variety of LISP constructs to be used in combination with 
g-value, such as the idiom 

(incf (g-value schema slot)) 
which increments the value of a slot in the schema. Note that constraint propagation is fully 
enforced during this operation, just as it would be in the (equivalent) expression 

(s-value schema slot (14- (g-value schema slot))) 

The macro g-value may be given any number of other-slots. This expands into repeated calls to 
g-value, where each slot is used to retrieve another schema. For instance, imagine we had 
defined a hierarchy of schemata to represent a family tree, and we were using the s lot : parent to 
express the hierarchy. The following expressions, then, would be entirely equivalent and would 
both retrieve the value of the :slot from two levels up in the hierarchy: 
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(g-value grand-child rparent .-parent :slot) 
(g-value (g-value (g-value grand-child rparent) :parent) 

rslot) 

(S-VALUE schema slot value) [Function] 

This function is used to set a slot with a given value or formula. The slot in schema is set to 
contain the value. The most common case is the one where value is a regular LISP value and 
simply supersedes any previous value in the slot. If value is a formula, i.e. the result of a call to 
the function formula, the formula is installed in the slot and internal bookkeeping information is 
set up appropriately. 

If the slot already contains a formula, the following cases arise. If value is also a formula, the 
old formula is replaced and any dependencies are removed. If value is not a formula, the default 
behavior is to keep the old formula in place, but to use the value as its new, temporary cached 
value. This means that the slot will keep the value until such time as the old formula needs to be 
re-evaluated, typically because some of the values on which it depends are modified. This 
default behavior may be explicitly overridden by setting the special variable 
*al!ow-change-to-cached-value* to nil. In this case, trying to set the slot with a value which is 
not a formula has no effect, and the old formula retains its original value. 

s-value returns the new value of the slot. 

(GET-VALUES schema slot) [Macro] 

This macro returns a list of all the values in the slot of schema. If the slot is empty or not 
present, it returns nil. Inheritance may be used when looking for values. Note that this macro 
does not deal with constraints, i.e., it does not cause formulas to be evaluated. 
Examples: 

(get-values graphical-object :is-a-inv) ==> (BOX-OBJECT) 
(get-values box-object :is-a-inv) ==> 

(RECTANGLE-2 RECTANGLE-1) 
A setf form is defined for get-values and expands into a call to set-values. 

(SET-VALUES schema slot values) [Function] 

This function stores a list of values in the slot of schema. The entire list may subsequently be 
retrieved with get-values, or the first value may be retrieved with g-value. Note that set-values 
does not deal with constraints, i.e., the list of values cannot contain formulas. 

(SET-VALUE-N schema slot value position) [Function] 

This function is similar to S-VALUE, except that it sets a value other than the first one. The 
position is a 0-based number which indicates the number of the value that should be replaced. 
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Note that this function does not deal with constraints properly. 

The position must be non-negative. If it is greater than the number of values currently present in 
the slot, the slot is padded in the middle with enough nil values to reach the appropriate position. 

This function will be replaced in future versions of KR by s-value-n, which will deal with 
constraints properly. 

(GV schema slot &rest more-slots) [Macro] 

This macro is superficially similar to g-value, but it serves a different purpose and can only be 
used within formulas. The result of gv is the current value in the slot of schema, just like 
g-value. In addition, however, gv records the dependency path and ensures that the formula in 
which it is embedded is recomputed whenever the dependency path or the value changes. 

The first argument, schema, is the starting schema for the path; the remaining arguments are 
slots, which are accessed in turn until the end of the path is reached. The result of each access is 
a schema, which is then further accessed through the next slot name. For example, the following 
two expressions are equivalent: 

(gv my-schema iparent :color) 
(gv (gv my-schema iparent) :color) 

Both expressions return the value of the :color of the schema which is contained in the iparent 
slot of my-schema. One can think of the slot iparent as providing the name of the place from 
which the next slot can be accessed. 

Note that schema can be any schema, not necessarily the one on which the formula surrounding 
gv is installed. Specifying the reserved name :self for schema ensures that the path starts from 
the schema on which the formula is installed. 
Examples: 

(formula '(gv rectangle-1 :y)) 
(formula '(+ (gv :self :x) 15)) 
(formula ' (equal (gv :self rparent iparent :color) 

(gv :self :color))) 

(GVL slot &rest more-slots) [Macro] 

This is a useful shorthand notation for (gv :self slot more-slots). Like gv, it may only be used in 
formulas. For example, the expression (gvl icolor) returns the current value of the :COLOR slot 
in the schema which contains the surrounding formula, and is equivalent to the expression (gv 
:self: color). 

(DOVALUES {variable schema slot &optional all-p) &rest body) [Macro] 

DOVALUES executes the body with the variable bound in turn to each value in the slot of 
schema. The body is executed purely for side effects, and DOVALUES returns nil. The body 
should not alter the contents in the slot, since this may cause unpredictable results. Example: 
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(set-values rectangle-1 rvertices ' (a b d f)) 

(dovalues (v rectangle-1 .-vertices) 
(format t "rectangle-1 has vertex ~S~%" v)) 

;; prints out: 
rectangle-1 has vertex A 
rectangle-1 has vertex B 
rectangle-1 has vertex D 
rectangle-1 has vertex F 

If all-p is non-nil, the body is executed for all the values of slot that can be inherited by schema, 
including all levels of possible inheritance. The default behavior is to stop as soon as the slot is 
found locally or is inherited. 

6.5- Constraint Manipulation Functions 

These functions are concerned with the constraint maintenance part of KR. The fundamental 
notion here is that of a formula, which expresses how the value in a slot depends on other values. 
A formula expresses a dynamic link and is (logically) recomputed every time any of the 
depended values is modified. 

*ALLOW-CHANGE-TO-CACHED-VALUE* [Special Variable] 

This variable controls the system's behavior when functions like s-value are used to replace a 
formula with an ordinary value. 

The default value of this variable, T, indicates that ordinary values are allowed to replace 
formulas. More specifically, an ordinary value is installed as the cached value of the formula 
and replaces whatever value the formula previously had. The formula itself, however, is still in 
place, and therefore may recompute a new value if some of the depended values change. See 
destroy-constraint for a function which physically eliminates a formula from a slot. 

A value of nil indicates that trying to set a slot that contains a formula with an ordinary value has 
no effect. The operation is simply ignored, and the formula retains its previously cached value. 

(WITH-DEMONS-DISABLED &body body) [Macro] 

The body of this macro is executed with demons disabled. Constraints are propagated as usual, 
but demons are not invoked. 

This macro is often useful when making temporary changes to schemata which have un update 
demon. This happens, for instance, when a program is changing graphical objects but does not 
want to display the changes to the user, or when some of the intermediate states would be illegal 
and would cause an error if demons were to run. The objects may be freely modified inside the 
body without interference from the demons. 

(DESTROY-CONSTRAINT schema slot) [Function] 
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If the slot of the schema contains a formula, the constraint is removed and replaced by the 
current value of the formula. The formula is discarded and all dependencies are updated. If the 
slot contains an ordinary value, this function has no effect. 

(FORMULA form &optional initial-value) [Function] 

Given a form, this function returns a formula 3. The form typically consists of Lisp expressions 
and gv or gvl references. 
Examples: 

(formula '(gvl :ABOVE-GADGET :x)) 
(formula ' (min (gvl :ABOVE-GADGET :x) 

(+ (gvl rOTHER-GADGET rwidth) 10))) 
The first example shows a formula which causes the slot on which it is installed to have the same 
value as slot :X of the schema contained in slot :ABOVE-GADGET of the current schema. The 
second formula is more complex and constrains the slot on which it is installed to have as its 
value the minimum of two values. One value is computed as before, and the other is computed 
by adding 10 to the :WIDTH slot of the schema contained in slot :OTHER-GADGET of the current 
schema. 

Note that form can also be an existing formula, rather than a Lisp expression. In this case, the 
new formula is linked via :IS-A to the existing formula, and inherits the expression from it. No 
local state is shared by the two formulas. An illustration of this case is given by the second call 
in the following example, which returns a new formula that inherits its expression from the first 
one: 

(setf f (formula '( + (gvl :ABOVE :y) 
(floor (gvl :ABOVE :height) 2)))) 

(setf g (formula f)) 
If initial-value is specified, it is used as the initial cached value for the formula. This cached 
value is recorded in the formula but marked invalid, and thus it will never be used under normal 
circumstances. The initial value is only used if the formula is part of a circular dependency or if 
one of the dependency paths is invalid. This means that only applications which contain circular 
chains of constraints need to specify an initial-value. 

6.6. Object-Programming Functions 

This section contains a few functions that support objected-oriented programming within KR. 
Note that KR does not support any predefined notion of class hierarchy, but of course arbitrary 
"class hierarchies" may be built on top of the system's powerful inheritance mechanism. 

(DEFINE-METHOD name schema arg-list &body body) [Macro] 

This macro defines a method named name for schema. While schema can be any schema, and in 

3Formulas are internally represented by a schema. 
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particular any instance, it is customary to define methods at the level of prototypes; this allows 
prototypes to provide methods for all their instances. 

The method is defined as a function whose argument list is arg-list and whose body is given by 
the body. The method is installed on slot name, which is created if needed. In order to facilitate 
debugging, the function which implements the method is given a meaningful name formed by 
concatenating the name, the string "-METHOD-", and the name of the schema. Example: 

(define-method :print box-object (schema) 
(format t "A rectangle at (~D,~D).~%" 

(g-value schema :x) (g-value schema :y))) 
After this, the .PRINT message can be inherited by any instance of BOX-OBJECT. Sending the 
message to RECTANGLE-2, for example, would cause the following to happen: 

(kr-send rectangle-2 :print rectangle-2) 
;; prints out: 
A rectangle at (34,35) . 

The generated name of the :PRINT method, in this example, would be 
PRINT-METHOD-BOX-OBJECT. 

(CREATE-INSTANCE schema prototype &rest slot-definitions) [Macro] 

This macro is similar to create-schema but is more convenient for creating objects that are 
instances of a prototype. Besides acting like create-schema, create-instance also performs 
three operations that are particularly suited for instances. 

First of all, it links the newly created schema to the prototype via the :IS-A link. Secondly, if the 
prototype contains any slot with a formula, and the slot-definitions do not redefine that slot, 
create-instance copies the formula down into the instance. This means that the prototype can 
conveniently provide default formulas for any slots that are not explicitly defined by the 
instances. Thirdly, if the prototype or the schema itself defines the -.INITIALIZE method, 
create-instance sends the newly created schema the :INITIALIZE message. This is done after all 
other operations have been completed, and provides an automatic way to perform object-
dependent initializations. Example: 

(create-instance rectangle-4 box-object (:x 14) (:y 15)) 

The following example demonstrates the use of the :INITIALIZE method at the prototype level: 
(define-method :initialize box-object (schema) 

(s-value schema :color :RED) 
(format t "~S initialized^5*" schema)) 

(create-instance rectangle-4 box-object (:x 14) (:y 15)) 
;; prints out: 
RECTANGLE-4 initialized 

(KR-SEND schema slot &rest arguments) [Macro] 
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This macro implements the primitive level of message-sending. The slot in schema should 
contain a Lisp function object; the function is then called with the arguments specified in 
arguments. Note that the function may be local to the schema, or it may be inherited. 

If the function, i.e., the value of the expression ( g - v a l u e s c h e m a s l o t ) , is nil, nothing 
happens and kr-send simply returns nil. Otherwise, the function is invoked and the value(s) it 
returns are returned by kr-send. 

(CALL-PROTOTYPE-METHOD &rest arguments) [Macro] 

This macro can be used inside an object's method to invoke the method attached to the object's 
parent. It should never be used outside object methods. If a parent of the current object, i.e, the 
one which supplied the method currently being executed, also defines a method by the same 
name, the parent's method is invoked with arguments as the list of arguments. For example, 

(define-method :notify a (schema level) 
;; Execute object-specific code: 
/ / • • • 
;; Now invoke :notify method from parent, if any: 
(call-prototype-method schema level)))) 

(kr-send a :notify a 10) 
First of all, kr-send invokes the method defined locally by schema A. The method itself contains 
a call to caJl-prototype-method, and thus the hierarchy is searched for a parent of schema A 
which also defines the .NOTIFY method. If one exists, that method is invoked. 

Note that a method is free to supply a parent method with any parameters it wants; this can be 
accomplished simply by using different values in the call to call-prototype-method. In the 
example above, for instance, we could have written (call-prototype-method schema (+ level 
1)). It is customary, however, to invoke call-prototype-method with exactly the same 
parameters as the original call. Finally, note that the name of the original schema and the 
message name are not specified in call-prototype-method, and KR automatically provides the 
right values. 

6.7. Printing and Debugging Functions 

(PS schema &optional control-schema) [Function] 

This function prints the contents of schema, and allows fine control over what to print and how. 
The default behavior is to print out all slots and all values in schema-, this happens when the 
control-schema is nil or not specified. It is possible, however, to cause ps to ignore certain slots 
and to specify that others should be printed in a given order. It is also possible to limit the 
number of values that are printed from each slot, thus preventing annoyingly long lists of values. 

If a control schema is specified, it should contain (or inherit) four special slots. These slots 
determine what ps does, as follows: 

• :SORTED-SLOTS contains a list of names of slots that should be printed at the 
beginning, in the correct order. 
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• :IGNORED-SLOTS contains a list of names of slots that should not be printed. 

• .GLOBAL-LIMIT-VALUES contains an integer, the maximum number of values that 
will be printed for each slot. If a slot contains more than that many values, ellipsis 
are printed after the given number of values. 

• .LIMIT-VALUES allows the same control on a slot-by-slot basis. It should contain 
lists of the form ( s l o t n u m b e r ) . If a slot name appears in one of these lists, the 
number specified there is used instead of the one specified in 
: GLOB AL-LIMIT-VALUES. 

The control-schema should be one of three things: 
1. not specified or nil, which means that schema is printed in its entirety. 

2. T, which means that the schema itself is used as the control schema. In most cases, 
the four slots are inherited from some of the parents of the schema. 

3. a schema, which is used directly as the control schema. 

4. the keyword :DEFAULT, which indicates that the default print control schema 
should be used. The name of the default print control schema is 
PRINT-SCHEMA-CONTROL; this default schema limits the number of values that are 
printed by ps to a maximum of five per slot. 

The following is a rather comprehensive example of fine control over what ps prints: 
; Use top level of the hierarchy to control printing. 
(create-schema top-object 
(:ignored-slots :internal :width)) 

(create-schema colored-thing (.-color :blue) (:x 10) 
(:is-a top-object) (:width 12.5) (:y 20) 
(:internal "Some information")) 

(dotimes (i 20) (create-instance nil colored-thing)) 
Using ps with no control-schema prints out the whole contents of the schema: 

(ps colored-thing) 
;; prints out: 
{COLORED-THING 

:IS-A-INV = s67 s66 s65 s64 s63 s62 s61 s60 s59 s58 
s57 s56 s55 s54 s53 s52 s51 s50 s49 s48 

:INTERNAL = "Help information" 
:Y = 20 
:X = 10 
•.COLOR =s :BLUE 
:WIDTH = 12.5 
:IS-A = TOP-OBJECT 
} 

Using the system-supplied default control schema reduces the clutter in the :IS-A-INV slot: 
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(ps colored-thing :default) 
{COLORED-THING 

:WIDTH = 12.5 
:IS-A-INV = S67 S66 S65 S64 S63 ... 
: INTERNAL «• "Help information" 
:Y = 20 
:X = 10 
:COLOR = :BLUE 
:IS-A = TOP-OBJECT 
> 

We can make things even better by using the schema itself to inherit the control slots. We add 
sorting information and a global limit to the number of values to be printed for each slot. We do 
this at the highest level in the hierarchy, so that every schema can inherit the information: 

(s-value top-object :global-limit-values 7) 
(set-values top-object :sorted-slots 
'(:is-a :color :x :y)) 

(ps colored-thing t) 
;; prints out: 
{COLORED-THING 

:IS-A = TOP-OBJECT 
:COLOR = :BLUE 
:X = 10 
:Y = 20 
:IS-A-INV = S67 S66 S65 S64 S63 S62 S61 ... 
} 

Note that ps prints slots whose value is a formula in a special way. Besides the name of the 
formula schema, the current cached value of the formula is printed in parentheses, followed by T 
if the cache is valid or nil otherwise. Example: 

(create-schema a 
(:left 10) (:right (formula ' (+ (gvl .-left) 25)))) 

(g-value a : right) = > 35 

(ps a) 
;; prints out: 
{A 

:RIGHT = F88 (35 . T) 
:LEFT = 10 
} 

(s-value a :left 50) 
(ps a) 
;; prints out: 
{A 

:RIGHT = F88 (35 . NIL) 
:LEFT = 50 
} 
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The cached value is not correct, of course, but it will be recomputed as soon as its value is 
requested because formula F88 is marked invalid. 

(S number) [Function] 

This function is useful in some debugging situations. Whenever the function ps prints an 
unnamed schema, it shows it as an internal number. Unnamed schemata often appear as values 
in SQme other schema's slots. When this happens, and one needs to refer explicitly to an 
unnamed schema, the function s can be used to go from the internal number to the actual schema. 
For example, suppose that a call to ps causes the following to be printed: 

{COLOR 
:IS-A-INV = slOl slOO s99 s98 s97 ... 
} 

One can then use the form (s 99) to refer to the third schema in the :IS-A-INV slot of schema 
COLOR, as shown below: 

(ps (s 99)) 
{s99 

:IS-A = COLOR 
} 

Note that an alternative way to refer to an unnamed schema always exists, and thus the function s 
is not strictly indispensable. In the example above, for instance, we could have used the form: 
(ps (third (get-values color :is-a-inv))) 

(METHOD-TRACE class message-name) [Macro] 

This macro can be used to trace method execution. Trace information is printed every time an 
instance of the class is sent the message named message-name. Since this expands into a call to 
the primitive macro trace, the macro untrace may later be used to eliminate trace information. 

7. Additional Functions 
This section describes a set of KR functions and macros that are used much more seldom that the 
ones we have seen so far. Some of these functions are obsolete, while others deal with aspects of 
the system that only advanced application programs need be concerned with. 

7.1. Value Manipulation Functions 

Functions in this group do not deal with constraints. They may be useful to applications that 
need to be aware of the distinction between ordinary values and formulas. The group also 
includes functions that deal with multiple values. 

(GET-VALUE schema slot) [Macro] 
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Returns the first value in the slot from schema. If the slot is empty or not present, it returns nil. 
Inheritance may be used when looking for a value. Note that get-value does not deal with 
constraints at all; in particular, given a slot that contains a formula, get-value returns the formula 
itself, rather than its value. Therefore, use of get-value is limited to applications that manipulate 
formulas explicitly. 

(GET-LOCAL-VALUES schema slot) [Macro] 

Similar to GET-VALUES, but only local slots are examined and inheritance is never used. 
Examples: 

(get-values rectangle-1 :thickness) ==> (1) 
(get-local-values rectangle-1 : thickness) — > NIL ; not local 

Note that this macro does not deal with constraints, i.e., it does not cause formulas to be 
evaluated. 

(APPEND-VALUE schema slot value) [Function] 

This function adds a value to the end of the-list of values in the slot of schema. Note that this 
function does not deal with constraints properly, i.e., value cannot be a formula. 

(DELETE-VALUE-N schema slot position) [Function] 

This function deletes the position-th value from the slot of the schema, position is a non-
negative integer, with 0 indicating the first value in the slot. Note that this function does not deal 
with constraints properly. 

7.2. Constraint Maintenance Functions 

(LINK-VALID-P schema slot &rest more-slots) [Macro] 

This macro can be used within formulas to check whether a reference through gv would succeed. 
If so, the macro returns T; otherwise, it returns nil. This macro allows a formula to ensure that 
all its dependency paths are intact before starting a recomputation. 

This macro should only be used when it is important that the formula be able to detect whether a 
dependency path was interrupted and to handle this case in a special way. Under normal 
circumstances this test is not necessary, since the cached value of the formula is used by default 
when attempting to reference an invalid dependency path. 

(FORMULA-P thing) [Macro] 

A predicate that returns T if the thing (any Lisp object) is a valid formula, nil otherwise. 
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(CHANGE-FORMULA schema slot expression) [Function] 

If the slot in schema contains a formula, the formula is modified to contain the expression as its 
new function. This function works properly on any formula, regardless of whether the old 
function was local or inherited from another formula. If formula inheritance is involved, this 
function makes sure that all the links are modified as appropriate. 

Note that this function cannot be used to install a fixed value on a slot where a formula used to 
be; change-formula only modifies the expression within a formula. 

(MARK-AS-CHANGED schema slot) [Function] 

This function may be used to trigger the constraint propagation mechanism in KR for a schema 
whose slot has been modified by means other than s-value. Some applications may need to use 
destructive operations on values in a slot and then notify the system that certain values were 
changed. 

Most users will probably never need to use mark-as-changed in their programs. 

(G-CACHED-VALUE schema slot) [Function] 

This function is similar to g-value if the slot contains an ordinary value. If the slot contains a 
formula, however, the cached value of the formula is returned even if the formula is invalid. The 
formula itself is never re-evaluated. 

Only advanced applications may need this functionality, which in some cases may return values 
that are out of date. This function should be used with care. 

8. An Example 
This section develops a more comprehensive example than the ones so far, and highlights the 
operations with which most users of the system should be familiar. We first construct a schema 
with a simple example of constraints and show how constraints work. The example uses 
constraints to compute the equivalence between a temperature expressed in degrees Celsius and 
in degrees Fahrenheit. This first part also illustrates how KR deals with circular chains of 
constraints. 

The second part of the example shows some simple object-oriented programming techniques, 
and illustrates many of the dynamic capabilities on KR. Note that this example is purely 
indicative of a certain way to program in KR, and different programming styles would be 
possible even for such a simple task. 

8.1. The Degrees Schema 

First of all, we will create the DEGREES schema as a demonstration of constraints in KR. This is 
a schema with two slots, namely, :CELSIUS and :FAHRENHEIT. The schema can be created with 
the following call to create-schema: 
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(create-schema degrees 
(rfahrenheit (formula '(+ (* (gvl rcelsius) 9/5) 32) 

32)) 
(rcelsius (formula ' (* (- (gvl rfahrenheit) 32) 5/9) 

0))) 

Each of the two slots, contains a formula. The formula in the .CELSIUS slot, for instance, 
indicates that the value is computed from the value in the .FAHRENHEIT slot, using the customary 
expression. The initial value, moreover, is 32. The formula in the .FAHRENHEIT slot, similarly, 
is constrained to be a function of the value in the .CELSIUS slot and is initialized at the value 0. 

It is clear that this example involves a circular chain of constraints. The value of :CELSIUS 
depends on the value of .FAHRENHEIT, which itself depends on the value of .CELSIUS. This 
circularity, however, is not a problem for KR. The system is able to detect such circularities and 
reacts appropriately by stopping change propagation when necessary. 

Consider, for instance, setting the value of the .CELSIUS slot: 
(s-value degrees rcelsius 20) 
(g-value degrees rcelsius) ==> 20 
(g-value degrees rfahrenheit) ==> 68 

As the example shows, KR propagates the change to the FAHRENHEIT slot, which is given the 
correct value. Similarly, if we modify the value in the FAHRENHEIT slot, we have correct 
propagation in the opposite direction: 

(s-value degrees rfahrenheit 212) 
(g-value degrees rcelsius) ==> 100 
(g-value degrees rfahrenheit) — > 212 

8.2. The Thermometer Example 

Let us now build an example of a thermometer from which one can read the temperature in both 
degrees Celsius and Fahrenheit, and show a more extensive application of constraints. This 
example also shows the role of inheritance in object-oriented programming, and a simple method 
combination. 

We begin with TEMPERATURE-DEVICE, a simple prototype which contains a formula to translate 
degrees Celsius into Fahrenheit (the formula is the same we used in the previous example) and a 
:PRINT method which prints out both values: 

(create-schema temperature-device 
(r fahrenheit 

(formula '(+ (* (gvl rcelsius) 9/5) 32) 32))) 

(define-method rprint temperature-device (schema) 
(format t "Current temperaturer ~,1F C (~,1F F ) ~ % " 

(g-value schema rcelsius) 
(g-value schema r fahrenheit))) 

We now create two schemata to hold the current temperature outdoors and indoors, and we 
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create the schema THERMOMETER which will be the basic building block for other thermometers: 
(create-schema outside 

(rcelsius 10)) 

(create-schema inside 
(rcelsius 21)) 

(create-instance thermometer temperature-device 
(rcelsius (formula ' (gvl rlocation rcelsius)))) 

Note that THERMOMETER can act as a prototype, since it provides a formula which constrains the 
value of the :CELSIUS slot to follow the value of the :CELSIUS slot of a particular location. 
Thermometer schemata created as instances of THERMOMETER will then simply track the value 
of temperature at the • location with which they are associated. Note that instances of 
THERMOMETER inherit the :PRINT method from TEMPERATURE-DEVICE. 

(create-instance thl thermometer 
(rlocation outside)) 

(create-instance th2 thermometer 
(rlocation inside)) 

(kr-send th2 rprint th2) 
;; prints out: 
Current temperaturer 21.0 C (69.8 F) 

(kr-send thl rprint thl) 
;; prints out: 
Current temperature.- 10.0 C (50.0 F) 

Since the temperature in the OUTSIDE schema is 10, and thermometer THl is associated with 
OUTSIDE, it prints out the current temperature outside. Changing the slot :LOCATION of THl to 
INSIDE would automatically change the temperature reading, because of the dependency built 
into the formula in that slot. 

We now want to specialize the THERMOMETER in order to provide a new kind of thermometer 
that keeps track of minimum and maximum temperature, as well as the current temperature. We 
do this by creating a child schema, MIN-MAX-THERMOMETER, which inherits all the features of 
THERMOMETER and defines two new formulas for computing minimum and maximum 
temperatures. Note the initial values in the formulas. Also, we create an instance of 
MIN-MAX-THERMOMETER named MIN-MAX, and send it the :PRINT message. 
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(create-instance min-max-thermometer thermometer 
(:min (formula ' (min (gvl :min) 

(gvl rlocation rcelsius)) 
100)) 

(rmax (formula '(max (gvl rmax) 
(gvl rlocation rcelsius)) 

-100))) 

(create-instance min-max min-max-thermometer 
(rlocation outside)) 

(kr-send min-max rprint min-max) 
;; prints out: 
Current temperaturer 10.0 C (50.0 F) 

The .PRINT method inherited from TEMPERATURE-DEVICE is not sufficient for our present 
purpose, since it does not show minimum and maximum temperatures. We thus specialize the 
:PRINT method, but we still use the default .PRINT method to print out the current values. Let us 
specialize the method, print out the current status, change the temperature outside a few times, 
and then print out the status again: 

(define-method rprint min-max-thermometer (schema) 
;; print out temperature, as before 
(call-prototype-method schema) 
;; print out minimum and maximum readings. 
(format t "Minimum and maximumr ~,1F ~,1F~%" 

(g-value schema rmin) 
(g-value schema rmax))) 

(kr-send min-max rprint min-max) 
;; prints out: 
Current temperaturer 10.0 C (50.0 F) 
Minimum and maximumr 10.0 10.0 

(s-value outside rcelsius 14) 
(kr-send min-max rprint min-max) 
;; prints out: 
Current temperaturer 14.0 C (57.2 F) 
Minimum and maximum r 10.0 14.0 

(s-value outside rcelsius 12) 
(kr-send min-max rprint min-max) 
;; prints out: 
Current temperaturer 12.0 C (53.6 F) 
Minimum and maximum: 10.0 14.0 

Note that the FAHRENHEIT slot in any of these schemata can be accessed normally, and the 
constraints keep it up to date at all times: 

(g-value min-max rfahrenheit) ==> 268/5 (53.6) 

Finally, we can add a method to reset the minimum and maximum temperature, in order to start a 
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new reading. This is shown in the next fragment of code: 

(define-method :reset min-max-thermometer (schema) 
(s-value schema :min (g-value schema rcelsius)) 
(s-value schema rmax (g-value schema rcelsius))) 

(kr-send min-max r reset min-max) ; reset min, max 

(kr-send min-max rprint min-max) 
;; prints out: 
Current temperaturer 12.0 C (53.6 F) 
Minimum and maximumr 12.0 12.0 

(s-value outside rcelsius 14) 

(kr-send min-max rprint min-max) 
;; prints out: 
Current temperaturer 14.0 C (57.2 F) 
Minimum and maximum r 12.0 14.0 

The examples above show a simple way to achieve the desired behavior. Other choices of 
programming style would have been possible, ranging from entirely object-oriented (i.e., without 
using constraints at all) to entirely demon-based. Implementing the same example with one of 
those styles is a worthwhile exercise, and the reader is invited to spend some time trying 
different alternatives. 

9. Summary 
KR is a knowledge representation system which provides excellent performance and a 
combination of three powerful paradigms: frame-based knowledge representation, object-
oriented programming, and constraint maintenance. The system is designed for high 
performance and has a very simple program interface, which makes it easy to learn and easy to 
use. 

The knowledge representation component of KR offers multiple values, multiple inheritance, and 
user-defined relations. This component provides completely dynamic specification of a 
network's characteristics: inheritance, for example, is determined through user-specified 
relations, which the user may modify at run-time as needed. The performance of this component 
is very good and compares favorably with that of basic Lisp data structures. Inheritance, in 
particular, is efficient enough to provide the basic building block across a variety of application 
programs. 

The object-oriented programming component of KR is based on the prototype-instance 
paradigm, rather than the less flexible class-instance paradigm. Any schema can be used as an 
object, and prototypes are simply objects from which other objects (called instances) may inherit 
values or methods. This relationship is completely dynamic, and an object may be made an 
instance of a different prototype as needed. Object methods are implemented as procedural 
attachments which are simply stored in an object's slots. Methods are inherited through the 
normal mechanism. 
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The constraint maintenance component of KR provides integrated, efficient constraint 
maintenance and is implemented through formulas, i.e, expressions which compute the value of 
a slot based on the values in other slots. Constraint maintenance in KR uses lazy evaluation and 
value caching to yield excellent performance in a completely transparent way. Constraint 
maintenance is totally integrated with the rest of the system and can be used even without any 
detailed knowledge of its internal details. The same access functions, in particular, work on both 
regular values and values which are constrained by formulas. 

In spite of its power, KR is a very small and simple system. This makes it easy to maintain and 
extend as needed, and also makes it ideally suited for experimentation on efficient knowledge 
representation. The system is entirely written in portable Common Lisp and can run efficiently 
on any machine which supports the language. These features make KR an attractive foundation 
for a number of applications which use a combination of frame-based knowledge representation, 
object-oriented programming, and constraint maintenance. 



31 

References 

[Bobrow et al. 89] D. G. Bobrow, L. G. DeMichiel, R. P. Gabriel, S. E. Keene, G. Kiczales, and 
D. A. Moon. 
Common Lisp Object System Specification. 
LISP and Symbolic Computation l(3/4):245-394, January, 1989. 

[Brachman 79] Brachman, R.J. 
On the epistemological status of semantic networks. 
Associative Networks: Representation and Use of Knowledge by Computers. 
Academic Press, New York, 1979, pages 3-50. 

[Brachman and Levesque 85] 
Brachman, R.J. and Levesque, H.J. 
Readings in knowledge representation. 
Morgan Kaufmann Publishers, Inc., Los Altos, CA, 1985. 

[Giuse 87] Dario Giuse. 
KR: an efficient knowledge representation system. 
Technical Report CMU-RI-TR-87-23, The Robotics Institute, Carnegie-

Mellon University, October, 1987. 

[Giuse 88a] Dario Giuse. 
LISP as a rapid prototyping environment: the Chinese Tutor. 
LISP and Symbolic Computation 1(2):165-184, September, 1988. 

[Giuse 88b] Dario Giuse. 
Intelligent Tutoring Systems for Foreign Language Acquisition. 
In proceedings of the Asia-Pacific Conference on Computer Education 

(APCCE 88), pages 33-58. Chinese Computer Federation, Shanghai, 
China, 1988. 

Dario Giuse. 
Efficient Knowledge Representation Systems. 
1989. 

Submitted for publication. 

Dario Giuse. 
Frame Systems as Object-Oriented Systems. 
1989. 

Submitted for publication. 

Henry Lieberman. 
Using Prototypical Objects to Implement Shared Behavior in Object Oriented 

Systems. 
Sigplan Notices 21(ll):214-223, November, 1986. 
ACM Conference on Object-Oriented Programming Systems Languages and 

Applications; OOPSLA'86. 

[Myers 88] Brad A. Myers. 
The Garnet User Interface Development Environment: A Proposal 
Technical Report CMU-CS-88-153, Carnegie-Mellon University, September, 

1988. 

[Giuse 89a] 

[Giuse 89b] 

[Lieberman 86] 



32 

[Myers 89] Brad A. Myers, Brad Vander Zanden, and Roger B. Dannenberg. 
Creating Graphical Objects by Demonstration. 
1989. 
Submitted for Publication. 

[Steele 84] Steele, G.L. 
Common LISP - The Language. 
Digital Press, Burlington, MA, 1984. 

[Vander Zanden et al. 89] 
Brad Vander Zanden, Brad A. Myers, Dario Giuse, and John Kolojejchick. 
An Incremental Automatic Redisplay Algorithm for Graphic Object Systems. 
1989. 
Submitted for Publication. 

[Young 89] Sheryl R. Young, Alexander G. Hauptmann, Wayne H. Ward, Edward 
T. Smith, and Philip Werner. 
High-level Knowledge Sources in Usable Speech Recognition Systems. 
Communications of the ACM 32(2): 183-194, February, 1989. 



Index 
*ALLOW-CHANGE-TO-CACHED-VALUE* 

:GLOB AL-LIMTT-VALUES slot 21 
:IGNORED-SLOTS slot 21 
:INITIALIZE method 7, 19 
:IS-A relation 5 
.LIMIT-VALUES slot 21 
:OVERRIDE slot in create-schema 12 
:SORTED-SLOTS slot 20 
:UPDATE-DEMON slot 9 
:UPDATE-SLOTS slot 9 

Action propagation 8,17 
APPEND-VALUE 24 

Box-object 4 

Cached values 9,18,25 
CALL-PROTOTYPE-METHOD 20 
CHANGE-FORMULA 25 
Circular constraints 10 
Combining methods 28 
Constraint maintenance 8 
Controlling printing 21 
CREATE-INSTANCE 7,19 
CREATE-RELATION 13 
CREATE-SCHEMA 12,19 
Creating objects 19 
Creating relations 6 
Creating schemata 12, 19 

Default constraints 7 
Default formulas 19 
DEFINE-METHOD 18 
Degrees schema 25 
DELETE-VALUE-N 24 
Demons 8 
Demons and slots 9 
Dependency paths 11 
DESTROY-CONSTRAINT 17 
DESTROY-SCHEMA 13 
DESTROY-SLOT 13 
DOSLOTS 13 
DOVALUES 16 

Eager evaluation 8 
Expressions in formulas 18 

FORMULA 18 
FORMULA-P 24 
Formulas 9, 16, 17, 18,25 
Formulas and initial values 18 
Frame systems 1 

G-CACHED-VALUE 25 
G-VALUE 14 
GET-LOCAL-VALUES 24 
GET-VALUE 23 
GET-VALUES 15 
Graphical demons 9 
Graphical-object 4 
GV 16 
GVL 16 

HAS-SLOT-P 12 

Inheritance 5, 24 
Inheritance search 6 
Inherited formulas 7 

33 

i, 17 Inherited methods 20 
Installing formulas 15 
Instance 7 
Inverse relations 6,13 
IS-A-P 12 
Iterators 13, 16 

KR-SEND 19 

Lazy evaluation 8, 9 
LINK-VALID-P 24 
Local values 24 

MARK-AS-CHANGED 25 
Messages 7 
Method combination 7 
Method inheritance 7 
METHOD-TRACE 23 
Methods 7, 18, 20, 23 
Multiple inheritance 6 
Multiple values 3,11 

Named schemata 3 

Object constraints 7 
Object initialization 7 
Object-oriented programming 7,18 
Objects and inheritance 7 

Paths in formulas 11,16 
Predicates 11,24 
Printing schemata 20 
Procedural attachments 8 
Prototype/instance 7 
Prototypes 7, 19, 27 
PS 20 

Rectangle-1 4 
Rectangle-2 4 
Relation 5 
Relation maintenance 6 
RELATION-P 12 
Relations 13 

S 23 
S-VALUE 15,17 
Schema 3 
Schema manipulation 12 
Schema names 3, 12, 23 
SCHEMA-P 11 
Schemata and variables 3 
Sending messages 7, 19, 20 
SET-VALUE-N 15 
SET-VALUES 15 
SETF form for G-v ALUE 14 
SETF form for GET-VALUES 15 
Slot 3 
Slot iterator 13 
Slot names 3 

Temperature-device schema 26 
Thermometer schema 27 
Tracing methods 23 

Unnamed schemata 3, 23 

Value 3 
Value dependency 8, 16 
Value iterator 16 



Value propagation 8, 10, 25 
Values 14 
Values as links 5 

WITH-DEMONS-DISABLED 


